

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EMBEDMOL: AN OPEN BILLION-SCALE MOLECULAR EMBEDDING DATASET FOR MOLECULAR DISCOVERY

Anonymous authors

Paper under double-blind review

ABSTRACT

Modern molecular libraries span billions of compounds, exposing a mismatch between dataset scale and the practicality of vHTS. SMILES strings remain the dominant representation, but while easy to store, they are difficult to consume at billion scale: each search or training run must first translate SMILES into learned features, incurring prohibitive overhead. We introduce *EmbedMol*, the first open billion-scale dataset of precomputed molecular embeddings, along with a scalable generation pipeline. *EmbedMol* comprises 977M embeddings from GDB13 and 11.2B embeddings from GDB13+ZINC22, generated with a deep model pretrained on experimental binding assays. Our contribution is not a new encoder, but a benchmark/dataset resource that makes billion-scale embedding-based retrieval practical. We demonstrate that precomputed vectors act as a faithful, efficient proxy for expensive inference, yielding up to **37.3** \times speedups versus classical fingerprints and **1.5** \times versus re-running the encoder, while maintaining strong retrieval quality across multiple targets. Beyond efficiency, *EmbedMol* establishes a testbed for billion-scale evaluation of retrieval methods, scaling behavior, and cross-target generalization in molecular discovery. To support reproducibility and accessibility, we release not only the dataset and loaders but also a fully automated AWS-based pipeline, enabling researchers with varying levels of distributed-systems expertise to reproduce and extend *EmbedMol*.

1 INTRODUCTION

Molecular datasets play crucial roles in modern molecular discovery tasks. Scanning through large chemical spaces using virtual high-throughput screening (vHTS) techniques allows researchers to identify molecules with desirable properties while navigating restrictions such as patents and application-specific requirements (Zhou and Zhong, 2017; Seifert et al., 2003; Cereto-Massagué et al., 2015; Hoffmann and Gastreich, 2019). For effective molecular screening, these datasets must be both voluminous and diverse, increasing the odds of uncovering molecules with optimal therapeutic or biological effects, while also being curated in formats that enable efficient processing (Hoffmann and Gastreich, 2019).

Yet as molecular libraries expand to billions or even trillions of compounds, a *mismatch* has emerged between dataset scale and the practicality of existing tools for vHTS (Stokes et al., 2020; Wong et al., 2024; Gilmer et al., 2017; Gasteiger et al., 2022b;a; Fang et al., 2022; Wang et al., 2020). On the one hand, these advanced tools heavily rely on large deep learning (DL) models to achieve high prediction accuracy, but this comes at the cost of increased computing time. For example, SOTA DL-based molecular discovery tools can only handle hundreds of millions of molecules (10^8) within a reasonable timeframe — typically days (Stokes et al., 2020; Neumann, 2022). On the other hand, current datasets are reaching sizes in the trillions ($\approx 10^{12}$). For example, GDB17 (Ruddigkeit et al., 2012) features 166 billion molecules (1.66×10^{11}), and the most recent release of commercial datasets for off-shelf chemical spaces, such as eExplore from eMolecules, curates over 7 trillion ($\approx 10^{12}$) molecules purchasable on request (Neumann, 2022), as illustrated in Figure 1. Meanwhile, modern open datasets continue to grow in size, further exacerbating the mismatch and thus diminishing the usability of modern datasets. As a result, researchers and practitioners frequently resort to manually curating and trimming datasets to manage their scope effectively. For instance, leading solutions have reduced the ZINC15 dataset, initially comprising over a billion molecules (10^9), to 107 million molecules, by as much as 90% (Stokes et al., 2020; Sterling and Irwin, 2015). This approach requires

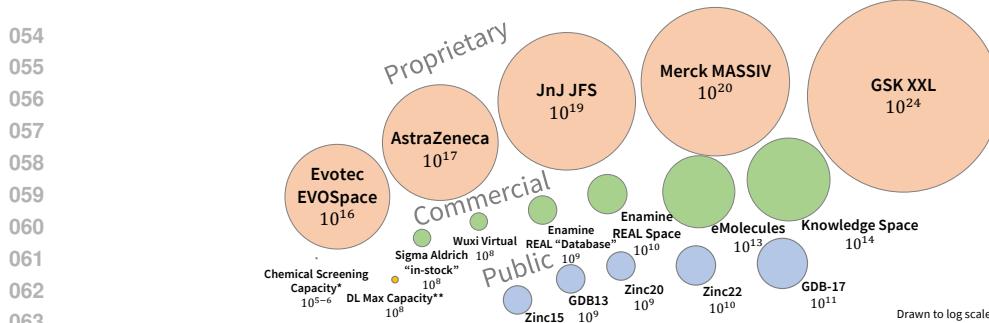


Figure 1: Existing ultralarge chemical datasets (Hoffmann and Gastreich, 2019; Sterling and Irwin, 2015; Tingle et al., 2023; Ruddigkeit et al., 2012; Blum and Reymond, 2009; Neumann, 2022; rea, 2024a;b; vir, 2024; mcu, 2024)

significant manual efforts to pinpoint specific chemical tranches that might harbor molecules with desirable physicochemical properties. More critically, it fails to leverage the extensive diversity and volume advantages of modern molecular datasets, thus hindering the discovery of ideal molecules in tranches beyond our present understanding.

One key reason behind such a mismatch is the *format* of how these molecules are stored within these chemical/molecular spaces, which is inefficient for searching and processing. Predominantly, open ultra-scale datasets for vHTS encode molecules as SMILES strings, a concise textual notation (Blum and Reymond, 2009; Ruddigkeit et al., 2012; Tingle et al., 2023; Sterling and Irwin, 2015). The textual representation of SMILES alone, however, does not directly encapsulate substructural or physicochemical details to be compared directly (Kim et al., 2021), so models for vHTS must first learn those molecular features and characteristics at high computational cost. Alternatively, researchers increasingly rely on latent-space molecular embeddings (“data-driven fingerprints”), the chemical analogue of feature vectors that drive large-scale image search (Fifty et al., 2023; Kim et al., 2021). For example, many existing works today use variational autoencoders (VAE) and other advanced DL techniques to perform computer-aided molecular design because their statistically learned representations preserve a rich set of critical features of molecules (Gao et al., 2020; Prykhodko et al., 2019; Bai et al., 2021; Gómez-Bombarelli et al., 2018; Lim et al., 2018; Ji et al., 2022; Pinheiro et al., 2022). This limitation is not only a practical barrier for chemists but also a methodological bottleneck for machine learning research. **The difficulty of consuming SMILES at scale prevents systematic study of representation quality, scaling behavior, and cross-target generalization, which are key questions for the ML community.**

Unfortunately, despite the continuous growth of molecular datasets and the increasing interest in data-driven fingerprints, *none of these datasets feature molecules in statistically learned embeddings*. Two primary factors contribute to this gap. For molecular researchers focused on vHTS outcomes, embeddings are often treated as incidental byproducts of DL models, leading to a general lack of deliberate curation and making them difficult to access and utilize. In contrast, computing experts tend to prioritize the design of embedding generation algorithms over the systematic curation of these embeddings. In both cases, the challenge is compounded by the high technical requirements needed to generate them, requiring advanced expertise in neural network architectures, molecular sciences, and distributed computing frameworks, all at the same time.

To address the challenges associated with early-stage vHTS in computational molecular discovery and to facilitate greater accessibility of latent-space molecular representations for researchers, we assembled a publicly available embedding dataset comprising high-quality molecular embeddings derived from a SOTA DL-based molecular property prediction model. Specifically, we introduce *EmbedMol*, the first and largest publicly available dataset of data-driven molecular embeddings tailored explicitly for vHTS, encompassing over 11 billion molecules aggregated from the ZINC22 and GDB13 databases Tingle et al. (2023); Blum and Reymond (2009). By focusing on enhancing the critical initial stages of the molecular discovery pipeline, *EmbedMol* significantly improves the efficiency of existing vHTS workflows, enabling more precise navigation of vast chemical spaces for molecules with desirable properties. Although primarily intended for vHTS applications, the versatility of *EmbedMol* also supports potential expansions into various downstream tasks, which we leave open for future exploration. **Our contribution is not a new encoder but a benchmark/dataset**

108 **resource that makes billion-scale retrieval practical and reproducible.** We validate *EmbedMol*
 109 along three axes: (i) embedding quality for high-precision vHTS, (ii) cross-target generalizability,
 110 and (iii) deployment efficiency at billion scale. By releasing both the dataset and the pipeline, we
 111 lower the barrier for researchers with varying levels of distributed-systems expertise and establish a
 112 foundation for future ML directions such as multimodal integration, transfer learning, and large-scale
 113 benchmarking across embedding families.

114 To enable reproducibility and lower technical barriers, we have built—and are open-sourcing—a
 115 custom software tool that leverages the advanced public cloud computing services provided by
 116 Amazon Web Services (AWS). This pipeline automates dataset generation using the platform’s
 117 parallelism and flexibility, allowing researchers without distributed-systems expertise to reproduce
 118 and extend *EmbedMol*.

119 In our evaluation, *EmbedMol* achieves a retrieval precision of up to 68% among the top-100 can-
 120 didates on a 3.5B-molecule subsample, using DL-predicted drug-target binding affinity as ground
 121 truth—performance comparable to SOTA embedding datasets in recent large-scale retrieval bench-
 122 marks (Wong et al., 2024; Simhadri et al., 2022). Cross-target experiments show consistent, high-
 123 quality retrieval without retraining, and approximate nearest-neighbor search over *EmbedMol* im-
 124 proves vHTS throughput by up to **37.3** \times versus non-DL fingerprints and **1.5** \times relative to re-running
 125 the source DL encoder. Together, these results confirm that precomputed embeddings act as a faithful
 126 and efficient proxy for expensive inference, enabling billion-scale screening that was previously
 127 impractical.

128 In summary, our work makes three contributions: (i) we release *EmbedMol*, the first open billion-scale
 129 dataset of precomputed molecular embeddings (11B molecules from GDB13 and ZINC22) with a
 130 scalable cloud pipeline; (ii) we validate its utility across embedding quality, cross-target generaliz-
 131 ability, and deployment efficiency; and (iii) we provide tools that lower barriers for researchers with
 132 varying systems expertise, enabling future work on multimodal integration, transfer learning, and
 133 large-scale benchmarking.

134 The remainder of the paper reviews related datasets (§ 2), presents our collection pipeline (§ 3),
 135 describes dataset composition (§ 4), and reports evaluation results (§§ 5 and 6), before concluding
 136 with discussion and access details (§§ 7 and 9).

138 2 BACKGROUND

140 The molecular datasets for computational molecular discovery have experienced a significant upswing
 141 over the past decade in size and diversity but little in curation format. In this section, we review the
 142 existing molecular datasets based on these three requirements: size, diversity, and format.

144 **Size** Making large molecular datasets has become a collective effort from academia and industry
 145 (Hoffmann and Gastreich, 2019; Sterling and Irwin, 2015; Tingle et al., 2023; rea, 2024a;b; vir, 2024;
 146 mcu, 2024), as shown in Figure 1. The most prominent examples from academia for open molecular
 147 datasets are the Generic Databases (GDB). Its newest version, GDB17, features 166 billion molecules
 148 with up to 17 atoms (Ruddigkeit et al., 2012). It is one of the largest open datasets generated through
 149 molecular enumeration. By enumerating all possible atom combinations of organic molecules under
 150 physical and chemical constraints, GDB17 is set to explore and better define known and unknown
 151 chemical space, offering molecular researchers and practitioners millions of isomers of known drugs
 152 and analogs that retain high shape similarity. Other academic efforts also focus on developing
 153 large datasets for tangible compounds from existing molecule suppliers’ purchasable drug catalogs.
 154 ZINC22, the newest version of such, contains over 37 billion commercially available compounds
 155 sourced from Enamine (REAL) (rea, 2024a;b), WuXi (GalaXi) (vir, 2024), and Mcule (Ultimate)
 156 (mcu, 2024; Tingle et al., 2023).

157 Major chemical suppliers such as Enamine, Wuxi, and OTAVA have collectively generated datasets
 158 covering over 50 billion synthesizable and purchasable molecules. SOTA commercial molecular
 159 spaces, such as the eMolecular and eXplore datasets, now encompass an estimated 7.0 trillion
 160 compounds generated using 49 robust chemical reactions, representing the most comprehensive
 161 commercially available molecular space to date (Neumann, 2022). In the industry, companies are
 developing even larger proprietary chemical spaces: Merck’s MASSIV dataset contains up to 10^{20}

162 molecules, while GSK’s GSK XXL dataset includes 10^{26} molecules, placing them at the leading
163 edge of the field (Hoffmann and Gastreich, 2019).

165 **Diversity** Researchers commonly use two techniques—enumeration and combinatorics—to explore
166 chemical space and diversify molecular datasets. Enumeration involves exhaustively generating all
167 unsaturated hydrocarbon skeletons and substituting atoms to create potential molecular candidates
168 (Blum and Reymond, 2009). The GDB datasets, for example, are built using this approach. In this
169 process, all possible mathematical graphs meeting basic molecular criteria are selected and expanded
170 into hydrocarbon skeletons, with nodes as atoms and edges as chemical bonds. These skeletons are
171 then converted into molecules by replacing edges with covalent bonds and nodes with heavy atoms,
172 followed by filtering candidates based on valency rules, chemical stability, and functional group
173 constraints.

174 Combinatorial chemistry offers another route for dataset generation (Boehm et al., 2008). Researchers
175 use chemical fragments (such as amino acids or spiro-compounds) as building blocks, assembling
176 new compounds by applying known reaction rules. This allows chemists to diversify the chemical
177 classes and ensure the synthesizability of the generated molecules.

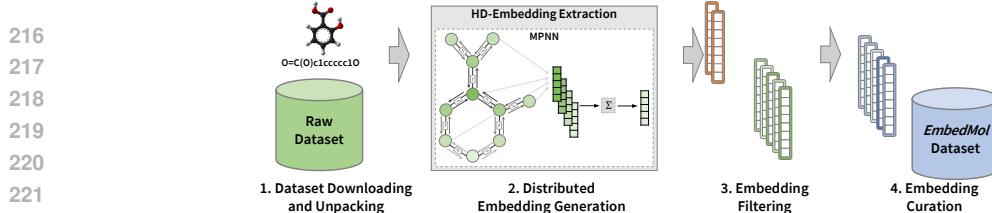
179 **Format** Traditionally, molecules are represented in these datasets by a textual format known as
180 SMILE, or Simplified Molecular Input Line Entry System, which does not include crucial substruc-
181 tural information. However, converting these SMILE strings to 2D or 3D molecular structures useful
182 for *in silico* discovery tasks involves some non-trivial computation. Hence, research has focused
183 on developing numerical vectors that directly encapsulate substructural details and other molecular
184 characteristics to enhance input quality and better represent the molecule’s properties. Rule-based
185 fingerprints such as Morgan (Morgan, 1965), ECFP (Rogers and Hahn, 2010), MACCS (Durant
186 et al., 2002), and Daylight (Daylight, 2024) represent fingerprints that are constructed based on set
187 rules created by domain experts based on learned or empirical knowledge of molecules extracted
188 from previous research. These fingerprints are usually presented as binary bit-strings, with each bit
189 representing key substructures or key connectivity path fragments.

190 The research community is increasingly adopting statistically derived latent-space molecular repre-
191 sentations—also known as data-driven fingerprints—to enhance the informativeness of molecular
192 data. These fingerprints are generated using deep learning architectures such as autoencoders (AEs),
193 recurrent neural networks (RNNs), and graph neural networks (GNNs), which learn continuous
194 latent representations of molecules. Numerous studies have shown that these embeddings outper-
195 form traditional rule-based fingerprints, owing to the strengths of statistical learning (Gao et al.,
196 2020; Prykhodko et al., 2019; Bai et al., 2021; Gómez-Bombarelli et al., 2018; Lim et al., 2018;
197 Fifty et al., 2023; Kim et al., 2021). Despite their strong representational capabilities, data-driven
198 fingerprints (embeddings) rarely curated or stored for reuse, requiring researchers to repeatedly
199 regenerate them—a redundant and time-consuming process. For molecular researchers focused on
200 vHTS outcomes, extra time and effort must be spent on generating embeddings rather than directly
201 analyzing molecular activity. Meanwhile, computing experts tend to concentrate on developing new
202 embedding generation algorithms rather than on establishing robust curation practices. Together,
203 these factors hinder the broader adoption and efficient use of statistically learned embeddings in
204 molecular research.

205 While numerous learned encoders have been proposed (e.g., graph-based and sequence-based models),
206 none are available at billion scale as ready-to-use vectors. This absence prevents fair, apples-to-apples
207 comparison of retrieval methods and scaling behavior across representation families, motivating the
208 need for an open, large-scale embedding resource such as *EmbedMol*.

209 3 COLLECTION METHODOLOGY

210 Given our interest in statistically derived embedding representations of molecules, we adapted existing
211 DL models to extract latent molecular representations within the DL network pipeline. At a high level,
212 the embedding collection pipeline has three main components: (i) downloading and preprocessing of
213 SMILE strings, (ii) distributed embedding generation, and (iii) molecule filtering. We implement
214 this pipeline on the cloud platform using tools from the Amazon EC2 instances. The details of each
215 component are described as follows.

Figure 2: *EmbedMol* similarity search pipeline

SMILE String Downloading In line with our focus on ultra-large-scale molecular datasets, we generate our embedding using two popular billion-scale molecular datasets that use SMILE encoding. These datasets were specifically chosen not only for their large size but also for their wide accessibility in the academic and scientific communities. Both datasets categorize molecules into groups based on distinct criteria, with individual SMILES representations for each molecule.

- **GDB13** comprises a comprehensive library of small organic molecules, each containing no more than 13 atoms of C, N, O, S, and Cl. Generated through a process based on fundamental chemical stability and synthetic feasibility rules, it encompasses approximately 970 million molecules suitable for virtual drug screening (Blum and Reymond, 2009).
- **ZINC22** datasets contain an ultra-size collection of about 37 billion make-on-demand compounds in SMILE representations (Tingle et al., 2023). As an open dataset, ZINC22 is freely available via the GUI website cartblanche22.docking.org.

The selected datasets are first downloaded, unzipped, and processed asynchronously using Python thread libraries. These works are performed using throughput and I/O provisioned EBS volume as the backing storage, allowing for maximized utilization of parallelism in the cloud node’s processing power and network bandwidth. After data cleansing, these datasets are stored in the original text format, with additional annotations removed. To enable data-level parallelism in an embedding generation, these molecular representations are then batched into chunks, with roughly 25 million in each batch, for processing in the next stage of the embedding generation pipeline.

Embedding Generation We generate embeddings by exposing the compound encoder of a strong, publicly available DTI model (Huang et al., 2020), so the network emits both the latent compound vector and the final prediction. This preserves the backbone’s predictive fidelity while yielding a reusable representation; critically, the backbone was pretrained on experimentally measured binding assays, grounding the embeddings in empirical data. Our modification is architecture-agnostic for encoder-decoder models and does not change prediction quality; it simply surfaces the encoder output at scale.

We choose DeepPurpose as our backing DL library for four reasons: We choose DeepPurpose as our backing DL library for four reasons. **Architecture:** its modular design clearly separates compound encoders from prediction decoders, simplifying embedding extraction. **Open source:** the library is fully open, enhancing reproducibility and accessibility. **Broad pre-training:** it is pretrained on diverse molecular tasks (DTI, property prediction, PPI, and protein function), producing robust embeddings for vHTS use cases such as repurposing and QSAR. **Input format:** unlike many SOTA models that require 3D structural data (Gasteiger et al., 2022b;a; Fifty et al., 2023; Fang et al., 2022), DeepPurpose operates directly on SMILES strings, making it especially practical for billion-scale datasets where only SMILES strings is available.

For this version of *EmbedMol*, we select a message-passing neural network (MPNN) encoder, as MPNNs explicitly model inter-atom interactions and capture key spatial information. Their effectiveness for molecular representation learning has been repeatedly demonstrated in benchmarks against multiple SOTA baselines (Gasteiger et al., 2022b;a; Fang et al., 2022).

Compute Automation To maximize resource utilization and enable *data-level parallelism* during embedding generation, we use a small dataset to perform micro-benchmarks on existing Amazon EC2 instances. Guided by our micro-benchmark result, we chose a medium-sized Intel Sapphire Rapid cloud node with 48 vCPUs and 128 GiB of RAM, with extra provisioned IOPS and bandwidth storage mediums, as a worker instance through Amazon Elastic Block Store. These worker nodes can process 25 million molecules in 1 day when three DL models run parallel on the same worker instance. Using AWS’s AMI and EC2 launch template, we were able to spawn roughly 40 workers in

270

271

Table 1: Dataset statistics

272

273

Source Dataset	Dimension	Count
<i>EmbedMol-1B</i>	1×128	977,468,314
<i>EmbedMol-11B</i>	1×128	11,231,133,850

274

275

parallel to automatically process all 11 billion molecules in multiple rounds using the aforementioned chunks of molecules without per node-specific configuration. We also utilize EC2 snapshots every 24 hours to facilitate recovery from potential generation pipeline failure.

276

277

SMILE String Filtering During the embedding generation of the 11 billion molecules, we identified several invalid SMILE strings that could not be interpreted into actual molecules using the RDKit (v2023.09.3) library. Most of these molecules fail to be interpreted into actual molecules due to the illegal canonical SMILE string format. We flagged these molecules during our embedding generation process. Subsequently, we removed them from our embedding dataset during evaluation as they did not result in valid high-dimensional embeddings. This process removes less than 0.01% of the original datasets and hence does not impact the variety and scale of our datasets. We leave more fine-grained and detailed validation of these molecules to future work out of the scope of this paper.

278

279

4 DATASET COMPOSITION

280

281

We release two datasets: *EmbedMol-1B*, comprising 977M embeddings derived solely from GDB13, and *EmbedMol-11B*, comprising 11B embeddings from GDB13 and ZINC22 for molecules up to 26 heavy atoms (Table 1). Each dataset is partitioned into batches and stored as compressed NumPy arrays, with metadata including the SMILES string, dataset source, and an RDKit validity flag (1/0). Invalid molecules, as described in § 3, can be removed by filtering on this flag.

282

284

5 EVALUATION OBJECTIVE AND SETUP

285

286

We construct an end-to-end molecular discovery pipeline using similarity search, similar to the ones used in (Zhu et al., 2020a) to validate the performance and quality of our generated embeddings. Note that the similarity search-based method is widely used in current molecular discovery research (Cereto-Massagué et al., 2015), enabling us to assess our dataset in real-world application scenarios. In particular, we employ the FAISS framework for similarity searches, an open-source C++ and Python library adept at similarity search and clustering for dense vectors (Douze et al., 2024; Johnson et al., 2017). This framework is ideal for handling extensive vector sets within physical memory limits, as with our multi-billion molecule dataset. Although GPUs are increasingly used in ML, we focus on CPU-based similarity search, as CPUs remain the most accessible resource for domain scientists and require no specialized expertise. Our methods extend to GPUs, but we leave such exploration for future work. All experiments are conducted on AWS EC2 instances equipped with memory-optimized Sapphire Rapids CPUs. Most of our evaluations utilize the *EmbedMol-1B* dataset, with additional experiments performed on a 3.5 billion compound random subsample of the *EmbedMol-11B* dataset.

287

288

Evaluation scope We do not claim to outperform all learned embeddings. Our goals are (i) to test whether precomputed *EmbedMol* vectors act as a faithful proxy for their source model at billion scale, and (ii) to compare against de facto baselines (fingerprints) that remain standard in ultra-large libraries. Exhaustive cross-architecture comparisons and wet-lab assays are out of scope here and are enabled by releasing this resource.

289

290

Algorithm Selection While indexing algorithms range from hashing-based to tree-based and graph-based indices, for *EmbedMol*'s initial version, we focus on the Inverted File Product Quantization (IVFPQ) index. IVFPQ caters to platforms with limited memory, which is especially suitable for our ultra-large billion-scale molecular datasets. All indices are trained on a randomly subsampled training set of all molecular embeddings from our embedding dataset, which comprises 0.02% of the original dataset. We provide details regarding the hyperparameters used § A. (see § B for sensitivity analysis)

324 Table 2: Fingerprints used for the baseline experiments and their generation parameter
325

Fingerprints Name	Generation Parameters	Bit Width
RDKit Daylight	minPath = 1, maxPath = 7, bitsPerHash = 2, hash = true	2048-bit
MACCS	RDKit implementation of MACSS 166-bit version	166-bit
Morgan3	radius = 3	1024-bit

330

6 EXPERIMENTAL RESULTS

331

332 Our evaluation proceeds along three axes: (i) *embedding quality*, testing whether *EmbedMol* provides
333 sufficient representational power for high-precision vHTS relative to baselines; (ii) *cross-target*
334 *generalizability*, examining whether the embeddings capture global molecular properties beyond a
335 single search target; and (iii) *deployment efficiency*, quantifying the computational and time savings
336 that make ultra-large-scale vHTS feasible in practice.

337

6.1 DATASET QUALITY FOR VHTS

338

339 Rather than measuring *EmbedMol*’s ability to retrieve structurally similar molecules, we focus on
340 a more practical, real-world scenario by evaluating the precision in retrieving molecules predicted
341 to possess desirable properties of our dataset. Concretely, the evaluation process largely resembles
342 a vHTS task in molecular discovery: searching for the top antiviral candidates for the COVID-19
343 target 3CL protease. The SARS-CoV-2 3CL protease (also known as the main protease) plays a
344 crucial role in the viral life cycle and is a key target for small-molecule COVID-19 therapy (Liu
345 et al., 2022; Zhu et al., 2020b; Boras et al., 2021). The ground truth is the predicted binding affinity
346 score between the *EmbedMol*-1B dataset’s molecules and the COVID-19 protease. As outlined in
347 § 1 and § 2, existing ultra-scale molecular datasets are typically generated through enumeration or
348 combinatorial techniques, resulting in a general lack of empirical property data. A common approach
349 is to use DL models to predict empirical properties for curated molecules. These predictions serve as
350 our best estimates of key molecular properties and are treated as ground truth in our experiments.

351 To ensure a fair evaluation, we use separate encoders for drug and protein targets when establishing
352 ground truth, distinct from the encoder used to generate embeddings. This prevents performance bias
353 from relying on the same DL backbone. Additionally, we report retrieval accuracy at various top
354 candidate levels, following established standards in the information retrieval community (Zhu et al.,
355 2022; noa, 2024). Focusing on retrieval accuracy provides a clear and widely accepted measure of
356 performance.

357 For traditional vHTS using handcrafted fingerprints, we have chosen 3 widely used and representative
358 fingerprint types and 2 similarity metrics. For the 2 similarity metrics, we choose the most widely
359 used Tanimoto similarity (Jaccard, 1901; Tanimoto, 1958) and Braun-Blanquet similarity (noa, 1994;
360 Braun-Blanquet et al., 1932) following benchmarks made in (Safizadeh et al., 2021). For the 3
361 fingerprints (Daylight, 2024; Durant et al., 2002; Rogers and Hahn, 2010; Morgan, 1965), detailed
362 generation parameters are provided in Table 2 ¹. These options rank among the best-performing
363 fingerprints in vHTS today, offering a balanced blend of structural and hashed fingerprint approaches.
364 Among these, the Morgan fingerprints are also identified in the prior literature as the best-performing
365 fingerprints across diverse applications, including small-molecule virtual screening (O’Boyle and
366 Sayle, 2016; Riniker and Landrum, 2013; Glem et al., 2006). For these fingerprints and similarity
367 metrics, we assume the best possible results by using brute-force methods to identify the exact top
368 candidates; these results are marked as BF in Table 3.

369 We capture the performance of the *EmbedMol* in COVID-19 antiviral drug hit identification, along
370 with the baseline performances of several existing and widely used fingerprint-based vHTS techniques
371 on the same workload in Table 3. Our approach achieves a retrieval precision of 31% among the top
372 100 candidates in the smaller *EmbedMol*-1B dataset. Applying the same experiment to a 3.5 billion
373 subset of *EmbedMol*-11B, which offers greater molecular diversity, yields an even higher precision:

374 ¹For Morgan/ECFP baselines, we follow established best practice and use 1024-bit radius-3 fingerprints
375 (Morgan3). Prior work has shown that longer bit vectors yield diminishing returns, with 1024-bit vectors strongly
376 correlating with 16K-bit versions ($r^2 > 0.99$) (Riniker and Landrum, 2013). Our own microbenchmarks confirm
377 this principle: increasing to 2048 bits produced no measurable precision gain while incurring higher memory
and compute costs.

378 Table 3: The performance of *EmbedMol* in drug hit identification
379

Model	Embedding Type	Methods	Prec@5	Prec@50	Prec@100
COVID-19 Protease (Liu et al., 2022; Zhu et al., 2020b; Boras et al., 2021)					
<i>EmbedMol</i> -1B	RDKit-Daylight	Tamimoto (BF)	20%	4%	2%
		Braun-Blanquet (BF)	20%	4%	2%
	MACCS	Tamimoto (BF)	20%	4%	2%
		Braun-Blanquet (BF)	20%	4%	2%
	Morgan3	Tamimoto (BF)	20%	2%	1%
		Braun-Blanquet (BF)	20%	2%	2%
<i>EmbedMol</i> -11B (3.5B Subsample)	<i>EmbedMol</i>	IVFPQ	20%	24%	31%
		IVFPQ	40%	68%	54%
COVID-19 Helicase (Halma et al., 2022; Otsuka et al., 2024; Knany et al., 2023)					
<i>EmbedMol</i> -1B	RDKit-Daylight	Tamimoto (BF)	20%	4%	2%
		Braun-Blanquet (BF)	20%	4%	2%
	MACCS	Tamimoto (BF)	20%	4%	2%
		Braun-Blanquet (BF)	20%	4%	2%
	Morgan3	Tamimoto (BF)	20%	2%	1%
		Braun-Blanquet (BF)	20%	2%	2%
<i>EmbedMol</i>	IVFPQ	20%	24%	31%	
		IVFPQ	40%	26%	32%
MMP9 (Mondal et al., 2020; Yabluchanskiy et al., 2013; mmp, 2025)					
<i>EmbedMol</i> -1B	<i>EmbedMol</i>	IVFPQ	40%	26%	32%
LCK (Chiang and Hodes, 2016; Laukkonen et al., 2022; Palacios and Weiss, 2004)					
<i>EmbedMol</i> -1B	<i>EmbedMol</i>	IVFPQ	20%	42%	28%

401 Table 4: Performance comparison of non-DL based vHTS
402

Source Dataset	Method	Build Time	Avg. Query Time
<i>EmbedMol</i> -1B	IVFPQ	1.83 hrs	0.13 ± 0.06 sec
<i>EmbedMol</i> -1B	Brute-force	n/a	2.41 ± 1.58 hrs
GDB13 (Baseline)	Brute-force	88.5 hrs	1.42 ± 0.83 hrs

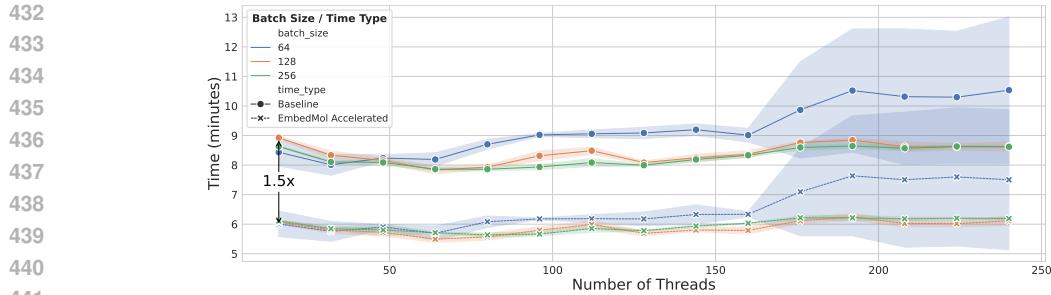
403 68% for the top 50 candidates and 54% for the top 100 candidates. These results, obtained with
404 minimal index building and parameter tuning, contrast sharply with standard vHTS methods based on
405 handcrafted fingerprints, which typically exhibit single-digit precision for the same retrieval ranges.
406

411 6.2 CROSS-TARGET GENERALIZABILITY OF *EmbedMol*

413 To assess the usability of the generated embeddings for drug target binding prediction in molecular
414 discovery, we perform similarity searches on these molecules for vHTS against binding targets
415 not included during embedding generation. Specifically, we evaluate precision by identifying top
416 candidate molecules for three distinct targets: COVID-19 Helicase, MMP9 (Mondal et al., 2020;
417 Yabluchanskiy et al., 2013; mmp, 2025), and LCK (Chiang and Hodes, 2016; Laukkonen et al., 2022;
418 Palacios and Weiss, 2004)—all of which are high-profile and relevant targets for drug discovery, with
419 Helicase serving as a known target for inhibiting viral replication (Halma et al., 2022; Otsuka et al.,
420 2024; Knany et al., 2023). We reuse the best-performing high-dimensional vector indices constructed
421 for *EmbedMol*-1B in earlier research questions, directly applying them to similarity searches for
422 these new binding targets. As a result, we achieved a consistent retrieval precision of about 30% on
423 the top 100 candidate molecules for all molecular binding targets. Comparative performance metrics
424 between our method and established vHTS baselines are reported in table 3. For a fair comparison,
425 we use identical fingerprint parameters for all baseline methods without additional tuning.
426

427 6.3 TIME-SAVINGS ADVANTAGE FOR VHTS

428 The central challenge addressed by *EmbedMol* is the high computational cost of converting molecules
429 from SMILES (or other textual formats) into embeddings. By providing precomputed *EmbedMol*
430 embeddings, we aim to accelerate both deep learning and traditional fingerprint-based vHTS during
431 training and inference. In this experiment, we evaluate the potential time savings for DL-based
432 and non-DL-based vHTS workflows when using our dataset at search time. By relying on these

Figure 3: Execution time vs. threads for baseline and accelerated methods utilizing *EmbedMol*

embeddings, practitioners can bypass fingerprint generation and representation learning steps, greatly improving the speed and efficiency of vHTS on ultra-large datasets.

We compare two scenarios: (1) traditional similarity-search-based (non-DL) and (2) property-prediction-based (DL) vHTS, measuring total runtime on 15 search targets. In the baseline, only SMILES are available. With *EmbedMol*, users have access to both embeddings and SMILES. All experiments use the *EmbedMol-1B* dataset, with standard optimizations like caching intermediate results and pre-generating fingerprints for reuse employed.

For the traditional non-DL vHTS methods, we assume an optimal pipeline where the top 100 candidates are retrieved with a single database scan (Table 4). In all brute-force tests on 100,000 randomly selected molecules, *EmbedMol* achieves up to a $37\times$ speed-up per search by eliminating the need for fingerprint generation. It matches baseline methods in average query time if cached fingerprints are reused—though this is not yet standard practice. Using approximate similarity search on both GDB13 and *EmbedMol-1B* (as in (Zhu et al., 2020a)) and a 1.83-hour index-building phase, per-search costs drop to under a second, while maintaining the high retrieval precision shown in earlier results.

For DL-based property prediction, we remove the SMILES translation backbone so embeddings can be used directly for inference. We measure total inference time for 100,000 randomly selected molecules (the same subset as above) using the original drug-target interaction model, modified only to accept embeddings as input. Model validity is confirmed by comparing predictions of the modified and original architectures. As shown in Figure 3, varying the number of threads, we observe a consistent $1.5\times$ improvement in vHTS throughput across all levels of parallelism.

7 CONCLUSIONS

We presented *EmbedMol*, the first open billion-scale molecular embedding dataset and a scalable generation pipeline. Precomputed vectors provide an efficient, high-fidelity proxy for expensive inference, enabling billion-scale retrieval with up to $37\times$ speedups over classical baselines while maintaining strong quality. The contribution is a benchmark/dataset resource—not a new encoder—that establishes a foundation for large-scale research on scaling laws, cross-target transfer, and multimodal integration in molecular representation learning. We release the dataset, loaders, and pipeline to catalyze community work that was previously computationally prohibitive. See Reproducibility Statement for dataset access and licensing.

8 LIMITATIONS

Our goal is to release a curated billion-scale embedding dataset and pipeline, not a new model, so we rely on strong existing architectures for embedding generation. As with all billion-scale vHTS, exhaustive experimental validation is infeasible; evaluation therefore relies on predicted ground truth, underscoring the utility of embeddings that can prioritize limited assays. While this bounds our claims, it motivates future benchmarks now enabled by *EmbedMol*, including (i) comparisons across learned embedding families (e.g., chemical language models), (ii) multimodal fusion with protein sequence/structure text, and (iii) targeted experimental validation for high-confidence hits.

486 9 REPRODUCIBILITY STATEMENT

487
 488 For review purposes, *EmbedMol* is temporarily hosted on Dryad at
 489 http://datadryad.org/share/LINK_NOT_FOR_PUBLICATION/KCFD7gIfpEBCabATHI1mg7a0cY4jWUc9-JRIdJ02fYk, with a mirror at
 490 http://datadryad.org/share/LINK_NOT_FOR_PUBLICATION/jPViJsUAM_8AI7uSnQfCoQ-7APLiVswEf8P3xk-eo_0. Upon acceptance, the dataset will be permanently
 491 archived and maintained on a long-term public repository (link to be provided after review). Usage of
 492 the source datasets, as well as distribution of the resulting high-dimensional vectors, follows the
 493 terms set by the original dataset providers. Restrictions on redistribution and patent use are mandated
 494 by those agreements, not by us as authors (see original dataset licenses in Appendix C). While
 495 *EmbedMol* is freely available for download, it must not be used in patents, nor redistributed—either
 496 wholly or in substantial portions—with explicit written consent from the corresponding author.
 497

498 REFERENCES

500
 501 1994. *Measuring and monitoring biological diversity: Standard methods for amphibians*. <https://pubs.usgs.gov/publication/5200175>
 502
 503 2024. Mcule - Ultimate Database Project. <https://ultimate.mcule.com/>
 504
 505 2024. NeurIPS'23 Competition Track: Big-ANN. <https://big-ann-benchmarks.com/neurips23.html>
 506
 507 2024a. REAL Database - Enamine. <https://enamine.net/compound-collections/real-compounds/real-database>
 508
 509 2024b. REAL Space - Enamine. <https://enamine.net/compound-collections/real-compounds/real-space-navigator>
 510
 511 2024. Virtual Screening. <https://wuxibiology.com/drug-discovery-services/hit-finding-and-screening-services/virtual-screening/>
 512
 513 2025. *MMP9 Matrix Metallopeptidase 9 [Homo Sapiens (Human)] - Gene - NCBI*. <https://www.ncbi.nlm.nih.gov/gene/4318>
 514
 515 Qifeng Bai, Shuoyan Tan, Tingyang Xu, Huanxiang Liu, Junzhou Huang, and Xiaojun Yao. 2021.
 516 MolAICal: A Soft Tool for 3D Drug Design of Protein Targets by Artificial Intelligence and
 517 Classical Algorithm. *Briefings in Bioinformatics* 22, 3 (May 2021), bbaa161. doi:10.1093/bib/bbaa161
 518
 519 Lorenz C. Blum and Jean-Louis Reymond. 2009. 970 Million Druglike Small Molecules for Virtual
 520 Screening in the Chemical Universe Database GDB-13. *Journal of the American Chemical Society*
 521 131, 25 (July 2009), 8732–8733. doi:10.1021/ja902302h
 522
 523 Markus Boehm, Tong-Ying Wu, Holger Claussen, and Christian Lemmen. 2008. Similarity Searching
 524 and Scaffold Hopping in Synthetically Accessible Combinatorial Chemistry Spaces. *Journal of*
 525 *Medicinal Chemistry* 51, 8 (April 2008), 2468–2480. doi:10.1021/jm0707727
 526
 527 Britton Boras, Rhys M. Jones, Brandon J. Anson, Dan Arenson, Lisa Aschenbrenner, Malina A.
 528 Bakowski, Nathan Beutler, Joseph Binder, Emily Chen, Heather Eng, Holly Hammond, Jen-
 529 nifer Hammond, Robert E. Haupt, Robert Hoffman, Eugene P. Kadar, Rob Kania, Emi Kimoto,
 530 Melanie G. Kirkpatrick, Lorraine Lanyon, Emma K. Lendy, Jonathan R. Lillis, James Logue,
 531 Suman A. Luthra, Chunlong Ma, Stephen W. Mason, Marisa E. McGrath, Stephen Noell, R. Scott
 532 Obach, Matthew N. O'Brien, Rebecca O'Connor, Kevin Ogilvie, Dafydd Owen, Martin Pettersson,
 533 Matthew R. Reese, Thomas F. Rogers, Romel Rosales, Michelle I. Rossulek, Jean G. Sathish,
 534 Norimitsu Shirai, Claire Steppan, Martyn Ticehurst, Lawrence W. Updyke, Stuart Weston, Yuao
 535 Zhu, Kris M. White, Adolfo García-Sastre, Jun Wang, Arnab K. Chatterjee, Andrew D. Mesecar,
 536 Matthew B. Frieman, Annaliesa S. Anderson, and Charlotte Allerton. 2021. Preclinical characteriza-
 537 tion of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19.
 538 *Nature Communications* 12, 1 (Oct. 2021), 6055. doi:10.1038/s41467-021-26239-2
 539 Publisher: Nature Publishing Group.

540 J. Braun-Blanquet, J. Braun-Blanquet, Henry S. Conard, and George D. Fuller. 1932. *Plant sociology; 541 the study of plant communities* (1st ed. ed.). McGraw-Hill book company, inc, New York and 542 London. doi:10.5962/bhl.title.7161

543 Adrià Cereto-Massagué, María José Ojeda, Cristina Valls, Miquel Mulero, Santiago García-Vallvé, 544 and Gerard Pujadas. 2015. Molecular Fingerprint Similarity Search in Virtual Screening. *Methods* 545 71 (Jan. 2015), 58–63. doi:10.1016/j.ymeth.2014.08.005

546 Y. Jeffrey Chiang and Richard J. Hodes. 2016. T Cell Development Is Regulated by the Coordinated 547 Function of Proximal and Distal Lck Promoters Active at Different Developmental Stages. 46, 10 548 (2016), 2401–2408. arXiv:27469439 doi:10.1002/eji.201646440

549 Daylight. 2024. Daylight. <https://www.daylight.com/>

550 Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvassy, Pierre- 551 Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024. The Faiss Library. 552 arXiv:2401.08281 [cs] doi:10.48550/arXiv.2401.08281

553 Joseph L. Durant, Burton A. Leland, Douglas R. Henry, and James G. Nourse. 2002. Reoptimization 554 of MDL Keys for Use in Drug Discovery. *Journal of Chemical Information and Computer Sciences* 555 42, 6 (Nov. 2002), 1273–1280. doi:10.1021/ci010132r

556 Xiaomin Fang, Lihang Liu, Jieqiong Lei, Donglong He, Shanzhuo Zhang, Jingbo Zhou, Fan Wang, 557 Hua Wu, and Haifeng Wang. 2022. Geometry-Enhanced Molecular Representation Learning for 558 Property Prediction. *Nature Machine Intelligence* 4, 2 (Feb. 2022), 127–134. doi:10.1038/s42256-021-00438-4

559 Christopher Fifty, Joseph M. Paggi, Ehsan Amid, Jure Leskovec, and Ron Dror. 2023. Im- 560 plicit Geometry and Interaction Embeddings Improve Few-Shot Molecular Property Prediction. 561 arXiv:2302.02055 [cs] doi:10.48550/arXiv.2302.02055

562 Kaifu Gao, Duc Duy Nguyen, Meihua Tu, and Guo-Wei Wei. 2020. Generative Network Complex 563 for the Automated Generation of Drug-like Molecules. *Journal of Chemical Information and 564 Modeling* 60, 12 (Dec. 2020), 5682–5698. doi:10.1021/acs.jcim.0c00599

565 Johannes Gasteiger, Shankari Giri, Johannes T. Margraf, and Stephan Günnemann. 2022a. 566 Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules. 567 arXiv:2011.14115 [physics] doi:10.48550/arXiv.2011.14115

568 Johannes Gasteiger, Janek Groß, and Stephan Günnemann. 2022b. Directional Message Passing for 569 Molecular Graphs. arXiv:2003.03123 [physics, stat] doi:10.48550/arXiv.2003.03123

570 Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. 2017. Neu- 571 ral Message Passing for Quantum Chemistry. In *Proceedings of the 34th International Conference 572 on Machine Learning - Volume 70 (ICML'17)*. JMLR.org, Sydney, NSW, Australia, 1263–1272.

573 Robert C. Glem, Andreas Bender, Catrin H. Arnby, Lars Carlsson, Scott Boyer, and James Smith. 2006. 574 Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to 575 ADME. *IDrugs: the investigational drugs journal* 9, 3 (March 2006), 199–204.

576 Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato, 577 Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, 578 Ryan P. Adams, and Alán Aspuru-Guzik. 2018. Automatic Chemical Design Using a Data- 579 Driven Continuous Representation of Molecules. *ACS Central Science* 4, 2 (Feb. 2018), 268–276. 580 doi:10.1021/acscentsci.7b00572

581 Matthew T. J. Halma, Mark J. A. Wever, Sanne Abeln, Didier Roche, and Gijs J. L. Wuite. 2022. 582 Therapeutic potential of compounds targeting SARS-CoV-2 helicase. *Frontiers in Chemistry* 10 583 (Dec. 2022), 1062352. doi:10.3389/fchem.2022.1062352

584 Torsten Hoffmann and Marcus Gastreich. 2019. The next Level in Chemical Space Navigation: 585 Going Far beyond Enumerable Compound Libraries. *Drug Discovery Today* 24, 5 (May 2019), 586 1148–1156. doi:10.1016/j.drudis.2019.02.013

594 Kexin Huang, Tianfan Fu, Lucas M Glass, Marinka Zitnik, Cao Xiao, and Jimeng Sun. 2020.
 595 DeepPurpose: A Deep Learning Library for Drug-Target Interaction Prediction. *Bioinformatics*
 596 (2020).

597 Paul Jaccard. 1901. Étude comparative de la distribution florale dans une portion des Alpes et du Jura.
 598 (1901). doi:10.5169/SEALS-266450 Medium: text/html,application/pdf,text/html Publisher:
 599 Imprimerie Corbaz & Comp..

600 Zewei Ji, Runhan Shi, Jiarui Lu, Fang Li, and Yang Yang. 2022. ReLMole: Molecular Representation
 601 Learning Based on Two-Level Graph Similarities. *Journal of Chemical Information and Modeling*
 602 62, 22 (Nov. 2022), 5361–5372. doi:10.1021/acs.jcim.2c00798 Publisher: American
 603 Chemical Society.

604 Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-Scale Similarity Search with GPUs.
 605 arXiv:1702.08734 [cs] doi:10.48550/arXiv.1702.08734

606 Hyunseob Kim, Jeongcheol Lee, Sunil Ahn, and Jongsuk Ruth Lee. 2021. A Merged Molecular
 607 Representation Learning for Molecular Properties Prediction with a Web-Based Service. *Scientific
 608 Reports* 11, 1 (May 2021), 11028. doi:10.1038/s41598-021-90259-7

609 Hamada R. Knany, Sherif A. Elsabbagh, Moustafa A. Shehata, Wagdy M. Eldehna, Adnan A. Bekhit,
 610 and Tamer M. Ibrahim. 2023. *In silico* screening of SARS-CoV2 helicase using African natural
 611 products: Docking and molecular dynamics approaches. *Virology* 587 (Oct. 2023), 109863.
 612 doi:10.1016/j.virol.2023.109863

613 Saara Laukkonen, Alexandra Veloso, Chuan Yan, Laura Oksa, Eric J. Alpert, Daniel Do, Noora
 614 Hyvärinen, Karin McCarthy, Abhinav Adhikari, Qiqi Yang, Sowmya Iyer, Sara P. Garcia, Annukka
 615 Pello, Tanja Ruokoranta, Sanni Moisio, Sadiksha Adhikari, Jeffrey A. Yoder, Kayleigh Gallagher,
 616 Lauren Whelton, James R. Allen, Alex H. Jin, Siebe Loontiens, Merja Heinäniemi, Michelle
 617 Kelliher, Caroline A. Heckman, Olli Lohi, and David M. Langenau. 2022. Therapeutic Targeting
 618 of LCK Tyrosine Kinase and mTOR Signaling in T-cell Acute Lymphoblastic Leukemia. 140, 17
 619 (2022), 1891–1906. arXiv:35544598 doi:10.1182/blood.2021015106

620 Jaechang Lim, Seongok Ryu, Jin Woo Kim, and Woo Youn Kim. 2018. Molecular Generative
 621 Model Based on Conditional Variational Autoencoder for de Novo Molecular Design. *Journal of
 622 Cheminformatics* 10, 1 (July 2018), 31. doi:10.1186/s13321-018-0286-7

623 Hengrui Liu, Sho Iketani, Arie Zask, Nisha Khanizeman, Eva Bednarova, Farhad Forouhar, Brandon
 624 Fowler, Seo Jung Hong, Hiroshi Mohri, Manoj S. Nair, Yaoxing Huang, Nicholas E. S. Tay,
 625 Sumin Lee, Charles Karan, Samuel J. Resnick, Colette Quinn, Wenjing Li, Henry Shion, Xin
 626 Xia, Jacob D. Daniels, Michelle Bartolo-Cruz, Marcelo Farina, Presha Rajbhandari, Christopher
 627 Jurtschenko, Matthew A. Lauber, Thomas McDonald, Michael E. Stokes, Brett L. Hurst, Tomislav
 628 Rovis, Alejandro Chavez, David D. Ho, and Brent R. Stockwell. 2022. Development of optimized
 629 drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19.
 630 *Nature Communications* 13, 1 (April 2022), 1891. doi:10.1038/s41467-022-29413-2
 631 Publisher: Nature Publishing Group.

632 Subha Mondal, Nilanjan Adhikari, Suvankar Banerjee, Sk Abdul Amin, and Tarun Jha. 2020. Matrix
 633 Metalloproteinase-9 (MMP-9) and Its Inhibitors in Cancer: A Minireview. 194 (2020), 112260.
 634 doi:10.1016/j.ejmec.2020.112260

635 H. L. Morgan. 1965. The Generation of a Unique Machine Description for Chemical Structures-A
 636 Technique Developed at Chemical Abstracts Service. *Journal of Chemical Documentation* 5, 2
 637 (May 1965), 107–113. doi:10.1021/c160017a018

638 Alexander Neumann. 2022. Breaching Seven Trillion Compounds: 2nd Version of the eXplore
 639 Chemical Space • BioSolveIT.

640 Yuka Otsuka, Eunjung Kim, Austin Krueger, Justin Shumate, Chao Wang, Bilel Bdiri, Sultan Ullah,
 641 HaJeung Park, Louis Scampavia, Thomas D. Bannister, Donghoon Chung, and Timothy P. Spicer.
 642 2024. High throughput screening for SARS-CoV-2 helicase inhibitors. *SLAS Discovery* 29, 6
 643 (Sept. 2024), 100180. doi:10.1016/j.slasd.2024.100180

648 Noel M. O'Boyle and Roger A. Sayle. 2016. Comparing structural fingerprints using a literature-
 649 based similarity benchmark. *Journal of Cheminformatics* 8, 1 (July 2016), 36. doi:10.1186/
 650 s13321-016-0148-0

651

652 Emil H. Palacios and Arthur Weiss. 2004. Function of the Src-family Kinases, Lck and Fyn, in T-cell
 653 Development and Activation. 23, 48 (2004), 7990–8000. doi:10.1038/sj.onc.1208074

654

655 Gabriel A. Pinheiro, Juarez L. F. Da Silva, and Marcos G. Quiles. 2022. SMICLR: Contrastive
 656 Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Represen-
 657 tation Learning. *Journal of Chemical Information and Modeling* 62, 17 (Sept. 2022), 3948–3960.
 658 doi:10.1021/acs.jcim.2c00521 Publisher: American Chemical Society.

659

660 Oleksii Prykhodko, Simon Viet Johansson, Panagiotis-Christos Kotsias, Josep Arús-Pous, Esben Jan-
 661 nik Bjerrum, Ola Engkvist, and Hongming Chen. 2019. A de Novo Molecular Generation Method
 662 Using Latent Vector Based Generative Adversarial Network. *Journal of Cheminformatics* 11, 1
 (Dec. 2019), 74. doi:10.1186/s13321-019-0397-9

663

664 Sereina Riniker and Gregory A. Landrum. 2013. Open-Source Platform to Benchmark Fingerprints
 665 for Ligand-Based Virtual Screening. 5, 1 (2013), 26. doi:10.1186/1758-2946-5-26

666

667 David Rogers and Mathew Hahn. 2010. Extended-Connectivity Fingerprints. *Journal of Chemical
 668 Information and Modeling* 50, 5 (May 2010), 742–754. doi:10.1021/ci100050t

669

670 Lars Ruddigkeit, Ruud van Deursen, Lorenz C. Blum, and Jean-Louis Reymond. 2012. Enumeration
 671 of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17. *Jour-
 672 nal of Chemical Information and Modeling* 52, 11 (Nov. 2012), 2864–2875. doi:10.1021/
 673 ci300415d

674

675 Hamid Safizadeh, Scott W. Simpkins, Justin Nelson, Sheena C. Li, Jeff S. Piotrowski, Mami
 676 Yoshimura, Yoko Yashiroda, Hiroyuki Hirano, Hiroyuki Osada, Minoru Yoshida, Charles Boone,
 677 and Chad L. Myers. 2021. Improving Measures of Chemical Structural Similarity Using Machine
 678 Learning on Chemical–Genetic Interactions. *Journal of Chemical Information and Modeling* 61, 9
 (Sept. 2021), 4156–4172. doi:10.1021/acs.jcim.0c00993 Publisher: American Chemical
 679 Society.

680

681 Markus H. J. Seifert, Kristina Wolf, and Daniel Vitt. 2003. Virtual High-Throughput *in Silico* Screen-
 682 ing. *BIOSILICO* 1, 4 (Sept. 2003), 143–149. doi:10.1016/S1478-5382(03)02359-X

683

684 Harsha Vardhan Simhadri, George Williams, Martin Aumüller, Matthijs Douze, Artem Babenko,
 685 Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar Krishnaswamy, Gopal Srinivasa,
 686 Suhas Jayaram Subramanya, and Jingdong Wang. 2022. Results of the NeurIPS'21 Chal-
 687 lenger on Billion-Scale Approximate Nearest Neighbor Search. In *Proceedings of the NeurIPS
 688 2021 Competitions and Demonstrations Track (Proceedings of Machine Learning Research,
 689 Vol. 176)*, Douwe Kiela, Marco Ciccone, and Barbara Caputo (Eds.). PMLR, 177–189. <https://proceedings.mlr.press/v176/simhadri22a.html>

690

691 Teague Sterling and John J. Irwin. 2015. ZINC 15 – Ligand Discovery for Everyone. *Journal of
 692 Chemical Information and Modeling* 55, 11 (Nov. 2015), 2324–2337. doi:10.1021/acs.jcim.
 693 5b00559

694

695 Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M.
 696 Donghia, Craig R. MacNair, Shawn French, Lindsey A. Carfrae, Zohar Bloom-Ackermann,
 697 Victoria M. Tran, Anush Chiappino-Pepe, Ahmed H. Badran, Ian W. Andrews, Emma J. Chory,
 698 George M. Church, Eric D. Brown, Tommi S. Jaakkola, Regina Barzilay, and James J. Collins.
 699 2020. A Deep Learning Approach to Antibiotic Discovery. *Cell* 180, 4 (Feb. 2020), 688–702.e13.
 700 doi:10.1016/j.cell.2020.01.021

701

702 T. T. Tanimoto. 1958. *An Elementary Mathematical Theory of Classification and Prediction*. Technical
 703 Report PB167360. International Business Machines Corp., New York. <https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB167360.xhtml> Num
 704 Pages: 12.

702 Benjamin I. Tingle, Khanh G. Tang, Mar Castanon, John J. Gutierrez, Munkhzul Khurelbaatar,
 703 Chinzorig Dandarchuluun, Yurii S. Moroz, and John J. Irwin. 2023. ZINC-22-A Free Multi-
 704 Billion-Scale Database of Tangible Compounds for Ligand Discovery. *Journal of Chemical
 705 Information and Modeling* 63, 4 (Feb. 2023), 1166–1176. doi:10.1021/acs.jcim.2c01253

706 Yan-Bin Wang, Zhu-Hong You, Shan Yang, Hai-Cheng Yi, Zhan-Heng Chen, and Kai Zheng. 2020.
 707 A Deep Learning-Based Method for Drug-Target Interaction Prediction Based on Long Short-Term
 708 Memory Neural Network. *BMC Medical Informatics and Decision Making* 20, 2 (March 2020),
 709 49. doi:10.1186/s12911-020-1052-0

710 Felix Wong, Erica J. Zheng, Jacqueline A. Valeri, Nina M. Donghia, Melis N. Anahtar, Satotaka
 711 Omori, Alicia Li, Andres Cubillos-Ruiz, Aarti Krishnan, Wengong Jin, Abigail L. Manson, Jens
 712 Friedrichs, Ralf Helbig, Behnoush Hajian, Dawid K. Fiejtek, Florence F. Wagner, Holly H. Soutter,
 713 Ashlee M. Earl, Jonathan M. Stokes, Lars D. Renner, and James J. Collins. 2024. Discovery of a
 714 Structural Class of Antibiotics with Explainable Deep Learning. *Nature* 626, 7997 (Feb. 2024),
 715 177–185. doi:10.1038/s41586-023-06887-8

716 Andriy Yabluchanskiy, Yonggang Ma, Rugmani Padmanabhan Iyer, Michael E. Hall, and Merry L.
 717 Lindsey. 2013. Matrix Metalloproteinase-9: Many Shades of Function in Cardiovascular Disease.
 718 28, 6 (2013), 391–403. arXiv:24186934 doi:10.1152/physiol.00029.2013

719 Shu-Feng Zhou and Wei-Zhu Zhong. 2017. Drug Design and Discovery: Principles and Applications.
 720 *Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry* 22, 2 (Feb. 2017),
 721 279. doi:10.3390/molecules22020279

722 Chun Jiang Zhu, Minghu Song, Qinling Liu, Chloé Becquey, and Jinbo Bi. 2020a. Benchmark on In-
 723 dexing Algorithms for Accelerating Molecular Similarity Search. *Journal of Chemical Information
 724 and Modeling* 60, 12 (Dec. 2020), 6167–6184. doi:10.1021/acs.jcim.0c00393

725 Jieming Zhu, Quanyu Dai, Liangcai Su, Rong Ma, Jinyang Liu, Guohao Cai, Xi Xiao, and Rui
 726 Zhang. 2022. BARS: Towards Open Benchmarking for Recommender Systems. In *Proceedings
 727 of the 45th International ACM SIGIR Conference on Research and Development in Information
 728 Retrieval (SIGIR '22)*. Association for Computing Machinery, New York, NY, USA, 2912–2923.
 729 doi:10.1145/3477495.3531723

730 Wei Zhu, Miao Xu, Catherine Z. Chen, Hui Guo, Min Shen, Xin Hu, Paul Shinn, Carleen Klumpp-
 731 Thomas, Samuel G. Michael, and Wei Zheng. 2020b. Identification of SARS-CoV-2 3CL Protease
 732 Inhibitors by a Quantitative High-throughput Screening. *bioRxiv* (Aug. 2020), 2020.07.17.207019.
 733 doi:10.1101/2020.07.17.207019

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPROXIMATE SIMILARITY SEARCH INDEX PARAMETERS**
757758
759 In Table 5, we present the key parameters and statistics for all IVFPQ indices trained on the *EmbedMol*-
760 1B and 11B (3.5B subsample) datasets. For each dataset, we varied several IVFPQ configuration
761 parameters, including the number of bits per sub-quantizer (**nbits**), the number of sub-quantizers
762 (**m**), and the number of Voronoi cells (**nlist**), to examine their impact on index size, training time,
763 addition time, and, most importantly, search performance. In this context, a Voronoi cell is a
764 partition of the vector space, where each cell groups vectors closer to a given cluster center than any
765 other. This clustering enables efficient grouping of similar vectors and restricts search operations
766 to only the most relevant cells, greatly improving search speed on billion-scale datasets. This
767 comprehensive benchmarking guides the selection of index parameters and their associated resource
768 requirements. The table provides transparency and reproducibility for our indexing process, ensuring
769 other researchers can replicate or adapt our approach for large-scale molecular similarity search tasks.
770771 **Table 5: Key statistics of trained IVFPQ indices across datasets**772
773

Source Dataset	Index	nbits	m	nlist	Size	Training Time	Adding Time
<i>EmbedMol-1B</i>	IVFPQ	8	2	20,000	8.9 GB	33.2 s	1.42 hrs
	IVFPQ	8	4	20,000	11 GB	33.3 s	1.56 hrs
	IVFPQ	8	8	20,000	15 GB	33.6 s	1.69 hrs
	IVFPQ	8	16	20,000	22 GB	33.9 s	1.63 hrs
	IVFPQ	8	32	20,000	36 GB	34.8 s	1.69 hrs
	IVFPQ	8	64	20,000	64 GB	36.5 s	1.83 hrs
	IVFPQ	2	8	20,000	8.9 GB	32.8 s	1.34 hrs
	IVFPQ	4	8	20,000	11 GB	32.5 s	1.41 hrs
	IVFPQ	6	8	20,000	13 GB	32.9 s	1.42 hrs
	IVFPQ	8	8	8,000	15 GB	14.0 s	1.25 hrs
	IVFPQ	8	8	9,000	15 GB	15.6 s	1.11 hrs
	IVFPQ	8	8	10,000	15 GB	17.2 s	1.15 hrs
	IVFPQ	8	8	30,000	15 GB	49.9 s	1.89 hrs
	IVFPQ	8	8	40,000	15 GB	61.9 s	1.72 hrs
<i>EmbedMol-11B</i> (3.5B Subsample)	IVFPQ	8	2	20,000	33 GB	61.0 s	8.15 hrs
	IVFPQ	8	4	20,000	40 GB	64.2 s	8.48 hrs
	IVFPQ	8	8	20,000	53 GB	74.7 s	9.58 hrs
	IVFPQ	8	16	20,000	79 GB	62.8 s	8.50 hrs
	IVFPQ	8	32	20,000	131 GB	63.6 s	9.59 hrs
	IVFPQ	8	64	20,000	235 GB	67.8 s	8.75 hrs
	IVFPQ	2	8	20,000	33 GB	64.7 s	7.95 hrs
	IVFPQ	4	8	20,000	40 GB	68.4 s	8.71 hrs
	IVFPQ	6	8	20,000	46 GB	64.8 s	7.78 hrs
	IVFPQ	8	8	8,000	53 GB	12.8 s	7.72 hrs
	IVFPQ	8	8	9,000	53 GB	15.6 s	7.95 hrs
	IVFPQ	8	8	10,000	53 GB	19.6 s	8.15 hrs
	IVFPQ	8	8	30,000	53 GB	132.9 s	8.49 hrs
	IVFPQ	8	8	40,000	53 GB	249.8 s	7.88 hrs

799
800 **B SENSITIVITY TEST FOR *EmbedMol* ON TRAINED INDICES**
801802
803
804 We also perform a sensitivity test by evaluating the impact of index construction parameters on the
805 precision of similarity search performance in molecular discovery tasks by investigating the behavior
806 of the IVFPQ index under various parameter adjustments for both *EmbedMol*-1B and a 3.5-billion
807 subsampled *EmbedMol*-11B. This is not featured in the main text of this paper. As shown in Figures 4
808 and 5, increasing the number of sub-quantizers from 2 to 64 in the IVFPQ index triples top-100
809 precision, while adjusting quantization and Voronoi cells yields improvements consistent with ANN
theory.

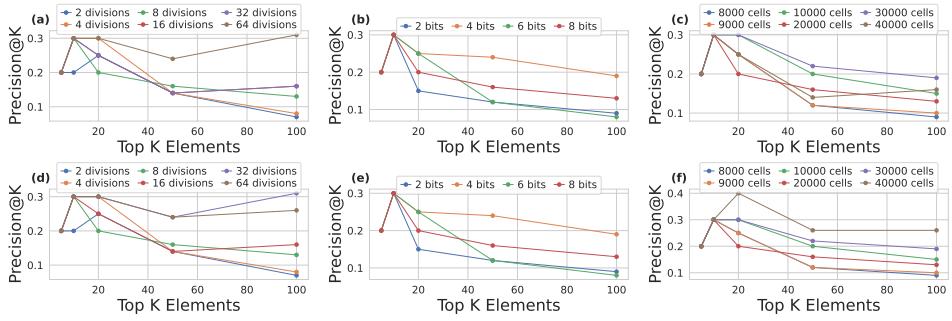


Figure 4: Precision of IVFPQ index on *EmbedMol-1B* in retrieving top antiviral candidate for SARS-CoV 3CL Protease (a-c) and SARS-CoV2 Helicase (d-f)

Figure 5: Precision of IVFPQ index on subsample of *EmbedMol-11B* retrieving top antiviral candidate for SARS-CoV 3CL Protease.

C ORIGINAL LICENSES FOR SOURCE DATASETS

We include below the license terms of GDB13 and ZINC22. These upstream conditions govern redistribution and patent restrictions in *EmbedMol*, as noted in our Reproducibility Statement.

C.1 GDB13

Terms and conditions: The GDB databases may be downloaded free of charge. In published research involving GDB, cite the appropriate references mentioned above. GDB must not be used as part of or in patents. GDB and large portions thereof must not be redistributed without the express written permission of Jean-Louis Reymond.

C.2 ZINC22

ZINC - 22 is free to use for everyone, but you may not redistribute major portions without the express written permission of John Irwin, chemistry4biology@gmail.com.