
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CHAIN-OF-CONTEXT LEARNING: DYNAMIC CON-
STRAINT UNDERSTANDING FOR MULTI-TASK VRPS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-task Vehicle Routing Problems (VRPs) aim to minimize routing costs while
satisfying diverse constraints. Existing solvers typically adopt a unified rein-
forcement learning (RL) framework to learn generalizable patterns across tasks.
However, they often overlook the constraint and node dynamics during the deci-
sion process, making the model fail to accurately react to the current context. To
address this limitation, we propose Chain-of-Context Learning (CCL), a novel
framework that progressively captures the evolving context to guide fine-grained
node adaptation. Specifically, CCL constructs step-wise contextual information
via a Relevance-Guided Context Reformulation (RGCR) module, which adaptively
prioritizes salient constraints. This context then guides node updates through a
Trajectory-Shared Node Re-embedding (TSNR) module, which aggregates shared
node features from all trajectories’ contexts and uses them to update inputs for
the next step. By modeling evolving preferences of the RL agent, CCL captures
step-by-step dependencies in sequential decision-making. We evaluate CCL on
48 diverse VRP variants, including 16 in-distribution and 32 out-of-distribution
(with unseen constraints) tasks. Experimental results show that CCL performs
favorably against the state-of-the-art baselines, achieving the best performance on
all in-distribution tasks and the majority of out-of-distribution tasks.

1 INTRODUCTION

The vehicle routing problem (VRP) seeks to determine optimal routes for a fleet of vehicles to serve a
set of customers while satisfying operational constraints such as vehicle capacity. Efficiently solving
VRPs can significantly reduce transportation costs and improve service quality, making it a critical
task in logistics and supply chain management (Toth and Vigo, 2014; Konstantakopoulos et al.,
2022; Garaix et al., 2010; Dondo et al., 2011). Traditional approaches (Perron and Furnon; Lin and
Kernighan, 1973; Vidal et al., 2020) often rely on heuristic-based solvers, such as LKH (Lin and
Kernighan, 1973) and HGS (Vidal et al., 2020). While effective in certain settings, these methods
are computationally intensive and typically require extensive hand-crafted rules to adapt to different
problem variants. Recently, neural networks have emerged as a promising alternative due to their
flexibility and ability to learn generalizable policies (Joshi et al., 2019; Kool et al., 2018; Kwon
et al., 2020; Wu et al., 2021; Ma et al., 2023; Sun and Yang, 2023; Bengio et al., 2021; Bogyrbayeva
et al., 2024; Hottung and Tierney, 2020; Hottung et al., 2021; Xin et al., 2021; Chalumeau et al.,
2023; Ma et al., 2023; Chen et al., 2023a). These neural solvers are trained offline using historical
or synthetically generated instances, enabling fast inference at test time for a given VRP variant.
However, real-world VRPs often involve more complex and diverse constraints beyond vehicle
capacity, leading to multi-task VRPs, where each task involves a different combination of constraints.
This makes the neural VRP solvers for a specific single task less effective due to the massive yet
necessary re-training or fine-tuning.

In multi-task VRPs, the commonly studied constraints include backhaul demands (B) (Zong et al.,
2022; Kong et al., 2024), open routes (O) (Tyasnurita et al., 2024; Bezerra et al., 2023), route duration
limits (L) (Oliveira et al., 2025), customer time windows (TW) (Zhang et al., 2022; Lin et al., 2021),
mixed backhaul (MB) (Wang et al., 2024), and multi-depot settings (MD) (Karakatič and Podgorelec,
2015). To tackle the multi-task scenario, a number of neural models (Liu et al., 2024; Zhou et al.,
2024a; Berto et al., 2024a; Li et al., 2025) have been developed using a unified reinforcement
learning (RL) framework, which encodes both constraint information and node attributes into static

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

embeddings. The decoding stage follows a Markov Decision Process (MDP). For a given VRP task,
the model combines a global context, such as current time or remaining vehicle capacity, with these
static node embeddings to select the next node. Since node priorities change across decoding, static
node embeddings, which remain fixed across decoding steps, cannot reflect this dynamic property.
While the context is updated, such a misaligned context-node pair may lead to inaccurate state
estimation, thereby misjudging the next decision.

To overcome this limitation, we argue that constraint requirements should be explicitly integrated
into the step-wise context and used to adaptively refine node-level representations. In single-task
VRPs, dynamic decoding mechanisms, such as the removal of visited nodes (Xin et al., 2020),
have been used to reflect evolving routing decisions. While conceptually related, extending such a
mechanism to multi-task settings introduces three unique challenges: (1) The importance of each
constraint may vary across decoding steps, e.g., the open route constraint becomes more critical as
a vehicle’s sub-route nears completion. Applying uniform attention across all constraints at each
step, such as the one in (Li et al., 2025), limits the model’s ability to focus on the most important
ones. Moreover, performing RL-based node refinement into VRPs poses issues with efficiency
and sequential dependencies. On the one hand, (2) multi-trajectories involve different contexts at
each step, and re-embedding the nodes for each context (e.g., (Xin et al., 2020)) causes a heavy
computational burden. On the other hand, (3) multi-task VRP solvers (Li et al., 2025; Berto et al.,
2024a; Zhou et al., 2024a) typically refine the node representations at step-i using only the initial
(step-0) embeddings and the current context. A misaligned state may fail to capture the status of
the current decoding step, thereby limiting the model’s ability to accurately represent the Markov
property, which is essential for coherent sequential decision-making.

To address these challenges, we propose Chain-of-Context Learning (CCL), a novel framework for
constraint-aware, step-wise reasoning in multi-task VRPs. Specifically, to tackle Challenge (1),
CCL constructs step-wise contextual information using a Relevance-Guided Context Reformulation
(RGCR) module. RGCR combines constraint-specific attributes (e.g., remaining capacity for B
and current time for TW), and adaptively emphasizes each constraint according to its similarity
to the current node embedding. To address Challenge (2), we design a Trajectory-Shared Node
Re-embedding (TSNR) module, which enables efficient refinement of node features. TSNR employs
shared node embeddings as queries and uses multi-trajectory contexts as keys and values in a
multi-head attention mechanism, avoiding redundant re-embedding for each trajectory. To resolve
Challenge (3), TSNR updates node embeddings in the environment and feeds them as queries to
the next decoding step. This design allows CCL to capture sequential dependencies and model the
evolution of node importance over time.

We evaluate CCL on the combinations of six core constraints (B, O, L, TW, MB, MD), resulting in 16
in-distribution and 32 out-of-distribution multi-task VRP variants. Our contributions are summarized
as follows: (1) Conceptually, we correct a misalignment in prior VRP formulation, by learning
step-wise context and node status for a more accurate state. (2) Methodologically, we propose RGCR
to integrate constraint requirements into the step context, along with TSNR to facilitate effective
refinement and capture sequential dependencies. (3) Experimentally, our method achieves superior
results on all seen (in-distribution) tasks and the majority of unseen (out-of-distribution) tasks.

2 PRELIMINARIES

Problem Definition. The classical vehicle routing problem (VRP) aims to determine a set of sub-
routes that minimize total travel cost while satisfying customer demands. In each sub-route, a vehicle
departs from the depot, delivers goods to a subset of customers, and returns to the depot, subject to
the following standard constraints: (1) each sub-route starts and ends at the depot; (2) each customer
is visited exactly once; and (3) the total demand on each sub-route does not exceed the vehicle’s
capacity. Formally, the problem is defined on a graph where the set of nodes V = {v0, v1, . . . , vN}
represents the depot (v0) and N customer locations. Each customer node vi is associated with a
demand value δi ∈ [0, Q], where Q denotes the vehicle’s capacity.

Following (Berto et al., 2024b), we extend this classical setting by considering six additional con-
straints commonly studied in multi-task VRPs: (1) Open Routes (O): In problems like OVRP, this
constraint is denoted by a binary flag o ∈ {0, 1}, which defines whether a route must return to the
depot. When o = 1, vehicles are not required to return to the depot after completing their route. (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Duration Limits (L): In problems like VRPL, this constraint enforces a maximum route length l to
promote workload balancing across sub-routes. (3) Backhaul Demands (B): In problems like VRPB,
customer nodes are classified into linehaul and backhaul types. The vehicle must first complete all
linehaul deliveries (goods from depot to customers) before collecting backhaul items (goods from
customers to depot). Each customer has two types of demand: δli for linehaul and δbi for backhaul,
with δli, δ

b
i ∈ [0, Q]. (4) Mixed Backhaul (MB): In problems like VRPMB, this constraint relaxes the

linehaul-before-backhaul requirement, allowing both types of customers to appear in any order along
the route, while still respecting the capacity constraint. (5) Time Windows (TW): In problems like
VRPTW, each customer vi is associated with an early time tei , a late time tli, and a service duration tsi .
Vehicles must arrive before tli and wait if they arrive earlier than tei , ensuring service occurs within the
specified window. (6) Multi-Depot (MD): In problems like MDVRP, this constraint allows multiple
depot nodes instead of a single depot. Vehicles may begin their routes from any depot in the set,
introducing additional complexity in depot assignment.

Markov Decision Process for Multi-Task VRPs. The multi-task VRP solver acts as a single agent,
using the encoder-decoder architecture as its policy network. The policy generates a node sequence
autoregressively, using a Markov Decision Process (MDP) environment

M = (S,A,P,R). (1)

(1) State (S) consists of node embeddings and context embeddings. During decoding, following (Liu
et al., 2024; Zhou et al., 2024a; Berto et al., 2024a;b; Li et al., 2025), the model explores from diverse
starting points, forming multiple trajectories in parallel. Each trajectory maintains its own context
(e.g., current time and used capacity), while all trajectories share the same set of node embeddings.

(2) Action (A) corresponds to selecting the next node to visit. The policy network takes the current
state as input and generates a trajectory-specific probability distribution over feasible nodes, allowing
each trajectory to independently select its next action based on the predicted probabilities.

(3) Transition (P) updates the environment after a node is selected. This modifies the environmental
routing information, such as the vehicle’s current position and remaining capacity. The updated
environment then defines the next context embedding and continues the decision process.

(4) Reward (R) is defined as the negative total route length. After all nodes are visited, each trajectory
computes its own negative route length as the reward. These rewards, together with the action
log-probabilities produced by the policy network, are aggregated to form a single training objective.
The policy network parameters θ are then updated using the REINFORCE gradient (Williams, 1992):

∇θJ(θ) =
1

N

N∑
i=1

(Ri − b)∇θ log πθ(ai | si), (2)

where i is the index of the trajectory and πθ(ai | si) denotes the probability assigned to action ai
conditioned on state si. b is a shared baseline used to reduce gradient variance, computed as the
average reward over all trajectories.

3 METHODOLOGY

Existing works only update the context embeddings while keeping node embeddings fixed. As
described in Section 2, the current state should include both candidate node embeddings and context
embeddings. In our method, we treat context and node status as a pair, ensuring that both reflect the
status of the current decoding step. During environment updates, we update both simultaneously to
maintain alignment between context and node information.

3.1 OVERVIEW OF CHAIN-OF-CONTEXT LEARNING (CCL)

Fig. 1 (a) illustrates the training workflow of our proposed Chain-of-Context Learning (CCL).
It adopts the classic encoder-decoder paradigm, with Relevance-Guided Context Reformulation
(RGCR) and Trajectory-Shared Node Re-embedding (TSNR) integrated into the decoding stage.
During encoding, each VRP instance-comprising constraints, depot, and node features-is embedded
using a transformer encoder. Instances from 16 tasks, derived from the four constraints (B, L, O,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Concat

MHA with Distance Bias

Multi-Layer Perceptron

Relevance-Guided Context
Reformulation (RGCR)

Trajectory-Shared
 Node Re-embedding (TSNR)

Linear Layers

(a) Chain-of-Context Learning (CCL) (b) Relevance-Guided Context Reformulation (c) Trajectory-Shared Node Re-embedding

U
pd

at
e



E
nc

od
in

g
D

ec
od

in
g

Node
Embeddings

Current node
Embedding

Constraint
Attributes

qkv

B LO TW

Traj. 1 Traj. 2 Traj. N

Relevance
Measurement

Feature Weighting

Linear

Concat & Linear

Add

Add

Update
Context

Update
Nodes

Add & Norm

Norm

Add

Input
Attributes

Context
Embedding

Encoder

Decoder

Scores

Concat

Action
Probability

CCL

RGCR TSNR

)( J

Figure 1: (a) CCL enables fine-grained constraint understanding by integrating RGCR and TSNR into
the decoding stage. (b) and (c) illustrate the internal architectures of RGCR and TSNR, respectively.

and TW), are combined into a single batch for multi-task learning. In the RL-based decoding stage,
CCL employs a lightweight architecture to make decisions, with multiple trajectories explored in
parallel from diverse starting points. At each decision step, RGCR aggregates the constraint-specific
attributes and current node embedding to generate a context embedding. After collecting the context
embeddings from all trajectories, TSNR refines the historical node embeddings by jointly processing
them with the multi-trajectory contexts. These refined node embeddings are passed to the next step,
progressively influencing context construction and forming a Chain-of-Context across decoding
steps. The constructed context and refined node features are used together to make the decision, with
all components jointly optimized using an RL objective. The inference procedure is similar to the
training setup, except it is extended to evaluate generalization on two additional constraints, i.e., MB
and MD, which are held out during training for zero-shot evaluation.

3.2 ENCODER

In the encoding stage, as shown in Fig. 1 (a), the inputs includes the contraint flag h̃ and the node
attributes h = {h0,h1, . . . ,hN}. These attributes are embeded through a transformer-based encoder
E(·), resulting in node embeddings H ∈ R(N+1)×D:

H = E(h̃,h). (3)

Following (Li et al., 2025), the constraint label h̃ ∈ R4 is a one-hot vector to indicate the presence
of 4 constraints (i.e., B, O, L, TW). The depot attribute h0 = {cx0 , c

y
0, o, l} ∈ R4 includes the depot

coordinates, and labels of O and L. {h1,h2, . . . ,hN} ∈ RN×7 are customer features, with each
node hi = {[cxi , c

y
i], [δ

l
i, δ

b
i], [t

e
i , t

l
i, t

s
i]} specifing the coordinates, demands, and time windows. For

simplicity, the encoder’s input processing and architecture are provided in Appendix B.1.

3.3 RELEVANCE-GUIDED CONTEXT REFORMULATION (RGCR)

In multi-constraint scenarios, RGCR automatically learns the relative importance of constraints at
each step, enabling the model to focus on the most critical ones. In Fig. 1(b), RGCR undertakes
three steps to formulate context embedding: (1) generating embedding for each constraint, (2)
computing the correlation between each constraint embedding and the current node embedding, and
(3) adaptively aggregating constraint embeddings based on correlation scores.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In the constraint embedding formulation, we first extract the corresponding attributes and then project
them through separate linear layers. For the i-th trajectory at decoding step j, the current node index
is denoted as τi,j . The attributes for each constraint are summarized as follows:

cBi,j = {δlτi,j , δ
b
τi,j , ci,j}, cLi,j = {cxτi,j , c

y
τi,j , di,j},

cOi,j = {cxτi,j , c
y
τi,j , d

′

i,j}, cTW
i,j = {teτi,j , t

l
τi,j , t

s
τi,j , ti,j},

(4)

where δl, δb denote the linehaul and backhaul demands, and ci,j is the remaining vehicle capacity.
The coordinates cx, cy specify node locations in the two-dimensional space, d is the remaining
distance of the current sub-route, and d′ is the total distance traveled. Moreover, te, tl, ts, t represent
the earliest, latest, service times, and current time, respectively. These attributes are separately fed to
linear layers for producing constraint embeddings, denoted as:

Ck
i,j = H(cki,j), (5)

where Ck
i,j ∈ RD, k ∈ {B,L,O, TW} is the constraint type, and H(·) denotes the linear layer used

for projection. In correlation computing, these constraint embeddings interact with the current node
embedding to produce correlation scores, denoted as:

ski,j = Hτi,j ·Ck
i,j , (6)

where Hτi,j ∈ RD is the current node embedding, and · denotes the dot product used for calculating
the correlation scores (or similarities). In constraint aggregating, the unified constraint embedding is
obtained by adding the original and enhanced constraint embedding, denoted as Si,j = S̃i,j + Si,j .
The original part is defined as the concatenation of the four constraint embeddings from Eq. (5):

S̃i,j = H(Concat(CB
i,j ,C

L
i,j ,C

O
i,j ,C

TW
i,j)), (7)

where Concat(·) denotes concatenation along the feature dimension, resulting in a concatenated
embedding of size N × 4D. H(·) is a linear layer that projects the 4D input back to D, resulting in
S̃i,j ∈ RD. For the enhanced part, we apply a weighted sum over the constraint embeddings:

Si,j = sBi,jC
B
i,j + sLi,jC

L
i,j + sOi,jC

O
i,j + sTW

i,j CTW
i,j . (8)

The final context embedding is aggregated from the unified constraint and current node embeddings:

C̃i,j = H(Concat(Si,j ,Hτi,j)). (9)

3.4 TRAJECTORY-SHARED NODE RE-EMBEDDING (TSNR)

To capture node-specific states influenced by the current context, we aggregate contextual semantics
from other nodes and multi-trajectory contexts into the node embeddings. As illustrated in Fig. 1
(c), this is achieved via a multi-head attention mechanism, where node embeddings serve as queries,
and the unified node-context information acts as keys and values. Formally, at step j, we denote the
context embedding for N trajectories as C̃j = Concat(C̃1,j , C̃2,j , . . . , C̃N,j), where C̃j ∈ RN×D.
By using the last step node Hj−1 ∈ R(N+1)×D, the query, keys, and values are represented as

qj = H(Norm(Hj−1)), kj ,vj = H(Norm(Concat(Hj−1, C̃j))), (10)

where qj ∈ RN×D and kj ,vj ∈ R(N+1)×D. Norm(·) denotes the Root Mean Square (RMS)
normalization layer (Zhang and Sennrich, 2019). For simplicity, we use the same notation H(·) to
denote the module that produces kj and vj . To calculate attention weights, we further incorporate
a distance-based bias to prevent the model from overfitting to TW. This bias term, denoted as
Bj = Concat(dn−n,dc−n

j), consists of two parts: the node-node and node-context distance:

dn−n = {dm,n|m,n ∈ {0, 1, . . . , N}},
dc−n
j = {dm,n|m ∈ {τ1,j , τ2,j , . . . , τN,j}, n ∈ {0, 1, . . . , N}},

(11)

where dn−n ∈ R(N+1)×(N+1), dc−n
j ∈ RN×(N+1) and each element of it takes the form dm,n =

∥cm − cn∥2 with c = {cx, cy} denoting Euclidean coordinates. For the node-context part, we

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

extract the coordinates of the current node for each trajectory (indexed by {τ1,j , τ2,j , . . . , τN,j}) and
compute their distances to all candidate nodes. The attention weights are subsequently computed as

Aj = Softmax(qjk
⊤
j /

√
D +Bj), (12)

where Aj ,Bj ∈ R(N+1)×(N+1+N), and Softmax(·) is the softmax operation. The re-embedded
node representations are computed as follows:

H̃j = qj +Ajvj , Hj = H̃j + MLP(Norm(H̃j)). (13)
We preserve the updated node embeddings Hj from the current step and use them as input queries
for the next step, with update frequency controlled by probabilities Ptr (training) and Pts (testing).

3.5 STEP-WISE DECISION AND TRAINING OBJECTIVE

Once the context embedding C̃j ∈ RN×D and current node embeddings Hj ∈ R(N+1)×D are
obtained, we use them to predict the selection of the next node, and then compute the RL objective
function to optimize model parameters. In the step-wise decision stage, we employ a classic decoder
(shown in Appendix B.2) to acquire the probability of selecting the next node. This procedure is
represented as follows:

Pj = D(C̃j ,Hj ,Mj), (14)
where Pj ∈ RN×(N+1), D(·) denotes the decoder, while Mj is a mask that prevents revisiting
previously selected nodes. If all constraints are satisfied, the node with the highest probability
is selected as the next node to visit. Otherwise, the depot is selected. After one interaction, the
model generates N solution trajectories, each denoted as τi = {τi,1, τi,2, . . . , τi,N ′}, where i ∈
{1, 2, . . . , N} and N

′
is the total number of decision steps. The RL objective is then computed using

the reward of each trajectory and the log-probabilities of selected nodes, as illustrated in Eq. 2.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

We evaluate CCL on 48 VRP variants. Following (Berto et al., 2024b), node locations are sampled
uniformly from the 2D Euclidean space [0, 1)2. Each vehicle starts at the depot with a capacity
Q=1 and a maximum route duration l=3. Linehaul and backhaul demands are sampled as integers
from [1, 10) and scaled by a factor of 30 +N/5, where N is the number of customers. In backhaul
settings, 20% of the customers are designated as backhaul, and the remaining 80% as linehaul. For
time window tasks, early arrival times, service durations, and time window lengths are independently
sampled from [0.0126, 4.25], [0, 0.15), and [1.8, 2.0), respectively. Late times are computed as the
sum of early times and window lengths. The training set consists of 100,000 instances uniformly
distributed across 16 variants. The best model checkpoint is selected based on validation performance
on CVRP (Capacitated VRP), using a held-out set of 128 instances. The test set comprises 48 variants,
each containing 1,000 instances. We benchmark CCL against state-of-the-art (SOTA) baselines under
two settings: N=50 and N=100. We evaluate performance using three standard VRP metrics: total
routing length ("Obj."), performance gap ("Gap") to the strong baseline HGS-PyVRP (Wouda et al.,
2024), and inference time. All metrics are computed over 1,000 test instances, with "Obj." and "Gap"
reported as averages and inference time as total runtime.

4.2 IMPLEMENTATION DETAILS

Our method is implemented in PyTorch (Paszke et al., 2019). All experiments are conducted on
a machine with an AMD EPYC 7702P 24-core CPU and a single NVIDIA RTX L40S GPU. We
use a batch size of 256 during training. The model adopts a 6-layer Transformer encoder, with both
encoder and decoder sharing the same architecture: embedding dimension D=128, 8 attention heads,
and a hidden dimension of 512. During decoding, node refinement is applied probabilistically. For
instances with N=50, the refinement probability is 0.75 during training and 1.0 during testing. For
N=100, the respective probabilities are 0.25 and 0.5. The model is optimized using Adam with a
learning rate of 3× 10−4 and a weight decay of 1× 10−6. A multi-step learning rate scheduler is
used with milestones at epochs 270 and 295, a decay factor of 0.1, and gradient clipping set to 1.
Training is conducted for a total of 300 epochs. We will make our code publicly available.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance on 16 seen in-distribution tasks. * denotes the strong baseline used to compute
the gap. Best neural approach is highlighted in bold; best existing SOTA is underlined.

Methods N = 50 N = 100 Methods N = 50 N = 100

Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓
C

V
R

P

HGS-PyVRP 10.372 * 10.4m 15.628 * 20.8m

V
R

PT
W

HGS-PyVRP 16.031 * 10.4m 25.423 * 20.8m
MTPOMO 10.520 1.423% 2s 15.941 2.030% 8s MTPOMO 16.419 2.423% 2s 26.433 3.962% 9s
MVMoE 10.499 1.229% 3s 15.888 1.693% 11s MVMoE 16.400 2.298% 3s 26.390 3.789% 11s
RF-TE 10.502 1.257% 2s 15.860 1.524% 8s RF-TE 16.341 1.933% 2s 26.228 3.154% 8s
CaDA 10.505 1.287% 2s 15.843 1.412% 8s CaDA 16.312 1.745% 1s 26.169 2.925% 9s
CaDA† 10.471 0.959% 3s 15.790 1.070% 13s CaDA† 16.299 1.670% 3s 26.105 2.668% 14s
CCL 10.473 0.977% 5s 15.823 1.287% 19s CCL 16.190 0.979% 5s 25.913 1.908% 21s
CCL† 10.463 0.881% 6s 15.787 1.058% 24s CCL† 16.177 0.907% 7s 25.862 1.706% 24s

O
V

R
P

HGS-PyVRP 6.507 * 10.4m 9.725 * 20.8m

O
V

R
PT

W

HGS-PyVRP 10.510 * 10.4m 16.926 * 20.8m
MTPOMO 6.717 3.194% 2s 10.216 5.028% 8s MTPOMO 10.676 1.558% 2s 17.442 3.022% 9s
MVMoE 6.705 3.003% 3s 10.177 4.617% 11s MVMoE 10.674 1.541% 3s 17.416 2.870% 12s
RF-TE 6.682 2.658% 2s 10.115 3.996% 8s RF-TE 10.645 1.264% 2s 17.328 2.352% 9s
CaDA 6.677 2.585% 1s 10.095 3.786% 8s CaDA 10.630 1.122% 1s 17.283 2.086% 9s
CaDA† 6.652 2.212% 3s 10.060 3.425% 13s CaDA† 10.621 1.030% 3s 17.246 1.868% 14s
CCL 6.636 1.957% 5s 10.068 3.511% 20s CCL 10.569 0.543% 6s 17.123 1.142% 21s
CCL† 6.610 1.566% 6s 10.012 2.936% 25s CCL† 10.564 0.506% 7s 17.104 1.033% 26s

O
V

R
PB

HGS-PyVRP 6.898 * 10.4m 10.335 * 20.8m

O
V

R
PB

T
W

HGS-PyVRP 11.669 * 10.4m 19.156 * 20.8m
MTPOMO 7.105 2.973% 2s 10.882 5.264% 8s MTPOMO 11.823 1.307% 3s 19.656 2.592% 9s
MVMoE 7.089 2.744% 3s 10.841 4.869% 11s MVMoE 11.816 1.245% 4s 19.637 2.499% 13s
RF-TE 7.065 2.385% 2s 10.774 4.233% 8s RF-TE 11.790 1.027% 2s 19.555 2.062% 9s
CaDA 7.064 2.377% 1s 10.739 3.890% 8s CaDA 11.775 0.898% 2s 19.495 1.754% 9s
CaDA† 7.032 1.916% 3s 10.682 3.329% 13s CaDA† 11.768 0.843% 3s 19.469 1.617% 15s
CCL 7.008 1.568% 5s 10.666 3.179% 19s CCL 11.721 0.436% 6s 19.348 0.985% 21s
CCL† 6.992 1.344% 6s 10.624 2.775% 25s CCL† 11.718 0.416% 7s 19.329 0.888% 27s

O
V

R
PB

L

HGS-PyVRP 6.899 * 10.4m 10.335 * 20.8m
O

V
R

PB
LT

W
HGS-PyVRP 11.668 * 10.4m 19.156 * 20.8m

MTPOMO 7.112 3.053% 2s 10.888 5.318% 8s MTPOMO 11.823 1.315% 3s 19.658 2.602% 9s
MVMoE 7.094 2.799% 3s 10.847 4.929% 11s MVMoE 11.816 1.249% 4s 19.640 2.514% 12s
RF-TE 7.068 2.417% 2s 10.778 4.266% 8s RF-TE 11.789 1.017% 2s 19.554 2.061% 9s
CaDA 7.062 2.339% 1s 10.741 3.900% 8s CaDA 11.777 0.914% 2s 19.497 1.762% 9s
CaDA† 7.034 1.935% 3s 10.686 3.368% 13s CaDA† 11.769 0.848% 3s 19.467 1.602% 15s
CCL 7.009 1.569% 5s 10.681 3.323% 20s CCL 11.721 0.442% 6s 19.346 0.977% 22s
CCL† 6.992 1.335% 6s 10.609 2.631% 23s CCL† 11.718 0.414% 7s 19.334 0.915% 27s

O
V

R
PL

HGS-PyVRP 6.507 * 10.4m 9.724 * 20.8m

O
V

R
PL

T
W

HGS-PyVRP 10.510 * 10.4m 16.926 * 20.8m
MTPOMO 6.720 3.248% 2s 10.224 5.112% 8s MTPOMO 10.677 1.572% 2s 17.442 3.020% 9s
MVMoE 6.706 3.028% 3s 10.184 4.693% 11s MVMoE 10.677 1.564% 3s 17.418 2.880% 12s
RF-TE 6.683 2.680% 2s 10.121 4.054% 8s RF-TE 10.646 1.267% 2s 17.328 2.352% 9s
CaDA 6.680 2.623% 1s 10.093 3.773% 8s CaDA 10.631 1.133% 1s 17.280 2.073% 9s
CaDA† 6.652 2.200% 2s 10.060 3.432% 13s CaDA† 10.621 1.033% 3s 17.244 1.861% 14s
CCL 6.637 1.968% 5s 10.067 3.495% 20s CCL 10.569 0.546% 6s 17.123 1.143% 22s
CCL† 6.610 1.569% 6s 10.000 2.811% 24s CCL† 10.564 0.501% 7s 17.109 1.063% 26s

V
R

PB

HGS-PyVRP 9.687 * 10.4m 14.377 * 20.8m

V
R

PB
T

W

HGS-PyVRP 18.292 * 10.4m 29.467 * 20.8m
MTPOMO 10.036 3.596% 2s 15.102 5.052% 8s MTPOMO 18.649 1.938% 2s 30.478 3.426% 9s
MVMoE 10.007 3.292% 3s 15.023 4.505% 10s MVMoE 18.632 1.841% 3s 30.437 3.284% 12s
RF-TE 9.979 3.000% 2s 14.935 3.906% 8s RF-TE 18.573 1.517% 2s 30.249 2.641% 9s
CaDA 9.979 3.010% 1s 14.910 3.721% 8s CaDA 18.543 1.361% 1s 30.174 2.390% 9s
CaDA† 9.922 2.405% 2s 14.838 3.222% 13s CaDA† 18.528 1.276% 3s 30.113 2.183% 14s
CCL 9.916 2.352% 5s 14.882 3.526% 19s CCL 18.430 0.738% 6s 29.911 1.494% 21s
CCL† 9.875 1.921% 6s 14.780 2.808% 22s CCL† 18.419 0.678% 7s 29.871 1.357% 26s

V
R

PB
L

HGS-PyVRP 10.186 * 10.4m 14.779 * 20.8m

V
R

PB
LT

W

HGS-PyVRP 18.361 * 10.4m 29.026 * 20.8m
MTPOMO 10.679 4.760% 2s 15.718 6.294% 8s MTPOMO 19.001 2.199% 3s 30.948 3.794% 9s
MVMoE 10.639 4.384% 3s 15.642 5.771% 11s MVMoE 18.983 2.097% 3s 30.892 3.609% 12s
RF-TE 10.569 3.713% 2s 15.523 5.008% 8s RF-TE 18.910 1.713% 2s 30.705 2.978% 9s
CaDA 10.576 3.776% 1s 15.490 4.771% 8s CaDA 18.894 1.623% 1s 30.620 2.700% 9s
CaDA† 10.503 3.064% 3s 15.389 4.093% 13s CaDA† 18.878 1.540% 3s 30.570 2.531% 15s
CCL 10.484 2.883% 5s 15.407 4.219% 19s CCL 18.773 0.976% 6s 30.366 1.842% 21s
CCL† 10.440 2.450% 6s 15.297 3.472% 24s CCL† 18.758 0.899% 7s 30.323 1.697% 25s

V
R

PL

HGS-PyVRP 10.587 * 10.4m 15.766 * 20.8m

V
R

PL
T

W

HGS-PyVRP 16.356 * 10.4m 25.757 * 20.8m
MTPOMO 10.775 1.733% 2s 16.157 2.483% 8s MTPOMO 16.832 2.877% 2s 26.913 4.455% 9s
MVMoE 10.753 1.525% 3s 16.099 2.113% 11s MVMoE 16.817 2.783% 3s 26.866 4.272% 12s
RF-TE 10.747 1.485% 2s 16.057 1.858% 8s RF-TE 16.728 2.248% 2s 26.706 3.645% 9s
CaDA 10.749 1.505% 1s 16.036 1.725% 8s CaDA 16.709 2.130% 1s 26.631 3.358% 9s
CaDA† 10.707 1.112% 2s 15.984 1.400% 13s CaDA† 16.692 2.034% 3s 26.556 3.065% 14s
CCL 10.710 1.145% 5s 16.009 1.561% 19s CCL 16.579 1.333% 6s 26.366 2.321% 20s
CCL† 10.698 1.027% 6s 15.960 1.245% 23s CCL† 16.556 1.192% 7s 26.324 2.157% 24s

4.3 COMPARISON WITH THE STATE-OF-THE-ARTS

Baselines. We compare CCL with state-of-the-art multi-task VRP solvers, including MTPOMO (Liu
et al., 2024), MVMoE (Zhou et al., 2024a), RouteFinder (RF-TE) (Berto et al., 2024b), and CaDA (Li
et al., 2025). Among these, RF-TE and CaDA have reported the strongest performance, and we
include them in both in-distribution (Table 1) and out-of-distribution (Table 2) evaluations. To ensure
a fair comparison, we reimplement CaDA in the RouteFinder framework (Berto et al., 2024b), which
also serves as the basis for RF-TE and our CCL. As shown in Appendix C.1.1, our reproduction
closely matches the performance reported in the original paper (Li et al., 2025). To further enhance
performance, we integrate a context-aware module, ReLD (Huang et al., 2025), into both CaDA and
CCL, denoted as CaDA† and CCL†, respectively.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Generalization on 32 unseen out-of-distribution tasks.

Methods

MDOVRPB, MDOVRPL, MDVRPBL, MDOVRPBL MDOVRPBTW, MDOVRPLTW, MDVRPBLTW, MDOVRPBLTW
MDCVRP, MDOVRP, MDVRPB, MDVRPL MDCVRPTW, MDOVRPTW, MDVRPBTW, MDVRPLTW
VRPMB, OVRPMB, VRPMBL, OVRPMBL VRPMBTW, OVRPMBTW, VRPMBLTW, OVRPMBLTW

MDVRPMB, MDOVRPMB, MDVRPMBL, MDOVRPMBL MDVRPMBTW, MDOVRPMBTW, MDVRPMBLTW, MDOVRPMBLTW

N = 50 N = 100 N = 50 N = 100

Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓
RF-TE 9.651 40.472% 1s 14.746 45.724% 9s 14.557 32.586% 2s 24.217 36.564% 10s
CaDA 9.535 38.860% 2s 14.910 47.156% 10s 14.410 30.872% 2s 23.523 32.512% 10s
CaDA† 9.285 34.169% 3s 14.395 41.419% 16s 14.830 34.665% 4s 24.328 36.774% 17s
CCL 8.906 29.156% 4s 14.071 38.624% 17s 13.923 26.020% 4s 23.375 31.159% 18s
CCL† 8.673 25.781% 5s 13.777 35.413% 22s 13.536 22.422% 5s 24.025 34.163% 25s

Table 3: Ablation on key modules within CCL.

Methods CVRP OVRP VRPB VRPL OVRPB OVRPL VRPBL OVRPBL Avg.

CCL† 0.881% 1.566% 1.921% 1.027% 1.344% 1.569% 2.450% 1.335% 1.512%
- RGCR 0.874% 1.710% 1.969% 0.993% 1.396% 1.712% 2.486% 1.407% 1.568%
- TSNR 0.961% 2.284% 2.413% 1.131% 1.969% 2.311% 3.001% 1.973% 2.005%
- RGCR - TSNR 1.014% 2.395% 2.416% 1.160% 2.036% 2.411% 3.088% 2.041% 2.070%

Methods VRPTW OVRPTW VRPBTW VRPLTW OVRPBTW OVRPLTW VRPBLTW OVRPBLTW Avg.

CCL† 0.907% 0.506% 0.678% 1.192% 0.416% 0.501% 0.899% 0.414% 0.689%
- RGCR 0.938% 0.521% 0.720% 1.235% 0.419% 0.519% 0.926% 0.427% 0.713%
- TSNR 1.539% 0.947% 1.204% 1.857% 0.795% 0.957% 1.409% 0.805% 1.189%
- RGCR - TSNR 1.615% 0.969% 1.266% 1.930% 0.813% 0.958% 1.492% 0.810% 1.232%

In-Distribution Evaluation. In the Table 1, CCL outperforms CaDA across both N=50 and N=100
settings. Specifically, for N=50, both CCL and CCL† achieve lower performance gaps than CaDA on
all 16 evaluated tasks. For N=100, the gap relative to the HGS-PyVRP baseline narrows even further.
We also observe complementary strengths between ReLD and CCL. ReLD performs particularly well
on variants without time windows (TW), leveraging its ability to extract globally shared constraint
signals through step-wise context. In contrast, CCL’s dynamic node refinement excels on TW tasks,
offering finer-grained adaptation to local, node-specific constraints. By combining both, the resulting
CCL† achieves the best overall performance across all the in-distribution tasks.

Out-of-Distribution Evaluation. We present the averaged performance for both tasks with or
without TW in Table 2 (detailed results for each task are presented in Appendix C.1.3, where CCL
outperformed CaDA on the majority). Table 2 shows that CCL† consistently outperforms other
methods under the N=50 setting. For N=100, while CCL† maintains competitive performance, it
shows a slightly higher gap on TW tasks compared to standalone CCL. We hypothesize that this may
be due to a low test-time update rate, which can cause the model to overfit to static constraint structures
and under-adapt to time-sensitive variations, thus increasing the gap. Nevertheless, either equipped
with ReLD or not, our CCL exhibits superior overall performance to CaDA (and its counterpart).

4.4 ABLATION STUDIES

Ablation on Key Modules within CCL. We conduct ablation experiments to validate the effective-
ness of RGCR and TSNR in CCL†. Table 3 reports the results for N=50. Removing RGCR leads to
a smaller gap increase than TSNR, and even slightly reduces the gap on CVRP and VRPL. It is likely
that the relatively simple constraints of the two VRP tasks make relevance weighting less effective.
Moreover, removing both modules yields the highest gap, highlighting their complementary effective-
ness. We also conduct these ablations on CCL (the variant without ReLD), showing that the main
performance gains come from CCL itself rather than ReLD. Details are presented in Appendix C.3.1.

Ablation on Key Components within RGCR and TSNR. We further conduct ablation studies using
N=50 to evaluate the components within RGCR and TSNR.

Regarding RGCR, we first examine direct concatenation of attributes (as in CaDA) and embeddings
(CCL†-RGCR in Table 3). We then evaluate three correlation scores, namely random, cosine
similarity, and dot product, as defined in Eq. 6. The left part of Fig. 2 presents the averaged gap
and the corresponding model complexity. Compared with direct concatenation, all three correlation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1.95

1.24

1.67

1.10

1.52

0.88

1.51

0.69

Gap (%)

2.01

1.19

1.67

1.10

1.52

0.88

1.51

0.69

Attention ✗ ✓ ✓ ✓
Updates ✗ ✗ ✓ ✓

Bias ✗ ✗ ✗ ✓

✗ ✓ ✓ ✓
✗ ✗ ✓ ✓
✗ ✗ ✗ ✓

w/ TWw/o TW

Methods
Gap (%) Complexity

Avg. w/o TW w/ TW # Params
(M)

Time
(s)

Concat Attributes 1.156 1.584 0.729 3.95 5.2

Concat Embeddings 1.141 1.568 0.713 4.05 5.7

 + Random Scores 1.092 1.477 0.707 4.05 6.5

 + Cosine Similarity 1.108 1.480 0.737 4.05 7.2

 + Dot Product (RGCR) 1.100 1.512 0.689 4.05 6.5

Figure 2: Ablation on key components within RGCR (Left) and TSNR (Right), respectively.

scores reduce the gap in both settings. Notably, the dot product achieves the smallest gap on tasks
with TW, demonstrating its superiority in handling complex constraints. More experimental setups
and analyses are provided in Appendix C.3.2.

Regarding TSNR, the right part of Fig. 2 shows that combining node-level attention, embedding
updates, and the distance bias in Eq. 12 achieves the lowest gaps, indicating that all three elements are
essential for improving the overall performance. Moreover, a detailed analysis that node-level atten-
tion reduces model complexity compared to the vanilla Transformer is provided in Appendix C.3.3.

5 DISCUSSION

We discuss the strengths and limitations of CCL. Its main drawback is the longer inference time
required for better performance. However, flexible parameter settings can mitigate this issue, enabling
CCL to perform well on large-scale real-world instances.

Table 4: Complexity analysis.

Methods Gap↓
(%)

Memory↓
(GiB)

Params↓
(M)

Time↓
(s)

CaDA 1.90 6.01 3.37 + 0.1 1.5
CaDA† 1.63 7.15 3.37 + 0.3 2.7
CaDA†-HD 1.53 7.55 3.37+1.0 5.1
CCL 1.28 8.13 3.39 + 0.45 5.4
CCL† 1.10 8.76 3.39 + 0.66 6.5
ASW-TAM 29.93 15.47 3.39 + 0.66 96.1

Complexity Analysis. Table 4 compares the model com-
plexity of SOTA methods and our CCL. We further com-
pare CCL with a heavy-decoder variant of the SOTA
model, denoted as CaDA†-HD. Detailed configurations of
this variant are presented in Appendix C.4. All models are
trained and evaluated on the 16 VRP variants with N=50
using an L40S GPU. "Time" denotes the total inference
time over 1,000 test instances, "# Params" refers to the
total number of parameters in the encoder and decoder, and "Memory" indicates the peak memory
usage during testing across all 16 variants. Compared to CaDA and CaDA†, our CCL and CCL† intro-
duce only a moderate increase in memory usage and parameter count, while achieving a substantial
performance improvement. The inference time is longer due to additional computation, but the gain
in solution quality justifies the cost. In addition, we also apply the step-wise refinement strategy, i.e.,
ASW-TAM (Xin et al., 2020) to the multi-task setting, where each route is re-embedded individually.
However, due to memory constraints, we adopt a much smaller batch size that is only 1/16 of the
original one. Results show that the naive refinement strategy leads to significantly higher gaps, longer
inference time, and larger memory consumption, which further validates the effectiveness of CCL.
Moreover, we observe that CCL achieves a comparable model cost while reducing the gap by 0.25%
compared with CaDA†-HD. These findings indicate that the effectiveness of CCL stems from its
design rather than from an increased network scale.

tsP

trP

tsP

trP

Figure 3: Gap (Left) and inference time (Right) under dif-
ferent training and testing update rates.

Performance-Cost Trade-off. In
Section 3.4, Ptr and Pts denote the
probabilities of updating node em-
beddings during training and testing,
and we assess their impact on model
performance and inference efficiency,
which also leads to a lightweight
version of CCL. We first conduct
sensitivity studies using N=50 and
evaluating all 20 combinations of
Ptr ∈ {0.25, 0.5, 0.75, 1} and Pts ∈
{0, 0.25, 0.5, 0.75, 1}. Fig. 3 shows

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

the corresponding gap values and inference time. We observe that, for a fixed probability Ptr during
training, the gap tends to be smaller when the probability Pts during testing is slightly higher. For
example, when Ptr=0.25 or 0.5, the best performance is achieved at Pts=0.5 and 0.75, respectively.
This work adopts Ptr = 0.75 and Pts = 1, as this setting yields the lowest gap. Meanwhile, reducing
Pts leads to shorter inference time, as fewer refinement steps are involved. While this leads to a
higher gap, it provides a trade-off between solution quality and inference efficiency. Motivated by
this, we design a lightweight version of CCL† using Ptr = 0.25 and Pts = 0.25. It achieves an
average gap of 1.38% across 16 VRPs with an average inference time of 4.6s, while the existing
SOTA CaDA† attains a gap of 1.63% in 2.7s (see Table 4). This enables users to adjust Pts based on
the requirements of practical deployment scenarios, and more detailed comparisons between CCL
and CaDA are provided in Appendix C.4.

Table 5: Results on large-scale real-
world VRPTW instances (N=600).

Methods Obj.↓ Gap↓ Time↓
RF-TE 29558 145.593% 1.4s
CaDA 22917 88.188% 1.4s
CCL 20633 70.961% 2.0s

Large-Scale Real-World Practicality. We evaluate zero-shot
generalization on 60 real-world VRPTW instances, each with
N=600 (Homberger and Gehring, 1999). The model is trained
on 16 tasks with N=100. During inference, we apply an up-
date probability of Pts=0.1 to reduce computational cost. Ta-
ble 5 reports the averaged results across these instances (per-
instance results in Appendix C.7), showing that CCL achieves
the lowest average gap while maintaining comparable infer-
ence time. Appendix C.7 also reports results on VRPTW instances with N=100 (Solomon, 1987),
where CCL outperforms SOTAs on 24 out of 27. It is further evaluated on CVRP instances with
N ∈ [100, 251] (Uchoa et al., 2017), where CCL achieves the best performance on 16 out of 27. These
findings indicate that our method is well-suited for deployment in real-world scenarios, particularly
for problems with complex constraints such as time windows.

6 CONCLUSIONS

Existing neural multi-task VRP methods often neglect the evolving nature of node states during
decoding, limiting their ability to respond accurately to constraint requirements. To overcome this, we
proposed Chain-of-Context Learning (CCL), a step-wise framework that updates node embeddings
based on the current decision context. Through relevance-guided constraint reformulation and
trajectory-shared re-embedding, CCL captures the agent’s evolving preferences and improves solution
quality. Experiments on 48 VRP variants show that CCL achieves SOTA performances on all in-
distribution and most out-of-distribution tasks. One limitation of CCL lies in its slightly longer
inference time. Although flexible parameter settings can mitigate such issue, a trade-off between
computation cost and solution quality still remains. In future, we plan to explore more advanced
techniques to further improve the inference efficiency while preserving superior solution quality.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.

Grigorios D Konstantakopoulos, Sotiris P Gayialis, and Evripidis P Kechagias. Vehicle routing problem and
related algorithms for logistics distribution: A literature review and classification. Operational research,
pages 1–30, 2022.

Thierry Garaix, Christian Artigues, Dominique Feillet, and Didier Josselin. Vehicle routing problems with
alternative paths: An application to on-demand transportation. European Journal of Operational Research,
204(1):62–75, 2010.

Rodolfo Dondo, Carlos A Méndez, and Jaime Cerdá. The multi-echelon vehicle routing problem with cross
docking in supply chain management. Computers & Chemical Engineering, 35(12):3002–3024, 2011.

Laurent Perron and Vincent Furnon. Or-tools. URL https://developers.google.com/
optimization/.

Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the traveling-salesman problem. Opera-
tions research, 21(2):498–516, 1973.

Thibaut Vidal, Gilbert Laporte, and Piotr Matl. A concise guide to existing and emerging vehicle routing problem
variants. European Journal of Operational Research, 286(2):401–416, 2020.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network technique
for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv preprint
arXiv:1803.08475, 2018.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min. Pomo: Policy
optimization with multiple optima for reinforcement learning. Advances in Neural Information Processing
Systems, 33:21188–21198, 2020.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics for
solving routing problems. IEEE Transactions on Neural Networks and Learning Systems, 33(9):5057–5069,
2021.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible regions of routing
problems with flexible neural k-opt. Advances in Neural Information Processing Systems, 36:49555–49578,
2023.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization. Advances
in Neural Information Processing Systems, 36:3706–3731, 2023.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421, 2021.

Aigerim Bogyrbayeva, Meraryslan Meraliyev, Taukekhan Mustakhov, and Bissenbay Dauletbayev. Machine
learning to solve vehicle routing problems: A survey. IEEE Transactions on Intelligent Transportation
Systems, 25(6):4754–4772, 2024.

André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle routing problem.
In ECAI 2020, pages 443–450. IOS Press, 2020.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial optimization
problems. arXiv preprint arXiv:2106.05126, 2021.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Neurolkh: Combining deep learning model with lin-
kernighan-helsgaun heuristic for solving the traveling salesman problem. Advances in Neural Information
Processing Systems, 34:7472–7483, 2021.

Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexandre Laterre, and
Tom Barrett. Combinatorial optimization with policy adaptation using latent space search. Advances in
Neural Information Processing Systems, 36:7947–7959, 2023.

Jinbiao Chen, Jiahai Wang, Zizhen Zhang, Zhiguang Cao, Te Ye, and Siyuan Chen. Efficient meta neural
heuristic for multi-objective combinatorial optimization. Advances in Neural Information Processing Systems,
36:56825–56837, 2023a.

11

https://developers.google.com/optimization/
https://developers.google.com/optimization/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zefang Zong, Meng Zheng, Yong Li, and Depeng Jin. Mapdp: Cooperative multi-agent reinforcement learning
to solve pickup and delivery problems. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 9980–9988, 2022.

Detian Kong, Yining Ma, Zhiguang Cao, Tianshu Yu, and Jianhua Xiao. Efficient neural collaborative search
for pickup and delivery problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(12):
11019–11034, 2024.

Raras Tyasnurita, Ender Özcan, John H Drake, and Shahriar Asta. Constructing selection hyper-heuristics for
open vehicle routing with time delay neural networks using multiple experts. Knowledge-Based Systems, 295:
111731, 2024.

Sinaide Nunes Bezerra, Sérgio Ricardo de Souza, and Marcone Jamilson Freitas Souza. A general vns for the
multi-depot open vehicle routing problem with time windows. Optimization Letters, 17(9):2033–2063, 2023.

Bruno Oliveira, Artur Pessoa, and Marcos Roboredo. Hybrid iterated local search algorithm for the vehicle
routing problem with lockers. Journal of Heuristics, 31(2):22, 2025.

Rongkai Zhang, Cong Zhang, Zhiguang Cao, Wen Song, Puay Siew Tan, Jie Zhang, Bihan Wen, and Justin
Dauwels. Learning to solve multiple-tsp with time window and rejections via deep reinforcement learning.
IEEE Transactions on Intelligent Transportation Systems, 24(1):1325–1336, 2022.

Bo Lin, Bissan Ghaddar, and Jatin Nathwani. Deep reinforcement learning for the electric vehicle routing
problem with time windows. IEEE Transactions on Intelligent Transportation Systems, 23(8):11528–11538,
2021.

Conghui Wang, Zhiguang Cao, Yaoxin Wu, Long Teng, and Guohua Wu. Deep reinforcement learning for
solving vehicle routing problems with backhauls. IEEE Transactions on Neural Networks and Learning
Systems, 36(3):4779–4793, 2024.

Sašo Karakatič and Vili Podgorelec. A survey of genetic algorithms for solving multi depot vehicle routing
problem. Applied Soft Computing, 27:519–532, 2015.

Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Tong Xialiang, and Mingxuan Yuan. Multi-task learning for
routing problem with cross-problem zero-shot generalization. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 1898–1908, 2024.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Xu Chi. MVMoE: Multi-task
vehicle routing solver with mixture-of-experts. In Proceedings of the 41st International Conference on
Machine Learning, volume 235, pages 61804–61824, 2024a.

Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan, Kevin Tierney,
and Jinkyoo Park. Routefinder: Towards foundation models for vehicle routing problems. In ICML 2024
Workshop on Foundation Models in the Wild, 2024a. URL https://openreview.net/forum?id=
hCiaiZ6e4G.

Han Li, Fei Liu, Zhi Zheng, Yu Zhang, and Zhenkun Wang. CaDA: Cross-problem routing solver with
constraint-aware dual-attention. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=CS4RyQuTig.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Step-wise deep learning models for solving routing
problems. IEEE Transactions on Industrial Informatics, 17(7):4861–4871, 2020.

Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan, Junyoung Park,
Kevin Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for vehicle routing problems.
arXiv preprint arXiv:2406.15007, 2024b.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 8:229–256, 1992.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Information
Processing Systems, 32, 2019.

Niels A Wouda, Leon Lan, and Wouter Kool. Pyvrp: A high-performance vrp solver package. INFORMS
Journal on Computing, 36(4):943–955, 2024.

12

https://openreview.net/forum?id=hCiaiZ6e4G
https://openreview.net/forum?id=hCiaiZ6e4G
https://openreview.net/forum?id=CS4RyQuTig

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: an imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems, pages 8024–8035. Curran Associates, Inc., 2019.

Ziwei Huang, Jianan Zhou, Zhiguang Cao, and Yixin XU. Rethinking light decoder-based solvers for vehicle
routing problems. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=4pRwkYpa2u.

Jörg Homberger and Hermann Gehring. Two evolutionary metaheuristics for the vehicle routing problem with
time windows. INFOR: Information Systems and Operational Research, 37(3):297–318, 1999.

Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with time window constraints.
Operations research, 35(2):254–265, 1987.

Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian. New
benchmark instances for the capacitated vehicle routing problem. European Journal of Operational Research,
257(3):845–858, 2017.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement learning for
solving the vehicle routing problem. Advances in Neural Information Processing Systems, 31, 2018.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. In Advances in
Neural Information Processing Systems, volume 34, pages 26198–26211, 2021a.

Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned heuris-
tics to solve large-scale vehicle routing problems in real-time. In International Conference on Learning
Representations, 2023.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. GLOP: Learning global
partition and local construction for solving large-scale routing problems in real-time. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2024.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning tsp requires
rethinking generalization. In International Conference on Principles and Practice of Constraint Programming,
2021.

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee. Learning
generalizable models for vehicle routing problems via knowledge distillation. In Advances in Neural
Information Processing Systems, volume 35, pages 31226–31238, 2022.

Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Günnemann. Generaliza-
tion of neural combinatorial solvers through the lens of adversarial robustness. In International Conference
on Learning Representations, 2022.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable neural methods
for vehicle routing problems. In International Conference on Machine Learning, pages 42769–42789. PMLR,
2023.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Matrix encoding
networks for neural combinatorial optimization. In Advances in Neural Information Processing Systems,
volume 34, 2021.

Jingwen Li, Liang Xin, Zhiguang Cao, Andrew Lim, Wen Song, and Jie Zhang. Heterogeneous attentions for
solving pickup and delivery problem via deep reinforcement learning. IEEE Transactions on Intelligent
Transportation Systems, 23(3):2306–2315, 2021b.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging symmetricity for neural combinatorial
optimization. In Advances in Neural Information Processing Systems, volume 35, pages 1936–1949, 2022.

Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Thomas D Barrett. Winner
takes it all: Training performant RL populations for combinatorial optimization. In Advances in Neural
Information Processing Systems, 2023.

Jinbiao Chen, Zizhen Zhang, Zhiguang Cao, Yaoxin Wu, Yining Ma, Te Ye, and Jiahai Wang. Neural multi-
objective combinatorial optimization with diversity enhancement. In Advances in Neural Information
Processing Systems, volume 36, pages 39176–39188, 2023b.

13

https://openreview.net/forum?id=4pRwkYpa2u

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural solvers for vehicle
routing problems via ensemble with transferrable local policy. In IJCAI, 2024.

André Hottung, Mridul Mahajan, and Kevin Tierney. PolyNet: Learning diverse solution strategies for neural
combinatorial optimization. In International Conference on Learning Representations, 2025.

Chuanbo Hua, Federico Berto, Jiwoo Son, Seunghyun Kang, Changhyun Kwon, and Jinkyoo Park. CAMP:
Collaborative Attention Model with Profiles for Vehicle Routing Problems. In Proceedings of the 2025
International Conference on Autonomous Agents and Multiagent Systems, 2025a.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO: Bisimulation
quotienting for efficient neural combinatorial optimization. In Advances in Neural Information Processing
Systems, volume 36, 2023.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with heavy
decoder: Toward large scale generalization. In Advances in Neural Information Processing Systems, volume 36,
pages 8845–8864, 2023.

Fu Luo, Xi Lin, Yaoxin Wu, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu Zhang. Boosting
neural combinatorial optimization for large-scale vehicle routing problems. In International Conference on
Learning Representations, 2025.

Jonathan Pirnay and Dominik G. Grimm. Self-improvement for neural combinatorial optimization: Sample
without replacement, but improvement. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. GOAL: A generalist combinatorial optimization agent
learner. In International Conference on Learning Representations, 2025.

Zhuoyi Lin, Yaoxin Wu, Bangjian Zhou, Zhiguang Cao, Wen Song, Yingqian Zhang, and Senthilnath Jayavelu.
Cross-problem learning for solving vehicle routing problems. In Kate Larson, editor, Proceedings of the
Thirty-Third International Joint Conference on Artificial Intelligence, pages 6958–6966. International Joint
Conferences on Artificial Intelligence Organization, 2024.

Zefang Zong, Xiaochen Wei, Guozhen Zhang, Chen Gao, Huandong Wang, and Yong Li. Unico: Towards a
unified model for combinatorial optimization problems. arXiv preprint arXiv:2505.06290, 2025.

Xia Jiang, Yaoxin Wu, Yuan Wang, and Yingqian Zhang. Unco: Towards unifying neural combinatorial
optimization through large language model. arXiv preprint arXiv:2408.12214, 2024.

Jianan Zhou, Yaoxin Wu, Zhiguang Cao, Wen Song, Jie Zhang, and Zhiqi Shen. Collaboration! towards robust
neural methods for routing problems. arXiv preprint arXiv:2410.04968, 2024b.

Chuanbo Hua, Federico Berto, Zhikai Zhao, Jiwoo Son, Changhyun Kwon, and Jinkyoo Park. Uspr: Learning a
unified solver for profiled routing. arXiv preprint arXiv:2505.05119, 2025b.

Chuanbo Hua, Federico Berto, Jiwoo Son, Seunghyun Kang, Changhyun Kwon, and Jinkyoo Park. Camp:
Collaborative attention model with profiles for vehicle routing problems. arXiv preprint arXiv:2501.02977,
2025c.

Jiwoo Son, Zhikai Zhao, Federico Berto, Chuanbo Hua, Changhyun Kwon, and Jinkyoo Park. Neural combina-
torial optimization for real-world routing. arXiv preprint arXiv:2503.16159, 2025.

Zhenwei Wang, Ruibin Bai, and Tiehua Zhang. Towards constraint-based adaptive hypergraph learning for
solving vehicle routing: An end-to-end solution. arXiv preprint arXiv:2503.10421, 2025.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2024. URL https://www.gurobi.com.

14

https://www.gurobi.com

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A RELATED WORK

Neural Solvers for Single-Task VRPs. A common paradigm in neural solvers for single-task VRPs
is to construct solutions in an autoregressive manner. These methods typically employ an encoder to
embed the VRP instance into node representations, followed by a decoder that sequentially predicts
the probability of selecting the next node. To reduce the computational overhead of reinforcement
learning (RL), most approaches adopt static node embeddings during decoding (Joshi et al., 2019;
Nazari et al., 2018; Kool et al., 2018; Kwon et al., 2020; Huang et al., 2025; Li et al., 2021a; Hou
et al., 2023; Ye et al., 2024; Joshi et al., 2021; Bi et al., 2022; Geisler et al., 2022; Zhou et al.,
2023). One influential method in this line is the Attention Model (AM) (Kool et al., 2018), which
uses a Transformer-based policy network to guide node selection. (Kwon et al., 2020) enhances
AM by introducing Policy Optimization with Multiple Optima (POMO), which leverages multiple
solution trajectories and data augmentation to achieve strong performance on TSP and CVRP. POMO
has since become a widely adopted baseline (Kwon et al., 2021; Li et al., 2021b; Kim et al., 2022;
Grinsztajn et al., 2023; Chen et al., 2023b; Gao et al., 2024; Hottung et al., 2025; Hua et al., 2025a; Li
et al., 2021a; Hou et al., 2023; Ye et al., 2024; Joshi et al., 2021; Bi et al., 2022; Geisler et al., 2022;
Zhou et al., 2023). To improve context modeling, ReLD (Huang et al., 2025) proposes an enhanced
decoder architecture incorporating identity mapping and a feed-forward layer to better capture local
and global dependencies. In terms of dynamic node re-embedding, (Xin et al., 2020) introduces
a step-wise RL framework that removes visited nodes at each decision step, enabling the model
to represent distinct node states as the context evolves. An alternative direction involves building
heavy decoder-based solvers trained with supervised learning (SL) (Drakulic et al., 2023; Luo et al.,
2023; 2025; Pirnay and Grimm, 2024; Drakulic et al., 2025). While these methods demonstrate
strong empirical performance, their reliance on multi-layered decoder architectures results in high
computational cost, making them unsuitable for RL-based training, which does not need optimal
solutions as the labels.

Neural Solvers for Multi-Task VRPs. Multi-task VRPs generalize single-task VRPs by involving
varied combinations of constraints, resulting in multiple task variants within a shared framework.
Recent works train a single model to capture transferable patterns across tasks (Lin et al., 2024; Liu
et al., 2024; Zhou et al., 2024a; Berto et al., 2024a; Zong et al., 2025; Drakulic et al., 2025; Jiang
et al., 2024; Zhou et al., 2024b; Hua et al., 2025b;c; Li et al., 2025; Berto et al., 2024b; Son et al.,
2025; Wang et al., 2025). (Lin et al., 2024) shows that a pre-trained TSP model can be fine-tuned to
handle other VRP variants. To expand constraint coverage, (Liu et al., 2024) and (Zhou et al., 2024a)
introduce models that handle B, L, O, and TW constraints, training on single-constraint tasks with
the goal of generalizing to tasks with mixed attributes. (Berto et al., 2024a) presents a foundation
model trained on 16 variants and fine-tuned on an unseen constraint (MB) across 8 new variants. A
subsequent extension (Berto et al., 2024b) adds MD to the task space, culminating in a benchmark
of 48 variants. Most recently, (Li et al., 2025) proposes Constraint-Aware Dual-Attention (CaDA),
which incorporates constraint prompts and global-sparse attention to enhance encoder performance
in capturing both broad and localized constraint-relevant node information. Despite their progress,
these methods generally struggle to capture the dynamic, fine-grained impact of constraints during
decision-making—particularly when certain nodes become increasingly urgent due to time-sensitive
or context-dependent requirements. In contrast, our work introduces a step-wise, context-aware
refinement mechanism to better model these evolving constraint-driven priorities.

B DETAILS OF MODEL ARCHITECTURE

B.1 ENCODER ARCHITECTURE

As illustrated in Section 4.2, the input attributes includes three parts: the constraint label h̃0 ∈ R4,
the depot attribute h0 ∈ R4, and the customer features {h1,h2, . . . ,hN} ∈ RN×7. The depot and
customer attributes are separately processed by two linear layers, and the outputs are concatenated to
generate the input node embedding as follows:

I = Concat(H(h0),H({h1,h2, . . . ,hN})), (15)

where I ∈ R(N+1)×D, Concat(·) denotes the concatenate operation, and H(·) represents the linear
layer. Similarly, we project the constraint labels into the prompt embedding space and expand them

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

to match the shape of the node embeddings:

L = Expand(H(h̃0)), (16)

where L ∈ R(N+1)×D, H(·) is a linear layer to project the feature dimension from 4 to D, and
Expand(·) is the duplication and expansion operation to reshape the feature map from R1×D to
R(N+1)×D. Subsequently, a unified input embedding is formed by concatenating the projected
constraint embedding and the node embedding:

Ĩ = H(Concat(I,L)). (17)

The dual-attention encoder processes the original node embeddings I and the unified input embeddings
Ĩ through the sparse and global branches, respectively. Each branch contains a Transformer layer and
a linear layer for fusion, with the overall computation defined as:

H̃
′(i) = T (i)

g (H̃(i−1)), H
′(i) = T (i)

s (H(i−1)),

H̃(i) = H̃
′(i) +H(i)

g (H
′(i)), H(i) = H

′(i) +H(i)
s (H̃

′(i)),
(18)

where H̃
′
, H̃,H

′
,H ∈ R(N+1)×D, and i denotes the index of the encoder layer. In the first layer,

we initialize H̃(1)=Ĩ and H(1)=I. T (i)
g ,H(i)

g denote the Transformer and linear layers of the global
branch, respectively, while T (i)

s ,H(i)
s correspond to those of the sparse branch. The Transformer

layer employs the pre-norm design from (Berto et al., 2024a), and integrates sparse attention based
on (Li et al., 2025). The embedding output by the final global layer is passed through a normalization
layer, and the normalized embeddings are used as the initial node embeddings for decoding:

H = Norm(H(K)), (19)

where H ∈ R(N+1)×D and K=6 denotes the number of encoder layers.

B.2 CLASSIC DECODER

Following RGCR and TSNR, a classic decoder is employed to calculate the action probability
distribution using a multi-head attention mechanism. At step j, the context embedding generated by
RGCR is denoted as C̃j ∈ RN×D, where N is the number of trajectories, equal to the number of
customers. We directly use the context embeddings as the query, i.e., qj = C̃j . In the multi-head
attention mechanism, the key and value embeddings are derived from the node embeddings produced
by TSNR, i.e., kj ,vj = H(Hj), where kj ,vj ∈ R(N+1)×D. Since each node is visited only once,
we apply a mask Mj to the visited nodes when computing the attention weights:

Aj = Softmax(
qjk

⊤
j√
D

⊙Mj), (20)

where Aj ,Mj ∈ RN×(N+1), Softmax(·) denotes the Softmax operation, and ⊙ ensures that
multiplication values for visited nodes are set to −∞. The context query is computed as q̃j =

H(Ajvj), and the candidate node representations are obtained as k̃j = H(Hj). Based on these, the
action probability distribution is derived as follows:

Dj =
q̃jk̃

⊤
j√
D

, (21)

where q̃j ∈ RN×D, k̃j ∈ R(N+1)×D, and Dj ∈ RN×N+1. To generate solutions, the unnormalized
log-probability (logit) is calculated as

uj = ξ · Tanh(Dj)⊙Mj , (22)

where Tanh(·) is the Hyperbolic Tangent operation, and ξ=10 is a predefined clipping hyperparameter.
The final selection probabilities for each node are computed by applying the Softmax operation:
Pj = Softmax(uj).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Performance on 16 seen in-distribution tasks. * denotes the strong baseline used to compute
the gap. Best neural approach is highlighted in bold; second underlined.

Methods
N = 50 N = 100

Methods
N = 50 N = 100

Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓

C
V

R
P

HGS-PyVRP 10.372 * 10.4m 15.628 * 20.8m

V
R

PT
W

HGS-PyVRP 16.031 * 10.4m 25.423 * 20.8m
CaDA‡ 10.494 1.182% 2s 15.870 1.578% 8s CaDA‡ 16.278 1.536% 2s 26.070 2.530% 8s
CaDA 10.505 1.287% 2s 15.843 1.412% 8s CaDA 16.312 1.745% 1s 26.169 2.925% 9s
CCL 10.473 0.977% 5s 15.823 1.287% 19s CCL 16.190 0.979% 5s 25.913 1.908% 21s

O
V

R
P

HGS-PyVRP 6.507 * 10.4m 9.725 * 20.8m

O
V

R
PT

W HGS-PyVRP 10.510 * 10.4m 16.926 * 20.8m
CaDA‡ 6.670 2.468% 2s 10.121 4.045% 8s CaDA‡ 10.613 0.957% 2s 17.226 1.751% 9s
CaDA 6.677 2.585% 1s 10.095 3.786% 8s CaDA 10.630 1.122% 1s 17.283 2.086% 9s
CCL 6.636 1.957% 5s 10.068 3.511% 20s CCL 10.569 0.543% 6s 17.123 1.142% 21s

O
V

R
PB

HGS-PyVRP 6.898 * 10.4m 10.335 * 20.8m

O
V

R
PB

T
W HGS-PyVRP 11.669 * 10.4m 19.156 * 20.8m

CaDA‡ 7.049 2.159% 2s 10.762 4.099% 8s CaDA‡ 11.761 0.779% 2s 19.436 1.441% 9s
CaDA 7.064 2.377% 1s 10.739 3.890% 8s CaDA 11.775 0.898% 2s 19.495 1.754% 9s
CCL 7.008 1.568% 5s 10.666 3.179% 19s CCL 11.721 0.436% 6s 19.348 0.985% 21s

O
V

R
PB

L HGS-PyVRP 6.899 * 10.4m 10.335 * 20.8m

O
V

R
PB

LT
W HGS-PyVRP 11.668 * 10.4m 19.156 * 20.8m

CaDA‡ 7.051 2.166% 2s 10.762 4.102% 8s CaDA‡ 11.760 0.771% 2s 19.435 1.439% 9s
CaDA 7.062 2.339% 1s 10.741 3.900% 8s CaDA 11.777 0.914% 2s 19.497 1.762% 9s
CCL 7.009 1.569% 5s 10.681 3.323% 20s CCL 11.721 0.442% 6s 19.346 0.977% 22s

O
V

R
PL

HGS-PyVRP 6.507 * 10.4m 9.724 * 20.8m

O
V

R
PL

T
W HGS-PyVRP 10.510 * 10.4m 16.926 * 20.8m

CaDA‡ 6.671 2.475% 2s 10.122 4.052% 8s CaDA‡ 10.613 0.961% 2s 17.226 1.752% 9s
CaDA 6.680 2.623% 1s 10.093 3.773% 8s CaDA 10.631 1.133% 1s 17.280 2.073% 9s
CCL 6.637 1.968% 5s 10.067 3.495% 20s CCL 10.569 0.546% 6s 17.123 1.143% 22s

V
R

PB

HGS-PyVRP 9.687 * 10.4m 14.377 * 20.8m
V

R
PB

T
W HGS-PyVRP 18.292 * 10.4m 29.467 * 20.8m

CaDA‡ 9.960 2.800% 2s 14.960 4.038% 8s CaDA‡ 18.500 1.117% 2s 30.059 1.999% 9s
CaDA 9.979 3.010% 1s 14.910 3.721% 8s CaDA 18.543 1.361% 1s 30.174 2.390% 9s
CCL 9.916 2.352% 5s 14.882 3.526% 19s CCL 18.430 0.738% 6s 29.911 1.494% 21s

V
R

PB
L

HGS-PyVRP 10.186 * 10.4m 14.779 * 20.8m

V
R

PB
LT

W HGS-PyVRP 18.361 * 10.4m 29.026 * 20.8m
CaDA‡ 10.543 3.461% 2s 15.525 5.001% 8s CaDA‡ 18.848 1.376% 2s 30.520 2.359% 9s
CaDA 10.576 3.776% 1s 15.490 4.771% 8s CaDA 18.894 1.623% 1s 30.620 2.700% 9s
CCL 10.484 2.883% 5s 15.407 4.219% 19s CCL 18.773 0.976% 6s 30.366 1.842% 21s

V
R

PL

HGS-PyVRP 10.587 * 10.4m 15.766 * 20.8m

V
R

PL
T

W HGS-PyVRP 16.356 * 10.4m 25.757 * 20.8m
CaDA‡ 10.731 1.333% 2s 16.057 1.847% 8s CaDA‡ 16.669 1.879% 2s 26.540 2.995% 9s
CaDA 10.749 1.505% 1s 16.036 1.725% 8s CaDA 16.709 2.130% 1s 26.631 3.358% 9s
CCL 10.710 1.145% 5s 16.009 1.561% 19s CCL 16.579 1.333% 6s 26.366 2.321% 20s

A
vg

.

HGS-PyVRP 8.455 * 10.4m 12.584 * 20.8m

A
vg

.

HGS-PyVRP 14.175 * 10.4m 22.730 * 20.8m
CaDA‡ 8.646 2.256% 2s 13.022 3.595% 8s CaDA‡ 14.380 1.172% 2s 23.314 2.033% 9s
CaDA 8.662 2.437% 1s 12.993 3.372% 8s CaDA 14.409 1.366% 1s 23.394 2.381% 9s
CCL 8.609 1.802% 5s 12.950 3.013% 19s CCL 14.319 0.749% 6s 23.187 1.476% 21s

1.6

4.0 4.1 4.1 4.1 4.0

5.0

1.8

1.4 1.4
1.8 1.8

2.4

2.0

3.0

2.5

1.4

3.8 3.9 3.9 3.8 3.7

4.8

1.7 1.8 1.8
2.1 2.1

2.7
2.4

3.4

2.9

1.3

3.5
3.2 3.3

3.5 3.5

4.2

1.6 1.0 1.0
1.2 1.2

1.9

1.5

2.4

1.9

0.9

1.9

2.9

3.9

4.9
CaDA‡ CaDA CCL-mean CCL-std

Gap (%)

Tasks CVRP OVRP OVRPB OVRPBL OVRPL VRPB VRPBL VRPL OVRP
BLTW

OVRP
BTW

OVRP
LTW

OVRP
TW

VRP
BLTW

VRP
BTW

VRP
LTW

VRP
TW

Std 0.032 0.005 0.027 0.060 0.032 0.052 0.015 0.035 0.006 0.013 0.008 0.017 0.013 0.022 0.036 0.017

Figure 4: Error-bar analysis of CCL under N=100.

C ADDITIONAL ANALYSES AND DISCUSSIONS

C.1 COMPARISON WITH NEURAL SOTA METHODS

C.1.1 COMPARISON BETWEEN RE-IMPLEMENTED SOTA AND REPORTED SOTA

Main Results. We compare CCL against the reported SOTA method (CaDA‡ (Li et al., 2025)) and our
re-implemented one (CaDA (Li et al., 2025)), with the strong heuristic baseline HGS-PyVRP (Wouda
et al., 2024) included for reference. Table 5 presents the results for all 16 in-distribution tasks, and the
overall average scores across these tasks both with and without the TW constraint. Under the N=100

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Improvement of CCL† over CaDA†.
Tasks ∆ P-value Tasks ∆ P-value Tasks ∆ P-value Tasks ∆ P-value
CVRP 8.16% 2.7e-05 OVRP 29.21% 1.2e-76 VRPBLTW 41.61% 2.2e-68 OVRPBLTW 51.19% 6.2e-68
VRPB 20.14% 5.0e-42 OVRPB 29.86% 1.4e-62 VRPBTW 46.84% 4.0e-81 OVRPBTW 50.63% 2.8e-68
VRPBL 20.03% 2.0e-39 OVRPBL 31.05% 4.7e-68 VRPLTW 41.39% 2.2e-97 OVRPLTW 51.50% 2.9e-79
VRPL 7.66% 2.4e-04 OVRPL 28.69% 3.5e-74 VRPTW 45.72% 2.9e-99 OVRPTW 50.85% 3.2e-75

Table 7: Per-task results on 32 unseen out-of-distribution tasks (N=50).

Tasks RF-TE CaDA CaDA† CCL CCL†

Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓
VRPMB 9.879 8.861% 1s 9.781 7.749% 2s 9.722 7.097% 3s 9.943 9.538% 3s 9.940 9.486% 4s
MDCVRP 12.559 56.957% 2s 12.335 54.083% 2s 13.593 70.078% 4s 10.829 34.846% 4s 10.554 31.361% 6s
MDOVRP 6.876 29.051% 1s 6.825 28.069% 2s 6.260 17.329% 3s 6.413 20.155% 4s 6.286 17.719% 5s
MDVRPB 12.725 60.956% 2s 12.654 60.054% 2s 12.190 54.066% 3s 11.679 47.450% 4s 11.001 38.750% 5s
MDVRPL 12.618 57.370% 2s 12.426 54.988% 2s 13.433 67.697% 4s 11.278 40.248% 4s 10.912 35.667% 6s
OVRPMB 6.949 13.690% 1s 6.872 12.440% 1s 6.819 11.570% 3s 6.917 13.149% 3s 6.854 12.124% 4s
VRPMBL 10.239 8.050% 1s 10.163 7.215% 2s 10.061 6.130% 3s 10.376 9.456% 3s 10.229 7.898% 5s
MDOVRPB 7.556 31.861% 1s 7.622 33.009% 2s 6.999 22.032% 3s 6.876 19.787% 4s 6.738 17.332% 5s
MDOVRPL 6.871 28.946% 1s 6.807 27.746% 2s 6.270 17.504% 3s 6.442 20.716% 4s 6.303 18.070% 5s
MDVRPBL 12.831 61.175% 2s 12.585 58.011% 2s 12.017 50.770% 3s 11.483 43.846% 4s 11.208 40.413% 6s
MDVRPMB 12.856 76.544% 2s 12.493 71.550% 2s 12.046 65.185% 3s 11.540 58.118% 4s 11.032 51.055% 6s
MDVRPTW 17.818 48.941% 2s 16.971 41.739% 2s 17.581 46.865% 4s 16.107 34.403% 4s 15.475 29.004% 6s
OVRPMBL 6.949 13.686% 1s 6.871 12.423% 1s 6.818 11.563% 3s 6.932 13.404% 3s 6.819 11.555% 4s
VRPMBTW 17.298 8.074% 1s 17.198 7.434% 2s 17.282 7.954% 3s 16.988 6.099% 3s 17.158 7.142% 5s
MDOVRPBL 7.550 31.772% 1s 7.606 32.713% 2s 6.996 21.966% 3s 6.858 19.463% 4s 6.827 18.939% 6s
MDOVRPMB 7.617 47.411% 1s 7.541 45.953% 2s 6.845 32.344% 3s 6.720 29.826% 4s 6.519 25.920% 5s
MDOVRPTW 10.618 34.976% 1s 10.204 29.610% 2s 10.407 32.287% 4s 9.783 24.150% 4s 9.632 22.146% 5s
MDVRPBTW 18.591 37.364% 2s 19.025 40.629% 2s 19.977 47.721% 4s 18.425 36.029% 4s 17.645 30.121% 5s
MDVRPLTW 18.127 51.276% 2s 17.125 42.765% 2s 17.965 49.851% 4s 16.769 39.728% 5s 16.126 34.232% 6s
MDVRPMBL 12.744 74.112% 2s 12.434 69.825% 2s 11.647 58.969% 3s 11.474 56.409% 4s 10.993 49.737% 6s
OVRPMBTW 11.132 6.265% 1s 11.087 5.849% 2s 11.121 6.160% 3s 10.966 4.658% 3s 10.855 3.617% 5s
VRPMBLTW 17.597 7.982% 1s 17.495 7.337% 2s 17.559 7.728% 3s 17.514 7.433% 3s 17.402 6.710% 5s
MDOVRPBTW 11.399 32.332% 2s 11.190 29.807% 2s 11.423 32.600% 4s 10.774 24.830% 4s 10.313 19.359% 5s
MDOVRPLTW 10.599 34.731% 2s 10.196 29.501% 2s 10.408 32.286% 4s 9.721 23.331% 4s 9.704 23.040% 5s
MDOVRPMBL 7.602 47.108% 1s 7.540 45.940% 2s 6.848 32.401% 3s 6.733 30.088% 4s 6.548 26.474% 5s
MDVRPBLTW 19.048 40.583% 2s 19.243 42.015% 2s 20.076 48.201% 4s 18.544 36.702% 5s 17.612 29.641% 7s
MDVRPMBTW 17.830 48.485% 2s 18.394 53.345% 2s 19.327 61.083% 4s 17.103 42.314% 5s 16.729 39.084% 5s
OVRPMBLTW 11.138 6.317% 1s 11.090 5.875% 2s 11.116 6.109% 3s 10.993 4.922% 3s 10.835 3.427% 5s
MDOVRPBLTW 11.389 32.207% 2s 11.185 29.743% 2s 11.391 32.216% 4s 10.767 24.749% 4s 10.350 19.783% 5s
MDOVRPMBTW 11.055 40.153% 2s 10.833 37.232% 2s 11.150 41.336% 4s 10.171 28.688% 4s 10.110 27.872% 5s
MDVRPMBLTW 18.222 51.554% 2s 18.511 54.026% 2s 19.362 61.119% 4s 17.940 49.174% 5s 16.825 39.635% 6s
MDOVRPMBLTW 11.054 40.136% 2s 10.818 37.044% 2s 11.135 41.125% 4s 10.203 29.114% 4s 9.804 23.943% 6s

Avg. Gap 36.529% 34.866% 34.417% 27.588% 24.102%
Best (Best/Total) 0/32 0/32 5/32 1/32 26/32

without TW, CaDA outperforms the reported CaDA‡, while in all other settings it is slightly inferior
to CaDA‡. In contrast, CCL consistently surpasses both CaDA and CaDA‡ across all 16 tasks.

Error Bar Analysis. Since the testing update probability Pts is set to 0.5 for N=100, we further
analyze the error bars of CCL under different random seeds. Fig. 4 plots the mean gap and its standard
deviation over three independent test runs of CCL. Across all 16 tasks, the standard deviation of
CCL’s gap remains tightly bound between 0.005% and 0.060%. Visually, the error bars in Figure 5
are negligible compared to the performance difference between CCL and CaDA/CaDA‡, indicating
that the choice of seed has minimal impact on test-time results.

C.1.2 STATISTICAL SIGNIFICANCE

We continue to include t-tests to assess statistical significance. We first collected the gap values
of 1,000 test instances from both CCL† and the strongest SOTA CaDA† from Table 1, then we
report the improvement percentages (∆) along with the corresponding p-values (shown in Table 6).
Here, the improvements are computed as the average gap reductions of CCL† over CaDA†, i.e.,
−(Gap(CCL†)− Gap(CaDA†))/Gap(CaDA†)× 100%. Across all 16 tasks, CCL achieves 7-51%
improvement. In particular, OVRPBLTW, OVRPBTW, OVRPLTW, and OVRPTW exceed 50%. All
p-values are below 0.001, indicating that these gains are statistically significant.

C.1.3 DETAILED RESULTS ON UNSEEN OUT-OF-DISTRIBUTION TASKS

We provide per-task results on 32 unseen out-of-distribution tasks. Each method is evaluated in a
zero-shot setting (i.e., directly tested without fine-tuning). For the N=50 setting, the test-time update
probability is set to Pts=0.15, and for N=100, it is set to Pts=0.02. Table 7 and Table 8 present the
full results under the N=50 and N=100 settings, respectively. For each task, we report the objective
(Obj.), performance gap (Gap), and inference time (Time). Additionally, the bottom rows summarize

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: Per-task results on 32 unseen out-of-distribution tasks (N=100).

Tasks RF-TE CaDA CaDA† CCL CCL†

Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓
VRPMB 14.888 10.189% 8s 14.710 8.822% 8s 14.652 8.399% 13s 15.322 13.438% 14s 14.936 10.530% 18s
MDCVRP 19.684 67.107% 10s 20.628 75.392% 11s 20.964 78.117% 18s 16.769 41.675% 17s 16.834 42.308% 24s
MDOVRP 10.683 34.368% 9s 10.605 33.387% 10s 9.849 23.695% 15s 10.095 26.715% 15s 9.753 22.409% 20s
MDVRPB 18.721 61.761% 9s 19.494 68.604% 11s 18.780 62.221% 17s 18.185 56.977% 19s 18.625 60.931% 25s
MDVRPL 20.100 70.498% 10s 20.867 77.336% 12s 21.001 78.277% 18s 17.494 47.699% 24s 18.407 55.828% 29s
OVRPMB 10.711 18.899% 7s 10.490 16.449% 8s 10.468 16.205% 13s 10.780 19.642% 14s 10.744 19.235% 19s
VRPMBL 15.198 10.375% 7s 15.016 9.011% 8s 14.949 8.536% 13s 15.761 14.464% 14s 15.538 12.835% 18s
MDOVRPB 11.752 35.659% 9s 11.790 36.137% 10s 11.104 28.078% 16s 10.959 26.274% 16s 10.533 21.340% 21s
MDOVRPL 10.703 34.620% 9s 10.574 32.985% 10s 9.854 23.749% 15s 10.272 29.033% 16s 9.718 21.967% 20s
MDVRPBL 19.606 68.898% 11s 19.827 70.875% 13s 18.693 60.860% 18s 18.446 58.520% 21s 17.588 51.069% 28s
MDVRPMB 18.698 76.325% 9s 19.458 83.817% 11s 18.374 73.239% 16s 18.997 79.149% 18s 17.544 65.282% 23s
MDVRPTW 29.468 53.283% 11s 25.955 34.783% 10s 28.751 49.517% 17s 26.901 39.557% 18s 29.016 50.829% 28s
OVRPMBL 10.709 18.877% 7s 10.486 16.399% 8s 10.470 16.225% 13s 10.883 20.748% 14s 10.749 19.284% 19s
VRPMBTW 28.256 10.840% 8s 28.317 11.074% 9s 28.310 11.038% 14s 28.100 10.239% 15s 27.971 9.722% 20s
MDOVRPBL 11.761 35.771% 9s 11.788 36.106% 10s 11.105 28.077% 16s 10.983 26.545% 16s 10.511 21.090% 21s
MDOVRPMB 11.748 53.650% 9s 11.692 53.010% 10s 10.945 43.077% 16s 10.876 42.044% 17s 10.431 36.189% 21s
MDOVRPTW 18.299 41.356% 10s 17.205 32.804% 10s 17.636 36.201% 17s 17.009 31.200% 17s 16.733 29.076% 23s
MDVRPBTW 30.681 39.926% 10s 30.176 37.559% 10s 31.716 44.719% 19s 30.677 39.759% 19s 31.269 42.473% 30s
MDVRPLTW 29.640 53.976% 11s 26.200 35.862% 10s 29.327 52.284% 17s 27.977 45.055% 23s 29.593 53.413% 31s
MDVRPMBL 19.216 80.892% 11s 19.460 83.444% 13s 18.183 71.054% 18s 18.479 73.647% 19s 18.112 70.333% 32s
OVRPMBTW 18.449 8.724% 8s 18.478 8.901% 9s 18.430 8.607% 15s 18.427 8.590% 16s 18.211 7.321% 21s
VRPMBLTW 28.604 10.805% 8s 28.658 11.002% 9s 28.641 10.925% 14s 28.374 9.907% 15s 28.582 10.698% 20s
MDOVRPBTW 19.590 36.897% 10s 19.305 34.918% 10s 19.341 35.157% 18s 18.764 30.960% 17s 18.265 27.473% 26s
MDOVRPLTW 18.232 40.817% 10s 17.221 32.923% 10s 17.665 36.428% 17s 16.838 29.857% 18s 16.707 28.872% 23s
MDOVRPMBL 11.751 53.691% 9s 11.670 52.726% 10s 10.931 42.890% 16s 10.830 41.416% 16s 10.415 35.973% 21s
MDVRPBLTW 31.044 41.408% 10s 30.537 39.033% 10s 32.239 46.923% 18s 30.667 39.535% 24s 34.176 55.800% 32s
MDVRPMBTW 29.650 54.395% 10s 29.383 53.001% 10s 30.722 60.046% 18s 28.388 47.661% 18s 30.844 60.585% 26s
OVRPMBLTW 18.452 8.739% 8s 18.476 8.887% 9s 18.415 8.516% 15s 18.404 8.443% 16s 18.476 8.877% 20s
MDOVRPBLTW 19.553 36.632% 10s 19.341 35.154% 10s 19.349 35.212% 18s 18.853 31.599% 17s 18.194 26.963% 25s
MDOVRPMBTW 18.888 46.216% 10s 18.735 45.019% 10s 18.761 45.232% 17s 17.823 37.814% 18s 17.638 36.412% 23s
MDVRPMBLTW 29.825 55.132% 10s 29.611 53.989% 11s 31.157 62.147% 18s 29.000 50.703% 23s 31.057 61.451% 35s
MDOVRPMBLTW 18.846 45.873% 10s 18.770 45.286% 10s 18.787 45.427% 17s 17.803 37.665% 17s 17.667 36.646% 24s

Avg. Gap 41.144% 39.834% 39.096% 34.892% 34.788%
Best (Best/Total) 0/32 4/32 4/32 7/32 17/32

each method’s average gap and the number of tasks where it achieves the best performance, reported
in the format "# Best (best/total)". Across both the N=50 and N=100 settings, CCL† consistently
achieves the lowest average gap, demonstrating strong generalization to unseen out-of-distribution
tasks. In terms of per-task performance, CCL and CCL† together outperform all baselines on 27 out
of 32 tasks for N=50, and on 24 out of 32 tasks for N=100, further highlighting the robustness and
effectiveness of our method across different problem scales.

C.2 COMPARISON WITH TRADITIONAL SOLVER

Table 9: Comparison with traditional solvers.

Methods Obj. ↓ Time ↓ Avg. Time ↓
HGS-PyVRP 10.372 10m 10.0s
Gurobi-15m 10.568 120m 15.0m
LKH 10.392 63s 1.1s
CCL† 10.463 6s 0.2s

We follow RouteFinder (Berto et al., 2024a;b)
and CaDA (Li et al., 2025) in using HGS-
PyVRP (Wouda et al., 2024) as a strong tra-
ditional solver. Moreover, we compare our
method against additional traditional solvers,
including Gurobi (Gurobi Optimization, 2024)
and LKH (Lin and Kernighan, 1973) on CVRP
instances with 50 customers. The total times,
denoted as "Time", are accumulated over 1000 instances, which are exactly the same as the ones used
in (Berto et al., 2024a;b; Li et al., 2025). We also provide the average per-instance time for reference,
denoted as "Avg. Time". As shown in Table 9, the results of HGS-PyVRP are taken from (Li et al.,
2025), while the results of Gurobi and LKH are obtained using a 32-core CPU. Based on this, Gurobi
further uses 4 threads per CPU core, enabling 4×32 instances to be solved in parallel. LKH is executed
for 10 runs, with a 10-second time limit per instance. We set a 15-minute limit on Gurobi and report
its generated (approximate) solutions. These results show that CCL achieves performance comparable
to traditional solvers, while its total inference time is approximately 10×, 1,200×, and 100× faster than
LKH, Gurobi, and HGS-PyVRP, respectively (corresponding per-instance speedups of 5×, 75×, and
50×). This demonstrates that learning-based models are practical for real-time applications, especially
when solving multiple VRP instances simultaneously. Moreover, in multi-task scenarios, CCL can
learn generalizable patterns across different VRP variants, without requiring experts to manually
design heuristics. Once trained, the model can solve 48 VRP variants without re-training, which
will broaden its practical deployment. These findings show that both traditional algorithms and our
learning-based method have their own merits and demerits. Research in either direction provides
important insights for the VRP community.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.3 ABLATION RESULTS

C.3.1 ABLATION RESULTS WITHOUT RELD

Table 10: Ablation on CCL (variant w/o ReLD).

Methods Obj.↓ Gap↓ Time↓
CCL† 11.447 1.10% 6.5s
- ReLD (CCL) 11.464 1.28% 5.4s
- RGCR 11.477 1.40% 4.6s
- TSNR 11.518 1.76% 2.8s
- TSNR - RGCR 11.529 1.88% 2.0s

We conducted ablation studies to examine
whether the effectiveness of our method depends
on ReLD (Huang et al., 2025). Starting from
CCL†, we remove ReLD, RGCR, TSNR, and
both RGCR and TSNR. The corresponding av-
erage results across 16 in-distribution tasks are
presented in Table 10. The results show that both
RGCR and TSNR remain effective even without
ReLD. Moreover, CCL reduces the average gap
by 0.6% compared with CCL-TSNR-RGCR, whereas CCL† provides only a 0.18% improvement over
CCL. This indicates that the main performance improvement comes from CCL rather than ReLD.

C.3.2 ABLATION DETAILS WITHIN RGCR

To validate the effectiveness of RGCR, we test 16 in-domain VRP variants, each with 1,000 instances,
and compare RGCR with four alternatives: (1) "Concat Attributes", which directly concatenates
the constraint attributes; (2) "Concat Embeddings", which embeds each constraint into a high-
dimensional space and concatenates them; (3) "+ Random Scores" employ random importance
weights as the correlation scores; and (4) "+ Cosine Similarity" uses cosine similarity to measure
the correlation scores. We present both the model complexity and performance results on the left of
Fig. 2. Specifically, "# Params" denotes the total number of parameters in the encoder and decoder,
and "Time" is the accumulated inference time over 1,000 instances. "Avg. Gap" denotes the average
gap across all 16 tasks, while "w/ TW" and "w/o TW" refer to the subsets of 8 tasks with and without
time-window constraints, respectively. Compared with concatenating attributes, RGCR achieves
strong performance while increasing the model size by only 0.1M parameters and adding 1.3s to
inference time. Compared to random weights, RGCR shows modest performance in average gap
across the 16 tasks, but demonstrates clear superiority on tasks with time windows. These results
demonstrate that RGCR benefits more on complex tasks than on simpler ones. This may be attributed
to the fact that tasks without time windows often include a lot of padding information, which may
introduce some noise during model training. Moreover, RGCR introduces no additional parameters
compared to the "Concat Embeddings" setting, yet still reduces the average gap by 0.041%. This
indicates that the gains arise from improved constraint prioritization rather than model capacity.

C.3.3 DESIGN CHOICE OF ATTENTION STRATEGY IN TSNR

In TSNR, we adopt a cross-attention mechanism, where the node embedding serves as the query
and the unified node-constraint embedding as the key and value. The following theoretical analysis
and empirical results show that this approach reduces computational complexity compared to the
vanilla Transformer, which applies self-attention on the unified embedding. Specifically, the unified
embedding has dimension (N+(N+1))×D, while the context and node embeddings have dimensions
N ×D and (N +1)×D, respectively. Consequently, self-attention computes (2N +1)× (2N +1)
attention weights, whereas cross-attention computes only (N +1)× (2N +1). As shown in Table 11,
cross-attention achieves comparable performance while reducing inference time. For example, across
tasks with TW (i.e., the right half of Table 11), it narrows the gap from 0.727% to 0.689% and reduces
inference time by 1s.

C.4 PERFORMANCE COMPARISON UNDER MATCHED INFERENCE TIME

To further validate that the effectiveness of CCL is not merely due to increased inference time, we
introduce a heavy decoder variant of CaDA, denoted as CaDA-HD. This version deepens the original
1-layer Transformer decoder to 4 layers, resulting in an inference time that is comparable to CCL.
Table 12 presents the performance comparison between CaDA-HD and CCL under similar inference
budgets. These results indicate that CCL and CaDA-HD perform similarly on tasks without time
windows (TW), with CaDA-HD sometimes showing slightly better results. In contrast, on tasks with
TW, CCL consistently outperforms CaDA-HD by a significant margin. This suggests that CCL’s

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 11: Performance comparison under different attention mechanisms.

Tasks Cross-Attention Self-Attention Tasks Cross-Attention Self-Attention

Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓
CVRP 10.463 0.881% 6s 10.461 0.867% 7s VRPTW 16.177 0.907% 7s 16.186 0.955% 8s
OVRP 6.610 1.566% 6s 6.611 1.582% 7s OVRPTW 10.564 0.506% 7s 10.568 0.540% 8s
VRPB 9.875 1.921% 6s 9.873 1.896% 7s VRPBTW 18.419 0.678% 7s 18.427 0.719% 8s
VRPL 10.698 1.027% 6s 10.694 0.993% 7s VRPLTW 16.556 1.192% 7s 16.564 1.246% 8s
OVRPB 6.992 1.344% 6s 6.992 1.337% 7s OVRPBTW 11.718 0.416% 7s 11.721 0.444% 8s
OVRPL 6.610 1.569% 6s 6.611 1.582% 7s OVRPLTW 10.564 0.501% 7s 10.565 0.517% 8s
VRPBL 10.440 2.450% 6s 10.445 2.489% 7s VRPBLTW 18.758 0.899% 7s 18.769 0.952% 8s
OVRPBL 6.992 1.335% 6s 6.992 1.330% 7s OVRPBLTW 11.718 0.414% 7s 11.721 0.446% 8s

Avg. 8.585 1.512% 6s 8.585 1.510% 7s Avg. 14.309 0.689% 7s 14.315 0.727% 8s

Table 12: Performance comparison under matched inference time.

Tasks CaDA-HD CCL Tasks CaDA-HD CCL

Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓
CVRP 10.468 0.926% 6s 10.473 0.977% 5s VRPTW 16.293 1.631% 5s 16.190 0.979% 5s
OVRP 6.635 1.937% 5s 6.636 1.957% 5s OVRPTW 10.615 0.986% 5s 10.569 0.543% 6s
VRPB 9.908 2.267% 5s 9.916 2.352% 5s VRPBTW 18.529 1.280% 5s 18.430 0.738% 6s
VRPL 10.704 1.091% 5s 10.710 1.145% 5s VRPLTW 16.676 1.930% 5s 16.579 1.333% 6s
OVRPB 7.019 1.725% 5s 7.008 1.568% 5s OVRPBTW 11.772 0.874% 6s 11.721 0.436% 6s
OVRPL 6.633 1.908% 5s 6.637 1.968% 5s OVRPLTW 10.615 0.986% 5s 10.569 0.546% 6s
VRPBL 10.480 2.842% 5s 10.484 2.883% 5s VRPBLTW 18.872 1.498% 5s 18.773 0.976% 6s
OVRPBL 7.020 1.721% 5s 7.009 1.569% 5s OVRPBLTW 11.771 0.864% 6s 11.721 0.442% 6s

Avg. 8.608 1.802% 5s 8.609 1.802% 5s Avg. 14.393 1.256% 5s 14.319 0.749% 6s

design is particularly effective in handling temporally constrained problems, and its advantage is not
merely a result of longer inference time.

C.5 CONVERGENCE ANALYSIS

Figure 5: Training loss convergence.

Fig. 5 shows the training loss of CCL and CaDA. CCL
achieves faster convergence in the early epochs and
reaches a lower final loss compared to CaDA. For instance,
at epoch 50, the loss of CCL is 0.0129, while CaDA is
0.0198. By the end of training, CCL attains 0.0090 versus
0.0129 for CaDA. These results indicate that CCL con-
tributes to more efficient and effective training, yielding
both faster convergence and improved final performance.

C.6 GENERALIZATION OF CCL ON ADDITIONAL SCENARIOS

Same as RouteFinder (Berto et al., 2024a;b), CaDA (Li et al., 2025), MTPOMO (Liu et al., 2024), and
MvMoE (Zhou et al., 2024a), our work also focuses on solving routing problems solely. Moreover,
the design of CCL can be useful for other decision-making problems. We conduct a preliminary
experiment on the Flexible Flow Shop Problem (FFSP). When assigning an operation to a machine,
we incorporated TSNR to allow operation embeddings to integrate information from the current
machine, thereby updating the operation’s state. Results in Fig. 6 (a) show that the method converges,
but training can become slightly unstable from the middle to late stages. This suggests that certain
modifications to TSNR may be needed for the best performance, for example, to filter out irrelevant
information in the machine embeddings that does not contribute to subsequent decision-making.

We also conduct an experiment using graph-structured inputs instead of coordinates. Specifically,
each node’s coordinates were replaced with a vector of distances to all other nodes, which is then
concatenated with demand and other attributes to form the node inputs. We retrain CCL across 16
tasks, each with 50 customers. During the 300 training epochs, we report the training loss and the
validation average objective length across 128 CVRP instances (also with 50 customers). Fig. 6 (b)
shows that both the training loss and the validation scores of CCL converge quickly within the first
50 epochs, suggesting the potential of CCL for graph-structured VRPs. To further investigate the
effectiveness of RGCR and TSNR, we apply this setting to retrain the corresponding baseline model
(i.e., the version without RGCR and TSNR). Results in Fig. 6(c) show that, except for CVRP, CCL

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

30

36

42

-4

0

4

1 21 41 61 81 O
bj

. (
FF

SP
)

L
os

s

Epoch

Loss Obj.(FFSP)

8

10

12

0

0.08

0.16

1 51 101 151 201 251 O
bj

. (
C

V
R

P)

L
os

s

Epoch

Loss Obj.(CVRP)

CVRP

VRPB

VRPL

VRPBL

OVRP

OVRPB

OVRPL

OVRPBL

OVRPTW

OVRPBTW

OVRPLTW

OVRPBLTW

VRPTW

VRPBTW

VRPLTW

VRPBLTW

Graph-Structured CCL CCL - RGCR - TSNR

(c) Ablation of Objective Values on Graph-Structured CCL.(b) Model Convergence on Graph-Structured CCL.

(a) Model Convergence of CCL on FFSP.

Figure 6: Generalizing CCL on the flexible flow shop problem (FFSP) and graph-structured input.

Table 13: Per-instance results on small-scale real-world instances. In CVRP, "X-n***" denotes the
customer number of each instance, while each VRPTW instance has 100 customers.

CVRP RF-TE CaDA CCL CCL-Ens VRPTW RF-TE CaDA CCL

Instances Opt. Obj. ↓ Gap ↓ Obj. ↓ Gap ↓ Obj. ↓ Gap ↓ Obj. ↓ Gap ↓ Instances Opt. Obj. ↓ Gap ↓ Obj. ↓ Gap ↓ Obj. ↓ Gap ↓
X-n101-k25 27591 29087 5.422% 28765 4.255% 28765 4.255% 28727 4.117% R101 1638 1604 -2.058% 1612 -1.569% 1619 -1.142%
X-n106-k14 26362 27162 3.035% 27069 2.682% 26966 2.291% 26864 1.904% R102 1467 1567 6.846% 1572 7.187% 1553 5.891%
X-n110-k13 14971 15314 2.291% 15425 3.033% 15386 2.772% 15185 1.429% R103 1209 1493 23.521% 1458 20.625% 1444 19.467%
X-n115-k10 12747 13338 4.636% 13143 3.107% 13334 4.605% 13162 3.256% R104 972 1315 35.358% 1325 36.387% 1308 34.637%
X-n120-k6 13332 13765 3.248% 13741 3.068% 13852 3.900% 13677 2.588% R105 1355 1456 7.430% 1463 7.947% 1443 6.471%
X-n125-k30 55539 58525 5.376% 57943 4.328% 57671 3.839% 57442 3.426% R106 1235 1455 17.852% 1420 15.017% 1405 13.802%
X-n129-k18 28940 29598 2.274% 29517 1.994% 29599 2.277% 29458 1.790% R107 1065 1388 30.378% 1378 29.438% 1327 24.648%
X-n134-k13 10916 11585 6.129% 11468 5.057% 11464 5.020% 11464 5.020% R108 932 1310 40.543% 1285 37.861% 1266 35.822%
X-n139-k10 13590 13812 1.634% 13863 2.009% 13902 2.296% 13852 1.928% R109 1147 1601 39.594% 1394 21.545% 1359 18.493%
X-n143-k7 15700 16257 3.548% 16233 3.395% 15985 1.815% 15985 1.815% R110 1068 1527 42.978% 1384 29.588% 1282 20.037%
X-n148-k46 43448 45036 3.655% 45395 4.481% 45324 4.318% 44953 3.464% R111 1049 1473 40.460% 1424 35.787% 1366 30.257%
X-n153-k22 21220 23478 10.641% 22815 7.516% 23245 9.543% 23172 9.199% R112 949 1357 43.053% 1278 34.725% 1210 27.556%
X-n157-k13 16876 17339 2.744% 17225 2.068% 17184 1.825% 17131 1.511% RC101 1620 1666 2.852% 1663 2.667% 1661 2.544%
X-n162-k11 14138 14664 3.720% 14584 3.155% 14702 3.989% 14672 3.777% RC102 1457 1731 18.773% 1717 17.813% 1646 12.941%
X-n167-k10 20557 21435 4.271% 21305 3.639% 20987 2.092% 20934 1.834% RC103 1258 1760 39.905% 1656 31.638% 1624 29.094%
X-n172-k51 45607 48129 5.530% 47727 4.648% 48252 5.800% 47836 4.887% RC104 1132 1610 42.188% 1497 32.209% 1524 34.593%
X-n176-k26 47812 51400 7.504% 52177 9.130% 51485 7.682% 51164 7.011% RC105 1514 1867 23.340% 1755 15.941% 1751 15.677%
X-n181-k23 25569 26097 2.065% 26228 2.577% 26180 2.390% 26075 1.979% RC106 1373 1664 21.221% 1634 19.035% 1621 18.088%
X-n186-k15 24145 25140 4.121% 24909 3.164% 25046 3.732% 25002 3.549% RC107 1208 1683 39.344% 1601 32.555% 1498 24.027%
X-n190-k8 16980 17892 5.371% 17726 4.393% 17547 3.339% 17547 3.339% RC108 1114 1768 58.679% 1564 40.370% 1504 34.985%
X-n195-k51 44225 47390 7.157% 46585 5.336% 46621 5.418% 46121 4.287% RC201 1262 1577 24.980% 1606 27.278% 1533 21.493%
X-n200-k36 58578 61199 4.474% 61048 4.217% 61388 4.797% 61388 4.797% RC202 1092 1553 42.177% 1480 35.494% 1433 31.191%
X-n209-k16 30656 31876 3.980% 32005 4.400% 32334 5.474% 32216 5.089% RC203 924 1465 58.601% 1490 61.308% 1439 55.787%
X-n228-k23 25742 28798 11.872% 28328 10.046% 27641 7.377% 27641 7.377% RC204 784 1372 75.112% 1278 63.114% 1225 56.350%
X-n237-k14 27042 29595 9.441% 29830 10.310% 29816 10.258% 29816 10.258% RC206 1051 1573 49.653% 1447 37.665% 1456 38.522%
X-n247-k50 37274 40639 9.028% 40456 8.537% 41266 10.710% 41266 10.710% RC207 963 1694 75.927% 1503 56.091% 1433 48.821%
X-n251-k28 38684 40399 4.433% 40360 4.333% 40725 5.276% 40505 4.707% RC208 776 1465 88.764% 1433 84.641% 1335 72.014%

Avg. Gap 5.096% 4.625% 4.707% 4.261% Avg. Gap 36.573% 30.828% 27.114%
Best (Best/Total) 3/27 8/27 4/27 12/27 # Best (Best/Total) 1/27 2/27 24/27

consistently reduces the average length compared to the baseline. This demonstrates that CCL is a
plug-and-play strategy, which can be integrated into VRP solvers with various input structures.

C.7 EVALUATION ON REAL-WORLD BENCHMARK INSTANCES

Table 13 and Table 14 present per-instance results on small and large-scale real-world benchmarks,
respectively. The small-scale set consists of 27 CVRP and 27 VRPTW instances, while the large-scale
set contains 60 VRPTW instances. Following (Zhou et al., 2024a), the model is trained on 16 synthetic
tasks with N = 100 and directly applied to all instances in a zero-shot manner. For CVRP, we set
the test-time update probability Pts to 0.1, denoted as CCL. We also design an ensemble variant,
CCL-Ens, which applies the trained model with four update probabilities Pts ∈ {0.1, 0.15, 0.25, 0.3}
and selects the best solution. For small-scale VRPTW, Pts is fixed at 0.25.

On the CVRP benchmark, CCL yields a slightly higher average gap compared to CaDA. However,
its ensemble variant CCL-Ens achieves the best overall performance, demonstrating the benefit of
test-time adaptation via varying update probabilities. In total, CCL and CCL-Ens together outperform
baselines on 16 out of 27 instances. On the VRPTW benchmark, CCL attains the lowest average gap
and surpasses baselines on 24 out of 27 small-scale instances and 35 out of 60 large-scale instances.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

These results indicate that our method can be effectively deployed in real-world settings, especially
on complex constraints such as time windows.

Table 14: Per-instance results on large-scale real-world instances. The customer number is 600.

VRPTW RF-TE CaDA CCL

Instances Opt. Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓ Obj. ↓ Gap ↓ Time ↓
C1-6-1 14077 17537 24.583% 1.4s 17355 23.290% 1.5s 16418 16.633% 2.5s
C1-6-10 13618 35201 158.498% 1.2s 24365 78.924% 1.3s 17861 31.162% 1.5s
C1-6-2 13948 20505 47.007% 1.1s 21571 54.650% 1.1s 20980 50.413% 1.6s
C1-6-3 13757 22648 64.635% 1.1s 23142 68.226% 1.1s 24090 75.117% 1.6s
C1-6-4 13539 22743 67.986% 1.1s 22601 66.937% 1.1s 23787 75.698% 1.7s
C1-6-5 14067 18265 29.845% 1.2s 17643 25.423% 1.1s 16368 16.359% 1.6s
C1-6-6 14071 22405 59.229% 3.3s 19998 42.123% 3.3s 19481 38.449% 4.9s
C1-6-7 14067 26369 87.456% 1.3s 23920 70.046% 1.2s 16848 19.771% 1.6s
C1-6-8 13991 26618 90.248% 1.2s 20504 46.549% 1.1s 16844 20.390% 1.6s
C1-6-9 13665 60014 339.196% 1.5s 36753 168.967% 1.3s 18274 33.733% 1.6s
C2-6-1 7752 15193 95.983% 3.1s 12018 55.027% 3.1s 12410 60.084% 4.9s
C2-6-10 7124 29321 311.586% 1.3s 17609 147.182% 1.1s 12161 70.707% 1.6s
C2-6-2 7472 14789 97.939% 3.1s 14420 93.000% 3.1s 13642 82.587% 4.7s
C2-6-3 7215 15033 108.358% 3.1s 16259 125.350% 3.1s 18351 154.345% 4.7s
C2-6-4 6877 15039 118.685% 3.1s 16236 136.091% 3.1s 18952 175.585% 4.8s
C2-6-5 7554 22865 202.695% 1.2s 13343 76.640% 1.1s 13040 72.628% 1.5s
C2-6-6 7450 22171 197.605% 1.2s 13312 78.689% 1.1s 12032 61.508% 1.5s
C2-6-7 7491 25219 236.644% 3.1s 14632 95.320% 3.1s 12908 72.307% 4.8s
C2-6-8 7304 22619 209.692% 1.2s 13469 84.413% 1.1s 12266 67.942% 1.5s
C2-6-9 7303 23663 224.009% 3.1s 15017 105.622% 3.1s 12569 72.103% 4.7s
R1-6-1 21274 29154 37.039% 1.2s 25041 17.706% 1.1s 26556 24.827% 1.6s
R1-6-10 17584 30508 73.502% 1.2s 26126 48.581% 1.1s 26121 48.552% 1.6s
R1-6-2 18520 26017 40.482% 1.1s 26262 41.805% 1.1s 27011 45.849% 1.7s
R1-6-3 16875 26105 54.697% 1.1s 26601 57.636% 1.1s 28093 66.478% 1.6s
R1-6-4 15721 24450 55.526% 1.1s 24521 55.978% 1.1s 26939 71.359% 1.9s
R1-6-5 19295 31715 64.370% 1.2s 24975 29.438% 1.1s 25367 31.470% 1.8s
R1-6-6 17764 25692 44.632% 1.1s 25559 43.883% 1.1s 26890 51.376% 1.6s
R1-6-7 16496 25749 56.090% 1.1s 26401 60.043% 1.1s 26693 61.813% 1.6s
R1-6-8 15584 23857 53.084% 1.1s 24533 57.421% 1.1s 24796 59.109% 1.5s
R1-6-9 18474 30700 66.179% 1.2s 25067 35.687% 1.1s 25931 40.364% 1.7s
R2-6-1 15145 31072 105.159% 1.2s 22482 48.442% 1.1s 21855 44.302% 1.6s
R2-6-10 11837 35862 202.965% 1.2s 23395 97.643% 1.1s 19894 68.066% 1.6s
R2-6-2 12976 22676 74.749% 1.0s 21124 62.789% 1.0s 24214 86.602% 1.6s
R2-6-3 10455 20072 91.979% 1.0s 19274 84.347% 1.0s 24258 132.016% 1.8s
R2-6-4 7915 16925 113.848% 1.0s 16589 109.603% 1.0s 22399 183.012% 1.7s
R2-6-5 13790 33895 145.790% 1.2s 22311 61.789% 1.1s 21581 56.495% 1.7s
R2-6-6 11848 22695 91.555% 1.1s 20914 76.522% 1.0s 22125 86.744% 1.5s
R2-6-7 9770 19723 101.867% 1.0s 18900 93.443% 1.0s 23231 137.772% 1.8s
R2-6-8 7512 16596 120.918% 1.0s 16716 122.515% 1.0s 23249 209.479% 2.0s
R2-6-9 12737 35883 181.727% 1.3s 22963 80.289% 1.1s 20863 63.801% 1.7s
RC1-6-1 16944 44173 160.697% 1.3s 28659 69.138% 1.2s 22506 32.824% 1.7s
RC1-6-10 15651 47967 206.473% 1.3s 33429 113.586% 1.2s 23311 48.940% 1.6s
RC1-6-2 15891 24480 54.053% 1.1s 25282 59.100% 1.1s 23526 48.050% 1.6s
RC1-6-3 15181 23667 55.896% 1.1s 23640 55.718% 1.1s 23809 56.831% 1.6s
RC1-6-4 14753 23076 56.414% 1.1s 22451 52.177% 1.1s 22178 50.327% 1.6s
RC1-6-5 16536 45720 176.483% 1.3s 29036 75.589% 1.2s 22505 36.095% 1.7s
RC1-6-6 16473 47520 188.467% 1.3s 30741 86.611% 1.2s 22586 37.107% 1.7s
RC1-6-7 16055 45359 182.517% 1.3s 31323 95.094% 1.2s 21936 36.628% 1.6s
RC1-6-8 15892 42548 167.736% 1.3s 32086 101.903% 1.2s 22792 43.420% 1.6s
RC1-6-9 15804 47394 199.896% 1.3s 33968 114.940% 1.2s 24490 54.966% 1.7s
RC2-6-1 11966 46194 286.041% 1.3s 26852 124.401% 1.2s 20004 67.172% 1.6s
RC2-6-10 8973 44372 394.489% 1.3s 28880 221.844% 1.2s 17107 90.643% 1.6s
RC2-6-2 10337 21343 106.474% 1.1s 20623 99.509% 1.1s 21034 103.485% 1.6s
RC2-6-3 8895 17942 101.711% 1.0s 17270 94.156% 1.0s 22858 156.979% 1.6s
RC2-6-4 6968 14864 113.333% 1.0s 14459 107.521% 1.0s 18521 165.820% 1.6s
RC2-6-5 11081 45546 311.039% 1.3s 27674 149.750% 1.2s 19270 73.906% 1.6s
RC2-6-6 10831 46487 329.223% 1.3s 27920 157.790% 1.2s 18374 69.651% 1.6s
RC2-6-7 10289 46929 356.091% 1.3s 28173 173.806% 1.2s 18364 78.475% 1.6s
RC2-6-8 9779 45416 364.424% 1.3s 29578 202.464% 1.2s 18548 89.672% 1.7s
RC2-6-9 9436 44922 376.070% 1.3s 29079 208.171% 1.2s 16951 79.642% 1.7s

Avg. 12694 29558 145.593% 1.4s 22917 88.188% 1.4s 20634 70.961% 2.0s
Best (Best/Total) 10/60 15/60 35/60

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.8 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed LLMs for polishing the paper and assisting with simple coding tasks. For writing
refinement, we first drafted the original statements in English and then used LLMs to improve fluency.
For coding, most of the implementations and modules were done based on Routefinder (Berto et al.,
2024b), while the design of our proposed CCL was completed independently. LLMs were only used
for basic Python coding tasks, such as aligning feature dimensions.

24

	Introduction
	Preliminaries
	Methodology
	Overview of Chain-of-Context Learning (CCL)
	Encoder
	Relevance-Guided Context Reformulation (RGCR)
	Trajectory-Shared Node Re-embedding (TSNR)
	Step-wise Decision and Training Objective

	Experiments
	Datasets and Evaluation Metrics
	Implementation Details
	Comparison with the State-of-the-Arts
	Ablation Studies

	Discussion
	Conclusions
	Related Work
	Details of Model Architecture
	Encoder Architecture
	Classic Decoder

	Additional analyses and discussions
	Comparison with Neural SOTA Methods
	Comparison between Re-Implemented SOTA and Reported SOTA
	Statistical Significance
	Detailed Results on Unseen Out-of-Distribution Tasks

	Comparison with Traditional Solver
	Ablation Results
	Ablation Results without ReLD
	Ablation Details within RGCR
	Design Choice of Attention Strategy in TSNR

	Performance Comparison under Matched Inference Time
	Convergence Analysis
	Generalization of CCL on Additional Scenarios
	Evaluation on Real-World Benchmark Instances
	The Use of Large Language Models (LLMs)

