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Abstract: Traversability analysis in unstructured environments is a challenging
task that requires understanding of multi-modal inputs such as camera and LiDAR.
Measurements from these sensors are often sparse, noisy, and difficult to interpret,
particularly in the off-road setting. Existing traversability analysis systems are
very engineering-intensive, often requiring hand-tuning of rules and manual anno-
tation of semantic labels. Furthermore, existing methods for analyzing traversabil-
ity risk and uncertainty are computationally expensive or not well-calibrated. We
propose Velociraptor, a traversability analysis system that performs [veloci]ty-
informed, [r]isk-[a]ware [p]erception and [t]raversability for [o]ff-[r]oad driving
without any human annotations. We achieve this via the use of visual foundation
models (VFMs) and geometric mapping to produce a rich visual-geometric repre-
sentation of the robot’s local environment. We then leverage this representation to
produce costmaps, speedmaps, and uncertainty maps using state-of-the-art fully
self-supervised techniques. Our approach enables intelligent high-speed off-road
navigation with zero human annotation, and with about forty minutes of expert
data, outperforms several geometric and semantic traversability baselines, both in
offline and real-world robot trials across multiple challenging off-road sites.
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1 Introduction

Figure 1: We propose Velociraptor, an off-road
traversability system that enables high-speed nav-
igation without requiring any human annotations.

Autonomous off-road driving is a challenging
problem in the domain of mobile robotics with
applications in many domains such as forestry,
defense, exploration and construction [1, 2, 3,
4, 5, 6, 7, 8]. Unlike urban driving and in-
door scenarios, off-road terrain is highly un-
structured, variable and uncertain. In order to
field a high-performing off-road system, it is
necessary to consider both geometric and vi-
sual information [9]. Unfortunately, the process
of transforming this information into represen-
tations amenable for planning and control (i.e.
traversability analysis) is highly complex.

In recent years, there has been much research
effort in replacing hand-engineered traversability rules with deep learning [10, 11, 12, 9, 13, 14,
15, 16, 17]. Learning traversability using deep neural networks is promising in that networks can
represent complex functions that can directly consume high-dimensional sensory data. However,
current approaches generally rely on large hand-annotated datasets [18, 19, 20, 9]. The annotation
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process is often laborious, error-prone and brittle to changes in platform or environment, making it
challenging and expensive to deploy autonomous mobile robots at scale. Additionally, noisy mea-
surements, novel obstacles and sparse data at high speeds creates the need to capture and quantify
uncertainty in order to accurately aggregate information and make risk-informed planning decisions
[21, 22, 23, 24]. Especially for self-supervised systems, it is important to be able to both recognize
input regions with high epistemic or aleatoric uncertainty and to react accordingly.

We present a method for learning uncertainty-aware traversability from visual and geometric features
without semantic annotations or hand-designed traversability rules. This allows us to rapidly deploy
our system, requiring only forty minutes of expert driving data and minimal in-field tuning. This is
accomplished via the use of geometric analysis and VFMs to produce a rich visual-geometric map
representation in bird’s eye view (BEV) space for downstream traversability learning. From this,
we train a BEV neural network to produce a costmap and speedmap via self-supervised techniques.
Given these maps, a model-predictive controller [25] is then used to direct the vehicle to a goal point
safely, and at high speed. In our experiments, we find that our system outperforms common geo-
metric and semantic baselines, and that the shared visual-geometric representation is critical to the
performance of the self-supervised traversability learning. Relative to our closest point of compari-
son [11], our work makes the following contributions: 1. a simple but effective method of combining
VFM features and geometric analysis in BEV for traversability learning, 2. self-supervised learning
of costs and speeds, allowing for maximum autonomous speeds of around 8m/s and 3. improved
uncertainty estimation, allowing for avoidance of out-of-distribution (OOD) obstacles.

2 Related Work

The dominant approach for off-road driving leverages semantic segmentation of image and/or Li-
DAR data to inform a hand-designed traversability function. Work by Maturana et al. [20] uses
point cloud data to project semantic labels from first-person view (FPV) into BEV space. The re-
sulting semantic map is then transformed into a costmap, and is then used by a trajectory library
planner for off-road navigation. Additional work by Shaban et al. [12] bypasses the projection step
by performing semantic segmentation directly on point cloud data. They leverage this representation
for local traversability and planning of a skid-steered robot. This work is extended by Meng et al.
[9] to consume image data and output both semantic and elevation information. These methods rely
on a hand-designed traversability function to produce costmaps from their semantic representations.

To address the laborious process of hand-annotating semantics, there has been significant interest in
self-supervision for traversability. We refer the reader to recent survey papers [7, 26, 27] for a more
complete analysis of learning for traversability. Most approaches fall into one of three categories:

Predicting Future Proprioception: Methods in this family rely on the fact that there is a correla-
tion between what the robot sees now, and what it will experience in the future. This is exploited
by regressing some proprioceptive signal such as slip [13], bumpiness [28, 16, 15] or future trajec-
tory [14, 29] to the perception representation (e.g. images, local maps). This enables the robot to
avoid undesirable proprioceptive events (such as high slip or bumpiness) by predicting them from
exteroception. Work by Kahn et al. [28] trains a model to predict bumpiness from first-person im-
ages and a sequence of actions. This model is trained from random exploration data and enables
preferences for smoother terrain such as sidewalks. Work by Wellhausen et al. [24] leverages a
ground reaction force to enable legged robots to avoid challenging terrain from vision. Further work
[16, 15] performs this prediction directly in BEV and demonstrate effectiveness on wheeled and
legged platforms.

Imitation of Experts: Methods in this family typically rely on inverse reinforcement learning (IRL)
[30, 31] to learn a cost function under which a set of expert data is made optimal. Pioneering work by
Ratliff et al. and Bagnell et al. [32, 33] presents an application of IRL for global navigation in which
costmaps are learned from satellite imagery and applied to a large-scale mobile robot. Wulfmeier
et al. [34, 35] demonstrate that the gradient of the MaxEnt IRL objective can be used to train deep
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Figure 2: A high-level overview of our perception pipeline. At every timestep, the robot receives a
camera image, point cloud and state estimate. The image is first run through a deep visual feature
extractor to produce image-space features. These features are used to decorate the point cloud and
are BEV-splatted to produce a single-frame visual map. These maps are aggregated over time using
odometry. Concurrently, the pointclouds themselves are registered using odometry and have BEV
geometric features extracted. Finally, the geometric and visual maps are stacked together and fed
through a FCN to generate our costmaps/speedmaps/uncertainty.

neural networks, and demonstrate its efficacy in semi-structured urban driving. Additional work
applies MaxEnt IRL to local navigation for wheeled and legged robots [36, 37, 38, 11].

Learning Model Uncertainty: Additional work leverages model uncertainty as a proxy for
traversability. Work by Fan et al. [39] (STEP) presents a LiDAR-based traversability pipeline that
reasons about distributions of cost. Uncertainty is propagated through hand-engineered traversabil-
ity rules, and is transformed into scalar cost using Conditional Value-at-Risk (CVaR) [40]. Work by
Schmid et al. [41] leverages the uncertainty of a learned perception model as a metric of traversabil-
ity. Additional work by Cai et al. [42] learns a perception-conditioned traction distribution. This is
leveraged by a model-predictive controller to enable risk-aware planning via dynamics rollouts that
sample from this learned distribution. This work is extended [21] to include estimation of epistemic
uncertainty and demonstrations on both wheeled and legged platforms.

Leveraging VFMs: There has been recent interest in leveraging VFMs for off-road traversability.
Existing work V-Strong [29] leverages SAM [43] for contrastive learning of traversability in im-
age space. Existing work WVN [13] leverages Dino [44] to regress a proprioceptive slip estimate
onto FPV embeddings. These estimates are then projected onto an elevation map for BEV-space
traversability and demonstrated on a legged robot. We differ from prior work in that we first map
VFM features into BEV, and then perform learning. This simplifies the process of learning multi-
ple outputs, enables simple fusion with geometric LiDAR information and reduces the effect of the
lossy FPV to BEV projection step. Furthermore, we draw from all three families of self-supervised
traversability by 1. learning to predict future expert speeds from our exteroceptive map, 2. learn-
ing to predict cost from expert demonstrations via IRL, and 3. performing epistemic and aleatoric
uncertainty estimation on our perception representation.

3 Visual-Geometric Mapping with VFMs

It is necessary to produce a perception representation for downstream control that enables a robot to
navigate to desired goal locations safely and quickly, without the use of any prior information (e.g.
road maps, satellite imagery). For this work, we will use a local grid map as this representation [45],
which we will populate with information derived from image and point cloud observations. At a
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high level, our method produces local maps for learning, given streams of state estimates xt, point
clouds Pt and images It. First, we maintain an aggregated point cloud P1:t via registration from our
state estimates x1:t. Then we extract BEV-space geometric features (e.g. elevation, slope, etc.) from
this registered point cloud to produce a geometric map MG

t . In parallel, we compute deep visual
features from the current image It using VFMs. The current point cloud Pt is projected into the
image frame to assign spatial positions to the deep image features. These features are then projected
into BEV space and aggregated over time to produce a visual map MV

t . Finally, these two maps are
stacked to yield a visual-geometric map Mt. This process is shown in Figure 2. A summary of each
component of the mapping system are presented below, with additional details in the supplemental.

3.1 Obtaining Geometric Features

In order to obtain geometric features, we register the pointclouds P1:t together using odometry x1:t.
Then given a local map size and resolution, we perform a series of geometric analyses to extract
several salient features (such as terrain height, slope, etc.). Note that this geometric analysis lever-
ages a registered point cloud. This is preferable to computing single-frame maps and aggregating,
as the computation of several geometric features is influenced by effects such as occlusion, which
aggregated point clouds can mitigate somewhat.

3.2 Obtaining Visual Features

Visual foundation models such as Dinov2 [46] and SAM [43] represent an exciting opportunity
for the off-road driving domain in that they provide continuous-valued, semantic-level features for
a wide range of image data without requiring fine-tuning or annotation. However, it remains an
open question as to how best to incorporate such information into a navigation stack. We provide a
baseline approach for incorporating visual features based on LiDAR point cloud projection that has
been used for semantics in prior work [20]. Additional details are provided in the supplemental.

In order to improve memory efficiency and speed of mapping, we perform a principal component
analysis (PCA) on the FPV VFM images in the train set and map the top n components. This is
desirable because it maintains the most relevant features from the VFM, while significantly reduc-
ing the number of feature channels and being efficient to compute. We then project the current
LiDAR point cloud Pt into the image frame to assign spatial positions to the reduced VFM features.
Features with a lidar return are then mapped into BEV to produce a visual map (cells containing
multiple points use the average embedding), which is aggregated over time with odometry.

An important point to note is that unlike the geometric mapping, the aggregation of visual features
occurs in map-space (as opposed to projecting the aggregated point cloud into the current image).
This is done to avoid the effect of occlusions and odometry error, which can occur when points
are projected into images at different timesteps. Additionally, this process qualitatively reduces the
effects of positional embedding artifacts on the aggregated map.

4 Learning in BEV from Unlabeled Data

We can leverage our BEV representation to perform several label-free traversability tasks. In order
to provide the most useful guidance to a downstream controller, we elect to produce three maps, a
speedmap Sθ, costmap Cθ and uncertainty map U (Figure 2). The costmap informs the vehicle of
where to drive by producing a single scalar value commensurate to the difficulty of traversal over
that particular cell (i.e. trails have low cost, trees have high cost). The speedmap informs the vehicle
of a notion of how to drive in that for every cell by producing a recommendation of how fast a cell
can be safely traversed over (i.e. trails have high speeds, and tall vegetation has low speeds). The
uncertainty map identifies unseen terrain features which should be avoided. In order to learn these
maps, we use a lightweight fully-convolutional network (FCN) with a shared backbone and separate
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heads for costmap and speedmap prediction. Following prior work [32, 11], we train an ensemble
of these networks in order to perform uncertainty estimation.

4.1 Learning Costmaps

Unlike geometric and semantic features, there is no obvious heuristic mapping from VFM features
to cost. Thus, in order to learn costmaps, we leverage inverse reinforcement learning (IRL). IRL is
desirable in this application due to its demonstrated success in off-road traversability [33, 32, 35, 37,
11] and ability to consume arbitrary state features, which need not be human-interpretable.

At a high level, IRL seeks to learn a cost function under which a corpus of expert demonstrations
is made optimal. We optimize an objective similar to LEARCH [32], in which positive samples
are generated from the expert trajectory, and negative samples are generated from a fast trajectory
optimizer (in our case, MPPI [47]). State visitation distributions DE and DL (discretized over grid
states S in the map) are computed for the expert and learner, and used via Equation 1 to update the
network. We follow the example set by Ratliff et al. [32] and train our network to output log-costs,
which we exponentiate for the planner. We also use a small L2 regularizer on costs.

∇θ

∑
τE∈DE

L(τE |θ) =
∑
si∈S

[
(DE

si −DL
si)

∂C

∂θ

]
+ k

∑
si∈S

Cθ(M)si , Cθ(M) = exp(fθ(M)) (1)

4.2 Learning Speedmaps

In order to learn speedmaps, we perform supervised learning of the expert speeds, conditioned on
our perception representation. We follow the example of Cai et al. [21] by learning a categorical
distribution over discrete speed bins, per cell. This has the advantage of correctly representing the
support of the speed variable (R+), while maintaining the ability to represent arbitrary distribution
shapes. Learning a distribution allows us leverage quantiles of this learned speed distribution as a
risk tolerance parameter. This distribution is learned by maximizing the log-probability of the expert
speed v(x) for its corresponding map cell s(x). For safety purposes, we also introduce negative
samples for cells where the expert did not drive and set their speed label to zero, resulting in the
objective in Equation 2 (where Ss

θ denotes the current learned speed distribution at map state s).

Lspeed =
∑

τE∈DE

[ ∑
xi∈τE

−logS
s(xi)
θ (||v(xi)||) + k

∑
si∈S\τe

−logSsi
θ (0)

]
(2)

4.3 Learning Uncertainty Maps

We also perform density estimation of our training input distribution to detect regions of high epis-
temic uncertainty. We observe that the IRL network is effective at detecting distinct geometric ob-
stacles and evaluating the traversability of different types of terrain, and our offline results indicate
generalizability to held-out test sites. However, we noticed that various out-of-distribution objects
that don’t resemble terrain didn’t trigger high-cost predictions from the network as expected. This
is undesirable, as in practice we found some of these objects to be dangerous (e.g. a stray tire or a
pallet full of nails). While this may not be the case every time, within the scope of this work we
adopt a policy of avoiding these objects if the robot can find low-cost terrain around it.

Offline, we randomly sample image embeddings from the train dataset, and use K-Means clustering
to generate feature clusters (using cosine distance). Online, we leverage the residuals between the
features and cluster centers and perform the following operation to determine uncertainty U .

u = min
k∈{1,2,...,K}

∥d− Fk∥1, U =

{
0 if u < τU
u otherwise

(3)
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This operation is done in the map space after the visual features have already been projected out.
If the minimum distance of a map feature d to any cluster Fk exceeds a threshold τU , we assume
its corresponding terrain/object is uncertain and therefore assign it a high cost, allowing us to avoid
anomalies without any further training.

4.4 Risk-Awareness

Since we are able to produce distributions of both cost and speed, we are able to adapt the risk-
tolerance of our learned maps. Note that both our speed and cost distributions can be non-Gaussian
and multi-modal. In order to produce a risk-aware cost, we follow prior work [39, 11, 48] and use
Conditional Value-at-Risk (CVaR) [40]. In order to produce a risk-aware speed limit, we simply
take the ν-th quantile of the learned speed distribution per cell (Equation 4).

Cν(M) = CVaRν({Cθi(M),∀i ∈ E}), Sν(M) = VaRν({Sθi(M),∀i ∈ E}) (4)

5 Experiments and Analysis

5.1 Offline Tests

We first evaluate our method on several held-out datasets. The first dataset is a representative sample
of expert driving from the test site where the training data was collected (Dataset 1). The second
dataset (Dataset 2) was collected from a different test site (approx. 70 miles away) and contains
higher speeds, more slopes and denser vegetation than Dataset 1.

In order to evaluate our learned control representation, we compare the optimal trajectory under
MPPI to the expert trajectory (Equation 5, cost function J in supplemental). We use Modified
Hausdorff distance on positions (pMHD), speeds (sMHD), and both positions and speeds (MHD).
This metric is standard in prior work for costmap prediction [36, 37, 11, 9]. We report positional and
speed distances separately to somewhat (though not completely) separate out the contribution of the
costmap and speedmap. We compare our method to several strong baselines in recent literature.

L = MHD(τE , τ
∗), τ∗ = min

τ
J(τ, Cν , Sν) (5)

Baseline 1 - Geometric Analysis from ALTER [49]: We chose the cost function from ALTER as
a geometry-only baseline. At a high level, ALTER weights a baseline occupancy map with SVD
decompositons of the points in each cell to encourage the vehicle to drive on smooth terrain when
possible. Since ALTER does not produce a speedmap, linear quantile regression was performed on
the train set to predict expert speeds from this SVD feature. We use two variants of the ALTER cost
function, one which uses the coefficients directly from Chen et al. [49] (ALTER orig), and one with
modified coefficients that yielded better on-platform navigation performance (ALTER tuned).

Baseline 2 - Semantics from GANav [50]: We chose GANav as a representative semantic baseline.
The FPV semantic predictions from GANav were then passed through our visual mapping pipeline
in order to generate BEV semantic maps. Note that we follow the approach of Asgharivasi et al.
[51] and map the semantic logits (which we then softmax in the aggregated map). These maps
were then transformed into costs via a hand-designed reward function (which was validated and
tuned to give good navigation performance on platform). Speeds were computed by computing the
class-conditioned speed quantiles on the train set.

Baseline 3: Simple Visual-Geometric Fusion (ALTER + GANav): We also evaluate a simple
fusion of geometric and visual costs. This is achieved by combining the previous baselines via a
cell-wise maximum for costs, and minimum for speeds.

In addition to the above baselines, we evaluate four variants of Velociraptor. This is done to ablate
the usefulness of various visual features for the downstream navigation task. V-geom is trained
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Table 1: Results for cost CVaR = 0, speed quantile = 0.5

pMHD (1) sMHD (1) MHD (1) pMHD (2) sMHD (2) MHD (2)
ALTER cfn orig [49] 1.62 ± − 0.31 ± − 1.98 ± − 2.99 ± − 0.51 ± − 3.37 ± −

ALTER cfn tuned [49] 1.33 ± − 0.25 ± − 1.65 ± − 3.36 ± − 0.52 ± − 3.70 ± −
GA-Nav cfn [50] 3.70 ± − 0.43 ± − 4.01 ± − 4.24 ± − 0.76 ± − 4.70 ± −

ALTER orig + GA-Nav 3.14 ± − 0.42 ± − 3.47 ± − 4.63 ± − 0.67 ± − 4.97 ± −
ALTER tuned + GA-Nav 2.56 ± − 0.37 ± − 2.88 ± − 3.89 ± − 0.76 ± − 4.37 ± −

V-geom [11] 1.26 ± 0.18 0.23 ± 0.04 1.46 ± 0.19 2.34 ± 0.27 0.37 ± 0.03 2.65 ± 0.28
V-semantics 1.16 ± 0.08 0.20 ± 0.01 1.35 ± 0.08 2.26 ± 0.19 0.46 ± 0.04 2.63 ± 0.21

v-Dino 0.97 ± 0.03 0.18 ± 0.00 1.15 ± 0.03 1.82 ± 0.08 0.30 ± 0.02 2.10 ± 0.09
V-SAM 1.13 ± 0.10 0.20 ± 0.01 1.41 ± 0.10 2.12 ± 0.24 0.34 ± 0.03 2.42 ± 0.25

Table 2: Results for cost CVaR = 0, speed quantile = 0.9

pMHD (1) sMHD (1) MHD (1) pMHD (2) sMHD (2) MHD (2)
ALTER cfn orig [49] 1.15 ± − 0.20 ± − 1.44 ± − 1.57 ± − 0.17 ± − 1.78 ± −

ALTER cfn tuned [49] 1.06 ± − 0.17 ± − 1.32 ± − 1.99 ± − 0.16 ± − 2.16 ± −
GA-Nav cfn [50] 3.37 ± − 0.46 ± − 3.66 ± − 2.97 ± − 0.30 ± − 3.21 ± −

ALTER orig + GA-Nav 2.68 ± − 0.39 ± − 2.97 ± − 2.96 ± − 0.27 ± − 3.15 ± −
ALTER tuned + GA-Nav 2.27 ± − 0.31 ± − 2.55 ± − 2.02 ± − 0.20 ± − 2.23 ± −

V-geom [11] 1.05 ± 0.13 0.18 ± 0.01 1.31 ± 0.13 1.64 ± 0.12 0.16 ± 0.01 1.82 ± 0.12
V-semantics 1.11 ± 0.11 0.17 ± 0.02 1.34 ± 0.08 1.55 ± 0.07 0.17 ± 0.01 1.74 ± 0.07

V-Dino 0.83 ± 0.03 0.14 ± 0.00 1.08 ± 0.02 1.48 ± 0.02 0.15 ± 0.01 1.66 ± 0.03
V-SAM 1.01 ± 0.13 0.16 ± 0.02 1.25 ± 0.13 1.59 ± 0.13 0.15 ± 0.01 1.77 ± 0.13

with only geometric features, which is equivalent to Triest et al. [11] with the addition of the extra
head for speed. V-semantics, V-Dino and V-SAM are trained with both geometric features and the
features from GANav [50], DINOv2 [46] and SAM [43], respectively. All other training parameters
for these models are held constant.

Quantitative results are provided in Tables 1 and 2. In Table 1, the speed risk level (quantile of speed
distribution) νs is set at the mean value (0.5) for all methods. For Table 2, νs is set to 0.9. We report
the mean and standard deviation over five trials for learning-based methods.

We find that it is important to learn the cost and speedmaps as opposed to relying on existing heuris-
tics, as evidenced by significant improvement based on the metrics. As expected, the addition of
visual features allows for improved trajectory matching, with the features from Dinov2 appearing to
be the most useful, based on superior performance across all metrics and datasets. As one might ex-
pect, considering distributions of cost and speed are important, especially given that speed is treated
as an upper bound. This is evidenced by improvement across all methods when νs = 0.9.

5.2 Large-Scale, High-Speed Tests

Figure 3: Leveraging fine-grained visual features allows for
more sophisticated costing of different types of grass and
vegetation. We can observe that our method can distin-
guish between low shrubs (a), marshy grass (b), and low,
traversable grass (c) where geometric and semantic base-
lines cannot. Planned trajectories are shown in yellow.
Costmaps are cropped to focus on the relevant region.

We evaluated our method and several
baselines on a 4km loop in an off-
road testing site. This loop contains
many challenging traversability sce-
narios such as steep slopes, tall grass,
standing water, and small, OOD ob-
stacles. We measure performance via
the number of safety operator cor-
rections, average autonomous speed
and speed-normalized ride bumpi-
ness [16] (Corrections (long), Avg.
Speed and Avg. Bump in Table 3). For safety, experiments were run with more conservative risk
parameters than the offline test (νc = 0, νs = 0.25 for learned, and νs = 0.5 for baselines).

Overall, we find that our learned costmap and speedmap enabled the robot to complete the course
with fewer operator interventions at higher speeds. In particular, visual features were important
for allowing the vehicle to travel more quickly on open trails. A combination of geometry and
continuous-valued visual features allowed for disambiguation of cost within a semantic class (Figure
3). We found that all methods achieved a similar amount of ride bumpiness. This is likely due to
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Table 3: Hardware Results

Method Corrections (long) Avg. Speed Avg. Bump Corrections (short)
Alter cfn tuned [49] 10 4.64m/s 0.47 5

GA-Nav [50] 15 3.93m/s 0.48 5
V-Dino 6 5.06m/s 0.47 5

V-Dino + Unc 10 4.59m/s 0.48 1

Figure 4: Example scenarios with geometrically-indistinct objects (tarps, tire, puddle) obstructing
the path in red (robot pose is yellow arrow). The uncertainty layer classifies them as OOD objects.

the resolution of the costmap, and the lack of explicit bumpiness minimization in our cost function.
Several additional scenarios are presented in the supplemental.

5.3 Avoidance of OOD Objects

Figure 5: Examples from our large-scale navigation trial.
Relevant obstacles are circled in red for FPV and BEV. In
the top scenario, the robot must navigate around a short pile
of debris that incurs a risk of tire puncture. The geometric
method fails because of the low height of this obstacle. In
the bottom scenario, the robot must navigate through a trail
that necessitates contact with with dense, overhanging veg-
etation. The semantics-based method is overly conservative
and does not plan through. In both cases, our method suc-
ceeds by learning from geometry and vision together.

To isolate the effect of the OOD de-
tection, we designed a smaller course
where the robot had to navigate to a
goal directly straight ahead, with var-
ious OOD obstacles (two tires, a flat-
tened sign, and a tarp) placed in its
path. We evaluate the number of cor-
rections for each method over three
trials, the results of which are shown
in the Corrections (short) column of
Table 3 (note that the short and long
trials are separate). We find that the
uncertainty layer adds additional cost
to these obstacles without adding cost
to previously seen terrain like trails
and tall grass (Figures 4, 5).

6 Limitations and Future
Work

While our method represents a promising step towards fully self-supervised, adaptive traversability,
there are a number of limitations that must be addressed in future work. First, our method does
not address occlusions and consistency of features at different distances. This affects both the visual
and geometric features, which can affect downstream traversability. We expect that applying existing
inpainting methods [52, 12, 9, 17] as well as longer-range planning, can alleviate this problem while
remaining self-supervised. Second, our method of aggregating and projecting VFM features to BEV,
while effective, is overly simple. We plan to extend our mapping procedure to more expressive map
representations such as voxels. Lastly, our representation output is limited in its ability to provide
fine-grained trajectory guidance. While we are able to provide a maximum speed and cost, we cannot
produce certain behaviors such as approaching logs from certain angles, or going at a minimum
speed. We can ameliorate this by incorporating physics-informed costs in our MPPI cost function
[16, 53, 54], or performing learning on trajectory-level features such as speed and curvature.
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