
Under review as a conference paper at ICLR 2024

GRAPH INFERENCE ACCELERATION BY BRIDGING GNNS AND
MLPS WITH SELF-SUPERVISED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have demonstrated their effectiveness in a variety
of graph learning tasks such as node classification and link prediction. However,
GNN inference mainly relies on neighborhood aggregation, which limits the de-
ployment in latency-sensitive (i.e., real-time) applications such as financial fraud
detection. To solve this problem, recent works have proposed to distill knowledge
from teacher GNNs to student Multi-Layer Perceptrons (MLPs) trained on node
content for inference acceleration. Despite the progress, these studies still suf-
fer insufficient exploration of structural information when inferring unseen nodes.
To address this issue, we propose a new method (namely SSL-GM) to fully in-
tegrate rich structural information into MLPs by bridging GNNs and MLPs with
Self-Supervised Learning (SSL) for graph inference acceleration while improving
model generalization capability. A key new insight of SSL-GM is that, without
fetching their neighborhoods, the structural information of unseen nodes can be in-
ferred solely from the nodes themselves with SSL. Specifically, SSL-GM employs
self-supervised contrastive learning to align the representations encoded by graph
context-aware GNNs and neighborhood dependency-free MLPs, fully integrat-
ing the structural information into MLPs. In particular, SSL-GM approximates
the representations of GNNs using a non-parametric aggregator to avoid potential
model collapse and exploits augmentation to facilitate the training; additionally,
SSL-GM further incorporates reconstruction regulation to prevent representation
shift caused by augmentation. Theoretically, we interpret our proposed SSL-GM
through the principle of information bottleneck, demonstrating its generalization
capability; we also analyze model capacity in incorporating structural information
from the perspective of mutual information maximization and graph smoothness.
Empirically, we demonstrate the superiority of SSL-GM over existing state-of-
the-art models in both efficiency and effectiveness. In particular, SSL-GM obtains
significant performance gains (7∼26%) in comparison to MLPs, and a remarkable
acceleration of GNNs (90∼126×) on large-scale graph datasets.

1 INTRODUCTION

Due to the ubiquity of graph-structured data (e.g., computing networks, recommender systems in e-
commerce, citation networks, and social networks), Graph Neural Networks (GNNs) have drawn
significant attention in recent years. Generally, GNNs are based on neighborhood aggregation
(Gilmer et al., 2017) to learn representations of given graphs. Despite their effectiveness in various
graph learning tasks such as node classification and link prediction, due to the cost of neighborhood
fetching during the testing stage, GNNs still face limitations of the deployment in latency-sensitive
(i.e., real-time) applications such as financial fraud detection (Zhang et al., 2022; Wang et al., 2021).
To solve this problem, existing works mainly adopt quantization (Ding et al., 2021), pruning (Zhou
et al., 2021), and knowledge distillation (Yan et al., 2020) for graph inference acceleration. However,
these improvements are limited as they still rely on neighborhood dependency (Zhang et al., 2022).
To address this issue, as Multi-Layer Perceptrons (MLPs) have no dependency on graph data and can
be efficiently deployed in latency-sensitive applications, researchers have explored distilling knowl-
edge from pre-trained GNNs into MLPs (Zhang et al., 2022; Tian et al., 2023; Wang et al., 2023).
Despite the progress, these methods inevitably sacrifice the model generalization capacity, as they
cannot fully leverage structural information when inferring testing nodes. Given these challenges,
we naturally ask: how to bridge graph context-aware GNNs and neighborhood dependency-free
MLPs for graph inference acceleration while improving model generalization capability?

1

Under review as a conference paper at ICLR 2024

To answer the above question, we bring a key new insight different from existing works on graph
inference acceleration: without fetching their neighborhoods, the structural information of unseen
nodes can be inferred solely from nodes themselves with Self-Supervised Learning (SSL) (Chen
et al., 2020b). Accordingly, we propose a new method (namely SSL-GM) to fully integrate rich
structural information into MLPs by bridging GNNs and MLPs with Self-Supervised Learning
(SSL) for graph inference acceleration while improving model generalization capability (Huang
et al., 2023; Cabannes et al., 2023). More specifically, our proposed SSL-GM applies self-supervised
contrastive learning (He et al., 2020) to align the consistency between GNNs and MLPs in the rep-
resentation space. In particular, SSL-GM approximates the representations of GNNs using a non-
parametric aggregator to avoid potential model collapse (Grill et al., 2020) and exploits augmenta-
tion to further enhance generalization (Zhao et al., 2021); additionally, SSL-GM further incorporates
reconstruction regulation to prevent representation shift caused by augmentation. Theoretically, we
have demonstrated that minimizing the objective function of SSL-GM is equivalent to optimizing
the information bottleneck, thereby assuring model generalization (Alemi et al., 2017); in addition,
we also analyze model capacity in incorporating structural information from the perspective of mu-
tual information maximization and graph smoothness. Empirically, through extensive experiments
over large-scale graph datasets, SSL-GM shows state-of-the-art performance on node classification
tasks across transductive, inductive (Zhang et al., 2022), and cold-start settings. In terms of in-
ference efficiency, SSL-GM exhibits remarkable acceleration compared to GNNs (90∼126×) and
other acceleration techniques (5∼90×). The main contributions of our work are summarized below:

(Methodology) We observe that existing graph inference acceleration methods using low-latency
MLPs are incapable of acquiring generalizable structure-aware representations. To this end, we
propose SSL-GM to bridge graph context-aware GNNs and neighborhood dependency-free MLPs
with SSL at the first attempt for graph inference acceleration while improving model generalization.

(Theory) We establish the theoretical equivalence between our objective and information bottleneck,
proving the generalization capability of SSL-GM. Moreover, we analyze the capability of SSL-GM
on encoding structural knowledge through mutual information maximization and graph smoothness.

(Experiments) Our SSL-GM achieves state-of-the-art performance over ten graph benchmarks on
node classification tasks under transductive, inductive, and cold-start settings. It also shows a re-
markable graph inference acceleration compared to GNNs (90∼126×) and exhibits significant per-
formance improvements over vanilla MLPs (7∼26%).

2 RELATED WORK

Graph Neural Networks learn node representations by passing and aggregating messages from
neighboring nodes. For example, GCN (Kipf & Welling, 2017) employs the normalized Lapla-
cian matrix to guide message passing, GraphSAGE (Hamilton et al., 2017) utilizes neighborhood
sampling, and GAT (Veličković et al., 2018) applies attention mechanisms. More recently, certain
studies (Wu et al., 2019; Gasteiger et al., 2019; Han et al., 2023) decompose feature transformation
from message passing, demonstrating that the effectiveness of GNNs stems from message propa-
gation (Yang et al., 2023a). Despite their success, the inference speed on testing nodes remains a
limitation due to neighborhood dependencies, which will be addressed in this paper.

Self-Supervised Learning (SSL) (Chen et al., 2020b; He et al., 2020) is a pre-training strategy that
cultivates discriminative representations without supervision. Numerous studies (Veličković et al.,
2019; Hassani & Khasahmadi, 2020; Zhu et al., 2020; 2021; Thakoor et al., 2022) have introduced
methods for acquiring knowledge from graphs, prompting the downstream tasks (Sun et al., 2023).
Particularly, BGRL (Thakoor et al., 2022) employs bootstrapping (Grill et al., 2020) to minimize the
distance between node representations in two augmented views with an efficient approach. Despite
potential improvements in generalization (Jiang et al., 2019; Huang et al., 2023), the dependency on
neighborhood information continues to constrain inference speed.

Inference Acceleration encompasses quantization (Gupta et al., 2015; Jacob et al., 2018), prun-
ing (Han et al., 2015; Frankle & Carbin, 2019), and knowledge distillation (KD) (Hinton et al.,
2015). Quantization (Ding et al., 2021) approximates continuous data with limited discrete values,
pruning (Zhou et al., 2021) involves removing connections within neural networks, and KD distills
knowledge from large GNNs to small GNNs (Yan et al., 2020). However, these methods still fail
to eliminate neighborhood dependencies, resulting in constrained inference acceleration. In light of
this, GLNN (Zhang et al., 2022) distills knowledge from teacher GNNs to student MLPs, bypassing

2

Under review as a conference paper at ICLR 2024

Figure 1: In training, SSL-GM augments the original graph and encodes representations through
MLPs and GNNs, where the GNN representations are approximated by a non-parametric aggregator.
Following, SSL-GM employs contrastive learning to maximize the alignment between these two
representations and applies reconstruction based on GNN representations. In inference, only the
MLP is leveraged to encode graph representations, leading to a substantial inference acceleration.

neighbor-fetching latency, but cannot fully model the structural information. Following studies inte-
grate structural knowledge in pre-processing, e.g., appending positional embeddings (Perozzi et al.,
2014) to node content (Tian et al., 2023; Wang et al., 2023), conducting label propagation (Yang
et al., 2021), acquiring a motif cookbook (Yang et al., 2023b). However, these methods introduce
additional time overhead and are impractical for out-of-distribution and cold-start generalization.
In parallel, GraphMLP (Hu et al., 2021) and following works (Dong et al., 2022; Liu et al., 2022)
employ neighborhood-aware distillation to train MLPs, albeit limited to the transductive setting. Un-
like these methods, SSL-GM applies self-supervised learning to bridge GNNs and MLPs, achieving
significant inference acceleration meanwhile enhancing model generalization.

3 BRIDGING GNNS AND MLPS WITH SELF-SUPERVISED LEARNING
In this section, we provide a detailed description of SSL-GM. Figure 1 illustrates an overview of
the SSL-GM framework. The key insight is that, without fetching node neighborhoods, the potential
structural distribution of unseen nodes can be inferred solely from node content with SSL. To achieve
the goal, SSL-GM employs self-supervised contrastive learning to align the consistency between the
representations encoded by GNNs and MLPs, integrating fine-grained structural information into
MLPs to learn generalizable graph representations (Hendrycks et al., 2019; Cabannes et al., 2023).

Problem Statement. We consider a graph G = (A,X) consisting of node set V and edge set E,
with N nodes in total. We have node features X ∈ RN×d with dimension d, and adjacent matrix
A, where Aij = 1 if node i and j are connected, and Aij = 0 otherwise. Our focus lies in training
an MLP encoder E(·) without supervision, which receives node content X as input and generates
node representations H ∈ RN×d′

preserving the semantics of both A and X .

3.1 STRUCTURE-AWARE MLPS WITH SELF-SUPERVISED LEARNING

The effectiveness of GNNs stems from their ability to learn graph contextual information. Although
some methods propose to distill knowledge from GNNs to MLPs, they inevitably sacrifice model
capability (Tian et al., 2020) and generalization (Tian et al., 2023), as they only align the predictions
of MLPs and GNNs in the label space, falling short to fully explore graph structural knowledge. To
this end, we employ self-supervised contrastive learning to comprehensively incorporate structural
information into MLPs by aligning GNNs and MLPs in the representation space. Specifically, we
treat the representations encoded by MLPs as H and GNNs as Z, which corresponds to the encod-
ings on node view G1 = (∅,X) and graph view G2 = (A,X), respectively. The objective is to
optimize the consistency between these two representations, thereby encoding structural knowledge
into MLPs. We employ the Bootstrap loss (Grill et al., 2020) as objective function, defined as

Lcont = E∥ρ(H)−Z∥2γ , (1)

where γ ≥ 1 serves as a scaling term, akin to an adaptive sample reweighing technique (Hou et al.,
2022; Lin et al., 2017). The projector ρ(·) can either be identity or learnable. Here we opt for a
non-linear MLP to enhance the expressiveness in estimating instance distances (Chen et al., 2020b).

3

Under review as a conference paper at ICLR 2024

Non-Parametric Aggregator for Approximating GNN Representations. Directly applying
GNNs may lead to model collapse, as evidenced in Appendix D.3. We suppose it derives from
the inconsistency between representations learned by MLPs and GNNs (He et al., 2020; Grill et al.,
2020). To mitigate the issue, we propose to propagate the representations learned by MLPs to
approximate the representations of GNNs, preserving their inherent consistency. Specifically, we
employ a non-parametric aggregator ϕ(·, ·) to conduct message passing as follows

GNN : Z = GNN(A,X; Θ) =⇒ SSL-GM : Z = ϕ(A,H),H = E(X; Θ), (2)

where Θ represents the parameters of the model. Unlike existing GNNs, our SSL-GM decomposes
the linear transformation and message passing by applying MLP encoder to transform node features
H = E(X) and then employing the non-parametric aggregator to perform message passing Z =
ϕ(A,H) without additional transformation. Further details are presented in Appendix D.6. This
approach has been empirically (Wu et al., 2019; Gasteiger et al., 2019) and theoretically (Han et al.,
2023; Yang et al., 2023a) shown be expressive. The choice of aggregation type can be arbitrary. We
employ a GCN-like (Kipf & Welling, 2017) framework for neighborhood aggregation.

3.2 AUGMENTATION TO FACILITATE TRAINING

The fundamental assumption behind training MLPs on graphs is that nodes with similar features
have similar surrounding ego-graphs (Chen et al., 2021). This aligns with our insight that the contex-
tual neighborhoods can be inferred based on the target nodes themselves. However, the assumption
indicates the necessity of high-quality node features (Zhang et al., 2022; Guo et al., 2023) and in-
herently requires the consistency in structural distribution between training and testing graphs (Luan
et al., 2022; 2023). This prevents MLP-based graph learning algorithms from generalizing to out-
of-distribution settings. To solve the issue, we augment the node and ego-graph pairs to increase the
quality and diversity of training data (Feng et al., 2020; You et al., 2020; Zhao et al., 2021). This ap-
proach will enhance model generalization and robustness for graphs that originate from distributions
different from the training set. The augmentation is applied in each training epoch as

Ĝ = (Â, X̂), Â ∼ qe(A), X̂ ∼ qf (X), (3)

where qe(·) and qf (·) are two random augmentation methods for graph structures and node features,
respectively. This augmentation aligns with the objective of optimal contrastive learning (Xu et al.,
2021) that aims to train an augmentation-invariant encoder, formulated as

E∗ = argmin
E

I(G1,G2)− I(Ĥ, Ẑ), (4)

where G1 = (∅, X̂) and G2 = (Â, X̂), with Ĥ and Ẑ are representations encoded by MLPs
and GNNs on augmented graphs, respectively. This process will facilitate the training of the MLP
encoder E by incorporating more structure-relevant information into SSL-GM (Xu et al., 2021).

3.3 RECONSTRUCTION FOR MITIGATING REPRESENTATION SHIFT

Figure 2: Augmentation leads
to severe representation shift.

While augmentation can facilitate the training process, it may im-
pact the distribution of encoded representations. This represen-
tation shift, particularly pronounced in structural augmentation,
can significantly alter the local structure of the target node. For
instance, as depicted in Figure 2, simple edge permutation can
dramatically change the 2-hop neighborhoods of a target node,
leading to a substantial shift in the representations. Although this
shift can potentially benefit existing graph contrastive learning
methods by providing adversarial samples (Suresh et al., 2021;
Kong et al., 2022; Feng et al., 2022), it may result in a mismatch
between the augmented node and ego-graph pairs, thereby impair-
ing the quality of representations learned by MLPs. To counter
this problem, we hypothesize that if GNN representations can pre-
serve localized information, the impact of representation shift can
be minimized. Based on this, we introduce a reconstruction reg-
ularizer that reconstructs the raw node features X based on the
GNN representations Ẑ on augmented graphs Ĝ = (Â, X̂). The reconstruction term is defined as

Lrec = E∥D(Ẑ)−X∥2, Ẑ = ϕ(A, Ĥ), Ĥ = E(X̂), (5)

4

Under review as a conference paper at ICLR 2024

where D(·) represents the decoder, while Ẑ and Ĥ correspond to representations of GNNs and
MLPs on the augmented graphs, respectively. This term encourages GNNs to preserve more local-
ized information, ensuring GNN representations do not significantly shift from MLP representations,
shown in Figure 2. However, when no augmentations are applied, the term may even lead to model
performance degradation, evaluated in Appendix D.5. Additionally, the reconstruction regularizer
also provides denoising capability (Batson & Royer, 2019) to some extent, enhancing the robustness
of SSL-GM to noisy data.

3.4 OBJECTIVE FUNCTION

Considering the above three modules, we define the overall objective of SSL-GM as

L = Lcont + λ · Lrec = E[∥ρ(Ĥ)− Ẑ∥2γ︸ ︷︷ ︸
invariance

+λ · ∥D(Ẑ)−X∥2︸ ︷︷ ︸
reconstruct

], (6)

where Ĥ = E(X̂) and Ẑ = ϕ(Â, Ĥ) are representations of MLPs and GNNs on the augmented
graph Ĝ = (Â, X̂). ρ and D indicate projector head and decoder. γ and λ denote scaling factor
and trade-off coefficient. We dubbed the contrastive loss as invariance term and the reconstruction
loss as reconstruction term. While seemingly distinct, these two terms collaboratively reciprocate
each other. The invariance term produces graph context-aware MLP representations, akin to posi-
tional encoding (Rampášek et al., 2022), improving the quality of GNN representations (Dwivedi
& Bresson, 2020; Kreuzer et al., 2021; Dwivedi et al., 2022; Wang et al., 2022). This enhanced
discrimination capability facilitates node feature reconstruction. The reconstruction term, in turn,
prevents potential representation shifts by preserving additional localized information in representa-
tions learned by GNNs, thus providing better high-order structural signals for training MLPs.

Theorem 1 Suppose G = (A,X) is sampled from a latent graph GI = (A,F), G ∼ P (GI) (Xie
et al., 2022), and F ∗ is the lossless compression of F that E[X|A,F ∗] = F . Let E be a l-Lipschitz
continuous function respect to l2-norm, ρ be an identity projector, and λ = 1, γ = 1. Optimizing
Eq. 6 equals to finding the optimal compression T ∗ with minimal sufficient information C where

T ∗ = argmin
T

I(G;T)− βI(T ;GI), s.t., I(T ,GI) ≥ C,T = (H,Z). (7)

Theorem 1 reveals the equivalence of optimization objectives between our loss function in Eq. 6
and information bottleneck (Tishby et al., 2000; Tishby & Zaslavsky, 2015), ensuring our SSL-GM
to learn informative and generalizable representations (Alemi et al., 2017) for downstream tasks.

4 EXPERIMENTS
4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our SSL-GM model on ten public benchmark datasets for node classifica-
tion task, including Cora, Citeseer, Pubmed, Amazon-CS, Amazon-Photo, Coauthor-CS, Coauthor-
Physics, Wiki-CS, Flickr, and Arxiv. Dataset details are presented in Appendix B.1. We also evaluate
the model performance on graph classification datasets, shown in Appendix B.1 and D.1.

Baselines. We compare SSL-GM to a variety of baselines, including supervised GNNs, e.g., SAGE
(Hamilton et al., 2017), GAT (Veličković et al., 2018), SGC (Wu et al., 2019), APPNP (Gasteiger
et al., 2019), self-supervised methods, including DGI (Veličković et al., 2019), MVGRL (Hassani
& Khasahmadi, 2020), GRACE (Zhu et al., 2020), BGRL (Thakoor et al., 2022), GCA (Zhu et al.,
2021), and MLP-based methods, such as basic MLP, GraphMLP (Hu et al., 2021), GLNN (Zhang
et al., 2022), GENN (Wang et al., 2023), and NOSMOG (Tian et al., 2023). Appendix B.2 presents
the details.

Evaluation Protocol. We report the mean and standard deviation of ten runs using different random
seeds to assess model performance in node classification. Accuracy serves as the metric. We conduct
comparison for SSL-GM against baseline methods in transductive, inductive (production) (Zhang
et al., 2022), and cold-start settings. Appendix B.3 and B.4 show additional information.

4.2 NODE CLASSIFICATION RESULTS

Transductive Setting. Table 1 demonstrates the node classification results of SSL-GM and base-
lines in transductive setting. Our SSL-GM consistently outperforms MLP-based methods across
all datasets, which highlights the expressiveness of incorporating fine-grained structural knowledge

5

Under review as a conference paper at ICLR 2024

Cora Citeseer PubMed Amazon-CS Amazon-Photo Co-CS Co-Phys Wiki-CS Flickr Arxiv

GNN

SAGE 81.44±0.91 70.44±1.39 85.94±0.43 88.88±0.27 93.81±0.42 93.41±0.16 95.72±0.05 80.87±0.63 48.45±0.78 72.05±0.25

GAT 82.33±1.17 68.89±1.47 84.73±0.43 89.92±0.48 91.94±0.44 91.98±0.32 95.08±0.15 79.97±0.56 51.38±0.16 71.79±0.40

APPNP 75.48±1.57 68.09±1.20 84.60±0.30 87.41±0.27 93.37±0.47 94.62±0.21 95.44±0.12 79.10±0.31 47.53±0.29 71.01±0.24

SGC 81.80±0.88 68.96±1.63 85.28±0.32 89.31±0.62 92.74±0.43 94.02±0.20 94.78±0.20 81.06±0.55 51.75±0.24 69.95±0.35

GCL

DGI 82.31±0.60 71.81±0.73 76.78±0.70 79.98±0.19 91.60±0.21 92.22±0.53 94.50±0.04 76.42±0.55 46.88±0.13 70.13±0.15

MVGRL 83.89±0.50 72.14±1.25 86.33±0.59 87.85±0.31 91.88±0.15 92.15±0.07 95.30±0.04 77.64±0.09 49.32±0.11 70.88±0.10

GRACE 80.50±1.03 65.52±2.06 84.64±0.50 88.44±0.33 92.83±0.56 93.01±0.30 95.43±0.06 78.59±0.47 49.33±0.11 70.96±0.13

GCA 83.53±0.49 71.33±0.15 86.03±0.37 87.42±0.30 92.61±0.21 93.06±0.03 95.72±0.03 78.35±0.05 49.03±0.07 70.90±0.08

BGRL 81.30±0.59 66.90±0.58 84.92±0.24 88.19±0.21 92.54±0.11 92.11±0.12 95.21±0.07 77.54±0.79 49.67±0.06 70.84±0.12

MLP

MLP 64.49±1.90 64.01±1.26 80.69±0.28 80.79±0.33 87.77±0.49 91.65±0.32 95.11±0.12 75.16±0.46 46.21±0.07 56.44±0.30

GraphMLP 79.50±0.81 72.10±0.48 84.27±0.23 84.01±0.58 90.90±1.03 90.36±0.64 93.51±0.15 76.39±0.53 46.25±0.21 63.36±0.18

GLNN 81.32±1.15 71.15±0.71 86.34±0.46 87.47±0.60 93.87±0.31 94.16±0.21 95.40±0.07 80.66±0.74 46.18±0.19 64.03±0.51

GENN 82.13±0.77 71.42±1.31 86.28±0.31 87.12±0.55 93.64±0.65 93.82±0.29 95.45±0.05 80.48±0.74 46.35±0.34 70.13±0.60

NOSMOG 82.27±1.13 72.39±1.27 86.18±0.33 87.64±1.14 93.94±0.47 93.83±0.23 95.74±0.12 80.53±0.77 46.69±0.25 70.84±0.44

SSL-GM 84.60±0.24 73.52±0.53 86.99±0.09 88.46±0.16 94.28±0.08 94.87±0.07 96.17±0.03 81.21±0.13 49.85±0.09 71.12±0.10

∆BGRL ↑ 4.06% ↑ 9.90% ↑ 2.44% ↑ 0.31% ↑ 1.88% ↑ 3.00% ↑ 1.01% ↑ 4.73% ↑ 0.36% ↑ 0.40%
∆MLP ↑ 31.18% ↑ 14.86% ↑ 7.81% ↑ 9.49% ↑ 7.42% ↑ 3.51% ↑ 1.11% ↑ 8.05% ↑ 7.88% ↑ 26.01%

∆NOSMOG ↑ 2.83% ↑ 1.56% ↑ 0.94% ↑ 0.94% ↑ 0.36% ↑ 1.11% ↑ 0.45% ↑ 0.84% ↑ 6.77% ↑ 0.40%

w/o Aggr. 55.91±0.66 57.36±0.33 79.93±0.32 72.76±0.71 77.05±0.18 91.19±0.13 93.35±0.12 73.87±0.26 45.82±0.07 54.83±0.41

w/o Pred. 81.78±0.30 73.09±0.25 85.33±0.10 83.12±0.25 91.25±0.27 93.32±0.08 94.98±0.06 76.13±0.22 48.31±0.14 67.48±0.44

w/o Aug. 82.10±0.45 71.83±0.43 86.89±0.13 87.12±0.15 93.52±0.20 93.10±0.05 94.56±0.06 80.98±0.13 48.21±0.10 70.58±0.20

w/o Rec. 84.37±0.27 73.18±0.24 86.86±0.10 88.25±0.07 94.15±0.07 94.64±0.06 96.01±0.07 81.10±0.13 49.60±0.11 70.38±0.22

Table 1: Node classification accuracy (%) under transductive setting. ∆BGRL, ∆MLP, and
∆NOSMOG represent the performance gap (%) between our methods and MLP, BGRL, and NOS-
MOG, where green indicates the improvement over 4%.

Cora Citeseer PubMed Amazon-CS Amazon-Photo Co-CS Co-Phys Wiki-CS Flickr Arxiv

SAGE 77.51±1.77 68.40±1.61 85.04±0.44 87.24±0.43 93.20±0.45 92.88±0.40 95.74±0.12 79.26±0.65 47.17±0.73 68.52±0.56

BGRL 77.73±1.07 64.33±1.56 83.97±0.48 87.33±0.48 91.47±0.62 91.26±0.35 94.38±0.29 76.25±1.09 49.12±0.31 69.29±0.38

MLP 63.76±1.65 63.98±1.22 80.91±0.45 81.00±0.54 87.73±0.88 91.68±0.59 95.18±0.13 75.08±0.71 46.14±0.22 55.89±0.51

GLNN 78.34±1.04 69.61±1.13 85.44±0.48 87.04±0.50 93.28±0.43 93.72±0.35 95.76±0.09 78.39±0.54 46.11±0.27 63.53±0.48

GENN 77.83±1.57 67.30±1.48 84.34±0.47 85.75±1.20 92.09±0.96 93.57±0.37 95.67±0.06 78.27±1.01 45.56±0.51 68.52±0.54

NOSMOG 77.83±1.94 68.58±1.41 83.84±0.45 86.61±1.22 92.52±0.68 93.45±0.44 95.78±0.10 78.35±0.70 46.05±0.55 69.10±0.80

SSL-GM 81.37±1.20 72.33±0.90 86.47±0.28 87.65±0.40 93.87±0.32 94.63±0.16 96.04±0.12 79.26±0.83 49.27±0.18 70.23±0.47

∆BGRL ↑ 4.68% ↑ 12.44% ↑ 2.98% ↑ 0.37% ↑ 2.62% ↑ 3.69% ↑ 1.76% ↑ 3.95% ↑ 0.31% ↑ 1.36%
∆MLP ↑ 27.62% ↑ 13.05% ↑ 6.87% ↑ 8.21% ↑ 7.00% ↑ 3.22% ↑ 0.90% ↑ 5.57% ↑ 6.78% ↑ 25.66%

∆NOSMOG ↑ 4.55% ↑ 5.47% ↑ 3.14% ↑ 1.20% ↑ 1.46% ↑ 1.26% ↑ 0.27% ↑ 1.16% ↑ 6.99% ↑ 1.64%

Table 2: Node classification accuracy (%) under inductive (production) settings.

Cora Citeseer PubMed Amazon-CS Amazon-Photo Co-CS Co-Phys Wiki-CS Flickr Arxiv

SAGE 60.23±5.03 56.62±5.10 77.98±1.53 61.01±4.51 59.52±8.02 91.30±0.84 94.64±0.88 52.73±7.93 41.06±2.25 43.47±2.53

BGRL 78.80±1.14 65.10±2.08 84.18±0.80 86.13±0.76 90.39±0.30 90.23±0.48 94.06±0.28 78.15±1.17 48.73±0.13 64.11±0.20

MLP 64.15±2.11 64.43±1.76 80.90±0.72 80.80±0.91 87.88±0.96 91.78±0.81 95.16±0.18 74.94±1.81 46.09±0.50 55.91±0.69

GLNN 71.96±1.68 69.14±2.58 84.42±0.87 83.98±0.70 91.05±0.49 93.34±0.47 95.70±0.09 77.64±1.42 46.05±0.43 60.55±0.55

GENN 69.06±4.80 65.44±2.33 78.19±2.08 79.44±1.66 90.18±0.62 93.54±0.55 95.55±0.25 67.31±1.66 45.24±0.72 61.30±0.59

NOSMOG 70.69±2.45 68.03±2.79 81.48±1.30 81.95±1.04 91.15±0.88 93.63±0.42 95.54±0.40 68.49±3.61 46.07±0.30 61.64±0.93

SSL-GM 80.48±2.15 72.81±1.61 86.44±0.51 87.58±0.99 93.91±0.58 94.51±0.15 95.97±0.24 78.46±1.48 49.41±0.46 66.13±1.05

∆BGRL ↑ 2.13% ↑ 11.84% ↑ 2.68% ↑ 1.68% ↑ 3.89% ↑ 4.74% ↑ 2.03% ↑ 0.40% ↑ 1.40% ↑ 3.15%
∆MLP ↑ 25.46% ↑ 13.01% ↑ 6.85% ↑ 8.39% ↑ 6.86% ↑ 2.97% ↑ 0.85% ↑ 4.70% ↑ 7.20% ↑ 18.28%

∆NOSMOG ↑ 13.85% ↑ 7.03% ↑ 6.09% ↑ 6.87% ↑ 3.03% ↑ 0.94% ↑ 0.45% ↑ 14.56% ↑ 7.25% ↑ 7.28%

Table 3: Node classification accuracy (%) under cold-start setting.

into MLPs. More specifically, SSL-GM surpasses MLP, GraphMLP, and GLNN on large-scale
dataset Arxiv by 26%, 12%, and 11% improvements. Furthermore, SSL-GM outperforms other self-
supervised methods in all datasets, and fully-supervised GNNs in 7 out of 10 datasets. In particular,
SSL-GM achieves superior performance compared to SGC and APPNP, both of which employ prop-
agators to encode node representations in a manner similar to our aggregator. To further analyze the
expressiveness of SSL-GM, we conduct graph classification in Appendix D.1. Experimental results
show our SSL-GM achieves the best or sub-best performance across 6 out of 7 datasets.

Inductive (Production) Setting. Table 2 presents the node classification results of SSL-GM and
baseline methods in inductive (production) setting. We partition the original graph into two non-
overlapping sets, namely the transductive set GT = (VT , ET) and the inductive set GI = (VI , EI),
each with distinct structural distributions. We evaluate transductive and inductive results on these
sets and then interpolate them to derive the production results. Unlike Tian et al. (2023), which es-
tablish connections between nodes in VI and VT during inductive inference, our setting is more chal-
lenging as it treats these two sets as independent from each other, simulating an out-of-distribution
scenario. Appendix B.4 includes more details. We report the production results in Table 2 and pro-
vide the comprehensive results in Appendix D.2. SSL-GM outperforms all baselines in all datasets,
demonstrating the effectiveness of SSL-GM in real-world settings. Surprisingly, GLNN outper-

6

Under review as a conference paper at ICLR 2024

forms the advanced NOSMOG on 8 out of 10 datasets. We suppose that the reliance on additional
positional embeddings hinders the generalization of NOSMOG on graphs with distinct structures.

Cold-start Setting. In latency-constrained systems, newly emerged nodes may become isolated
(Hao et al., 2021; Zheng et al., 2022), which is commonly referred to as the cold-start issue. Our
SSL-GM, which infers potential structural information of newly emerged nodes solely based on
node content, provides a promising solution to address this issue. To simulate the cold-start sce-
nario, we follow the inductive (production) setting while removing connections within the inductive
set. This ensures that all inductive nodes remain isolated, forming a cold-start set GC = (VI , ∅).
Table 3 presents the cold-start performance results for SSL-GM and baselines. SSL-GM achieves
notable improvements compared to all baselines. Specifically, SSL-GM demonstrates performance
improvements of 7% and 18% over MLP on the Flickr and Arxiv datasets and achieves 7% and 7%
enhancements over NOSMOG. We suppose the deficiency of NOSMOG derives from the absence
of positional embedding. Note that BGRL, which employs augmentation in model training, also
achieves exceptional performance, even if it highly relies on structural knowledge.

4.3 INFERENCE ACCELERATION

10
0

10
1

10
2

10
3

Log Scale Time (ms)

56

58

60

62

64

66

Ac
cu

ra
cy

SSL-GM

NOSMOG

NOSMOGw4

NOSMOGw8

GLNN

BGRL-L1

BGRL-L2

BGRL-L3

MLPs

Figure 3: Accuracy vs. Inference Time on
Arxiv dataset under cold-start setting.

Our primary aim of SSL-GM is to accelerate inference.
In this section, we demonstrate the capability of SSL-
GM by illustrating the trade-off between prediction
accuracy and model inference time using the Arxiv
dataset under a cold-start setting, as depicted in Figure
3. We observe that SSL-GM attains the best trade-off
between accuracy and inference time. Compared to
baselines with similar inference times, SSL-GM out-
performs them significantly, achieving an accuracy of
66%, whereas NOSMOG and MLPs only reach 62%
and 56% accuracy, respectively. In contrast, methods
that achieve performance similar to SSL-GM demand
a substantial amount of inference time. For exam-
ple, the 2-layer BGRL (BGRL-L2) requires 314.7ms,
and the 3-layer BGRL (BGRL-L3) requires 635.9ms,
while SSL-GM only needs 2.5ms, resulting in an ac-
celeration of 125× and 254×, respectively. In the
case of NOSMOG, increasing the hidden dimension
(Zhang et al., 2022) can enhance performance by preserving more task-relevant information. We
conduct a comparison between SSL-GM and NOSMOGw4 (four times wider than NOSMOG) and
NOSMOGw8 (eight times wider than NOSMOG). We find that the wider models perform even
worse than SSL-GM and demand more inference time. Consequently, we conclude that our SSL-
GM surpasses existing baselines in accuracy while maintaining competitive inference speed. Ad-
ditionally, we demonstrate that SSL-GM surpasses other acceleration methods in inference time on
Flickr and Arxiv datasets (5∼90×) in Appendix C.

4.4 ABLATION STUDY

Model Component. In this section, we examine the impact of each component in the model. We
provide a detailed analysis in Appendix D.3, D.4, D.5, and D.6. Table 1 shows the ablation results for
ten benchmark datasets. The abbreviations Aggr., Pred., Aug., and Rec. stand for aggregator,
predictor, augmentation, and reconstruction. We observe the aggregator significantly enhances the
model performance by injecting fine-grained structural information into the MLP encoder. The
projector, which facilitates distance measurements between node representations, indeed improves
the model performance, consistent with the findings in (Chen et al., 2020b). The augmentations
improve the training of SSL-GM by synthesizing diverse node and ego-graph pairs during training.
Moreover, the reconstruction term improves model performance by preventing the representation
shifts of GNNs. Additionally, we implement the supervised version of SSL-GM in Appendix E.

Robustness of SSL-GM to Noisy Data and Label Sparsity. The quality of MLP encoder depends
on both graph structure and node content. In this section, we introduce noise into the original graph
to assess the robustness of SSL-GM on noisy data. Furthermore, we analyze the model performance

7

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
Edge Noise Ratio

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

MLP
SAGE
GLNN

NOSMOG
BGRL
SSL-GM

0.0 0.2 0.4 0.6 0.8 1.0
Feature Noise Ratio

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Ac
cu

ra
cy

MLP
SAGE
GLNN

NOSMOG
BGRL
SSL-GM

0.001 0.005 0.01 0.05 0.1 0.5
Label Ratio

0.40

0.50

0.60

0.70

0.80

0.90

Ac
cu

ra
cy

MLP
SAGE
GLNN

NOSMOG
BGRL
SSL-GM

Figure 4: Left: Edge Noise. SSL-GM consistently demonstrates robustness against edge noise, even
in scenarios with exceptionally high noise ratios. Middle: Feature Noise. SSL-GM demonstrates
robustness to feature noise, whereas other MLP-based methods are susceptible to it. Right: Label
Sparsity. SSL-GM significantly outperforms other baselines with a low label ratio.

with sparse labels. We report results on inductive set of production setting, averaged over seven
datasets, including Cora, Citeseer, PubMed, Amazon-CS, Amazon-Photo, Co-CS, and Wiki-CS.

(Noisy Topology) To introduce structural noise, we randomly flip edges within the graph. Specifi-
cally, we replace A with Ã = M⊙(1−A)+(1−M)⊙A,Mij ∼ B(p), where B(p) is a Bernoulli
distribution with probability p. The results under various noise levels are depicted in Figure 4 (Left).
Our SSL-GM consistently outperforms others, demonstrating its robustness. The increase of noise
level leads to substantial performance degradation for GNNs, particularly for self-supervised BGRL,
but imposes minimal impact on MLPs, even Ã becomes independent to A.

(Noisy Node Features) Following, we examine the impact of node feature noise by introducing ran-
dom Gaussian noise. We replace X with X̃ = (1 − α)X + αx, where x represents random noise
agnostic to X , and noise level α ∈ [0, 1]. As depicted in Figure 4 (Middle), SSL-GM surpasses all
baselines in all settings, even though node content quality is a crucial factor for MLP-based meth-
ods (Zhang et al., 2022; Guo et al., 2023). We attribute this robustness to the augmentation that
synthesizes additional high-quality node and ego-graph pairs, thereby aiding MLP training. This
augmentation also contributes to the robustness of BGRL. However, we observe that the perfor-
mance of other MLP-based methods degrades rapidly with the increase in noise levels.

(Label Sparsity) In this section, we examine the robustness of SSL-GM under label sparsity. Fig-
ure 4 (Right) shows the model performance under various label ratios for node classification. We
observe our method consistently outperforms all other baselines, even with extremely limited train-
ing data (0.001). This highlights the robustness of SSL-GM to label sparsity. Furthermore, we
also observe that self-supervised methods exhibit better robustness Huang et al. (2023) compared to
supervised methods, raised from the ability to leverage unlabeled data during training.

5 HOW SSL-GM LEARN FROM STRUCTURAL KNOWLEDGE?

Mutual Information Maximization. We interpret the SSL-GM from the perspective of infor-
mation theory to theoretically analyze how MLPs encode structural information. Given a graph
G = (X,A,Y) with node features X , graph structure A and labels Y , single MLP aims to min-
imize the cross-entropy between X and Y , which corresponds to maximize the mutual informa-
tion

∑
i∈V I(yi;xi) (Boudiaf et al., 2020) while disregarding the impact of structure. GNNs fol-

lows message passing framework that leverages subgraphs surrounding the target nodes to make
prediction. We define subgraph around node i as Si = (X [i],A[i]), where X [i] is the node
features for neighborhoods of node i, and A[i] is the adjacent matrix that describes the aggrega-
tion rule. Thus, optimizing GNNs equals to maximize

∑
i∈V I(yi;Si) =

∑
i∈V I(yi;X

[i]) +∑
i∈V I(yi;A

[i]|X [i]), which models the correlation between label y and both node feature X and
graph structure A. The objective of GLNN is to maximize

∑
i∈V I(xi;yi|Si), where yi|Si de-

notes the soft labels given by GNNs. However, the approach cannot directly model the correlation
between subgraph S and label y, preventing to acquire structural knowledge. Some models, e.g.,
GENN and NOSMOG, utilize positional encoding to incorporate structural knowledge based on
GLNN, whose objective is to maximize

∑
i∈V I(xi;yi|Si)+ I(yi;A

[i]). Although they capture the

8

Under review as a conference paper at ICLR 2024

structural knowledge to some extent, they only model the correlation between label y and the graph
structure A instead of the subgraph S, failing to model fine-grained structural knowledge.

Unlike these models, the aim of our SSL-GM is to maximize
∑

i∈V I(yi;xi|Si) + I(xi;Si). The
first term optimizes the model on downstream tasks and the second term is the objective of SSL-GM.
We argue that when the second term is maximized, the objective technically equals to maximize∑

i∈V I(yi;Si), which corresponds to the objective of GNNs. The objective ensures SSL-GM com-
prehensively leverages graph information S , including node content and graph structure, in down-
stream tasks. Our analysis also aligns with the findings in Chen et al. (2021) and Zhang et al. (2022)
that the expressiveness of GNNs and MLPs are theoretically bounded by the equivalence classes
of induced rooted graphs, which corresponds to S in our case. Furthermore, SSL-GM augments
node and ego-graph pairs to enhance the diversity of the training data, which inherently improves
the quality of S and thereby improve the optimizing process of our SSL-GM.

Cora Citeseer PubMed Amazon-CS Amazon-Photo Average

Raw Feat. 0.8221 0.7825 0.7342 0.5393 0.5399 0.6836

SAGE 0.1132 0.1835 0.1426 0.1564 0.1089 0.1409
BGRL 0.1553 0.1023 0.3326 0.2509 0.2031 0.2088

MLP 0.4633 0.4442 0.4853 0.4557 0.4317 0.4560
GLNN 0.2818 0.2684 0.4208 0.3549 0.3976 0.3447
NOSMOG 0.2672 0.2301 0.3942 0.3056 0.2773 0.2949
SSL-GM 0.1964 0.1703 0.3604 0.2986 0.2878 0.2627

Table 4: The graph smoothness value measures the repre-
sentation similarity between nodes and their neighborhoods.
Lower values indicate a smoother graph, signifying that the
model can capture more structural knowledge.

Graph Smoothness. In addition to
theoretical analysis, we empirically
demonstrate the capability of SSL-
GM in learning structural informa-
tion as an inductive bias, which can
be measured by graph smoothness.
A low smoothness value indicates
that representations of closely con-
nected nodes are similar, allowing
the model to extract more informa-
tion from the graph data (Hou et al.,
2019). We employ the Mean Av-
erage Distance (MAD) LMAD =∑

v∈V
∑

j∈N(i)(Hi−Hj)
2∑

v∈V
∑

j∈N(i) 1
(Chen et al., 2020a) to quantify graph smoothness. For supervised meth-

ods, the representations are extracted from the output of the final layer before the prediction head.
Table 4 presents the graph smoothness values for SSL-GM and the baseline methods. We observe
that message passing methods inherently yield lower smoothness values than MLP-based methods.
SSL-GM, which pulls close the outputs of MLPs and GNNs in the representation space, achieves
an average smoothness value of 0.2627. This value is lower than that of MLP (0.4560), GLNN
(0.3447), and NOSMOG (0.2949), indicating the superiority of learning fine-grained structural in-
formation. Note that a low smoothness value might potentially lead to over-smoothing (Li et al.,
2019), but this topic falls outside the scope of this paper. We utilize smoothness to indicate whether
the encoded representations can accurately reflect the graph structure.

Cora Citeseer PubMed Amazon-CS Amazon-Photo Average

SAGE 0.9243 0.9426 0.9177 0.8541 0.8721 0.9022
BGRL 0.8847 0.9346 0.8556 0.8336 0.8493 0.8716

MLP 0.6663 0.8035 0.8625 0.7183 0.7467 0.7595
GLNN 0.8863 0.9162 0.7934 0.8038 0.8113 0.8422
NOSMOG 0.9023 0.9317 0.8337 0.8384 0.8226 0.8657
SSL-GM 0.9335 0.9575 0.8863 0.9014 0.8604 0.9078

Table 5: Our model predictions are more consistent with the
graph structure in terms of normalized cut value, although
the model is trained in an unsupervised manner.

Normalized Cut. Graph smoothness
evaluates the consistency between
representations and graph structure.
To further analyze the alignment be-
tween predictions and structure, we
adopt normalized cut, which approx-
imates the min-cut problem. This
problem involves minimizing the
number of removed edges to partition
nodes V into K disjoint subsets. The
min-cut problem can be formulated
as Lcut = tr(Ŷ TAŶ)

tr(Ŷ TDŶ)
where Ŷ represents the model predictions. A higher Lcut value indicates

a better alignment between model predictions and the underlying structure. Table 5 presents the
evaluation of min-cut scores for SSL-GM and baselines across five datasets. We observe message
passing methods generally outperform MLPs due to their explicit encoding of structure. Remark-
ably, SSL-GM surpasses existing MLP-based methods and is even competitive with message passing
models, demonstrating its superior ability to capture structural information.

9

Under review as a conference paper at ICLR 2024

6 CONCLUSION

We analyze that existing MLP-based graph inference acceleration methods cannot learn generaliz-
able structure-aware representations, and propose a novel framework SSL-GM to solve it. The key
insight is that the potential structural information of unseen nodes can be inferred solely based on
the node content with SSL. Specifically, we employ self-supervised contrastive learning to align
GNNs and MLPs in the representation space to integrate rich structural information into MLPs. Ad-
ditionally, we apply non-parametric aggregator, graph augmentation, and feature reconstruction to
improve model performance. We also empirically and theoretically demonstrate the expressiveness,
generalization, and robustness of SSL-GM. In the future, we will extend SSL-GM to real-world ap-
plications, such as financial fraud detection. We hope our work can inspire researchers seeking to
develop novel learning algorithms for graphs that go beyond the scope of GNNs.

REFERENCES

Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information
bottleneck. In ICLR, 2017.

Joshua Batson and Loic Royer. Noise2self: Blind denoising by self-supervision. In ICML, 2019.

Malik Boudiaf, Jérôme Rony, Imtiaz Masud Ziko, Eric Granger, Marco Pedersoli, Pablo Piantanida,
and Ismail Ben Ayed. A unifying mutual information view of metric learning: cross-entropy vs.
pairwise losses. In ECCV, 2020.

Vivien Cabannes, Bobak Kiani, Randall Balestriero, Yann LeCun, and Alberto Bietti. The ssl inter-
play: Augmentations, inductive bias, and generalization. In ICML, 2023.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In AAAI, 2020a.

Lei Chen, Zhengdao Chen, and Joan Bruna. On graph neural networks versus graph-augmented
MLPs. In ICLR, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICML, 2020b.

Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John Dickerson, Furong Huang, and Tom Gold-
stein. VQ-GNN: A universal framework to scale up graph neural networks using vector quanti-
zation. In NeurIPS, 2021.

Wei Dong, Junsheng Wu, Yi Luo, Zongyuan Ge, and Peng Wang. Node representation learning in
graph via node-to-neighbourhood mutual information maximization. In CVPR, 2022.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In ICLR, 2022.

Shengyu Feng, Baoyu Jing, Yada Zhu, and Hanghang Tong. Adversarial graph contrastive learning
with information regularization. In WWW, 2022.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
In NeurIPS, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In ICLR, 2019.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Combining neural networks
with personalized pagerank for classification on graphs. In ICLR, 2019.

10

Under review as a conference paper at ICLR 2024

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, 2017.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. In NeurIPS, 2020.

Zhichun Guo, William Shiao, Shichang Zhang, Yozen Liu, Nitesh V Chawla, Neil Shah, and Tong
Zhao. Linkless link prediction via relational distillation. In ICML, 2023.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In ICML, 2015.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In NeurIPS, 2017.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In NeurIPS, 2015.

Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, and Neil Shah. MLPInit: Embarrassingly simple
GNN training acceleration with MLP initialization. In ICLR, 2023.

Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, and Hong Chen. Pre-training graph neural
networks for cold-start users and items representation. In WSDM, 2021.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In ICML, 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020.

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised learning
can improve model robustness and uncertainty. In NeurIPS, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv,
2015.

Yifan Hou, Jian Zhang, James Cheng, Kaili Ma, Richard TB Ma, Hongzhi Chen, and Ming-Chang
Yang. Measuring and improving the use of graph information in graph neural networks. In ICLR,
2019.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In KDD, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS,
2020.

Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang, Erjin Zhou, and Yue Gao. Graph-mlp:
Node classification without message passing in graph. arXiv, 2021.

Weiran Huang, Mingyang Yi, Xuyang Zhao, and Zihao Jiang. Towards the generalization of con-
trastive self-supervised learning. In ICLR, 2023.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In CVPR, 2018.

Huajie Jiang, Ruiping Wang, Shiguang Shan, and Xilin Chen. Transferable contrastive network for
generalized zero-shot learning. In ICCV, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

11

Under review as a conference paper at ICLR 2024

Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor,
and Tom Goldstein. Robust optimization as data augmentation for large-scale graphs. In CVPR,
2022.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. In NeurIPS, 2021.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as
cnns? In ICCV, 2019.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In ICCV, 2017.

Siwei Liu, Iadh Ounis, and Craig Macdonald. An MLP-based algorithm for efficient contrastive
graph recommendations. In SIGIR, 2022.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, and Doina Precup. When do
we need gnn for node classification? arXiv, 2022.

Sitao Luan, Chenqing Hua, Minkai Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, Jie Fu, Jure
Leskovec, and Doina Precup. When do graph neural networks help with node classification:
Investigating the homophily principle on node distinguishability. arXiv, 2023.

Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural net-
works. arXiv, 2020.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv, 2020.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,
and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv, 2017.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In KDD, 2014.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. In NeurIPS, 2022.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv, 2018.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. JMLR, 2011.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
tion. arXiv, 2017.

Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In ICLR,
2020.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting for
graph neural networks. In KDD, 2023.

Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to improve
graph contrastive learning. In NeurIPS, 2021.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer,
Remi Munos, Petar Veličković, and Michal Valko. Large-scale representation learning on graphs
via bootstrapping. In ICLR, 2022.

Yijun Tian, Chuxu Zhang, Zhichun Guo, Xiangliang Zhang, and Nitesh Chawla. Learning MLPs on
graphs: A unified view of effectiveness, robustness, and efficiency. In ICLR, 2023.

12

Under review as a conference paper at ICLR 2024

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In ICLR,
2020.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In ITW,
2015.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv,
2000.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR, 2019.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding
for more powerful graph neural networks. In ICLR, 2022.

Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping
Cui, Yupu Yang, Bowen Sun, et al. Apan: Asynchronous propagation attention network for real-
time temporal graph embedding. In SIGMOD, 2021.

Yiwei Wang, Bryan Hooi, Yozen Liu, and Neil Shah. Graph explicit neural networks: Explicitly
encoding graphs for efficient and accurate inference. In WSDM, 2023.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simpli-
fying graph convolutional networks. In ICML, 2019.

Yaochen Xie, Zhao Xu, and Shuiwang Ji. Self-supervised representation learning via latent graph
prediction. In ICML, 2022.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang. Infogcl: Information-
aware graph contrastive learning. In NeurIPS, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Bencheng Yan, Chaokun Wang, Gaoyang Guo, and Yunkai Lou. Tinygnn: Learning efficient graph
neural networks. In KDD, 2020.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In KDD, 2015.

Cheng Yang, Jiawei Liu, and Chuan Shi. Extract the knowledge of graph neural networks and go
beyond it: An effective knowledge distillation framework. In WWW, 2021.

Chenxiao Yang, Qitian Wu, Jiahua Wang, and Junchi Yan. Graph neural networks are inherently
good generalizers: Insights by bridging GNNs and MLPs. In ICLR, 2023a.

Ling Yang, Ye Tian, Minkai Xu, Zhongyi Liu, Shenda Hong, Wei Qu, Wentao Zhang, Bin Cui,
Muhan Zhang, and Jure Leskovec. Vqgraph: Graph vector-quantization for bridging gnns and
mlps. arXiv, 2023b.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In ICML, 2016.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In NeurIPS, 2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning auto-
mated. In ICML, 2021.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In ICLR, 2020.

13

Under review as a conference paper at ICLR 2024

Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks: Teaching old
MLPs new tricks via distillation. In ICLR, 2022.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data aug-
mentation for graph neural networks. In AAAI, 2021.

Wenqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang, and Karthik
Subbian. Cold brew: Distilling graph node representations with incomplete or missing neighbor-
hoods. In ICLR, 2022.

Hongkuan Zhou, Ajitesh Srivastava, Hanqing Zeng, Rajgopal Kannan, and Viktor Prasanna. Accel-
erating large scale real-time gnn inference using channel pruning. In VLDB, 2021.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv, 2020.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In WWW, 2021.

A PROOF OF THEOREM 1

Theorem 1 Suppose G = (A,X) is sampled from a latent graph GI = (A,F), G ∼ P (GI) (Xie
et al., 2022), and F ∗ is the lossless compression of F that E[X|A,F ∗] = F . Let E be a l-Lipschitz
continuous function respect to l2-norm, ρ be an identity projector, and λ = 1, γ = 1. Optimizing
Eq. 6 equals to finding the optimal compression T ∗ with minimal sufficient information C where

T ∗ = argmin
T

I(G;T)− βI(T ;GI), s.t., I(T ,GI) ≥ C,T = (H,Z)

Proof. Consider G = (A,X), where X ∈ RN×d is derived from a latent graph GI = (A,F)
following a distribution G ∼ P (GI), with F ∈ RN×d representing the latent node semantics.
Let Ĝ = (X̂, Â) denote the randomly augmented version of G, achieved by applying augmen-
tations to both node features and graph structure. Additionally, consider an encoder E and a de-
coder D implemented as fully-connected layers, ensuring l-Lipschitz continuity with respect to the
l2-norm, and a non-parametric aggregator ϕ. This yields Ĥ = E(X̂) with Ĥ ∈ RN×d′

, and
Ẑ = ϕ(Ĥ, Â) with Ẑ ∈ RN×d′

. Furthermore, F ∗ ∈ RN×d′
denotes the lossless compression of

F that E[X|A,F ∗] = F . The Eq. 6 can be rewrited as:

14

Under review as a conference paper at ICLR 2024

E∗ =argmin
E

EÂ,X̂

[
∥Ĥ − Ẑ∥2 + ∥D(Ẑ)−X∥2|Â, X̂

]
(8)

=argmin
E

EÂ,X̂

[
∥(Ĥ − F ∗)− (Ẑ − F ∗)∥2 + ∥D(Ẑ)−X∥2|Â, X̂

]
(9)

=argmin
E

EÂ,X̂

[
∥Ĥ − F ∗∥2 + ∥Ẑ − F ∗∥2 + ∥D(Ẑ)−X∥2|Â, X̂

]
− 2EÂ,X̂

[
⟨Ĥ − F ∗, Ẑ − F ∗⟩|Â, X̂

]
(10)

=argmin
E

EÂ,X̂

[
∥Ĥ − F ∗∥2 + ∥Ẑ − F ∗∥2 + ∥D(Ẑ)−X∥2|Â, X̂

]
− 2EÂ,X̂,F ∗

[∑
i

(Ĥi − F ∗
i)(Ẑi − F ∗

i)|Â, X̂,F ∗

]
(11)

=argmin
E

EÂ,X̂

[
∥Ĥ − F ∗∥2 + ∥Ẑ − F ∗∥2 + ∥D(Ẑ)−X∥2|Â, X̂

]
− 2EÂ,X̂,F ∗

[∑
i

Cov(Ĥi − F ∗
i , Ẑi − F ∗

i)|Â, X̂,F ∗

]
(12)

=argmin
E

EÂ,X̂

[
∥Ĥ − F ∗∥2 + ∥Ẑ − F ∗∥2 + ∥D(Ẑ)−X∥2|Â, X̂

]
− 2EÂ,X̂,F ∗

[∑
i

Cov(Ĥi, Ẑi)|Â, X̂,F ∗

]
. (13)

The terms ∥Ĥ − F ∗∥2 and ∥Ẑ − F ∗∥2 represent the reconstruction errors of MLP representations
Ĥ and GNN representations Ẑ on the latent graph GI . These errors ensure the invariance of these
representations with respect to latent semantics. The term ∥D(Ẑ) − X∥2 optimizes the distance
between the reconstructed GNN representations and the node features. This optimization prevents
representation shifts caused by augmentations. The final term, −

∑
i Cov(Ĥi, Ẑi), quantifies the

covariance between the representations encoded by MLPs and GNNs. Maximizing this covariance
ensures that the encoder E effectively captures structural knowledge.

We will now interpret SSL-GM from the perspective of the information bottleneck. The fundamental
idea behind the information bottleneck (Tishby et al., 2000; Tishby & Zaslavsky, 2015; Shwartz-Ziv
& Tishby, 2017) is to compress the original information while retaining the latent information.
In our case, the information to be compressed is the original graph G, while we consider GI as
the latent information. We regard the compressed information as the combination of MLP and
GNN representations, denoted as T = (H,Z). Thus, we define the information bottleneck as
T ∗ = argminT I(G;T) − βI(T ;GI). To present the information bottleneck in a more accessible
manner, we perform the following transformation:

T ∗ = argmin
T

I(G;T)− βI(T ;GI) (14)

= argmin
T

(1− β)H(T) + βH(T |GI)−H(T |G) (15)

= argmin
T

H(T) + λH(T |GI) (16)

= argmin
H,Z

λH(H|GI) + λH(Z|H,GI) +H(Z) +H(H|Z), (17)

where λ = β
1−β > 0. We consider that the four terms in Eq. 17 correspond to the four terms in Eq.

13. Specifically, minimizing the conditional entropy H(H|GI) and H(Z|H,GI) in Eq. 17 can re-
duce the uncertainty of H and Z with respect to the latent graph GI , thereby ensuring the invariance
of H and Z concerning GI . Consequently, these two terms correspond to the reconstruction terms
∥Ĥ−F ∗∥2 and ∥Ẑ−F ∗∥2 in Eq. 13, respectively. Additionally, we posit that optimizing the third
term H(Z) in Eq. 17 reduces the uncertainty of Z. This aligns with the third term ∥D(Ẑ) −X∥2

15

Under review as a conference paper at ICLR 2024

in Eq. 13, which constrains Z to be invariant to X . Furthermore, concerning the final term in Eq.
17, which minimizes the conditional entropy H(H|Z), it guarantees the consistency between MLP
representations H and GNN representations Z. This alignment can be attained by maximizing the
covariance term

∑
i Cov(Ĥi, Ẑi), corresponding to the last term in Eq. 13. This analysis reveals

that minimizing our objective is equivalent to optimizing the information bottleneck.

B EXPERIMENT SETUP DETAILS

In this section, we provide a comprehensive description of the experimental setup for both node
classification and graph classification. The experiments are conducted on Nvidia A100 (80GB) for
the Arxiv dataset, and Nvidia GeForce RTX 3090 (24GB) for the remaining datasets.

B.1 DATASET STATISTICS

Dataset Task # Graphs # Nodes # Edges # Features # Classes Split
Cora Node-level 1 2,708 10,556 1,433 7 10%/10%/80%
Citeseer Node-level 1 3,327 9,104 3,703 6 10%/10%/80%
PubMed Node-level 1 19,717 88,648 500 3 10%/10%/80%
Amazon-CS Node-level 1 13,752 491,722 767 10 10%/10%/80%
Amazon-Photo Node-level 1 7,650 238,162 745 8 10%/10%/80%
Co-CS Node-level 1 18,333 163,788 6,805 15 10%/10%/80%
Co-Phys Node-level 1 34,493 495,924 8,415 5 10%/10%/80%
Wiki-CS Node-level 1 11,701 432,246 300 10 10%/10%/80%
Flickr Node-level 1 89,250 899,756 500 7 10%/10%/80%
Arxiv Node-level 1 169,343 1,166,243 128 40 Public Split

Dataset Task # Graphs # Nodes # Edges # Features # Classes Split
IMDB-B Graph-level 1,000 ∼19.8 ∼193.1 - 2 10-fold CV
IMDB-M Graph-level 1,500 ∼13.0 ∼65.9 - 3 10-fold CV
COLLAB Graph-level 5,000 ∼74.5 ∼4,914.4 - 3 10-fold CV
PTC-MR Graph-level 344 ∼14.3 ∼14.7 18 2 10-fold CV
MUTAG Graph-level 118 ∼17.9 ∼39.6 7 2 10-fold CV
DD Graph-level 1,178 ∼284.3 ∼715.6 89 2 10-fold CV
PROTEINS Graph-level 1,113 ∼39.1 ∼145.6 3 2 10-fold CV

Table 6: The statistics of datasets for node-level and graph-level tasks.

We select 17 benchmark datasets, with 10 designated for node classification and 7 for graph classifi-
cation, to evaluate the performance of SSL-GM and other approaches. These datasets are collected
from diverse domains, encompassing citation networks, social networks, molecule networks, etc.
We present the statistics of these datasets in Table 6.

Node Classification: Specifically, Cora, Citeseer, PubMed (Yang et al., 2016) are three citation
networks, in which nodes denote papers and edges represent citations. The node features are repre-
sented as bag-of-words based on paper keywords. Amazon-CS and Amazon-Photo (Shchur et al.,
2018) are two co-purchase networks that describe the frequent co-purchases of items (nodes). Co-
CS (Coauthor-CS) and Co-Phys (Coauthor-physics) (Shchur et al., 2018) consist of nodes repre-
senting authors and edges indicating collaborations between authors. Wiki-CS (Mernyei & Cangea,
2020) is extracted from Wikipedia, comprising computer science articles (nodes) connected by hy-
perlinks (edges). Flickr (Zeng et al., 2020) consists online images, with the goal of categorizing
images based on their descriptions and common properties. All these datasets are available through
PyG (Pytorch Geometric), and we partition them randomly into training, validation, and testing sets
with a split ratio of 10%/10%/80%. Additionally, we employ Arxiv dataset from OGB benchmarks
(Hu et al., 2020) to evaluate model performance on large-scale datasets. We process the dataset in
PyG using OGB public interfaces with standard public split setting.

Graph Classification: All graph classification datasets are sourced from TU datasets (Morris et al.,
2020). We employ several datasets, including biochemical molecule datasets (PTC-MR, MUTAG,
DD, PROTEINS) and social networks (IMDB-B, IMDB-M, COLLAB), to access whether SSL-
GM can acquire generalizable and global information. In the case of the PTC-MR and DD datasets,
we utilize the original node features, whereas for other datasets lacking rich node features, we gen-
erate one-hot features based on node degrees. These datasets are available in PyG library following
a 10-fold cross validation data split.

16

Under review as a conference paper at ICLR 2024

B.2 SUMMARY OF BASELINES

We compare SSL-GM against a range of baselines, encompassing supervised GNNs, self-supervised
graph contrastive learning (GCL) methods, and MLP-based graph learning methods.

Supervised GNNs. Our primary node classification baselines include GraphSAGE (Hamilton
et al., 2017) and GAT (Veličković et al., 2018), while for graph classification, we utilize GIN (Xu
et al., 2019). Furthermore, we also incorporate SGC (Wu et al., 2019) and APPNP (Gasteiger et al.,
2019) as additional node classification baselines.

Self-supervised GNNs. We compare SSL-GM to self-supervised graph learning methods. DGI
(Veličković et al., 2019) and MVGRL (Hassani & Khasahmadi, 2020) conduct contrastive learn-
ing between graph patches and graph summaries to integrate knowledge into node representations.
GRACE (Zhu et al., 2020) and subsequent GCA (Zhu et al., 2021) perform contrast between nodes
in two corrupted views to acquire augmentation-invariant representations. BGRL (Thakoor et al.,
2022) utilizes predictive objective for node-level contrastive learning to achieve efficient training.
For graph-level tasks, we explore traditional graph kernels for classification, including WL kernel
(Shervashidze et al., 2011) and DGK (Yanardag & Vishwanathan, 2015). Furthermore, we include
contrastive learning approaches, such as graph2vec (Narayanan et al., 2017), MVGRL (Hassani &
Khasahmadi, 2020), InfoGraph (Sun et al., 2020), GraphCL (You et al., 2020), and JOAO (You
et al., 2021), which conduct contrastive learning between representations of two augmented graphs.

MLPs on Graphs. In node classification, we employ basic MLP that considers only node content
as baseline. Furthermore, we incorporate GraphMLP (Hu et al., 2021) that trains an MLP by
emphasizing consistency between target nodes and their direct neighborhoods. We exclude the
following works (Dong et al., 2022; Liu et al., 2022) as baselines since they are high-order versions
of GraphMLP. To achieve this, we slightly modify the original GraphMLP to enable the ability in
learning high-order information, and search the number of layers within {1, 2, 3}. GLNN (Zhang
et al., 2022) employs knowledge distillation to transfer knowledge from GNNs to MLPs, GENN
leverages positional encoding to acquire structural knowledge, while NOSMOG (Tian et al., 2023)
jointly integrates positional information and robust training strategies based on GLNN. Note that the
public code of GENN is not available, thus we implement GENN based on the code of NOSMOG.
In graph classification, we employ a pooling function to generate graph-level representations for
training an MLP. For other baselines, they cannot be readily applied to graph-level tasks. Therefore,
we implement an MLP with graph-level knowledge distillation as another baseline to access the role
of knowledge distillation on graph classification.

B.3 HYPER-PARAMETER SETTING

Hyper-parameters Node Classification
Cora Citeseer PubMed Amazon-CS Amazon-Photo Co-CS Co-Phys Wiki-CS Flickr Arxiv

Epochs 1000 1000 1000 1000 1000 2000 1000 2000 2000 5000
Optimizer AdamW used for all datasets
Learning Rate 1e-3 5e-4 5e-4 1e-3 1e-3 1e-4 1e-3 5e-4 1e-3 1e-3
Weight Decay 0 5e-5 1e-5 - 1e-4 - 1e-4 1e-5 5e-4 -
Activation PReLU used for all datasets
Hidden Dimension 512 512 512 512 512 512 512 512 1024 1024
Normalization Batchnorm used for all datasets
Encoder Layers 2 2 2 3 2 2 2 2 2 8
Aggregator Layers 2 3 3 2 1 1 1 2 3 3
Feature Mask Ratio 0.50 0.75 0.25 0.25 0.25 0.50 0.75 0.00 0.25 0.00
Edge Mask Ratio 0.25 0.50 0.25 0.25 0.50 0.75 0.50 0.25 0.50 0.25

Table 7: Hyper-parameters used for SSL-GM for node-level task.

We perform hyper-parameter tuning for each approach using a grid search strategy. Specifically,
we set the number of epochs to 1,000, the hidden dimension to 512, and employ PReLU as the
activation function. We explore various learning rates {5e-4, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2}, weight
decay values {5e-5, 1e-5, 5e-3, 1e-4, 0}, and the number of layers {1, 2, 3}. In self-supervised
learning methods, we employ a 2-layer GCN (Kipf & Welling, 2017) as the encoder for node-level
tasks. For graph-level tasks, we utilize a 5-layer GIN (Xu et al., 2019) model concatenated with
a readout function, which is selected from {MEAN, SUM, MAX}. Subsequently, we assess the
quality of the acquired representations by training a Logistic regression function on downstream

17

Under review as a conference paper at ICLR 2024

Hyper-parameters Graph Classification
IMDB-B IMDB-M COLLAB PTC-MR MUTAG DD PROTEINS

Epochs 200 100 30 100 100 100 500
Optimizer AdamW used for all datasets
Learning Rate 1e-2 1e-2 5e-4 1e-2 1e-2 1e-3 1e-3
Weight Decay 0 used for all datasets
Activation PReLU used for all datasets
Batch Size 64 128 32 64 64 32 64
Raw Feature N N N Y N Y N
Deg4Feature Y Y Y N Y N Y
Pooling MEAN MEAN MEAN SUM SUM MEAN SUM
Hidden Dimension 512 used for all datasets
Normalization Batchnorm used for all datasets
Encoder Layers 2 used for all datasets
Aggregator Layers 2 2 2 2 1 2 1
Feature Mask Ratio 0.50 0.25 0.75 0.25 0.5 0.00 0.00
Edge Mask Ratio 0.75 0.50 0.75 0.00 0.25 0.00 0.50

Table 8: Hyper-parameters used for SSL-GM for graph-level task.

tasks (Zhu et al., 2020). For other settings, we follow the settings reported in the original papers.
Regarding SSL-GM, we provide a comprehensive overview of the hyper-parameter settings for both
node-level and graph-level tasks in Tables 7 and 8, respectively.

B.4 DETAILED EVALUATION SETTING

Transductive Setting. We consider a graph G = (V, E) in which all nodes are visible during the
training stage. We partition the nodes into three non-overlapping sets: V = Vtrain ⊔ Vval ⊔ Vtest.
In the supervised setting, we train the encoder using Vtrain and evaluate its performance on Vval

and Vtest. In the self-supervised setting, we train the encoder on V and utilize Vtrans for training
the downstream head, while using Vval and Vtest for evaluation. We perform the split 10 times to
evaluate the quality of the learned representations to alleviate the impact of randomness.

Inductive (Production) Setting. In the production setting, we partition a graph G = (V, E) into
transductive set GT and inductive set GI , where G = GT ⊔ GI and ∅ = GT ⊓ GI . GT = (VT , ET),
containing 80% of the nodes, is used for training, while GI = (VI , EI), containing the remaining
20% of the nodes, remains unseen during training. We further partition the nodes in GT into non-
overlapping training, validation, and testing sets, denoted as VT = VT

train ⊔ VT
valid ⊔ VT

test. The
model is trained on GT , and we report the transductive results on VT

test and inductive results on
VI . We interpolate the results of these two settings to represent production results. Our approach
differs from that of Zhang et al. (2022) and Tian et al. (2023). We treat nodes in the inductive set as
disconnected from nodes in the transductive set, even during inference, creating a more challenging
out-of-distribution setting.

Cold-start Setting. The cold-start setting is closely similar to inductive (production) setting, but we
assume the nodes in the inductive set are isolated, GC = (VI , ∅). This is a more challenging yet
practical setting, as new agents often emerge independently in real-world systems. We follow the
production setting to train the model on transductive set GT but only report the model performance
on cold-start set GC to assess cold-start performance. For models that rely on positional encoding,
such as GENN and NOSMOG, we set the positional embeddings as zero vectors.

C EMPIRICALLY RUNNING TIME AND MEMORY USAGE

Table 9 presents a comparison of the running time and memory usage between our SSL-GM and
other baseline methods, namely GAT (Veličković et al., 2018), GRACE (Zhu et al., 2020), and
BGRL (Thakoor et al., 2022). Despite our primary focus on accelerating inference speed, we have
observed that SSL-GM outperforms these approaches in both training time and memory utilization.
In particular, GAT, which employs 4 attention heads, imposes a substantial computational burden
during training due to attention score computation, resulting in significant memory consumption.
Considering self-supervised methods, GRACE utilizes the InfoNCE loss for model training, involv-
ing computation of node pair similarities. This operation results in considerable time and memory
overhead. In comparison to GRACE, our SSL-GM demonstrates improvements in terms of memory

18

Under review as a conference paper at ICLR 2024

usage (3.8 ∼ 6.8×) and training time efficiency (4.8 ∼ 8.3×). BGRL employs bootstrap loss (Grill
et al., 2020) to predict node representations from different views, remarkably enhancing training and
memory efficiency. However, our SSL-GM remains more efficient than BGRL.

Additionally, we conducted comparison between SSL-GM and other acceleration techniques on
Flickr and Arxiv datasets, as summarized in Table 10 and 11. Note that the inference time for self-
supervised approaches in this paper aligns with that of SAGE (Hamilton et al., 2017). Therefore,
we establish SAGE as our baseline and apply acceleration techniques based on that, including quan-
tization (QSAGE), pruning (PSAGE), and neighbor sampling (Neighbor Sample), to facilitate the
inference. Furthermore, we include an evaluation of the inference time of SGC (Wu et al., 2019),
which comprises an MLP and a one-layer message passing. It is evident that even the most efficient
methods achieve only modest acceleration (3.2 ∼ 4.0×), and SGC, which employs only a single-
layer aggregation, achieves a mere acceleration (1.1 ∼ 1.2×). This observation demonstrates that
the aggregation process leads to significant time consumption during inference. In contrast, our SSL-
GM achieves remarkable inference acceleration by disregarding neighborhood dependency, which is
faster than SAGE (89.7 ∼ 125.9×). Compared to other methods employing MLPs as encoders like
GLNN and NOSMOG, we do not observe significant distinctions in terms of inference speed. How-
ever, methods like NOSMOG (Tian et al., 2023) and GENN (Wang et al., 2023) utilize additional
positional embeddings, introducing significant time consumption in learning positional embedding.
For example, NOSMOG remains fast inference under 5 milliseconds, while the positional encoding
takes more than 5 seconds on the Arxiv dataset, even with a minimal epoch setting of 1. Consider-
ing the time consumption on encoding positional embeddings, the overall inference consumption of
GENN and NOSMOG far surpasses that of SAGE.

Dataset Amazon-CS Amazon-Photo Coauthor-CS Coauthor-Phys Wiki-CS

Memory Training Time Memory Training Time Memory Training Time Memory Training Time Memory Training Time

GAT 5239 MB 73.8 (s) 2571 MB 41.9 (s) 2539 MB 60.4 (s) 13199 MB 265.2 (s) 4568 MB 74.4 (s)
GRACE 8142 MB 349.5 (s) 2755 MB 138.4 (s) 11643 MB 261.4 (s) 16294 MB 573.2 (s) 5966 MB 290.9 (s)
BGRL 2196 MB 96.8 (s) 1088 MB 64.1 (s) 2513 MB 129.9 (s) 5556 MB 273.8 (s) 1899 MB 108.8 (s)
SSL-GM 1969 MB 53.4 (s) 694 MB 27.0 (s) 1716 MB 54.8 (s) 3920 MB 110.7 (s) 1590 MB 35.5 (s)

Table 9: Computational requirements of different baseline methods on a set of standard benchmark
graphs. The experiments are performed on a 24GB Nvidia GeForce RTX 3090.

Datasets SAGE BGRL SGC APPNP QSAGE PSAGE Neighbor Sample SSL-GM

Flickr Time (ms) 80.7 80.7 (1.00×) 76.9 (1.05×) 78.1 (1.03×) 70.6 (1.14×) 67.4 (1.20×) 25.5 (3.16×) 0.9 (89.67×)
Acc (%) 47.17 49.12 47.35 47.53 47.22 47.25 47.01 49.27

Arxiv Time (ms) 314.7 314.7 (1.00×) 265.9 (1.18×) 284.1 (1.11×) 289.5 (1.09×) 297.5 (1.06×) 78.3 (4.02×) 2.5 (125.88×)
Acc (%) 68.52 69.29 68.93 69.10 68.48 68.55 68.35 70.23

Table 10: The inference time and accuracy of different acceleration methods.

Trans Ind Cold-start
Dataset Models Time (ms) Acc (%) Time (ms) Acc (%) Time (ms) Acc (%)

Pubmed SAGE 73 85.94 15 85.04 15 77.98
SGC 64 85.28 14 85.22 13 76.10

NOSMOG 5 86.18 3 83.84 3 81.48
SSL-GM 3 86.99 3 86.47 3 86.44

Amazon-CS SAGE 103 88.88 31 87.24 25 61.01
SGC 89 89.31 26 87.12 24 63.08

NOSMOG 5 87.64 4 86.61 4 81.95
SSL-GM 4 88.46 3 87.65 3 87.58

Arxiv SAGE 485 72.05 315 68.52 305 43.47
SGC 410 69.95 266 68.93 250 42.08

NOSMOG 6 70.84 4 69.10 4 61.64
SSL-GM 4 71.12 3 70.23 3 66.13

Table 11: Inference acceleration across different settings.

19

Under review as a conference paper at ICLR 2024

IMDB-B IMDB-M COLLAB PTC-MR MUTAG DD PROTEINS

Supervised GIN 75.10±5.10 52.30±2.80 80.20±1.90 64.60±1.70 89.40±5.60 74.88±3.12 76.20±2.80

Graph Kernel WL 72.30±3.44 46.95±0.46 - 57.97±0.49 80.72±3.00 - 72.92±0.56

DGK 66.96±0.56 44.55±0.52 - 60.08±2.55 87.44±2.72 - 73.30±0.82

GCL

graph2vec 71.10±0.54 50.44±0.87 - 60.17±6.86 83.15±9.25 - 73.30±2.05

MVGRL 71.84±0.78 50.84±0.92 73.10±0.56 - 89.24±1.31 75.20±0.55 74.02±0.32

InfoGraph 73.03±0.87 49.69±0.53 70.65±1.13 61.65±1.43 89.01±1.13 72.85±1.78 74.44±0.31

GraphCL 71.14±0.44 48.58±0.67 71.36±1.15 - 86.80±1.34 78.62±0.40 74.39±0.45

JOAO 70.21±3.08 49.20±0.77 69.50±0.36 - 87.35±1.02 - 74.55±0.41

MLP MLP∗ 49.50±1.66 33.11±1.59 51.90±0.95 54.39±1.41 67.22±0.99 58.56±1.40 59.20±1.00

MLP + KD∗ 72.85±1.04 48.14±0.52 75.38±1.53 59.38±1.38 87.44±0.67 73.59±1.69 73.54±1.78

SSL-GM 74.06±0.22 51.41±0.52 81.04±0.11 60.28±1.07 87.67±0.24 78.44±0.47 75.31±0.13

∆GraphCL ↑ 4.10% ↑ 5.83% ↑ 13.57% - ↑ 1.00% ↓ 0.23% ↑ 1.24%
∆MLP ↑ 49.62% ↑ 55.27% ↑ 56.15% ↑ 10.83% ↑ 30.42% ↑ 33.95% ↑ 27.21%

∆MLP+KD ↑ 1.66% ↑ 6.79% ↑ 7.51% ↑ 1.52% ↑ 0.26% ↑ 6.59% ↑ 2.41%
The reported results of baselines are from previous papers if available (You et al., 2020; 2021; Hou et al., 2022). ∗ indicates the results are from our implementation.

Table 12: Graph classification accuracy (%). ∆MLP,∆GraphCL,∆MLP+KD represents the per-
formance gap (%) between our methods and GraphCL, MLP, and knowledge distillation-enhanced
MLP, where green indicates the improvement over 4% and red indicates the degradation.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 EFFECTIVENESS OF SSL-GM ON GRAPH CLASSIFICATION

In this section, we present the experimental results of SSL-GM alongside state-of-the-art baselines
for graph classification. The datasets encompass a variety of graph types, including biomolecular
graphs and social networks (as described in Appendix B.1), and the baselines comprise supervised
GNNs, traditional graph kernels, and self-supervised graph learning approaches (as detailed in Ap-
pendix B.2). Note that existing MLP-based methods, such as GLNN and NOSMOG, are specifically
designed for node-level tasks, which hinder their direct applicability to graph classification tasks. To
assess the impact of knowledge distillation on graph-level tasks, we also implement a combination of
MLP and KD, which is similar to GLNN but conducts knowledge distillation at the graph level. Due
to the generalizability inherent in self-supervised learning (Sun et al., 2023), SSL-GM can be read-
ily extended to various downstream tasks. Our results demonstrate that SSL-GM outperforms other
MLP-based methods, achieving the best or sub-best performance on 6 out of 7 baselines. In con-
trast, MLP-based methods generally underperform when compared to self-supervised GCL methods
and even traditional graph kernel methods. Notably, SSL-GM surpasses other baselines, even on the
large-scale dataset COLLAB, highlighting the potential of MLP-based methods in graph-level tasks.
Our findings expand the usability of MLPs from node-level tasks to graph-level tasks.

D.2 COMPREHENSIVE PREDICTION RESULTS UNDER INDUCTIVE (PRODUCTION) SETTING

Table 13 presents the comprehensive experimental results of our inductive (production) setting. We
report the performance on both transductive and inductive sets, along with the interpolated produc-
tion results. Note that the results of GLNN (Zhang et al., 2022) and NOSMOG (Tian et al., 2023)
reported in this paper differ from their respective original papers. This discrepancy arises because
our experimental setting presents a more challenging task where the inductive set is disconnected
from the transductive set in inference. In this table, we present the performance of six baseline meth-
ods, which encompass supervised GNNs, self-supervised approaches, and MLP-based techniques.
We can observe that our SSL-GM attains state-of-the-art performance in the majority of settings.
Among GNN methods, we note that SAGE generally outperforms BGRL in transductive settings,
but underperforms it in inductive settings. The robustness of BGRL stems from the augmentation,
which aids in learning augmentation-invariant representations, enabling BGRL to work on inductive
sets, even though the distributions of these two sets are potentially different. Regarding MLP-based
methods, we observe that NOSMOG outperforms GLNN in transductive settings, particularly on
large-scale graphs, while GLNN significantly outperforms NOSMOG in inductive settings. We as-
sume that the learned positional embeddings of NOSMOG on the inductive set differ from those
on the transductive set, rendering them untrustworthy and less meaningful. For our SSL-GM, the

20

Under review as a conference paper at ICLR 2024

model maximizes consistency of MLPs and GNNs in the representation space, thereby preserving
more fine-grained structural knowledge, which ensures the model generalization.

Setting Cora Citeseer PubMed Amazon-CS Amazon-Photo Co-CS Co-Phys Wiki-CS Flickr Arxiv

SAGE
prod 77.51±1.77 68.40±1.61 85.04±0.44 87.24±0.43 93.20±0.45 92.88±0.40 95.74±0.12 79.26±0.65 47.17±0.73 68.52±0.56

trans 79.46±1.49 68.73±1.37 85.57±0.30 87.98±0.30 93.70±0.42 93.13±0.33 95.77±0.04 80.01±0.41 48.15±0.63 71.79±0.50

ind 69.70±2.89 67.11±2.57 82.90±0.98 84.45±0.94 91.18±0.56 91.87±0.68 95.63±0.05 76.27±1.63 43.25±1.14 55.45±0.78

BGRL
prod 77.73±1.07 64.33±1.56 83.97±0.48 87.33±0.48 91.47±0.62 91.26±0.35 94.38±0.29 76.25±1.09 49.12±0.31 69.29±0.38

trans 77.32±0.90 64.15±1.40 83.97±0.34 87.27±0.42 91.47±0.51 91.31±0.33 94.40±0.25 76.32±0.97 49.09±0.24 70.36±0.35

ind 79.38±1.74 65.03±2.19 83.98±1.02 87.59±0.75 91.46±1.05 91.09±0.45 94.33±0.46 75.96±1.57 49.26±0.60 65.03±0.50

MLP
prod 63.76±1.65 63.98±1.22 80.91±0.45 81.00±0.54 87.73±0.88 91.68±0.59 95.18±0.13 75.08±0.71 46.14±0.22 55.89±0.51

trans 63.66±1.53 63.86±1.09 80.92±0.38 81.05±0.45 87.69±0.86 91.66±0.54 95.18±0.12 75.12±0.43 46.16±0.15 55.89±0.46

ind 64.15±2.11 64.43±1.76 80.90±0.72 80.80±0.91 87.88±0.96 91.78±0.81 95.16±0.18 74.94±1.81 46.09±0.50 55.91±0.69

GLNN
prod 78.34±1.04 69.61±1.13 85.44±0.48 87.04±0.50 93.28±0.43 93.72±0.35 95.76±0.09 78.39±0.54 46.11±0.27 63.53±0.48

trans 79.93±0.87 69.73±0.77 85.70±0.38 87.80±0.45 93.84±0.42 93.82±0.32 95.78±0.04 78.58±0.32 46.13±0.22 64.27±0.46

ind 71.96±1.68 69.14±2.58 84.42±0.87 83.98±0.70 91.05±0.49 93.34±0.47 95.70±0.09 77.64±1.42 46.05±0.43 60.55±0.55

GENN
prod 77.83±1.57 67.30±1.48 84.34±0.47 85.75±1.20 92.09±0.96 93.57±0.37 95.67±0.06 78.27±1.01 45.56±0.51 68.52±0.54

trans 80.27±1.41 67.86±1.16 85.81±0.38 87.42±1.04 93.35±0.60 93.79±0.35 95.78±0.05 80.31±0.85 45.68±0.45 70.01±0.50

ind 68.09±2.21 65.07±2.78 78.44±0.84 79.09±1.84 87.05±2.42 92.68±0.45 95.23±0.08 70.13±1.65 45.08±0.74 62.58±0.69

NOSMOG
prod 77.83±1.94 68.58±1.41 83.84±0.45 86.61±1.22 92.52±0.68 93.45±0.44 95.78±0.10 78.35±0.70 46.05±0.55 69.10±0.80

trans 80.27±1.69 68.95±1.24 85.43±0.37 88.30±1.14 93.88±0.47 93.68±0.38 95.85±0.10 80.35±0.58 46.24±0.51 70.50±0.79

ind 68.11±2.95 67.07±2.10 77.44±0.80 79.83±1.52 87.08±1.52 92.55±0.69 95.52±0.10 70.36±1.18 45.27±0.72 63.49±0.83

SSL-GM
prod 81.37±1.20 72.33±0.90 86.47±0.28 87.65±0.40 93.87±0.32 94.63±0.16 96.04±0.12 79.26±0.83 49.27±0.18 70.23±0.47

trans 81.60±0.96 72.21±0.73 86.48±0.23 87.67±0.25 93.86±0.26 94.66±0.16 96.06±0.09 79.46±0.66 49.23±0.11 71.25±0.33

ind 80.48±2.15 72.81±1.61 86.44±0.51 87.58±0.99 93.91±0.58 94.51±0.15 95.97±0.24 78.46±1.48 49.41±0.46 66.13±1.05

Table 13: Node classification accuracy (%) under inductive (production) scenario for both trans-
ductive and inductive settings. ind represents the accuracy on VI , trans represents the accuracy on
VT
test, and prod is the interpolated accuracy of both ind and trans.

D.3 EMPLOYING STANDARD GNNS WILL LEAD TO MODEL COLLAPSE

In this section, we attempt to answer why we approximate the representations of GNNs by a non-
parametric aggregator instead of standard GNNs. We empirically demonstrate that the use of GNNs
will lead to model collapse, which is a common issue in contrastive learning. To solve the issue,
existing works in computer vision employ moving average network (Grill et al., 2020) to preserve
the consistency between representations learned from two networks. Inspired by this, we propose
a non-parametric aggregator to approximate the GNN representations based on MLP representa-
tions, thereby preserving the inherenet consistency between these two representations. In Figure
5, we compare the accuracy and loss curves between two versions of SSL-GM: one utilizes the
non-parametric aggregator (MLP + PROP.), and the other directly employs GNNs. The experiments
are conducted on five benchmark datasets in a transductive setting. We observe that MLP + PROP.
achieves superior accuracy and higher losses than the GNN version. Specifically, we suppose the
model collapse stems from the lack of consistency between the outputs of GNNs and MLPs in the
representation space, which is a significant problem in contrastive learning (He et al., 2020). In our
SSL-GM, we utilize the non-parametric aggregator to approximate GNN representations based on
MLP representations, naturally preserving the consistency between MLPs and GNNs in the repre-
sentation space. Our observation aligns with the findings in (He et al., 2020; Thakoor et al., 2022).

0 200 400 600 800 1000

0.20

0.40

0.60

Lo
ss

CORA
Encoder
GNN
MLP + PROP.

100 200 300 400 500 600 700 800 9001000

Epoch
0.70

0.75

0.80

0.85

Ac
cu

ra
cy

0 200 400 600 800 1000

0.20

0.40

Lo
ss

CITESEER
Encoder
GNN
MLP + PROP.

100 200 300 400 500 600 700 800 9001000

Epoch

0.65

0.70

0.75

Ac
cu

ra
cy

0 200 400 600 800 1000

0.20

0.40

0.60

Lo
ss

PUBMED
Encoder
GNN
MLP + PROP.

100 200 300 400 500 600 700 800 9001000

Epoch
0.75

0.80

0.85

0.90

Ac
cu

ra
cy

0 200 400 600 800 1000

0.20

0.40

Lo
ss

AMAZON-CS
Encoder
GNN
MLP + PROP.

100 200 300 400 500 600 700 800 9001000

Epoch
0.70

0.80

0.90

Ac
cu

ra
cy

0 200 400 600 800 1000
0.00

0.20

0.40

0.60

Lo
ss

AMAZON-PHOTO
Encoder
GNN
MLP + PROP.

100 200 300 400 500 600 700 800 9001000

Epoch
0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Figure 5: The training curves and model accuracies on five benchmark datasets. We compare the
method applied in our SSL-GM (MLP + PROP.) with standard GNNs in learning node representa-
tions. We observe that employing GNNs will lead to model collapse.

21

Under review as a conference paper at ICLR 2024

D.4 HOW AUGMENTATIONS IMPROVE THE MODEL CAPABILITY?

In this section, we evaluate the influence of augmentations on model performance. We conduct an
ablation study to assess the model performance without specific augmentations, demonstrating both
semantic and structural augmentations enhance model performance. Table 14 presents a compre-
hensive ablation study of edge masking and node feature masking for node classification on ten
benchmark datasets within a transductive setting. We observe that these two types of augmenta-
tions significantly enhance model performance by improving different aspects of the datasets. Fur-
thermore, the combination of these two techniques further enhance the performance of SSL-GM,
indicating that our model can benefit from both augmentations simultaneously.

Additionally, we conduct a detailed analysis of how augmentations impact model performance. Fig-
ure 6 illustrates the model performance at different augmentation probabilities on Cora, Citeseer,
PubMed, Amazon-CS, and Amazon-Photo datasets within a transductive setting. The augmenta-
tion ratio is searched among {0.0, 0.25, 0.5, 0.75}. These figures enable us to gain insight into the
specific effects of augmentations on model performance.

Feature Masking Edge Masking Cora Citeseer PubMed Amazon-CS Amazon-Photo Co-CS Co-Phys Wiki-CS Flickr Arxiv

- - 82.10±0.45 71.83±0.43 86.89±0.13 87.12±0.15 93.52±0.20 93.10±0.05 94.56±0.06 80.98±0.13 48.21±0.10 70.58±0.20√
- 84.78±0.25 73.00±0.63 86.98±0.09 88.27±0.18 94.19±0.14 94.50±0.10 96.12±0.06 81.03±0.11 49.55±0.11 70.03±0.23

-
√

82.33±0.61 71.78±0.77 86.98±0.13 87.35±0.29 93.69±0.07 94.35±0.08 95.88±0.06 81.04±0.22 49.33±0.07 71.12±0.10√ √
84.60±0.24 73.52±0.53 86.99±0.09 88.46±0.16 94.28±0.08 94.87±0.07 96.17±0.03 81.21±0.13 49.85±0.09 71.12±0.10

Table 14: Ablation study of augmentation methods used in SSL-GM.

0.0 0.25 0.5 0.75
Edge Masking

0.
75

0.
5

0.
25

0.
0Fe

at
ur

e
M

as
ki

ng

84.54 84.15 83.32 80.51

84.61 84.39 83.99 82.49

83.99 83.88 83.25 80.67

82.67 82.37 81.15 78.90

CORA

0.0 0.25 0.5 0.75
Edge Masking

0.
75

0.
5

0.
25

0.
0Fe

at
ur

e
M

as
ki

ng

73.22 73.40 73.41 73.51

72.77 72.87 72.96 72.90

72.59 72.52 72.51 72.46

72.14 71.94 72.06 71.99

CITESEER

0.0 0.25 0.5 0.75
Edge Masking

0.
75

0.
5

0.
25

0.
0Fe

at
ur

e
M

as
ki

ng

85.68 85.42 85.22 84.77

86.71 86.64 86.23 85.55

87.00 87.02 86.80 85.95

86.98 86.99 86.83 85.89

PUBMED

0.0 0.25 0.5 0.75
Edge Masking

0.
75

0.
5

0.
25

0.
0Fe

at
ur

e
M

as
ki

ng

86.40 86.34 86.28 86.12

88.04 87.97 88.01 87.71

88.39 88.45 88.37 88.11

87.46 87.55 87.40 87.16

AMAZON-CS

0.0 0.25 0.5 0.75
Edge Masking

0.
75

0.
5

0.
25

0.
0Fe

at
ur

e
M

as
ki

ng

92.81 92.77 92.79 92.57

94.31 94.35 94.27 94.03

94.31 94.33 94.26 94.03

93.87 93.88 93.73 93.53

AMAZON-PHOTO

Figure 6: Node classification accuracy on transductive setting with different augmentation ratios.

D.5 DOES THE RECONSTRUCTION TERM PREVENT REPRESENTATION SHIFTS?

In this section, we evaluate the role of the reconstruction term in SSL-GM. It is important to note
that the reconstruction term serves to mitigate representation shifts caused by augmentation. The
reconstruction term enables the outputs of GNNs to remain invariant to node features, thereby pre-
serving more localized knowledge. Intuitively, if we do not apply augmentations, the incorporation
of the reconstruction term will hinder the process of contrastive learning. To evaluate this, we as-
sess the impact of the reconstruction term with and without applying augmentations, shown in Table
15. Intriguingly, the model performance demonstrates that the reconstruction term is effective only
when augmentation is utilized. Without augmentation, the model performance is adversely affected.
When both augmentation and reconstruction are applied, our SSL-GM achieves the highest perfor-
mance, demonstrating the importance of employing reconstruction to prevent representation shifts
brought by augmentation.

Aug. Rec. Cora Citeseer PubMed Amazon-CS Amazon-Photo Co-CS Co-Phys Wiki-CS Flickr Arxiv

- - 82.80±0.65 72.03±0.83 86.89±0.07 87.42±0.17 93.87±0.04 93.12±0.03 94.55±0.04 81.06±0.13 48.61±0.10 70.38±0.32

-
√

82.10±0.45 71.83±0.43 86.89±0.13 87.12±0.15 93.52±0.20 93.10±0.05 94.56±0.06 80.98±0.13 48.21±0.10 70.58±0.20
√ √

84.60±0.24 73.52±0.53 86.99±0.09 88.46±0.16 94.28±0.08 94.87±0.07 96.17±0.03 81.21±0.13 49.85±0.09 71.12±0.10

Table 15: Reconstruction term leads to performance drop without augmentation.

22

Under review as a conference paper at ICLR 2024

D.6 INFLUENCE OF AGGREGATOR TYPES AND AGGREGATION LAYERS

In this section, we examine the role of the aggregator of SSL-GM. Unlike SGC or APPNP, which
employ high-order adjacent matrices to guide the message passing, we utilize a GNN-like archi-
tecture to guide aggregation, preserving non-linearity between layers. While various aggregation
methods can be employed, we adopt the normalized Laplacian matrix, which is similar to GCN
(Kipf & Welling, 2017), to aggregate high-order representations, as formulated as:

H(l) = ϕ(l)(A,H(l−1)) = σ(D̂− 1
2 ÂD̂− 1

2H(l−1)) (18)

where H(l) represents the high-order representation at l-th aggregator layer, ϕ(l)(·) denotes the l-th
aggregator, Â = A + I is adjacent matrix with self-loop, D̂ denotes the degree matrix of Â, and
σ is the activation function. The aggregation process is iterated L times to yield the final high-order
representations Z = ϕ(L)(A,H(L−1)). Note that the aggregation is non-parametric.

Additionally, we explore two other aggregation types, the row-normalized Laplacian matrix ÃD̃−1

and column-normalized Laplacian matrix D̃−1Ã. Table 16 presents the results of these three ag-
gregation types. In this table, we observe that there is no significant difference in performance
among the various aggregation methods. All of these methods can achieve desirable performance.
Nevertheless, the GCN-like aggregation method consistently outperforms the others. We consider
that if the encoder is non-parametric, then different aggregation methods will not bring significant
differences in inductive bias, aligning with the findings in Yang et al. (2023a).

Cora Citeseer PubMed Amazon-CS Amazon-Photo Co-CS Co-Phys Wiki-CS Flickr Arxiv

GCN (Ours) 84.60±0.24 73.52±0.53 86.99±0.09 88.46±0.16 94.28±0.08 94.87±0.07 96.17±0.03 81.21±0.13 49.85±0.09 71.12±0.10

Col 84.14±0.34 73.48±0.53 86.92±0.08 87.93±0.27 93.11±0.15 94.81±0.06 96.09±0.03 80.62±0.30 49.15±0.16 71.03±0.09

Row 84.09±0.32 73.49±0.54 86.92±0.08 87.96±0.27 93.07±0.15 94.82±0.06 96.07±0.04 80.63±0.25 49.18±0.10 71.04±0.09

Table 16: Ablation study on node aggregation type. GCN indicates bi-normalized Laplacian ag-
gregation matrix D̃−1/2ÃD̃−1/2, Col indicates column-normalized Laplacian aggregation matrix
D̃−1Ã, and Row indicates row-normalized Laplacian aggregation matrix ÃD̃−1.

In addition to analyzing the aggregation type, we also assess the performance of SSL-GM with
varying numbers of aggregation layers, as depicted in Figure 7. In this figure, we illustrate the
performance of SSL-GM on five benchmark datasets for both validation and testing sets under the
transductive setting. We can see that the model attains the optimal performance with 2 or 3 layers,
consistent with prior research on GNNs (Kipf & Welling, 2017; Hamilton et al., 2017). We consider
that our model might encounter over-smoothing issues with a high number of layers (Li et al., 2019).

2 4 6 8 10
Aggregator Layers

0.83

0.84

0.85

0.86

Ac
cu

ra
cy

CORA
Valid
Test

2 4 6 8 10
Aggregator Layers

0.72
0.73
0.73
0.74
0.74

Ac
cu

ra
cy

CITESEER
Valid
Test

2 4 6 8 10
Aggregator Layers

0.85
0.86
0.86
0.87
0.88

Ac
cu

ra
cy

PUBMED

Valid
Test

2 4 6 8 10
Aggregator Layers

0.86
0.87
0.88
0.88
0.89
0.89

Ac
cu

ra
cy

AMAZON-CS
Valid
Test

2 4 6 8 10
Aggregator Layers

0.93
0.94
0.94
0.94
0.94
0.95
0.95

Ac
cu

ra
cy

AMAZON-PHOTO
Valid
Test

Figure 7: Node classification accuracy on transductive setting with different aggregation layers.

E EXTENSION TO SUPERVISED SSL-GM

Our SSL-GM is a self-supervised method that follows the training then evaluation paradigm. In
particular, the model initially generates representations for each node and subsequently trains classi-
fication heads for downstream tasks. Despite the generalization capability of self-supervised learn-
ing techniques, their performance typically lags behind that of supervised methods (Chen et al.,
2020b). To bridge the gap, we implement a supervised version of SSL-GM by jointly optimizing
the objective function and downstream task, which can be formulated as

L = Lcont + λ · Lrec + β · Lsup. (19)

23

Under review as a conference paper at ICLR 2024

We evaluate the performance of supervised SSL-GM on transductive node classification and search
the value of β within the range {0.1, 1, 10}. Table 17 reports the experimental results. It is counter-
intuitive that our self-supervised version outperforms the supervised version on 7 out of 10 datasets.
We suppose that the integration of cross-entropy loss may impact the learning process of contrastive
learning by introducing additional gradients on model parameters. This could lead the model to
acquire pseudo-knowledge unrelated to our prediction target. In other words, the model parameters
might be optimized by the annotations rather than the outputs of GNNs.

Cora Citeseer PubMed Amazon-CS Amazon-Photo Co-CS Co-Phys Wiki-CS Flickr Arxiv

w/o sup. 84.60±0.24 73.52±0.53 86.99±0.09 88.46±0.16 94.28±0.08 94.87±0.07 96.17±0.03 81.21±0.13 49.85±0.09 71.12±0.10

w.sup. 77.23±1.41 75.20±0.55 88.64±0.27 88.68±0.25 94.17±0.18 94.60±0.19 95.89±0.10 80.64±0.34 46.39±1.73 70.60±0.43

Table 17: Ablation study on the model with or without supervisions.

24

	Introduction
	Related Work
	Bridging GNNs and MLPs with Self-Supervised Learning
	Structure-aware MLPs with Self-Supervised Learning
	Augmentation to Facilitate Training
	Reconstruction for mitigating representation shift
	Objective function

	Experiments
	Experimental Settings
	Node Classification Results
	Inference Acceleration
	Ablation Study

	How SSL-GM learn from structural knowledge?
	Conclusion
	Proof of Theorem 1
	Experiment setup details
	Dataset Statistics
	Summary of Baselines
	Hyper-parameter setting
	Detailed evaluation setting

	Empirically running time and memory usage
	Additional Experimental results
	Effectiveness of SSL-GM on Graph Classification
	Comprehensive prediction results under inductive (production) setting
	Employing standard GNNs will lead to model collapse
	How augmentations improve the model capability?
	Does the reconstruction term prevent representation shifts?
	Influence of aggregator types and aggregation layers

	Extension to supervised SSL-GM

