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ABSTRACT

Multi-task Vehicle Routing Problems (VRPs) aim to minimize routing costs while
satisfying diverse constraints. Existing solvers typically adopt a unified rein-
forcement learning (RL) framework to learn generalizable patterns across tasks.
However, they often overlook the constraint and node dynamics during the deci-
sion process, making the model fail to accurately react to the current context. To
address this limitation, we propose Chain-of-Context Learning (CCL), a novel
framework that progressively captures the evolving context to guide fine-grained
node adaptation. Specifically, CCL constructs step-wise contextual information
via a Relevance-Guided Context Reformulation (RGCR) module, which adaptively
prioritizes salient constraints. This context then guides node updates through a
Trajectory-Shared Node Re-embedding (TSNR) module, which aggregates shared
node features from all trajectories’ contexts and uses them to update inputs for
the next step. By modeling evolving preferences of the RL agent, CCL captures
step-by-step dependencies in sequential decision-making. We evaluate CCL on
48 diverse VRP variants, including 16 in-distribution and 32 out-of-distribution
(with unseen constraints) tasks. Experimental results show that CCL performs
favorably against the state-of-the-art baselines, achieving the best performance on
all in-distribution tasks and the majority of out-of-distribution tasks.

1 INTRODUCTION

The vehicle routing problem (VRP) seeks to determine optimal routes for a fleet of vehicles to serve a
set of customers while satisfying operational constraints such as vehicle capacity. Efficiently solving
VRPs can significantly reduce transportation costs and improve service quality, making it a critical
task in logistics and supply chain management (Toth and Vigo, 2014; Konstantakopoulos et al.,
2022; Garaix et al., 2010; Dondo et al., 2011). Traditional approaches (Perron and Furnon; Lin and
Kernighan, 1973; Vidal et al., 2020) often rely on heuristic-based solvers, such as LKH (Lin and
Kernighan, 1973) and HGS (Vidal et al., 2020). While effective in certain settings, these methods
are computationally intensive and typically require extensive hand-crafted rules to adapt to different
problem variants. Recently, neural networks have emerged as a promising alternative due to their
flexibility and ability to learn generalizable policies (Joshi et al., 2019; Kool et al., 2018; Kwon
et al., 2020; Wu et al., 2021; Ma et al., 2023; Sun and Yang, 2023; Bengio et al., 2021; Bogyrbayeva
et al., 2024; Hottung and Tierney, 2020; Hottung et al., 2021; Xin et al., 2021; Chalumeau et al.,
2023; Ma et al., 2023; Chen et al., 2023a). These neural solvers are trained offline using historical
or synthetically generated instances, enabling fast inference at test time for a given VRP variant.
However, real-world VRPs often involve more complex and diverse constraints beyond vehicle
capacity, leading to multi-task VRPs, where each task involves a different combination of constraints.
This makes the neural VRP solvers for a specific single task less effective due to the massive yet
necessary re-training or fine-tuning.

In multi-task VRPs, the commonly studied constraints include backhaul demands (B) (Zong et al.,
2022; Kong et al., 2024), open routes (O) (Tyasnurita et al., 2024; Bezerra et al., 2023), route duration
limits (L) (Oliveira et al., 2025), customer time windows (TW) (Zhang et al., 2022; Lin et al., 2021),
mixed backhaul (MB) (Wang et al., 2024), and multi-depot settings (MD) (Karakatič and Podgorelec,
2015). To tackle the multi-task scenario, a number of neural models (Liu et al., 2024; Zhou et al.,
2024a; Berto et al., 2024a; Li et al., 2025) have been developed using a unified reinforcement
learning (RL) framework, which encodes both constraint information and node attributes into static
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embeddings. The decoding stage follows a Markov Decision Process (MDP). For a given VRP task,
the model combines a global context, such as current time or remaining vehicle capacity, with these
static node embeddings to select the next node. Since node priorities change across decoding, static
node embeddings, which remain fixed across decoding steps, cannot reflect this dynamic property.
While the context is updated, such a misaligned context-node pair may lead to inaccurate state
estimation, thereby misjudging the next decision.

To overcome this limitation, we argue that constraint requirements should be explicitly integrated
into the step-wise context and used to adaptively refine node-level representations. In single-task
VRPs, dynamic decoding mechanisms, such as the removal of visited nodes (Xin et al., 2020),
have been used to reflect evolving routing decisions. While conceptually related, extending such a
mechanism to multi-task settings introduces three unique challenges: (1) The importance of each
constraint may vary across decoding steps, e.g., the open route constraint becomes more critical as
a vehicle’s sub-route nears completion. Applying uniform attention across all constraints at each
step, such as the one in (Li et al., 2025), limits the model’s ability to focus on the most important
ones. Moreover, performing RL-based node refinement into VRPs poses issues with efficiency
and sequential dependencies. On the one hand, (2) multi-trajectories involve different contexts at
each step, and re-embedding the nodes for each context (e.g., (Xin et al., 2020)) causes a heavy
computational burden. On the other hand, (3) multi-task VRP solvers (Li et al., 2025; Berto et al.,
2024a; Zhou et al., 2024a) typically refine the node representations at step-i using only the initial
(step-0) embeddings and the current context. A misaligned state may fail to capture the status of
the current decoding step, thereby limiting the model’s ability to accurately represent the Markov
property, which is essential for coherent sequential decision-making.

To address these challenges, we propose Chain-of-Context Learning (CCL), a novel framework for
constraint-aware, step-wise reasoning in multi-task VRPs. Specifically, to tackle Challenge (1),
CCL constructs step-wise contextual information using a Relevance-Guided Context Reformulation
(RGCR) module. RGCR combines constraint-specific attributes (e.g., remaining capacity for B
and current time for TW), and adaptively emphasizes each constraint according to its similarity
to the current node embedding. To address Challenge (2), we design a Trajectory-Shared Node
Re-embedding (TSNR) module, which enables efficient refinement of node features. TSNR employs
shared node embeddings as queries and uses multi-trajectory contexts as keys and values in a
multi-head attention mechanism, avoiding redundant re-embedding for each trajectory. To resolve
Challenge (3), TSNR updates node embeddings in the environment and feeds them as queries to
the next decoding step. This design allows CCL to capture sequential dependencies and model the
evolution of node importance over time.

We evaluate CCL on the combinations of six core constraints (B, O, L, TW, MB, MD), resulting in 16
in-distribution and 32 out-of-distribution multi-task VRP variants. Our contributions are summarized
as follows: (1) Conceptually, we correct a misalignment in prior VRP formulation, by learning
step-wise context and node status for a more accurate state. (2) Methodologically, we propose RGCR
to integrate constraint requirements into the step context, along with TSNR to facilitate effective
refinement and capture sequential dependencies. (3) Experimentally, our method achieves superior
results on all seen (in-distribution) tasks and the majority of unseen (out-of-distribution) tasks.

2 PRELIMINARIES

Problem Definition. The classical vehicle routing problem (VRP) aims to determine a set of sub-
routes that minimize total travel cost while satisfying customer demands. In each sub-route, a vehicle
departs from the depot, delivers goods to a subset of customers, and returns to the depot, subject to
the following standard constraints: (1) each sub-route starts and ends at the depot; (2) each customer
is visited exactly once; and (3) the total demand on each sub-route does not exceed the vehicle’s
capacity. Formally, the problem is defined on a graph where the set of nodes V = {v0, v1, . . . , vN}
represents the depot (v0) and N customer locations. Each customer node vi is associated with a
demand value δi ∈ [0, Q], where Q denotes the vehicle’s capacity.

Following (Berto et al., 2024b), we extend this classical setting by considering six additional con-
straints commonly studied in multi-task VRPs: (1) Open Routes (O): In problems like OVRP, this
constraint is denoted by a binary flag o ∈ {0, 1}, which defines whether a route must return to the
depot. When o = 1, vehicles are not required to return to the depot after completing their route. (2)
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Duration Limits (L): In problems like VRPL, this constraint enforces a maximum route length l to
promote workload balancing across sub-routes. (3) Backhaul Demands (B): In problems like VRPB,
customer nodes are classified into linehaul and backhaul types. The vehicle must first complete all
linehaul deliveries (goods from depot to customers) before collecting backhaul items (goods from
customers to depot). Each customer has two types of demand: δli for linehaul and δbi for backhaul,
with δli, δ

b
i ∈ [0, Q]. (4) Mixed Backhaul (MB): In problems like VRPMB, this constraint relaxes the

linehaul-before-backhaul requirement, allowing both types of customers to appear in any order along
the route, while still respecting the capacity constraint. (5) Time Windows (TW): In problems like
VRPTW, each customer vi is associated with an early time tei , a late time tli, and a service duration tsi .
Vehicles must arrive before tli and wait if they arrive earlier than tei , ensuring service occurs within the
specified window. (6) Multi-Depot (MD): In problems like MDVRP, this constraint allows multiple
depot nodes instead of a single depot. Vehicles may begin their routes from any depot in the set,
introducing additional complexity in depot assignment.

Markov Decision Process for Multi-Task VRPs. The multi-task VRP solver acts as a single agent,
using the encoder-decoder architecture as its policy network. The policy generates a node sequence
autoregressively, using a Markov Decision Process (MDP) environment

M = (S,A,P,R). (1)

(1) State (S) consists of node embeddings and context embeddings. During decoding, following (Liu
et al., 2024; Zhou et al., 2024a; Berto et al., 2024a;b; Li et al., 2025), the model explores from diverse
starting points, forming multiple trajectories in parallel. Each trajectory maintains its own context
(e.g., current time and used capacity), while all trajectories share the same set of node embeddings.

(2) Action (A) corresponds to selecting the next node to visit. The policy network takes the current
state as input and generates a trajectory-specific probability distribution over feasible nodes, allowing
each trajectory to independently select its next action based on the predicted probabilities.

(3) Transition (P) updates the environment after a node is selected. This modifies the environmental
routing information, such as the vehicle’s current position and remaining capacity. The updated
environment then defines the next context embedding and continues the decision process.

(4) Reward (R) is defined as the negative total route length. After all nodes are visited, each trajectory
computes its own negative route length as the reward. These rewards, together with the action
log-probabilities produced by the policy network, are aggregated to form a single training objective.
The policy network parameters θ are then updated using the REINFORCE gradient (Williams, 1992):

∇θJ(θ) =
1

N

N∑
i=1

(Ri − b)∇θ log πθ(ai | si), (2)

where i is the index of the trajectory and πθ(ai | si) denotes the probability assigned to action ai
conditioned on state si. b is a shared baseline used to reduce gradient variance, computed as the
average reward over all trajectories.

3 METHODOLOGY

Existing works only update the context embeddings while keeping node embeddings fixed. As
described in Section 2, the current state should include both candidate node embeddings and context
embeddings. In our method, we treat context and node status as a pair, ensuring that both reflect the
status of the current decoding step. During environment updates, we update both simultaneously to
maintain alignment between context and node information.

3.1 OVERVIEW OF CHAIN-OF-CONTEXT LEARNING (CCL)

Fig. 1 (a) illustrates the training workflow of our proposed Chain-of-Context Learning (CCL).
It adopts the classic encoder-decoder paradigm, with Relevance-Guided Context Reformulation
(RGCR) and Trajectory-Shared Node Re-embedding (TSNR) integrated into the decoding stage.
During encoding, each VRP instance-comprising constraints, depot, and node features-is embedded
using a transformer encoder. Instances from 16 tasks, derived from the four constraints (B, L, O,
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Figure 1: (a) CCL enables fine-grained constraint understanding by integrating RGCR and TSNR into
the decoding stage. (b) and (c) illustrate the internal architectures of RGCR and TSNR, respectively.

and TW), are combined into a single batch for multi-task learning. In the RL-based decoding stage,
CCL employs a lightweight architecture to make decisions, with multiple trajectories explored in
parallel from diverse starting points. At each decision step, RGCR aggregates the constraint-specific
attributes and current node embedding to generate a context embedding. After collecting the context
embeddings from all trajectories, TSNR refines the historical node embeddings by jointly processing
them with the multi-trajectory contexts. These refined node embeddings are passed to the next step,
progressively influencing context construction and forming a Chain-of-Context across decoding
steps. The constructed context and refined node features are used together to make the decision, with
all components jointly optimized using an RL objective. The inference procedure is similar to the
training setup, except it is extended to evaluate generalization on two additional constraints, i.e., MB
and MD, which are held out during training for zero-shot evaluation.

3.2 ENCODER

In the encoding stage, as shown in Fig. 1 (a), the inputs includes the contraint flag h̃ and the node
attributes h = {h0,h1, . . . ,hN}. These attributes are embeded through a transformer-based encoder
E(·), resulting in node embeddings H ∈ R(N+1)×D:

H = E(h̃,h). (3)

Following (Li et al., 2025), the constraint label h̃ ∈ R4 is a one-hot vector to indicate the presence
of 4 constraints (i.e., B, O, L, TW). The depot attribute h0 = {cx0 , c

y
0, o, l} ∈ R4 includes the depot

coordinates, and labels of O and L. {h1,h2, . . . ,hN} ∈ RN×7 are customer features, with each
node hi = {[cxi , c

y
i ], [δ

l
i, δ

b
i ], [t

e
i , t

l
i, t

s
i ]} specifing the coordinates, demands, and time windows. For

simplicity, the encoder’s input processing and architecture are provided in Appendix B.1.

3.3 RELEVANCE-GUIDED CONTEXT REFORMULATION (RGCR)

In multi-constraint scenarios, RGCR automatically learns the relative importance of constraints at
each step, enabling the model to focus on the most critical ones. In Fig. 1(b), RGCR undertakes
three steps to formulate context embedding: (1) generating embedding for each constraint, (2)
computing the correlation between each constraint embedding and the current node embedding, and
(3) adaptively aggregating constraint embeddings based on correlation scores.
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In the constraint embedding formulation, we first extract the corresponding attributes and then project
them through separate linear layers. For the i-th trajectory at decoding step j, the current node index
is denoted as τi,j . The attributes for each constraint are summarized as follows:

cBi,j = {δlτi,j , δ
b
τi,j , ci,j}, cLi,j = {cxτi,j , c

y
τi,j , di,j},

cOi,j = {cxτi,j , c
y
τi,j , d

′

i,j}, cTW
i,j = {teτi,j , t

l
τi,j , t

s
τi,j , ti,j},

(4)

where δl, δb denote the linehaul and backhaul demands, and ci,j is the remaining vehicle capacity.
The coordinates cx, cy specify node locations in the two-dimensional space, d is the remaining
distance of the current sub-route, and d′ is the total distance traveled. Moreover, te, tl, ts, t represent
the earliest, latest, service times, and current time, respectively. These attributes are separately fed to
linear layers for producing constraint embeddings, denoted as:

Ck
i,j = H(cki,j), (5)

where Ck
i,j ∈ RD, k ∈ {B,L,O, TW} is the constraint type, and H(·) denotes the linear layer used

for projection. In correlation computing, these constraint embeddings interact with the current node
embedding to produce correlation scores, denoted as:

ski,j = Hτi,j ·Ck
i,j , (6)

where Hτi,j ∈ RD is the current node embedding, and · denotes the dot product used for calculating
the correlation scores (or similarities). In constraint aggregating, the unified constraint embedding is
obtained by adding the original and enhanced constraint embedding, denoted as Si,j = S̃i,j + Si,j .
The original part is defined as the concatenation of the four constraint embeddings from Eq. (5):

S̃i,j = H(Concat(CB
i,j ,C

L
i,j ,C

O
i,j ,C

TW
i,j )), (7)

where Concat(·) denotes concatenation along the feature dimension, resulting in a concatenated
embedding of size N × 4D. H(·) is a linear layer that projects the 4D input back to D, resulting in
S̃i,j ∈ RD. For the enhanced part, we apply a weighted sum over the constraint embeddings:

Si,j = sBi,jC
B
i,j + sLi,jC

L
i,j + sOi,jC

O
i,j + sTW

i,j CTW
i,j . (8)

The final context embedding is aggregated from the unified constraint and current node embeddings:

C̃i,j = H(Concat(Si,j ,Hτi,j )). (9)

3.4 TRAJECTORY-SHARED NODE RE-EMBEDDING (TSNR)

To capture node-specific states influenced by the current context, we aggregate contextual semantics
from other nodes and multi-trajectory contexts into the node embeddings. As illustrated in Fig. 1
(c), this is achieved via a multi-head attention mechanism, where node embeddings serve as queries,
and the unified node-context information acts as keys and values. Formally, at step j, we denote the
context embedding for N trajectories as C̃j = Concat(C̃1,j , C̃2,j , . . . , C̃N,j), where C̃j ∈ RN×D.
By using the last step node Hj−1 ∈ R(N+1)×D, the query, keys, and values are represented as

qj = H(Norm(Hj−1)), kj ,vj = H(Norm(Concat(Hj−1, C̃j))), (10)

where qj ∈ RN×D and kj ,vj ∈ R(N+1)×D. Norm(·) denotes the Root Mean Square (RMS)
normalization layer (Zhang and Sennrich, 2019). For simplicity, we use the same notation H(·) to
denote the module that produces kj and vj . To calculate attention weights, we further incorporate
a distance-based bias to prevent the model from overfitting to TW. This bias term, denoted as
Bj = Concat(dn−n,dc−n

j ), consists of two parts: the node-node and node-context distance:

dn−n = {dm,n|m,n ∈ {0, 1, . . . , N}},
dc−n
j = {dm,n|m ∈ {τ1,j , τ2,j , . . . , τN,j}, n ∈ {0, 1, . . . , N}},

(11)

where dn−n ∈ R(N+1)×(N+1), dc−n
j ∈ RN×(N+1) and each element of it takes the form dm,n =

∥cm − cn∥2 with c = {cx, cy} denoting Euclidean coordinates. For the node-context part, we

5
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extract the coordinates of the current node for each trajectory (indexed by {τ1,j , τ2,j , . . . , τN,j}) and
compute their distances to all candidate nodes. The attention weights are subsequently computed as

Aj = Softmax(qjk
⊤
j /

√
D +Bj), (12)

where Aj ,Bj ∈ R(N+1)×(N+1+N), and Softmax(·) is the softmax operation. The re-embedded
node representations are computed as follows:

H̃j = qj +Ajvj , Hj = H̃j + MLP(Norm(H̃j)). (13)
We preserve the updated node embeddings Hj from the current step and use them as input queries
for the next step, with update frequency controlled by probabilities Ptr (training) and Pts (testing).

3.5 STEP-WISE DECISION AND TRAINING OBJECTIVE

Once the context embedding C̃j ∈ RN×D and current node embeddings Hj ∈ R(N+1)×D are
obtained, we use them to predict the selection of the next node, and then compute the RL objective
function to optimize model parameters. In the step-wise decision stage, we employ a classic decoder
(shown in Appendix B.2) to acquire the probability of selecting the next node. This procedure is
represented as follows:

Pj = D(C̃j ,Hj ,Mj), (14)
where Pj ∈ RN×(N+1), D(·) denotes the decoder, while Mj is a mask that prevents revisiting
previously selected nodes. If all constraints are satisfied, the node with the highest probability
is selected as the next node to visit. Otherwise, the depot is selected. After one interaction, the
model generates N solution trajectories, each denoted as τi = {τi,1, τi,2, . . . , τi,N ′}, where i ∈
{1, 2, . . . , N} and N

′
is the total number of decision steps. The RL objective is then computed using

the reward of each trajectory and the log-probabilities of selected nodes, as illustrated in Eq. 2.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

We evaluate CCL on 48 VRP variants. Following (Berto et al., 2024b), node locations are sampled
uniformly from the 2D Euclidean space [0, 1)2. Each vehicle starts at the depot with a capacity
Q=1 and a maximum route duration l=3. Linehaul and backhaul demands are sampled as integers
from [1, 10) and scaled by a factor of 30 +N/5, where N is the number of customers. In backhaul
settings, 20% of the customers are designated as backhaul, and the remaining 80% as linehaul. For
time window tasks, early arrival times, service durations, and time window lengths are independently
sampled from [0.0126, 4.25], [0, 0.15), and [1.8, 2.0), respectively. Late times are computed as the
sum of early times and window lengths. The training set consists of 100,000 instances uniformly
distributed across 16 variants. The best model checkpoint is selected based on validation performance
on CVRP (Capacitated VRP), using a held-out set of 128 instances. The test set comprises 48 variants,
each containing 1,000 instances. We benchmark CCL against state-of-the-art (SOTA) baselines under
two settings: N=50 and N=100. We evaluate performance using three standard VRP metrics: total
routing length ("Obj."), performance gap ("Gap") to the strong baseline HGS-PyVRP (Wouda et al.,
2024), and inference time. All metrics are computed over 1,000 test instances, with "Obj." and "Gap"
reported as averages and inference time as total runtime.

4.2 IMPLEMENTATION DETAILS

Our method is implemented in PyTorch (Paszke et al., 2019). All experiments are conducted on
a machine with an AMD EPYC 7702P 24-core CPU and a single NVIDIA RTX L40S GPU. We
use a batch size of 256 during training. The model adopts a 6-layer Transformer encoder, with both
encoder and decoder sharing the same architecture: embedding dimension D=128, 8 attention heads,
and a hidden dimension of 512. During decoding, node refinement is applied probabilistically. For
instances with N=50, the refinement probability is 0.75 during training and 1.0 during testing. For
N=100, the respective probabilities are 0.25 and 0.5. The model is optimized using Adam with a
learning rate of 3× 10−4 and a weight decay of 1× 10−6. A multi-step learning rate scheduler is
used with milestones at epochs 270 and 295, a decay factor of 0.1, and gradient clipping set to 1.
Training is conducted for a total of 300 epochs. We will make our code publicly available.
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Table 1: Performance on 16 seen in-distribution tasks. * denotes the strong baseline used to compute
the gap. Best neural approach is highlighted in bold; best existing SOTA is underlined.

Methods N = 50 N = 100 Methods N = 50 N = 100

Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓
C

V
R

P

HGS-PyVRP 10.372 * 10.4m 15.628 * 20.8m

V
R

PT
W

HGS-PyVRP 16.031 * 10.4m 25.423 * 20.8m
MTPOMO 10.520 1.423% 2s 15.941 2.030% 8s MTPOMO 16.419 2.423% 2s 26.433 3.962% 9s
MVMoE 10.499 1.229% 3s 15.888 1.693% 11s MVMoE 16.400 2.298% 3s 26.390 3.789% 11s
RF-TE 10.502 1.257% 2s 15.860 1.524% 8s RF-TE 16.341 1.933% 2s 26.228 3.154% 8s
CaDA 10.505 1.287% 2s 15.843 1.412% 8s CaDA 16.312 1.745% 1s 26.169 2.925% 9s
CaDA† 10.471 0.959% 3s 15.790 1.070% 13s CaDA† 16.299 1.670% 3s 26.105 2.668% 14s
CCL 10.473 0.977% 5s 15.823 1.287% 19s CCL 16.190 0.979% 5s 25.913 1.908% 21s
CCL† 10.463 0.881% 6s 15.787 1.058% 24s CCL† 16.177 0.907% 7s 25.862 1.706% 24s

O
V

R
P

HGS-PyVRP 6.507 * 10.4m 9.725 * 20.8m

O
V

R
PT

W

HGS-PyVRP 10.510 * 10.4m 16.926 * 20.8m
MTPOMO 6.717 3.194% 2s 10.216 5.028% 8s MTPOMO 10.676 1.558% 2s 17.442 3.022% 9s
MVMoE 6.705 3.003% 3s 10.177 4.617% 11s MVMoE 10.674 1.541% 3s 17.416 2.870% 12s
RF-TE 6.682 2.658% 2s 10.115 3.996% 8s RF-TE 10.645 1.264% 2s 17.328 2.352% 9s
CaDA 6.677 2.585% 1s 10.095 3.786% 8s CaDA 10.630 1.122% 1s 17.283 2.086% 9s
CaDA† 6.652 2.212% 3s 10.060 3.425% 13s CaDA† 10.621 1.030% 3s 17.246 1.868% 14s
CCL 6.636 1.957% 5s 10.068 3.511% 20s CCL 10.569 0.543% 6s 17.123 1.142% 21s
CCL† 6.610 1.566% 6s 10.012 2.936% 25s CCL† 10.564 0.506% 7s 17.104 1.033% 26s

O
V

R
PB

HGS-PyVRP 6.898 * 10.4m 10.335 * 20.8m

O
V

R
PB

T
W

HGS-PyVRP 11.669 * 10.4m 19.156 * 20.8m
MTPOMO 7.105 2.973% 2s 10.882 5.264% 8s MTPOMO 11.823 1.307% 3s 19.656 2.592% 9s
MVMoE 7.089 2.744% 3s 10.841 4.869% 11s MVMoE 11.816 1.245% 4s 19.637 2.499% 13s
RF-TE 7.065 2.385% 2s 10.774 4.233% 8s RF-TE 11.790 1.027% 2s 19.555 2.062% 9s
CaDA 7.064 2.377% 1s 10.739 3.890% 8s CaDA 11.775 0.898% 2s 19.495 1.754% 9s
CaDA† 7.032 1.916% 3s 10.682 3.329% 13s CaDA† 11.768 0.843% 3s 19.469 1.617% 15s
CCL 7.008 1.568% 5s 10.666 3.179% 19s CCL 11.721 0.436% 6s 19.348 0.985% 21s
CCL† 6.992 1.344% 6s 10.624 2.775% 25s CCL† 11.718 0.416% 7s 19.329 0.888% 27s

O
V

R
PB

L

HGS-PyVRP 6.899 * 10.4m 10.335 * 20.8m
O

V
R

PB
LT

W
HGS-PyVRP 11.668 * 10.4m 19.156 * 20.8m

MTPOMO 7.112 3.053% 2s 10.888 5.318% 8s MTPOMO 11.823 1.315% 3s 19.658 2.602% 9s
MVMoE 7.094 2.799% 3s 10.847 4.929% 11s MVMoE 11.816 1.249% 4s 19.640 2.514% 12s
RF-TE 7.068 2.417% 2s 10.778 4.266% 8s RF-TE 11.789 1.017% 2s 19.554 2.061% 9s
CaDA 7.062 2.339% 1s 10.741 3.900% 8s CaDA 11.777 0.914% 2s 19.497 1.762% 9s
CaDA† 7.034 1.935% 3s 10.686 3.368% 13s CaDA† 11.769 0.848% 3s 19.467 1.602% 15s
CCL 7.009 1.569% 5s 10.681 3.323% 20s CCL 11.721 0.442% 6s 19.346 0.977% 22s
CCL† 6.992 1.335% 6s 10.609 2.631% 23s CCL† 11.718 0.414% 7s 19.334 0.915% 27s

O
V

R
PL

HGS-PyVRP 6.507 * 10.4m 9.724 * 20.8m

O
V

R
PL

T
W

HGS-PyVRP 10.510 * 10.4m 16.926 * 20.8m
MTPOMO 6.720 3.248% 2s 10.224 5.112% 8s MTPOMO 10.677 1.572% 2s 17.442 3.020% 9s
MVMoE 6.706 3.028% 3s 10.184 4.693% 11s MVMoE 10.677 1.564% 3s 17.418 2.880% 12s
RF-TE 6.683 2.680% 2s 10.121 4.054% 8s RF-TE 10.646 1.267% 2s 17.328 2.352% 9s
CaDA 6.680 2.623% 1s 10.093 3.773% 8s CaDA 10.631 1.133% 1s 17.280 2.073% 9s
CaDA† 6.652 2.200% 2s 10.060 3.432% 13s CaDA† 10.621 1.033% 3s 17.244 1.861% 14s
CCL 6.637 1.968% 5s 10.067 3.495% 20s CCL 10.569 0.546% 6s 17.123 1.143% 22s
CCL† 6.610 1.569% 6s 10.000 2.811% 24s CCL† 10.564 0.501% 7s 17.109 1.063% 26s

V
R

PB

HGS-PyVRP 9.687 * 10.4m 14.377 * 20.8m

V
R

PB
T

W

HGS-PyVRP 18.292 * 10.4m 29.467 * 20.8m
MTPOMO 10.036 3.596% 2s 15.102 5.052% 8s MTPOMO 18.649 1.938% 2s 30.478 3.426% 9s
MVMoE 10.007 3.292% 3s 15.023 4.505% 10s MVMoE 18.632 1.841% 3s 30.437 3.284% 12s
RF-TE 9.979 3.000% 2s 14.935 3.906% 8s RF-TE 18.573 1.517% 2s 30.249 2.641% 9s
CaDA 9.979 3.010% 1s 14.910 3.721% 8s CaDA 18.543 1.361% 1s 30.174 2.390% 9s
CaDA† 9.922 2.405% 2s 14.838 3.222% 13s CaDA† 18.528 1.276% 3s 30.113 2.183% 14s
CCL 9.916 2.352% 5s 14.882 3.526% 19s CCL 18.430 0.738% 6s 29.911 1.494% 21s
CCL† 9.875 1.921% 6s 14.780 2.808% 22s CCL† 18.419 0.678% 7s 29.871 1.357% 26s

V
R

PB
L

HGS-PyVRP 10.186 * 10.4m 14.779 * 20.8m

V
R

PB
LT

W

HGS-PyVRP 18.361 * 10.4m 29.026 * 20.8m
MTPOMO 10.679 4.760% 2s 15.718 6.294% 8s MTPOMO 19.001 2.199% 3s 30.948 3.794% 9s
MVMoE 10.639 4.384% 3s 15.642 5.771% 11s MVMoE 18.983 2.097% 3s 30.892 3.609% 12s
RF-TE 10.569 3.713% 2s 15.523 5.008% 8s RF-TE 18.910 1.713% 2s 30.705 2.978% 9s
CaDA 10.576 3.776% 1s 15.490 4.771% 8s CaDA 18.894 1.623% 1s 30.620 2.700% 9s
CaDA† 10.503 3.064% 3s 15.389 4.093% 13s CaDA† 18.878 1.540% 3s 30.570 2.531% 15s
CCL 10.484 2.883% 5s 15.407 4.219% 19s CCL 18.773 0.976% 6s 30.366 1.842% 21s
CCL† 10.440 2.450% 6s 15.297 3.472% 24s CCL† 18.758 0.899% 7s 30.323 1.697% 25s

V
R

PL

HGS-PyVRP 10.587 * 10.4m 15.766 * 20.8m

V
R

PL
T

W

HGS-PyVRP 16.356 * 10.4m 25.757 * 20.8m
MTPOMO 10.775 1.733% 2s 16.157 2.483% 8s MTPOMO 16.832 2.877% 2s 26.913 4.455% 9s
MVMoE 10.753 1.525% 3s 16.099 2.113% 11s MVMoE 16.817 2.783% 3s 26.866 4.272% 12s
RF-TE 10.747 1.485% 2s 16.057 1.858% 8s RF-TE 16.728 2.248% 2s 26.706 3.645% 9s
CaDA 10.749 1.505% 1s 16.036 1.725% 8s CaDA 16.709 2.130% 1s 26.631 3.358% 9s
CaDA† 10.707 1.112% 2s 15.984 1.400% 13s CaDA† 16.692 2.034% 3s 26.556 3.065% 14s
CCL 10.710 1.145% 5s 16.009 1.561% 19s CCL 16.579 1.333% 6s 26.366 2.321% 20s
CCL† 10.698 1.027% 6s 15.960 1.245% 23s CCL† 16.556 1.192% 7s 26.324 2.157% 24s

4.3 COMPARISON WITH THE STATE-OF-THE-ARTS

Baselines. We compare CCL with state-of-the-art multi-task VRP solvers, including MTPOMO (Liu
et al., 2024), MVMoE (Zhou et al., 2024a), RouteFinder (RF-TE) (Berto et al., 2024b), and CaDA (Li
et al., 2025). Among these, RF-TE and CaDA have reported the strongest performance, and we
include them in both in-distribution (Table 1) and out-of-distribution (Table 2) evaluations. To ensure
a fair comparison, we reimplement CaDA in the RouteFinder framework (Berto et al., 2024b), which
also serves as the basis for RF-TE and our CCL. As shown in Appendix C.1.1, our reproduction
closely matches the performance reported in the original paper (Li et al., 2025). To further enhance
performance, we integrate a context-aware module, ReLD (Huang et al., 2025), into both CaDA and
CCL, denoted as CaDA† and CCL†, respectively.

7
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Table 2: Generalization on 32 unseen out-of-distribution tasks.

Methods

MDOVRPB, MDOVRPL, MDVRPBL, MDOVRPBL MDOVRPBTW, MDOVRPLTW, MDVRPBLTW, MDOVRPBLTW
MDCVRP, MDOVRP, MDVRPB, MDVRPL MDCVRPTW, MDOVRPTW, MDVRPBTW, MDVRPLTW
VRPMB, OVRPMB, VRPMBL, OVRPMBL VRPMBTW, OVRPMBTW, VRPMBLTW, OVRPMBLTW

MDVRPMB, MDOVRPMB, MDVRPMBL, MDOVRPMBL MDVRPMBTW, MDOVRPMBTW, MDVRPMBLTW, MDOVRPMBLTW

N = 50 N = 100 N = 50 N = 100

Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓
RF-TE 9.651 40.472% 1s 14.746 45.724% 9s 14.557 32.586% 2s 24.217 36.564% 10s
CaDA 9.535 38.860% 2s 14.910 47.156% 10s 14.410 30.872% 2s 23.523 32.512% 10s
CaDA† 9.285 34.169% 3s 14.395 41.419% 16s 14.830 34.665% 4s 24.328 36.774% 17s
CCL 8.906 29.156% 4s 14.071 38.624% 17s 13.923 26.020% 4s 23.375 31.159% 18s
CCL† 8.673 25.781% 5s 13.777 35.413% 22s 13.536 22.422% 5s 24.025 34.163% 25s

Table 3: Ablation on key modules within CCL.

Methods CVRP OVRP VRPB VRPL OVRPB OVRPL VRPBL OVRPBL Avg.

CCL† 0.881% 1.566% 1.921% 1.027% 1.344% 1.569% 2.450% 1.335% 1.512%
- RGCR 0.874% 1.710% 1.969% 0.993% 1.396% 1.712% 2.486% 1.407% 1.568%
- TSNR 0.961% 2.284% 2.413% 1.131% 1.969% 2.311% 3.001% 1.973% 2.005%
- RGCR - TSNR 1.014% 2.395% 2.416% 1.160% 2.036% 2.411% 3.088% 2.041% 2.070%

Methods VRPTW OVRPTW VRPBTW VRPLTW OVRPBTW OVRPLTW VRPBLTW OVRPBLTW Avg.

CCL† 0.907% 0.506% 0.678% 1.192% 0.416% 0.501% 0.899% 0.414% 0.689%
- RGCR 0.938% 0.521% 0.720% 1.235% 0.419% 0.519% 0.926% 0.427% 0.713%
- TSNR 1.539% 0.947% 1.204% 1.857% 0.795% 0.957% 1.409% 0.805% 1.189%
- RGCR - TSNR 1.615% 0.969% 1.266% 1.930% 0.813% 0.958% 1.492% 0.810% 1.232%

In-Distribution Evaluation. In the Table 1, CCL outperforms CaDA across both N=50 and N=100
settings. Specifically, for N=50, both CCL and CCL† achieve lower performance gaps than CaDA on
all 16 evaluated tasks. For N=100, the gap relative to the HGS-PyVRP baseline narrows even further.
We also observe complementary strengths between ReLD and CCL. ReLD performs particularly well
on variants without time windows (TW), leveraging its ability to extract globally shared constraint
signals through step-wise context. In contrast, CCL’s dynamic node refinement excels on TW tasks,
offering finer-grained adaptation to local, node-specific constraints. By combining both, the resulting
CCL† achieves the best overall performance across all the in-distribution tasks.

Out-of-Distribution Evaluation. We present the averaged performance for both tasks with or
without TW in Table 2 (detailed results for each task are presented in Appendix C.1.3, where CCL
outperformed CaDA on the majority). Table 2 shows that CCL† consistently outperforms other
methods under the N=50 setting. For N=100, while CCL† maintains competitive performance, it
shows a slightly higher gap on TW tasks compared to standalone CCL. We hypothesize that this may
be due to a low test-time update rate, which can cause the model to overfit to static constraint structures
and under-adapt to time-sensitive variations, thus increasing the gap. Nevertheless, either equipped
with ReLD or not, our CCL exhibits superior overall performance to CaDA (and its counterpart).

4.4 ABLATION STUDIES

Ablation on Key Modules within CCL. We conduct ablation experiments to validate the effective-
ness of RGCR and TSNR in CCL†. Table 3 reports the results for N=50. Removing RGCR leads to
a smaller gap increase than TSNR, and even slightly reduces the gap on CVRP and VRPL. It is likely
that the relatively simple constraints of the two VRP tasks make relevance weighting less effective.
Moreover, removing both modules yields the highest gap, highlighting their complementary effective-
ness. We also conduct these ablations on CCL (the variant without ReLD), showing that the main
performance gains come from CCL itself rather than ReLD. Details are presented in Appendix C.3.1.

Ablation on Key Components within RGCR and TSNR. We further conduct ablation studies using
N=50 to evaluate the components within RGCR and TSNR.

Regarding RGCR, we first examine direct concatenation of attributes (as in CaDA) and embeddings
(CCL†-RGCR in Table 3). We then evaluate three correlation scores, namely random, cosine
similarity, and dot product, as defined in Eq. 6. The left part of Fig. 2 presents the averaged gap
and the corresponding model complexity. Compared with direct concatenation, all three correlation

8
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1.95

1.24

1.67

1.10

1.52

0.88

1.51

0.69

Gap (%)

2.01

1.19

1.67

1.10

1.52

0.88

1.51

0.69

Attention ✗ ✓ ✓ ✓
Updates ✗ ✗ ✓ ✓

Bias ✗ ✗ ✗ ✓

✗ ✓ ✓ ✓
✗ ✗ ✓ ✓
✗ ✗ ✗ ✓

w/ TWw/o TW

Methods
Gap (%) Complexity

Avg. w/o TW w/ TW # Params 
(M)

Time 
(s)

Concat Attributes 1.156 1.584 0.729 3.95 5.2

Concat Embeddings 1.141 1.568 0.713 4.05 5.7

 + Random Scores 1.092 1.477 0.707 4.05 6.5

 + Cosine Similarity 1.108 1.480 0.737 4.05 7.2

 + Dot Product (RGCR) 1.100 1.512 0.689 4.05 6.5

Figure 2: Ablation on key components within RGCR (Left) and TSNR (Right), respectively.

scores reduce the gap in both settings. Notably, the dot product achieves the smallest gap on tasks
with TW, demonstrating its superiority in handling complex constraints. More experimental setups
and analyses are provided in Appendix C.3.2.

Regarding TSNR, the right part of Fig. 2 shows that combining node-level attention, embedding
updates, and the distance bias in Eq. 12 achieves the lowest gaps, indicating that all three elements are
essential for improving the overall performance. Moreover, a detailed analysis that node-level atten-
tion reduces model complexity compared to the vanilla Transformer is provided in Appendix C.3.3.

5 DISCUSSION

We discuss the strengths and limitations of CCL. Its main drawback is the longer inference time
required for better performance. However, flexible parameter settings can mitigate this issue, enabling
CCL to perform well on large-scale real-world instances.

Table 4: Complexity analysis.

Methods Gap↓
(%)

Memory↓
(GiB)

# Params↓
(M)

Time↓
(s)

CaDA 1.90 6.01 3.37 + 0.1 1.5
CaDA† 1.63 7.15 3.37 + 0.3 2.7
CaDA†-HD 1.53 7.55 3.37+1.0 5.1
CCL 1.28 8.13 3.39 + 0.45 5.4
CCL† 1.10 8.76 3.39 + 0.66 6.5
ASW-TAM 29.93 15.47 3.39 + 0.66 96.1

Complexity Analysis. Table 4 compares the model com-
plexity of SOTA methods and our CCL. We further com-
pare CCL with a heavy-decoder variant of the SOTA
model, denoted as CaDA†-HD. Detailed configurations of
this variant are presented in Appendix C.4. All models are
trained and evaluated on the 16 VRP variants with N=50
using an L40S GPU. "Time" denotes the total inference
time over 1,000 test instances, "# Params" refers to the
total number of parameters in the encoder and decoder, and "Memory" indicates the peak memory
usage during testing across all 16 variants. Compared to CaDA and CaDA†, our CCL and CCL† intro-
duce only a moderate increase in memory usage and parameter count, while achieving a substantial
performance improvement. The inference time is longer due to additional computation, but the gain
in solution quality justifies the cost. In addition, we also apply the step-wise refinement strategy, i.e.,
ASW-TAM (Xin et al., 2020) to the multi-task setting, where each route is re-embedded individually.
However, due to memory constraints, we adopt a much smaller batch size that is only 1/16 of the
original one. Results show that the naive refinement strategy leads to significantly higher gaps, longer
inference time, and larger memory consumption, which further validates the effectiveness of CCL.
Moreover, we observe that CCL achieves a comparable model cost while reducing the gap by 0.25%
compared with CaDA†-HD. These findings indicate that the effectiveness of CCL stems from its
design rather than from an increased network scale.

tsP

trP

tsP

trP

Figure 3: Gap (Left) and inference time (Right) under dif-
ferent training and testing update rates.

Performance-Cost Trade-off. In
Section 3.4, Ptr and Pts denote the
probabilities of updating node em-
beddings during training and testing,
and we assess their impact on model
performance and inference efficiency,
which also leads to a lightweight
version of CCL. We first conduct
sensitivity studies using N=50 and
evaluating all 20 combinations of
Ptr ∈ {0.25, 0.5, 0.75, 1} and Pts ∈
{0, 0.25, 0.5, 0.75, 1}. Fig. 3 shows

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

the corresponding gap values and inference time. We observe that, for a fixed probability Ptr during
training, the gap tends to be smaller when the probability Pts during testing is slightly higher. For
example, when Ptr=0.25 or 0.5, the best performance is achieved at Pts=0.5 and 0.75, respectively.
This work adopts Ptr = 0.75 and Pts = 1, as this setting yields the lowest gap. Meanwhile, reducing
Pts leads to shorter inference time, as fewer refinement steps are involved. While this leads to a
higher gap, it provides a trade-off between solution quality and inference efficiency. Motivated by
this, we design a lightweight version of CCL† using Ptr = 0.25 and Pts = 0.25. It achieves an
average gap of 1.38% across 16 VRPs with an average inference time of 4.6s, while the existing
SOTA CaDA† attains a gap of 1.63% in 2.7s (see Table 4). This enables users to adjust Pts based on
the requirements of practical deployment scenarios, and more detailed comparisons between CCL
and CaDA are provided in Appendix C.4.

Table 5: Results on large-scale real-
world VRPTW instances (N=600).

Methods Obj.↓ Gap↓ Time↓
RF-TE 29558 145.593% 1.4s
CaDA 22917 88.188% 1.4s
CCL 20633 70.961% 2.0s

Large-Scale Real-World Practicality. We evaluate zero-shot
generalization on 60 real-world VRPTW instances, each with
N=600 (Homberger and Gehring, 1999). The model is trained
on 16 tasks with N=100. During inference, we apply an up-
date probability of Pts=0.1 to reduce computational cost. Ta-
ble 5 reports the averaged results across these instances (per-
instance results in Appendix C.7), showing that CCL achieves
the lowest average gap while maintaining comparable infer-
ence time. Appendix C.7 also reports results on VRPTW instances with N=100 (Solomon, 1987),
where CCL outperforms SOTAs on 24 out of 27. It is further evaluated on CVRP instances with
N ∈ [100, 251] (Uchoa et al., 2017), where CCL achieves the best performance on 16 out of 27. These
findings indicate that our method is well-suited for deployment in real-world scenarios, particularly
for problems with complex constraints such as time windows.

6 CONCLUSIONS

Existing neural multi-task VRP methods often neglect the evolving nature of node states during
decoding, limiting their ability to respond accurately to constraint requirements. To overcome this, we
proposed Chain-of-Context Learning (CCL), a step-wise framework that updates node embeddings
based on the current decision context. Through relevance-guided constraint reformulation and
trajectory-shared re-embedding, CCL captures the agent’s evolving preferences and improves solution
quality. Experiments on 48 VRP variants show that CCL achieves SOTA performances on all in-
distribution and most out-of-distribution tasks. One limitation of CCL lies in its slightly longer
inference time. Although flexible parameter settings can mitigate such issue, a trade-off between
computation cost and solution quality still remains. In future, we plan to explore more advanced
techniques to further improve the inference efficiency while preserving superior solution quality.
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A RELATED WORK

Neural Solvers for Single-Task VRPs. A common paradigm in neural solvers for single-task VRPs
is to construct solutions in an autoregressive manner. These methods typically employ an encoder to
embed the VRP instance into node representations, followed by a decoder that sequentially predicts
the probability of selecting the next node. To reduce the computational overhead of reinforcement
learning (RL), most approaches adopt static node embeddings during decoding (Joshi et al., 2019;
Nazari et al., 2018; Kool et al., 2018; Kwon et al., 2020; Huang et al., 2025; Li et al., 2021a; Hou
et al., 2023; Ye et al., 2024; Joshi et al., 2021; Bi et al., 2022; Geisler et al., 2022; Zhou et al.,
2023). One influential method in this line is the Attention Model (AM) (Kool et al., 2018), which
uses a Transformer-based policy network to guide node selection. (Kwon et al., 2020) enhances
AM by introducing Policy Optimization with Multiple Optima (POMO), which leverages multiple
solution trajectories and data augmentation to achieve strong performance on TSP and CVRP. POMO
has since become a widely adopted baseline (Kwon et al., 2021; Li et al., 2021b; Kim et al., 2022;
Grinsztajn et al., 2023; Chen et al., 2023b; Gao et al., 2024; Hottung et al., 2025; Hua et al., 2025a; Li
et al., 2021a; Hou et al., 2023; Ye et al., 2024; Joshi et al., 2021; Bi et al., 2022; Geisler et al., 2022;
Zhou et al., 2023). To improve context modeling, ReLD (Huang et al., 2025) proposes an enhanced
decoder architecture incorporating identity mapping and a feed-forward layer to better capture local
and global dependencies. In terms of dynamic node re-embedding, (Xin et al., 2020) introduces
a step-wise RL framework that removes visited nodes at each decision step, enabling the model
to represent distinct node states as the context evolves. An alternative direction involves building
heavy decoder-based solvers trained with supervised learning (SL) (Drakulic et al., 2023; Luo et al.,
2023; 2025; Pirnay and Grimm, 2024; Drakulic et al., 2025). While these methods demonstrate
strong empirical performance, their reliance on multi-layered decoder architectures results in high
computational cost, making them unsuitable for RL-based training, which does not need optimal
solutions as the labels.

Neural Solvers for Multi-Task VRPs. Multi-task VRPs generalize single-task VRPs by involving
varied combinations of constraints, resulting in multiple task variants within a shared framework.
Recent works train a single model to capture transferable patterns across tasks (Lin et al., 2024; Liu
et al., 2024; Zhou et al., 2024a; Berto et al., 2024a; Zong et al., 2025; Drakulic et al., 2025; Jiang
et al., 2024; Zhou et al., 2024b; Hua et al., 2025b;c; Li et al., 2025; Berto et al., 2024b; Son et al.,
2025; Wang et al., 2025). (Lin et al., 2024) shows that a pre-trained TSP model can be fine-tuned to
handle other VRP variants. To expand constraint coverage, (Liu et al., 2024) and (Zhou et al., 2024a)
introduce models that handle B, L, O, and TW constraints, training on single-constraint tasks with
the goal of generalizing to tasks with mixed attributes. (Berto et al., 2024a) presents a foundation
model trained on 16 variants and fine-tuned on an unseen constraint (MB) across 8 new variants. A
subsequent extension (Berto et al., 2024b) adds MD to the task space, culminating in a benchmark
of 48 variants. Most recently, (Li et al., 2025) proposes Constraint-Aware Dual-Attention (CaDA),
which incorporates constraint prompts and global-sparse attention to enhance encoder performance
in capturing both broad and localized constraint-relevant node information. Despite their progress,
these methods generally struggle to capture the dynamic, fine-grained impact of constraints during
decision-making—particularly when certain nodes become increasingly urgent due to time-sensitive
or context-dependent requirements. In contrast, our work introduces a step-wise, context-aware
refinement mechanism to better model these evolving constraint-driven priorities.

B DETAILS OF MODEL ARCHITECTURE

B.1 ENCODER ARCHITECTURE

As illustrated in Section 4.2, the input attributes includes three parts: the constraint label h̃0 ∈ R4,
the depot attribute h0 ∈ R4, and the customer features {h1,h2, . . . ,hN} ∈ RN×7. The depot and
customer attributes are separately processed by two linear layers, and the outputs are concatenated to
generate the input node embedding as follows:

I = Concat(H(h0),H({h1,h2, . . . ,hN})), (15)

where I ∈ R(N+1)×D, Concat(·) denotes the concatenate operation, and H(·) represents the linear
layer. Similarly, we project the constraint labels into the prompt embedding space and expand them

15
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to match the shape of the node embeddings:

L = Expand(H(h̃0)), (16)

where L ∈ R(N+1)×D, H(·) is a linear layer to project the feature dimension from 4 to D, and
Expand(·) is the duplication and expansion operation to reshape the feature map from R1×D to
R(N+1)×D. Subsequently, a unified input embedding is formed by concatenating the projected
constraint embedding and the node embedding:

Ĩ = H(Concat(I,L)). (17)

The dual-attention encoder processes the original node embeddings I and the unified input embeddings
Ĩ through the sparse and global branches, respectively. Each branch contains a Transformer layer and
a linear layer for fusion, with the overall computation defined as:

H̃
′(i) = T (i)

g (H̃(i−1)), H
′(i) = T (i)

s (H(i−1)),

H̃(i) = H̃
′(i) +H(i)

g (H
′(i)), H(i) = H

′(i) +H(i)
s (H̃

′(i)),
(18)

where H̃
′
, H̃,H

′
,H ∈ R(N+1)×D, and i denotes the index of the encoder layer. In the first layer,

we initialize H̃(1)=Ĩ and H(1)=I. T (i)
g ,H(i)

g denote the Transformer and linear layers of the global
branch, respectively, while T (i)

s ,H(i)
s correspond to those of the sparse branch. The Transformer

layer employs the pre-norm design from (Berto et al., 2024a), and integrates sparse attention based
on (Li et al., 2025). The embedding output by the final global layer is passed through a normalization
layer, and the normalized embeddings are used as the initial node embeddings for decoding:

H = Norm(H(K)), (19)

where H ∈ R(N+1)×D and K=6 denotes the number of encoder layers.

B.2 CLASSIC DECODER

Following RGCR and TSNR, a classic decoder is employed to calculate the action probability
distribution using a multi-head attention mechanism. At step j, the context embedding generated by
RGCR is denoted as C̃j ∈ RN×D, where N is the number of trajectories, equal to the number of
customers. We directly use the context embeddings as the query, i.e., qj = C̃j . In the multi-head
attention mechanism, the key and value embeddings are derived from the node embeddings produced
by TSNR, i.e., kj ,vj = H(Hj), where kj ,vj ∈ R(N+1)×D. Since each node is visited only once,
we apply a mask Mj to the visited nodes when computing the attention weights:

Aj = Softmax(
qjk

⊤
j√
D

⊙Mj), (20)

where Aj ,Mj ∈ RN×(N+1), Softmax(·) denotes the Softmax operation, and ⊙ ensures that
multiplication values for visited nodes are set to −∞. The context query is computed as q̃j =

H(Ajvj), and the candidate node representations are obtained as k̃j = H(Hj). Based on these, the
action probability distribution is derived as follows:

Dj =
q̃jk̃

⊤
j√
D

, (21)

where q̃j ∈ RN×D, k̃j ∈ R(N+1)×D, and Dj ∈ RN×N+1. To generate solutions, the unnormalized
log-probability (logit) is calculated as

uj = ξ · Tanh(Dj)⊙Mj , (22)

where Tanh(·) is the Hyperbolic Tangent operation, and ξ=10 is a predefined clipping hyperparameter.
The final selection probabilities for each node are computed by applying the Softmax operation:
Pj = Softmax(uj).
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Table 5: Performance on 16 seen in-distribution tasks. * denotes the strong baseline used to compute
the gap. Best neural approach is highlighted in bold; second underlined.

Methods
N = 50 N = 100

Methods
N = 50 N = 100

Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

C
V

R
P

HGS-PyVRP 10.372 * 10.4m 15.628 * 20.8m

V
R

PT
W

HGS-PyVRP 16.031 * 10.4m 25.423 * 20.8m
CaDA‡ 10.494 1.182% 2s 15.870 1.578% 8s CaDA‡ 16.278 1.536% 2s 26.070 2.530% 8s
CaDA 10.505 1.287% 2s 15.843 1.412% 8s CaDA 16.312 1.745% 1s 26.169 2.925% 9s
CCL 10.473 0.977% 5s 15.823 1.287% 19s CCL 16.190 0.979% 5s 25.913 1.908% 21s

O
V

R
P

HGS-PyVRP 6.507 * 10.4m 9.725 * 20.8m

O
V

R
PT

W HGS-PyVRP 10.510 * 10.4m 16.926 * 20.8m
CaDA‡ 6.670 2.468% 2s 10.121 4.045% 8s CaDA‡ 10.613 0.957% 2s 17.226 1.751% 9s
CaDA 6.677 2.585% 1s 10.095 3.786% 8s CaDA 10.630 1.122% 1s 17.283 2.086% 9s
CCL 6.636 1.957% 5s 10.068 3.511% 20s CCL 10.569 0.543% 6s 17.123 1.142% 21s

O
V

R
PB

HGS-PyVRP 6.898 * 10.4m 10.335 * 20.8m

O
V

R
PB

T
W HGS-PyVRP 11.669 * 10.4m 19.156 * 20.8m

CaDA‡ 7.049 2.159% 2s 10.762 4.099% 8s CaDA‡ 11.761 0.779% 2s 19.436 1.441% 9s
CaDA 7.064 2.377% 1s 10.739 3.890% 8s CaDA 11.775 0.898% 2s 19.495 1.754% 9s
CCL 7.008 1.568% 5s 10.666 3.179% 19s CCL 11.721 0.436% 6s 19.348 0.985% 21s

O
V

R
PB

L HGS-PyVRP 6.899 * 10.4m 10.335 * 20.8m

O
V

R
PB

LT
W HGS-PyVRP 11.668 * 10.4m 19.156 * 20.8m

CaDA‡ 7.051 2.166% 2s 10.762 4.102% 8s CaDA‡ 11.760 0.771% 2s 19.435 1.439% 9s
CaDA 7.062 2.339% 1s 10.741 3.900% 8s CaDA 11.777 0.914% 2s 19.497 1.762% 9s
CCL 7.009 1.569% 5s 10.681 3.323% 20s CCL 11.721 0.442% 6s 19.346 0.977% 22s

O
V

R
PL

HGS-PyVRP 6.507 * 10.4m 9.724 * 20.8m

O
V

R
PL

T
W HGS-PyVRP 10.510 * 10.4m 16.926 * 20.8m

CaDA‡ 6.671 2.475% 2s 10.122 4.052% 8s CaDA‡ 10.613 0.961% 2s 17.226 1.752% 9s
CaDA 6.680 2.623% 1s 10.093 3.773% 8s CaDA 10.631 1.133% 1s 17.280 2.073% 9s
CCL 6.637 1.968% 5s 10.067 3.495% 20s CCL 10.569 0.546% 6s 17.123 1.143% 22s

V
R

PB

HGS-PyVRP 9.687 * 10.4m 14.377 * 20.8m
V

R
PB

T
W HGS-PyVRP 18.292 * 10.4m 29.467 * 20.8m

CaDA‡ 9.960 2.800% 2s 14.960 4.038% 8s CaDA‡ 18.500 1.117% 2s 30.059 1.999% 9s
CaDA 9.979 3.010% 1s 14.910 3.721% 8s CaDA 18.543 1.361% 1s 30.174 2.390% 9s
CCL 9.916 2.352% 5s 14.882 3.526% 19s CCL 18.430 0.738% 6s 29.911 1.494% 21s

V
R

PB
L

HGS-PyVRP 10.186 * 10.4m 14.779 * 20.8m

V
R

PB
LT

W HGS-PyVRP 18.361 * 10.4m 29.026 * 20.8m
CaDA‡ 10.543 3.461% 2s 15.525 5.001% 8s CaDA‡ 18.848 1.376% 2s 30.520 2.359% 9s
CaDA 10.576 3.776% 1s 15.490 4.771% 8s CaDA 18.894 1.623% 1s 30.620 2.700% 9s
CCL 10.484 2.883% 5s 15.407 4.219% 19s CCL 18.773 0.976% 6s 30.366 1.842% 21s

V
R

PL

HGS-PyVRP 10.587 * 10.4m 15.766 * 20.8m

V
R

PL
T

W HGS-PyVRP 16.356 * 10.4m 25.757 * 20.8m
CaDA‡ 10.731 1.333% 2s 16.057 1.847% 8s CaDA‡ 16.669 1.879% 2s 26.540 2.995% 9s
CaDA 10.749 1.505% 1s 16.036 1.725% 8s CaDA 16.709 2.130% 1s 26.631 3.358% 9s
CCL 10.710 1.145% 5s 16.009 1.561% 19s CCL 16.579 1.333% 6s 26.366 2.321% 20s

A
vg

.

HGS-PyVRP 8.455 * 10.4m 12.584 * 20.8m

A
vg

.

HGS-PyVRP 14.175 * 10.4m 22.730 * 20.8m
CaDA‡ 8.646 2.256% 2s 13.022 3.595% 8s CaDA‡ 14.380 1.172% 2s 23.314 2.033% 9s
CaDA 8.662 2.437% 1s 12.993 3.372% 8s CaDA 14.409 1.366% 1s 23.394 2.381% 9s
CCL 8.609 1.802% 5s 12.950 3.013% 19s CCL 14.319 0.749% 6s 23.187 1.476% 21s
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Figure 4: Error-bar analysis of CCL under N=100.

C ADDITIONAL ANALYSES AND DISCUSSIONS

C.1 COMPARISON WITH NEURAL SOTA METHODS

C.1.1 COMPARISON BETWEEN RE-IMPLEMENTED SOTA AND REPORTED SOTA

Main Results. We compare CCL against the reported SOTA method (CaDA‡ (Li et al., 2025)) and our
re-implemented one (CaDA (Li et al., 2025)), with the strong heuristic baseline HGS-PyVRP (Wouda
et al., 2024) included for reference. Table 5 presents the results for all 16 in-distribution tasks, and the
overall average scores across these tasks both with and without the TW constraint. Under the N=100
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Table 6: Improvement of CCL† over CaDA†.
Tasks ∆ P-value Tasks ∆ P-value Tasks ∆ P-value Tasks ∆ P-value
CVRP 8.16% 2.7e-05 OVRP 29.21% 1.2e-76 VRPBLTW 41.61% 2.2e-68 OVRPBLTW 51.19% 6.2e-68
VRPB 20.14% 5.0e-42 OVRPB 29.86% 1.4e-62 VRPBTW 46.84% 4.0e-81 OVRPBTW 50.63% 2.8e-68
VRPBL 20.03% 2.0e-39 OVRPBL 31.05% 4.7e-68 VRPLTW 41.39% 2.2e-97 OVRPLTW 51.50% 2.9e-79
VRPL 7.66% 2.4e-04 OVRPL 28.69% 3.5e-74 VRPTW 45.72% 2.9e-99 OVRPTW 50.85% 3.2e-75

Table 7: Per-task results on 32 unseen out-of-distribution tasks (N=50).

Tasks RF-TE CaDA CaDA† CCL CCL†

Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓
VRPMB 9.879 8.861% 1s 9.781 7.749% 2s 9.722 7.097% 3s 9.943 9.538% 3s 9.940 9.486% 4s
MDCVRP 12.559 56.957% 2s 12.335 54.083% 2s 13.593 70.078% 4s 10.829 34.846% 4s 10.554 31.361% 6s
MDOVRP 6.876 29.051% 1s 6.825 28.069% 2s 6.260 17.329% 3s 6.413 20.155% 4s 6.286 17.719% 5s
MDVRPB 12.725 60.956% 2s 12.654 60.054% 2s 12.190 54.066% 3s 11.679 47.450% 4s 11.001 38.750% 5s
MDVRPL 12.618 57.370% 2s 12.426 54.988% 2s 13.433 67.697% 4s 11.278 40.248% 4s 10.912 35.667% 6s
OVRPMB 6.949 13.690% 1s 6.872 12.440% 1s 6.819 11.570% 3s 6.917 13.149% 3s 6.854 12.124% 4s
VRPMBL 10.239 8.050% 1s 10.163 7.215% 2s 10.061 6.130% 3s 10.376 9.456% 3s 10.229 7.898% 5s
MDOVRPB 7.556 31.861% 1s 7.622 33.009% 2s 6.999 22.032% 3s 6.876 19.787% 4s 6.738 17.332% 5s
MDOVRPL 6.871 28.946% 1s 6.807 27.746% 2s 6.270 17.504% 3s 6.442 20.716% 4s 6.303 18.070% 5s
MDVRPBL 12.831 61.175% 2s 12.585 58.011% 2s 12.017 50.770% 3s 11.483 43.846% 4s 11.208 40.413% 6s
MDVRPMB 12.856 76.544% 2s 12.493 71.550% 2s 12.046 65.185% 3s 11.540 58.118% 4s 11.032 51.055% 6s
MDVRPTW 17.818 48.941% 2s 16.971 41.739% 2s 17.581 46.865% 4s 16.107 34.403% 4s 15.475 29.004% 6s
OVRPMBL 6.949 13.686% 1s 6.871 12.423% 1s 6.818 11.563% 3s 6.932 13.404% 3s 6.819 11.555% 4s
VRPMBTW 17.298 8.074% 1s 17.198 7.434% 2s 17.282 7.954% 3s 16.988 6.099% 3s 17.158 7.142% 5s
MDOVRPBL 7.550 31.772% 1s 7.606 32.713% 2s 6.996 21.966% 3s 6.858 19.463% 4s 6.827 18.939% 6s
MDOVRPMB 7.617 47.411% 1s 7.541 45.953% 2s 6.845 32.344% 3s 6.720 29.826% 4s 6.519 25.920% 5s
MDOVRPTW 10.618 34.976% 1s 10.204 29.610% 2s 10.407 32.287% 4s 9.783 24.150% 4s 9.632 22.146% 5s
MDVRPBTW 18.591 37.364% 2s 19.025 40.629% 2s 19.977 47.721% 4s 18.425 36.029% 4s 17.645 30.121% 5s
MDVRPLTW 18.127 51.276% 2s 17.125 42.765% 2s 17.965 49.851% 4s 16.769 39.728% 5s 16.126 34.232% 6s
MDVRPMBL 12.744 74.112% 2s 12.434 69.825% 2s 11.647 58.969% 3s 11.474 56.409% 4s 10.993 49.737% 6s
OVRPMBTW 11.132 6.265% 1s 11.087 5.849% 2s 11.121 6.160% 3s 10.966 4.658% 3s 10.855 3.617% 5s
VRPMBLTW 17.597 7.982% 1s 17.495 7.337% 2s 17.559 7.728% 3s 17.514 7.433% 3s 17.402 6.710% 5s
MDOVRPBTW 11.399 32.332% 2s 11.190 29.807% 2s 11.423 32.600% 4s 10.774 24.830% 4s 10.313 19.359% 5s
MDOVRPLTW 10.599 34.731% 2s 10.196 29.501% 2s 10.408 32.286% 4s 9.721 23.331% 4s 9.704 23.040% 5s
MDOVRPMBL 7.602 47.108% 1s 7.540 45.940% 2s 6.848 32.401% 3s 6.733 30.088% 4s 6.548 26.474% 5s
MDVRPBLTW 19.048 40.583% 2s 19.243 42.015% 2s 20.076 48.201% 4s 18.544 36.702% 5s 17.612 29.641% 7s
MDVRPMBTW 17.830 48.485% 2s 18.394 53.345% 2s 19.327 61.083% 4s 17.103 42.314% 5s 16.729 39.084% 5s
OVRPMBLTW 11.138 6.317% 1s 11.090 5.875% 2s 11.116 6.109% 3s 10.993 4.922% 3s 10.835 3.427% 5s
MDOVRPBLTW 11.389 32.207% 2s 11.185 29.743% 2s 11.391 32.216% 4s 10.767 24.749% 4s 10.350 19.783% 5s
MDOVRPMBTW 11.055 40.153% 2s 10.833 37.232% 2s 11.150 41.336% 4s 10.171 28.688% 4s 10.110 27.872% 5s
MDVRPMBLTW 18.222 51.554% 2s 18.511 54.026% 2s 19.362 61.119% 4s 17.940 49.174% 5s 16.825 39.635% 6s
MDOVRPMBLTW 11.054 40.136% 2s 10.818 37.044% 2s 11.135 41.125% 4s 10.203 29.114% 4s 9.804 23.943% 6s

Avg. Gap 36.529% 34.866% 34.417% 27.588% 24.102%
# Best (Best/Total) 0/32 0/32 5/32 1/32 26/32

without TW, CaDA outperforms the reported CaDA‡, while in all other settings it is slightly inferior
to CaDA‡. In contrast, CCL consistently surpasses both CaDA and CaDA‡ across all 16 tasks.

Error Bar Analysis. Since the testing update probability Pts is set to 0.5 for N=100, we further
analyze the error bars of CCL under different random seeds. Fig. 4 plots the mean gap and its standard
deviation over three independent test runs of CCL. Across all 16 tasks, the standard deviation of
CCL’s gap remains tightly bound between 0.005% and 0.060%. Visually, the error bars in Figure 5
are negligible compared to the performance difference between CCL and CaDA/CaDA‡, indicating
that the choice of seed has minimal impact on test-time results.

C.1.2 STATISTICAL SIGNIFICANCE

We continue to include t-tests to assess statistical significance. We first collected the gap values
of 1,000 test instances from both CCL† and the strongest SOTA CaDA† from Table 1, then we
report the improvement percentages (∆) along with the corresponding p-values (shown in Table 6).
Here, the improvements are computed as the average gap reductions of CCL† over CaDA†, i.e.,
−(Gap(CCL†)− Gap(CaDA†))/Gap(CaDA†)× 100%. Across all 16 tasks, CCL achieves 7-51%
improvement. In particular, OVRPBLTW, OVRPBTW, OVRPLTW, and OVRPTW exceed 50%. All
p-values are below 0.001, indicating that these gains are statistically significant.

C.1.3 DETAILED RESULTS ON UNSEEN OUT-OF-DISTRIBUTION TASKS

We provide per-task results on 32 unseen out-of-distribution tasks. Each method is evaluated in a
zero-shot setting (i.e., directly tested without fine-tuning). For the N=50 setting, the test-time update
probability is set to Pts=0.15, and for N=100, it is set to Pts=0.02. Table 7 and Table 8 present the
full results under the N=50 and N=100 settings, respectively. For each task, we report the objective
(Obj.), performance gap (Gap), and inference time (Time). Additionally, the bottom rows summarize
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Table 8: Per-task results on 32 unseen out-of-distribution tasks (N=100).

Tasks RF-TE CaDA CaDA† CCL CCL†

Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓
VRPMB 14.888 10.189% 8s 14.710 8.822% 8s 14.652 8.399% 13s 15.322 13.438% 14s 14.936 10.530% 18s
MDCVRP 19.684 67.107% 10s 20.628 75.392% 11s 20.964 78.117% 18s 16.769 41.675% 17s 16.834 42.308% 24s
MDOVRP 10.683 34.368% 9s 10.605 33.387% 10s 9.849 23.695% 15s 10.095 26.715% 15s 9.753 22.409% 20s
MDVRPB 18.721 61.761% 9s 19.494 68.604% 11s 18.780 62.221% 17s 18.185 56.977% 19s 18.625 60.931% 25s
MDVRPL 20.100 70.498% 10s 20.867 77.336% 12s 21.001 78.277% 18s 17.494 47.699% 24s 18.407 55.828% 29s
OVRPMB 10.711 18.899% 7s 10.490 16.449% 8s 10.468 16.205% 13s 10.780 19.642% 14s 10.744 19.235% 19s
VRPMBL 15.198 10.375% 7s 15.016 9.011% 8s 14.949 8.536% 13s 15.761 14.464% 14s 15.538 12.835% 18s
MDOVRPB 11.752 35.659% 9s 11.790 36.137% 10s 11.104 28.078% 16s 10.959 26.274% 16s 10.533 21.340% 21s
MDOVRPL 10.703 34.620% 9s 10.574 32.985% 10s 9.854 23.749% 15s 10.272 29.033% 16s 9.718 21.967% 20s
MDVRPBL 19.606 68.898% 11s 19.827 70.875% 13s 18.693 60.860% 18s 18.446 58.520% 21s 17.588 51.069% 28s
MDVRPMB 18.698 76.325% 9s 19.458 83.817% 11s 18.374 73.239% 16s 18.997 79.149% 18s 17.544 65.282% 23s
MDVRPTW 29.468 53.283% 11s 25.955 34.783% 10s 28.751 49.517% 17s 26.901 39.557% 18s 29.016 50.829% 28s
OVRPMBL 10.709 18.877% 7s 10.486 16.399% 8s 10.470 16.225% 13s 10.883 20.748% 14s 10.749 19.284% 19s
VRPMBTW 28.256 10.840% 8s 28.317 11.074% 9s 28.310 11.038% 14s 28.100 10.239% 15s 27.971 9.722% 20s
MDOVRPBL 11.761 35.771% 9s 11.788 36.106% 10s 11.105 28.077% 16s 10.983 26.545% 16s 10.511 21.090% 21s
MDOVRPMB 11.748 53.650% 9s 11.692 53.010% 10s 10.945 43.077% 16s 10.876 42.044% 17s 10.431 36.189% 21s
MDOVRPTW 18.299 41.356% 10s 17.205 32.804% 10s 17.636 36.201% 17s 17.009 31.200% 17s 16.733 29.076% 23s
MDVRPBTW 30.681 39.926% 10s 30.176 37.559% 10s 31.716 44.719% 19s 30.677 39.759% 19s 31.269 42.473% 30s
MDVRPLTW 29.640 53.976% 11s 26.200 35.862% 10s 29.327 52.284% 17s 27.977 45.055% 23s 29.593 53.413% 31s
MDVRPMBL 19.216 80.892% 11s 19.460 83.444% 13s 18.183 71.054% 18s 18.479 73.647% 19s 18.112 70.333% 32s
OVRPMBTW 18.449 8.724% 8s 18.478 8.901% 9s 18.430 8.607% 15s 18.427 8.590% 16s 18.211 7.321% 21s
VRPMBLTW 28.604 10.805% 8s 28.658 11.002% 9s 28.641 10.925% 14s 28.374 9.907% 15s 28.582 10.698% 20s
MDOVRPBTW 19.590 36.897% 10s 19.305 34.918% 10s 19.341 35.157% 18s 18.764 30.960% 17s 18.265 27.473% 26s
MDOVRPLTW 18.232 40.817% 10s 17.221 32.923% 10s 17.665 36.428% 17s 16.838 29.857% 18s 16.707 28.872% 23s
MDOVRPMBL 11.751 53.691% 9s 11.670 52.726% 10s 10.931 42.890% 16s 10.830 41.416% 16s 10.415 35.973% 21s
MDVRPBLTW 31.044 41.408% 10s 30.537 39.033% 10s 32.239 46.923% 18s 30.667 39.535% 24s 34.176 55.800% 32s
MDVRPMBTW 29.650 54.395% 10s 29.383 53.001% 10s 30.722 60.046% 18s 28.388 47.661% 18s 30.844 60.585% 26s
OVRPMBLTW 18.452 8.739% 8s 18.476 8.887% 9s 18.415 8.516% 15s 18.404 8.443% 16s 18.476 8.877% 20s
MDOVRPBLTW 19.553 36.632% 10s 19.341 35.154% 10s 19.349 35.212% 18s 18.853 31.599% 17s 18.194 26.963% 25s
MDOVRPMBTW 18.888 46.216% 10s 18.735 45.019% 10s 18.761 45.232% 17s 17.823 37.814% 18s 17.638 36.412% 23s
MDVRPMBLTW 29.825 55.132% 10s 29.611 53.989% 11s 31.157 62.147% 18s 29.000 50.703% 23s 31.057 61.451% 35s
MDOVRPMBLTW 18.846 45.873% 10s 18.770 45.286% 10s 18.787 45.427% 17s 17.803 37.665% 17s 17.667 36.646% 24s

Avg. Gap 41.144% 39.834% 39.096% 34.892% 34.788%
# Best (Best/Total) 0/32 4/32 4/32 7/32 17/32

each method’s average gap and the number of tasks where it achieves the best performance, reported
in the format "# Best (best/total)". Across both the N=50 and N=100 settings, CCL† consistently
achieves the lowest average gap, demonstrating strong generalization to unseen out-of-distribution
tasks. In terms of per-task performance, CCL and CCL† together outperform all baselines on 27 out
of 32 tasks for N=50, and on 24 out of 32 tasks for N=100, further highlighting the robustness and
effectiveness of our method across different problem scales.

C.2 COMPARISON WITH TRADITIONAL SOLVER

Table 9: Comparison with traditional solvers.

Methods Obj. ↓ Time ↓ Avg. Time ↓
HGS-PyVRP 10.372 10m 10.0s
Gurobi-15m 10.568 120m 15.0m
LKH 10.392 63s 1.1s
CCL† 10.463 6s 0.2s

We follow RouteFinder (Berto et al., 2024a;b)
and CaDA (Li et al., 2025) in using HGS-
PyVRP (Wouda et al., 2024) as a strong tra-
ditional solver. Moreover, we compare our
method against additional traditional solvers,
including Gurobi (Gurobi Optimization, 2024)
and LKH (Lin and Kernighan, 1973) on CVRP
instances with 50 customers. The total times,
denoted as "Time", are accumulated over 1000 instances, which are exactly the same as the ones used
in (Berto et al., 2024a;b; Li et al., 2025). We also provide the average per-instance time for reference,
denoted as "Avg. Time". As shown in Table 9, the results of HGS-PyVRP are taken from (Li et al.,
2025), while the results of Gurobi and LKH are obtained using a 32-core CPU. Based on this, Gurobi
further uses 4 threads per CPU core, enabling 4×32 instances to be solved in parallel. LKH is executed
for 10 runs, with a 10-second time limit per instance. We set a 15-minute limit on Gurobi and report
its generated (approximate) solutions. These results show that CCL achieves performance comparable
to traditional solvers, while its total inference time is approximately 10×, 1,200×, and 100× faster than
LKH, Gurobi, and HGS-PyVRP, respectively (corresponding per-instance speedups of 5×, 75×, and
50×). This demonstrates that learning-based models are practical for real-time applications, especially
when solving multiple VRP instances simultaneously. Moreover, in multi-task scenarios, CCL can
learn generalizable patterns across different VRP variants, without requiring experts to manually
design heuristics. Once trained, the model can solve 48 VRP variants without re-training, which
will broaden its practical deployment. These findings show that both traditional algorithms and our
learning-based method have their own merits and demerits. Research in either direction provides
important insights for the VRP community.
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C.3 ABLATION RESULTS

C.3.1 ABLATION RESULTS WITHOUT RELD

Table 10: Ablation on CCL (variant w/o ReLD).

Methods Obj.↓ Gap↓ Time↓
CCL† 11.447 1.10% 6.5s
- ReLD (CCL) 11.464 1.28% 5.4s
- RGCR 11.477 1.40% 4.6s
- TSNR 11.518 1.76% 2.8s
- TSNR - RGCR 11.529 1.88% 2.0s

We conducted ablation studies to examine
whether the effectiveness of our method depends
on ReLD (Huang et al., 2025). Starting from
CCL†, we remove ReLD, RGCR, TSNR, and
both RGCR and TSNR. The corresponding av-
erage results across 16 in-distribution tasks are
presented in Table 10. The results show that both
RGCR and TSNR remain effective even without
ReLD. Moreover, CCL reduces the average gap
by 0.6% compared with CCL-TSNR-RGCR, whereas CCL† provides only a 0.18% improvement over
CCL. This indicates that the main performance improvement comes from CCL rather than ReLD.

C.3.2 ABLATION DETAILS WITHIN RGCR

To validate the effectiveness of RGCR, we test 16 in-domain VRP variants, each with 1,000 instances,
and compare RGCR with four alternatives: (1) "Concat Attributes", which directly concatenates
the constraint attributes; (2) "Concat Embeddings", which embeds each constraint into a high-
dimensional space and concatenates them; (3) "+ Random Scores" employ random importance
weights as the correlation scores; and (4) "+ Cosine Similarity" uses cosine similarity to measure
the correlation scores. We present both the model complexity and performance results on the left of
Fig. 2. Specifically, "# Params" denotes the total number of parameters in the encoder and decoder,
and "Time" is the accumulated inference time over 1,000 instances. "Avg. Gap" denotes the average
gap across all 16 tasks, while "w/ TW" and "w/o TW" refer to the subsets of 8 tasks with and without
time-window constraints, respectively. Compared with concatenating attributes, RGCR achieves
strong performance while increasing the model size by only 0.1M parameters and adding 1.3s to
inference time. Compared to random weights, RGCR shows modest performance in average gap
across the 16 tasks, but demonstrates clear superiority on tasks with time windows. These results
demonstrate that RGCR benefits more on complex tasks than on simpler ones. This may be attributed
to the fact that tasks without time windows often include a lot of padding information, which may
introduce some noise during model training. Moreover, RGCR introduces no additional parameters
compared to the "Concat Embeddings" setting, yet still reduces the average gap by 0.041%. This
indicates that the gains arise from improved constraint prioritization rather than model capacity.

C.3.3 DESIGN CHOICE OF ATTENTION STRATEGY IN TSNR

In TSNR, we adopt a cross-attention mechanism, where the node embedding serves as the query
and the unified node-constraint embedding as the key and value. The following theoretical analysis
and empirical results show that this approach reduces computational complexity compared to the
vanilla Transformer, which applies self-attention on the unified embedding. Specifically, the unified
embedding has dimension (N+(N+1))×D, while the context and node embeddings have dimensions
N ×D and (N +1)×D, respectively. Consequently, self-attention computes (2N +1)× (2N +1)
attention weights, whereas cross-attention computes only (N +1)× (2N +1). As shown in Table 11,
cross-attention achieves comparable performance while reducing inference time. For example, across
tasks with TW (i.e., the right half of Table 11), it narrows the gap from 0.727% to 0.689% and reduces
inference time by 1s.

C.4 PERFORMANCE COMPARISON UNDER MATCHED INFERENCE TIME

To further validate that the effectiveness of CCL is not merely due to increased inference time, we
introduce a heavy decoder variant of CaDA, denoted as CaDA-HD. This version deepens the original
1-layer Transformer decoder to 4 layers, resulting in an inference time that is comparable to CCL.
Table 12 presents the performance comparison between CaDA-HD and CCL under similar inference
budgets. These results indicate that CCL and CaDA-HD perform similarly on tasks without time
windows (TW), with CaDA-HD sometimes showing slightly better results. In contrast, on tasks with
TW, CCL consistently outperforms CaDA-HD by a significant margin. This suggests that CCL’s
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Table 11: Performance comparison under different attention mechanisms.

Tasks Cross-Attention Self-Attention Tasks Cross-Attention Self-Attention

Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓
CVRP 10.463 0.881% 6s 10.461 0.867% 7s VRPTW 16.177 0.907% 7s 16.186 0.955% 8s
OVRP 6.610 1.566% 6s 6.611 1.582% 7s OVRPTW 10.564 0.506% 7s 10.568 0.540% 8s
VRPB 9.875 1.921% 6s 9.873 1.896% 7s VRPBTW 18.419 0.678% 7s 18.427 0.719% 8s
VRPL 10.698 1.027% 6s 10.694 0.993% 7s VRPLTW 16.556 1.192% 7s 16.564 1.246% 8s
OVRPB 6.992 1.344% 6s 6.992 1.337% 7s OVRPBTW 11.718 0.416% 7s 11.721 0.444% 8s
OVRPL 6.610 1.569% 6s 6.611 1.582% 7s OVRPLTW 10.564 0.501% 7s 10.565 0.517% 8s
VRPBL 10.440 2.450% 6s 10.445 2.489% 7s VRPBLTW 18.758 0.899% 7s 18.769 0.952% 8s
OVRPBL 6.992 1.335% 6s 6.992 1.330% 7s OVRPBLTW 11.718 0.414% 7s 11.721 0.446% 8s

Avg. 8.585 1.512% 6s 8.585 1.510% 7s Avg. 14.309 0.689% 7s 14.315 0.727% 8s

Table 12: Performance comparison under matched inference time.

Tasks CaDA-HD CCL Tasks CaDA-HD CCL

Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓
CVRP 10.468 0.926% 6s 10.473 0.977% 5s VRPTW 16.293 1.631% 5s 16.190 0.979% 5s
OVRP 6.635 1.937% 5s 6.636 1.957% 5s OVRPTW 10.615 0.986% 5s 10.569 0.543% 6s
VRPB 9.908 2.267% 5s 9.916 2.352% 5s VRPBTW 18.529 1.280% 5s 18.430 0.738% 6s
VRPL 10.704 1.091% 5s 10.710 1.145% 5s VRPLTW 16.676 1.930% 5s 16.579 1.333% 6s
OVRPB 7.019 1.725% 5s 7.008 1.568% 5s OVRPBTW 11.772 0.874% 6s 11.721 0.436% 6s
OVRPL 6.633 1.908% 5s 6.637 1.968% 5s OVRPLTW 10.615 0.986% 5s 10.569 0.546% 6s
VRPBL 10.480 2.842% 5s 10.484 2.883% 5s VRPBLTW 18.872 1.498% 5s 18.773 0.976% 6s
OVRPBL 7.020 1.721% 5s 7.009 1.569% 5s OVRPBLTW 11.771 0.864% 6s 11.721 0.442% 6s

Avg. 8.608 1.802% 5s 8.609 1.802% 5s Avg. 14.393 1.256% 5s 14.319 0.749% 6s

design is particularly effective in handling temporally constrained problems, and its advantage is not
merely a result of longer inference time.

C.5 CONVERGENCE ANALYSIS

Figure 5: Training loss convergence.

Fig. 5 shows the training loss of CCL and CaDA. CCL
achieves faster convergence in the early epochs and
reaches a lower final loss compared to CaDA. For instance,
at epoch 50, the loss of CCL is 0.0129, while CaDA is
0.0198. By the end of training, CCL attains 0.0090 versus
0.0129 for CaDA. These results indicate that CCL con-
tributes to more efficient and effective training, yielding
both faster convergence and improved final performance.

C.6 GENERALIZATION OF CCL ON ADDITIONAL SCENARIOS

Same as RouteFinder (Berto et al., 2024a;b), CaDA (Li et al., 2025), MTPOMO (Liu et al., 2024), and
MvMoE (Zhou et al., 2024a), our work also focuses on solving routing problems solely. Moreover,
the design of CCL can be useful for other decision-making problems. We conduct a preliminary
experiment on the Flexible Flow Shop Problem (FFSP). When assigning an operation to a machine,
we incorporated TSNR to allow operation embeddings to integrate information from the current
machine, thereby updating the operation’s state. Results in Fig. 6 (a) show that the method converges,
but training can become slightly unstable from the middle to late stages. This suggests that certain
modifications to TSNR may be needed for the best performance, for example, to filter out irrelevant
information in the machine embeddings that does not contribute to subsequent decision-making.

We also conduct an experiment using graph-structured inputs instead of coordinates. Specifically,
each node’s coordinates were replaced with a vector of distances to all other nodes, which is then
concatenated with demand and other attributes to form the node inputs. We retrain CCL across 16
tasks, each with 50 customers. During the 300 training epochs, we report the training loss and the
validation average objective length across 128 CVRP instances (also with 50 customers). Fig. 6 (b)
shows that both the training loss and the validation scores of CCL converge quickly within the first
50 epochs, suggesting the potential of CCL for graph-structured VRPs. To further investigate the
effectiveness of RGCR and TSNR, we apply this setting to retrain the corresponding baseline model
(i.e., the version without RGCR and TSNR). Results in Fig. 6(c) show that, except for CVRP, CCL
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Figure 6: Generalizing CCL on the flexible flow shop problem (FFSP) and graph-structured input.

Table 13: Per-instance results on small-scale real-world instances. In CVRP, "X-n***" denotes the
customer number of each instance, while each VRPTW instance has 100 customers.

CVRP RF-TE CaDA CCL CCL-Ens VRPTW RF-TE CaDA CCL

Instances Opt. Obj. ↓ Gap ↓ Obj. ↓ Gap ↓ Obj. ↓ Gap ↓ Obj. ↓ Gap ↓ Instances Opt. Obj. ↓ Gap ↓ Obj. ↓ Gap ↓ Obj. ↓ Gap ↓
X-n101-k25 27591 29087 5.422% 28765 4.255% 28765 4.255% 28727 4.117% R101 1638 1604 -2.058% 1612 -1.569% 1619 -1.142%
X-n106-k14 26362 27162 3.035% 27069 2.682% 26966 2.291% 26864 1.904% R102 1467 1567 6.846% 1572 7.187% 1553 5.891%
X-n110-k13 14971 15314 2.291% 15425 3.033% 15386 2.772% 15185 1.429% R103 1209 1493 23.521% 1458 20.625% 1444 19.467%
X-n115-k10 12747 13338 4.636% 13143 3.107% 13334 4.605% 13162 3.256% R104 972 1315 35.358% 1325 36.387% 1308 34.637%
X-n120-k6 13332 13765 3.248% 13741 3.068% 13852 3.900% 13677 2.588% R105 1355 1456 7.430% 1463 7.947% 1443 6.471%
X-n125-k30 55539 58525 5.376% 57943 4.328% 57671 3.839% 57442 3.426% R106 1235 1455 17.852% 1420 15.017% 1405 13.802%
X-n129-k18 28940 29598 2.274% 29517 1.994% 29599 2.277% 29458 1.790% R107 1065 1388 30.378% 1378 29.438% 1327 24.648%
X-n134-k13 10916 11585 6.129% 11468 5.057% 11464 5.020% 11464 5.020% R108 932 1310 40.543% 1285 37.861% 1266 35.822%
X-n139-k10 13590 13812 1.634% 13863 2.009% 13902 2.296% 13852 1.928% R109 1147 1601 39.594% 1394 21.545% 1359 18.493%
X-n143-k7 15700 16257 3.548% 16233 3.395% 15985 1.815% 15985 1.815% R110 1068 1527 42.978% 1384 29.588% 1282 20.037%
X-n148-k46 43448 45036 3.655% 45395 4.481% 45324 4.318% 44953 3.464% R111 1049 1473 40.460% 1424 35.787% 1366 30.257%
X-n153-k22 21220 23478 10.641% 22815 7.516% 23245 9.543% 23172 9.199% R112 949 1357 43.053% 1278 34.725% 1210 27.556%
X-n157-k13 16876 17339 2.744% 17225 2.068% 17184 1.825% 17131 1.511% RC101 1620 1666 2.852% 1663 2.667% 1661 2.544%
X-n162-k11 14138 14664 3.720% 14584 3.155% 14702 3.989% 14672 3.777% RC102 1457 1731 18.773% 1717 17.813% 1646 12.941%
X-n167-k10 20557 21435 4.271% 21305 3.639% 20987 2.092% 20934 1.834% RC103 1258 1760 39.905% 1656 31.638% 1624 29.094%
X-n172-k51 45607 48129 5.530% 47727 4.648% 48252 5.800% 47836 4.887% RC104 1132 1610 42.188% 1497 32.209% 1524 34.593%
X-n176-k26 47812 51400 7.504% 52177 9.130% 51485 7.682% 51164 7.011% RC105 1514 1867 23.340% 1755 15.941% 1751 15.677%
X-n181-k23 25569 26097 2.065% 26228 2.577% 26180 2.390% 26075 1.979% RC106 1373 1664 21.221% 1634 19.035% 1621 18.088%
X-n186-k15 24145 25140 4.121% 24909 3.164% 25046 3.732% 25002 3.549% RC107 1208 1683 39.344% 1601 32.555% 1498 24.027%
X-n190-k8 16980 17892 5.371% 17726 4.393% 17547 3.339% 17547 3.339% RC108 1114 1768 58.679% 1564 40.370% 1504 34.985%
X-n195-k51 44225 47390 7.157% 46585 5.336% 46621 5.418% 46121 4.287% RC201 1262 1577 24.980% 1606 27.278% 1533 21.493%
X-n200-k36 58578 61199 4.474% 61048 4.217% 61388 4.797% 61388 4.797% RC202 1092 1553 42.177% 1480 35.494% 1433 31.191%
X-n209-k16 30656 31876 3.980% 32005 4.400% 32334 5.474% 32216 5.089% RC203 924 1465 58.601% 1490 61.308% 1439 55.787%
X-n228-k23 25742 28798 11.872% 28328 10.046% 27641 7.377% 27641 7.377% RC204 784 1372 75.112% 1278 63.114% 1225 56.350%
X-n237-k14 27042 29595 9.441% 29830 10.310% 29816 10.258% 29816 10.258% RC206 1051 1573 49.653% 1447 37.665% 1456 38.522%
X-n247-k50 37274 40639 9.028% 40456 8.537% 41266 10.710% 41266 10.710% RC207 963 1694 75.927% 1503 56.091% 1433 48.821%
X-n251-k28 38684 40399 4.433% 40360 4.333% 40725 5.276% 40505 4.707% RC208 776 1465 88.764% 1433 84.641% 1335 72.014%

Avg. Gap 5.096% 4.625% 4.707% 4.261% Avg. Gap 36.573% 30.828% 27.114%
# Best (Best/Total) 3/27 8/27 4/27 12/27 # Best (Best/Total) 1/27 2/27 24/27

consistently reduces the average length compared to the baseline. This demonstrates that CCL is a
plug-and-play strategy, which can be integrated into VRP solvers with various input structures.

C.7 EVALUATION ON REAL-WORLD BENCHMARK INSTANCES

Table 13 and Table 14 present per-instance results on small and large-scale real-world benchmarks,
respectively. The small-scale set consists of 27 CVRP and 27 VRPTW instances, while the large-scale
set contains 60 VRPTW instances. Following (Zhou et al., 2024a), the model is trained on 16 synthetic
tasks with N = 100 and directly applied to all instances in a zero-shot manner. For CVRP, we set
the test-time update probability Pts to 0.1, denoted as CCL. We also design an ensemble variant,
CCL-Ens, which applies the trained model with four update probabilities Pts ∈ {0.1, 0.15, 0.25, 0.3}
and selects the best solution. For small-scale VRPTW, Pts is fixed at 0.25.

On the CVRP benchmark, CCL yields a slightly higher average gap compared to CaDA. However,
its ensemble variant CCL-Ens achieves the best overall performance, demonstrating the benefit of
test-time adaptation via varying update probabilities. In total, CCL and CCL-Ens together outperform
baselines on 16 out of 27 instances. On the VRPTW benchmark, CCL attains the lowest average gap
and surpasses baselines on 24 out of 27 small-scale instances and 35 out of 60 large-scale instances.
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These results indicate that our method can be effectively deployed in real-world settings, especially
on complex constraints such as time windows.

Table 14: Per-instance results on large-scale real-world instances. The customer number is 600.

VRPTW RF-TE CaDA CCL

Instances Opt. Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓
C1-6-1 14077 17537 24.583% 1.4s 17355 23.290% 1.5s 16418 16.633% 2.5s
C1-6-10 13618 35201 158.498% 1.2s 24365 78.924% 1.3s 17861 31.162% 1.5s
C1-6-2 13948 20505 47.007% 1.1s 21571 54.650% 1.1s 20980 50.413% 1.6s
C1-6-3 13757 22648 64.635% 1.1s 23142 68.226% 1.1s 24090 75.117% 1.6s
C1-6-4 13539 22743 67.986% 1.1s 22601 66.937% 1.1s 23787 75.698% 1.7s
C1-6-5 14067 18265 29.845% 1.2s 17643 25.423% 1.1s 16368 16.359% 1.6s
C1-6-6 14071 22405 59.229% 3.3s 19998 42.123% 3.3s 19481 38.449% 4.9s
C1-6-7 14067 26369 87.456% 1.3s 23920 70.046% 1.2s 16848 19.771% 1.6s
C1-6-8 13991 26618 90.248% 1.2s 20504 46.549% 1.1s 16844 20.390% 1.6s
C1-6-9 13665 60014 339.196% 1.5s 36753 168.967% 1.3s 18274 33.733% 1.6s
C2-6-1 7752 15193 95.983% 3.1s 12018 55.027% 3.1s 12410 60.084% 4.9s
C2-6-10 7124 29321 311.586% 1.3s 17609 147.182% 1.1s 12161 70.707% 1.6s
C2-6-2 7472 14789 97.939% 3.1s 14420 93.000% 3.1s 13642 82.587% 4.7s
C2-6-3 7215 15033 108.358% 3.1s 16259 125.350% 3.1s 18351 154.345% 4.7s
C2-6-4 6877 15039 118.685% 3.1s 16236 136.091% 3.1s 18952 175.585% 4.8s
C2-6-5 7554 22865 202.695% 1.2s 13343 76.640% 1.1s 13040 72.628% 1.5s
C2-6-6 7450 22171 197.605% 1.2s 13312 78.689% 1.1s 12032 61.508% 1.5s
C2-6-7 7491 25219 236.644% 3.1s 14632 95.320% 3.1s 12908 72.307% 4.8s
C2-6-8 7304 22619 209.692% 1.2s 13469 84.413% 1.1s 12266 67.942% 1.5s
C2-6-9 7303 23663 224.009% 3.1s 15017 105.622% 3.1s 12569 72.103% 4.7s
R1-6-1 21274 29154 37.039% 1.2s 25041 17.706% 1.1s 26556 24.827% 1.6s
R1-6-10 17584 30508 73.502% 1.2s 26126 48.581% 1.1s 26121 48.552% 1.6s
R1-6-2 18520 26017 40.482% 1.1s 26262 41.805% 1.1s 27011 45.849% 1.7s
R1-6-3 16875 26105 54.697% 1.1s 26601 57.636% 1.1s 28093 66.478% 1.6s
R1-6-4 15721 24450 55.526% 1.1s 24521 55.978% 1.1s 26939 71.359% 1.9s
R1-6-5 19295 31715 64.370% 1.2s 24975 29.438% 1.1s 25367 31.470% 1.8s
R1-6-6 17764 25692 44.632% 1.1s 25559 43.883% 1.1s 26890 51.376% 1.6s
R1-6-7 16496 25749 56.090% 1.1s 26401 60.043% 1.1s 26693 61.813% 1.6s
R1-6-8 15584 23857 53.084% 1.1s 24533 57.421% 1.1s 24796 59.109% 1.5s
R1-6-9 18474 30700 66.179% 1.2s 25067 35.687% 1.1s 25931 40.364% 1.7s
R2-6-1 15145 31072 105.159% 1.2s 22482 48.442% 1.1s 21855 44.302% 1.6s
R2-6-10 11837 35862 202.965% 1.2s 23395 97.643% 1.1s 19894 68.066% 1.6s
R2-6-2 12976 22676 74.749% 1.0s 21124 62.789% 1.0s 24214 86.602% 1.6s
R2-6-3 10455 20072 91.979% 1.0s 19274 84.347% 1.0s 24258 132.016% 1.8s
R2-6-4 7915 16925 113.848% 1.0s 16589 109.603% 1.0s 22399 183.012% 1.7s
R2-6-5 13790 33895 145.790% 1.2s 22311 61.789% 1.1s 21581 56.495% 1.7s
R2-6-6 11848 22695 91.555% 1.1s 20914 76.522% 1.0s 22125 86.744% 1.5s
R2-6-7 9770 19723 101.867% 1.0s 18900 93.443% 1.0s 23231 137.772% 1.8s
R2-6-8 7512 16596 120.918% 1.0s 16716 122.515% 1.0s 23249 209.479% 2.0s
R2-6-9 12737 35883 181.727% 1.3s 22963 80.289% 1.1s 20863 63.801% 1.7s
RC1-6-1 16944 44173 160.697% 1.3s 28659 69.138% 1.2s 22506 32.824% 1.7s
RC1-6-10 15651 47967 206.473% 1.3s 33429 113.586% 1.2s 23311 48.940% 1.6s
RC1-6-2 15891 24480 54.053% 1.1s 25282 59.100% 1.1s 23526 48.050% 1.6s
RC1-6-3 15181 23667 55.896% 1.1s 23640 55.718% 1.1s 23809 56.831% 1.6s
RC1-6-4 14753 23076 56.414% 1.1s 22451 52.177% 1.1s 22178 50.327% 1.6s
RC1-6-5 16536 45720 176.483% 1.3s 29036 75.589% 1.2s 22505 36.095% 1.7s
RC1-6-6 16473 47520 188.467% 1.3s 30741 86.611% 1.2s 22586 37.107% 1.7s
RC1-6-7 16055 45359 182.517% 1.3s 31323 95.094% 1.2s 21936 36.628% 1.6s
RC1-6-8 15892 42548 167.736% 1.3s 32086 101.903% 1.2s 22792 43.420% 1.6s
RC1-6-9 15804 47394 199.896% 1.3s 33968 114.940% 1.2s 24490 54.966% 1.7s
RC2-6-1 11966 46194 286.041% 1.3s 26852 124.401% 1.2s 20004 67.172% 1.6s
RC2-6-10 8973 44372 394.489% 1.3s 28880 221.844% 1.2s 17107 90.643% 1.6s
RC2-6-2 10337 21343 106.474% 1.1s 20623 99.509% 1.1s 21034 103.485% 1.6s
RC2-6-3 8895 17942 101.711% 1.0s 17270 94.156% 1.0s 22858 156.979% 1.6s
RC2-6-4 6968 14864 113.333% 1.0s 14459 107.521% 1.0s 18521 165.820% 1.6s
RC2-6-5 11081 45546 311.039% 1.3s 27674 149.750% 1.2s 19270 73.906% 1.6s
RC2-6-6 10831 46487 329.223% 1.3s 27920 157.790% 1.2s 18374 69.651% 1.6s
RC2-6-7 10289 46929 356.091% 1.3s 28173 173.806% 1.2s 18364 78.475% 1.6s
RC2-6-8 9779 45416 364.424% 1.3s 29578 202.464% 1.2s 18548 89.672% 1.7s
RC2-6-9 9436 44922 376.070% 1.3s 29079 208.171% 1.2s 16951 79.642% 1.7s

Avg. 12694 29558 145.593% 1.4s 22917 88.188% 1.4s 20634 70.961% 2.0s
# Best (Best/Total) 10/60 15/60 35/60
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C.8 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed LLMs for polishing the paper and assisting with simple coding tasks. For writing
refinement, we first drafted the original statements in English and then used LLMs to improve fluency.
For coding, most of the implementations and modules were done based on Routefinder (Berto et al.,
2024b), while the design of our proposed CCL was completed independently. LLMs were only used
for basic Python coding tasks, such as aligning feature dimensions.
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