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ABSTRACT

Anomaly Detection(AD) for multivariate time series is an active area in machine
learning, with critical applications in Information Technology system manage-
ment, Spacecraft Health monitoring, Multi-Robot Systems detection, etc.. How-
ever, due to complex correlations and various temporal patterns of large-scale
multivariate time series, a general unsupervised anomaly detection model with
higher F1-score and Timeliness remains a challenging task. In this paper, We
propose a General representations of multivariate time series for Anomaly De-
tection(GenAD). First, we apply Time-Series Attention to represent the various
temporal patterns of each time series. Second, we employ Multi-Correlation At-
tention to represent the complex correlations of multivariate time series. With
the above innovations, GenAD improves F1-scores of AD by 0.3% to 5% over
state-of-the-art model in public datasets, while detecting anomalies more rapidly
in anomaly segments. Moreover, we propose a general pre-training algorithm on
large-scale multivariate time series, which can be easily transferred to a specific
AD tasks with only a few fine-tuning steps. Extensive experiments show that
GenAD is able to outperform state-of-the-art model with only 10% of the training
data.

1 INTRODUCTION

Anomaly detection, which refers to the recognition of anomalous observations that differ from the
general distribution patterns(Zhao et al., 2019), is an active area in machine learning, with critical
applications in Information Technology system management (Zhang et al., 2019), Spacecraft Health
monitoring (Hundman et al., 2018), Multi-Robot systems detection (Park et al., 2018), etc.. There
are two kinds of anomaly detection directions in application that are referred to detecting anomalies
at the entity-level using multivariate time series, and detecting anomalies at the metric-level using
uni-variate time series. In real-world scenarios, the overall status of an entity such as machine or
systems is more concerned about than each time series of the entity(Su et al., 2019), so we focus
on detecting anomalies at the entity-level with multivariate time series. At the core of evaluating
anomaly detection models are F1-score(precision and recall)(Xu et al., 2018), Timeliness(Zhang
et al., 2019; Liu et al., 2019a) and Generalization(Li et al., 2018).

Although fruitful progress, such as DAGMM(Zong et al., 2018), MSCRED(Zhang et al., 2019),
Omni(Su et al., 2019), has been made in the last several years, due to the complex Inter-dependencies
(i.e., correlations among time series of different variate components) and various Intra-dependencies
(i.e., temporal patterns within one time series), unsupervised anomaly detection for multivariate time
series remains a challenging task. These existing models either lose the dynamic, higher-order and
non-linear Inter-dependencies, or do not learn the Intra-dependencies well. How to represent the
complex correlations and various temporal patterns of multivariate time series directly affects the
performance of anomaly detection.

In addition, anomalies always occur continuously and form contiguous anomaly segments. Oper-
ation engineers care about whether the anomaly detection model can detect a continuous anomaly
segment, rather than finding every anomaly time-slot. So the existing models pay more attention to
successfully detect a subset of observations in the anomaly segment, which is considered that the
entire segment is correctly detected. However, anomalies should be detected as soon as possible in
anomaly segment, so that further actions can be taken to avoid serious losses. For instance, 1 minute
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downtime of an automotive manufacturing plant may cost up to 20 000 US dollars (Djurdjanovic
et al., 2003). Therefore, the rapid detection of anomaly segment is a critical core.

Moreover, due to the node-specific patterns in large-scale multivariate time series (i.e., millions of
cells in mobile communication networks behave various patterns according to the surrounding envi-
ronment), although deep learning models (Aytekin et al., 2018; Zhou & Paffenroth, 2017) perform
better than any others after being carefully designed, it is impossible to deploy such models on large-
scale multivariate time series in real-world scenarios due to the huge overhead in model training and
parameter adjustment. That said, for different multivariate time series, it is required to have enough
and different data to train dedicated models. How to optimize models for large-scale anomaly de-
tection on thousands to millions of multivariate time series, is particularly important for practical
application.

Based on the above problems, we propose a General multivariate time series representation for
Anomaly Detection(GenAD), with the following contributions:

• GenAD employs Time-Series Attention, instead of LSTM, GRU,etc.(O’Shea et al., 2016;
Chauhan & Vig, 2015; Malhotra et al., 2015; 2016), to represent the various temporal pat-
terns of multivariate time series. Multi-head and Hidden layer are introduced in Time-
Series Attention to capture Sequentiality, Trend, Delay, and Periodicity of N-dimensional
series simultaneously, which is difficult for LSTM or GRU when N is large. Time-Series
Attention also allows for parallelization, which is especially important at longer series
lengths. Moreover, GenAD employs Multi-Correlation Attention, instead of AE, VAE,
CNN(Kingma & Welling, 2013; Liu et al., 2019b; Burgess et al., 2018), to represent the
complex correlations of multivariate time series. Attention mechanism is introduced in
Multi-Correlation Attention to capture the dynamic correlation among time series that are
not identically distributed, which is difficult for AE, VAE,CNN, as correlations of these
models remain constant after offline training. Multi-head and Hidden layer are used to
capture non-linear, coupling and higher-order correlations among time series. As time se-
ries contains noise in real-world applications, coherent accumulation and dropout are also
introduced. Through extensive experiments, GenAD increases F1-Score by 0.3% to 5%
over the state-of-the-art model in public datasets, demonstrating the benefits of explicitly
representing the complex correlations and various temporal patterns of multivariate time
series.

• Based on the robust representation of complex correlations and various temporal patterns,
as well as the introduction of Ripple Effect(Dolgui et al., 2018) for anomaly detection,
GenAD detects anomalies rapidly in anomaly segments. Experiments show that GenAD
detects anomalies in a lower latency after the anomalies occurred in anomaly segments than
the state-of-the-art model.

• GenAD pre-trains a general model on large-scale multivariate time series with self-
supervision. The goal of the pre-training is to empower GenAD to capture the general
correlations and temporal patterns of multivariate time series, so that it can be easily trans-
ferred to anomaly detection tasks for different multivariate time series models with only a
few fine-tuning steps. The robustness to noise can also be enhanced at the same time. To
the best of our knowledge, GenAD is the first general pre-training model for representing
multivariate time series, which supports large-scale anomaly detection task. Extensive ex-
periments show that GenAD achieves higher F1 scores and better stability on all datasets,
while only 10% of the training data are used.

2 RELATED WORK

The existing unsupervised anomaly detection models for multivariate time series can be categorized
into the following types:

• Anomaly detection can be implemented for each dimension of multivariate time series,
and the overall status of an entity is voted or weighed on the outputs of each dimen-
sion. Anomaly detection for each dimension can be realized by statistical principles or
distance measurements, including 3sigma(Son et al., 2016), boxplot(Moumena & Gues-
soum, 2015), HBOS(Goldstein & Dengel, 2012), KNN, AvgKNN(Angiulli & Pizzuti,
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2002), OCSVM(Das et al., 2010), etc.. These models obtain the distribution or the farthest
distance of normal series, while anomaly is detected as outliers. These models require less
training data, which are suitable for large-scale series. However, most of these models
perform better for short-term abnormalities, while the performance will be attenuated for
long-term abnormalities. Anomaly detection for each dimension can also be realized by
prediction(ARIMA(Contreras et al., 2003), LSTM, Prophet(Medina et al., 2007)) or recon-
struction (AE, VAE). These models learn the Intra-dependencies of series and adapt well to
time series. However, these models detect each time series in isolation and lose the corre-
lations among multivariate series, which results in lower performance of an entity. What’s
more, these models require large and different data for training, which limits the application
for large-scale series.

• Anomaly detection can also be implemented at the Entity-level than for each dimension.
PCA(Shyu et al., 2003), RPCA(Paffenroth et al., 2018), MCD(Rousseeuw & Driessen,
1999) learn Inter-dependency patterns of multivariate series and detect anomalies based
on changes in correlations, which requires less training data. But these models only rep-
resent the linear correlations. DEC(Xie et al., 2016), DR+K-means(Yang et al., 2017),
DAGMM reduce the dimension of multivariate series by DNN or AE, which solves the
problem of representations of non-linear correlation. RSRAE(Lai et al., 2019) combines
AE and RSR to learn non-linear correlation, which also exhibits robustness to abnormal
points in the training data. However, none of the above models is suitable for time series.
MSCRED(Zhang et al., 2019) detected anomalies by calculating the differences between
the reconstructed and the original correlation matrix. However, MSCRED only measures
the correlation matrix and loses the Intra-dependencies of the series itself. Moreover, the
correlation matrix is obtained by a simple inner-product of two time series, which is im-
possible to find the deep higher-order correlation. Omni(Su et al., 2019) introduces VAE to
mine the Inter-dependencies and combines GRU to represent Intra-dependencies of series,
which achieves robust results. However, single-layer GRU is difficult to capture the vari-
ous temporal patterns of N-dimensional series when N is large. Omni also lose dynamic
correlation and requires large training data, which also limits the application in large-scale
multivariate time series.

Compared with the above approaches, GenAD can not only obtain dynamic, non-linear and deep
higher-order correlations, but also represent various temporal patterns of time series. More impor-
tantly, GenAD proposes a pre-training algorithm on large-scale multivariate time series, which can
outperform state-of-the-art model with only 10% of the training data.

3 GENERAL REPRESENTATIONS FOR ANOMALY DETECT

In this section, we first present the problem statement of multivariate time series for anomaly de-
tection, then introduce the overall architecture of our model GenAD. Besides, we illustrate TIME-
SERIES ATTENTION and Multi-Correlation ATTENTION in detail, which are the key compo-
nents of GenAD.

3.1 PROBLEM STATEMENT

Given the multivariate time series X of a machine or systems with N-dimensional time series, and
T is the length of timestamps for X ,

X = (x1
T , x2

T , · · ·, xNT ) ∈ RN×T (1)

We learn the complex correlations and various temporal patterns of X in (0, T ), then determine
whether there are anomaly segments of X at certain time steps after T .

3.2 NETWORK ARCHITECTURE

Figure 1 shows the preprocessing of input series,network architecture of GenAD and model training.
Preprocessing of input series: input series is N-dimensions multivariate time series with time
length T . T is divided into (0, T1) and (T1, T ), while the length of (0, T1) is equal to 4 times the
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Figure 1: Model Architecture

length of (T1, T ). Given the length of (T1, T ) is Te, the length of (0, T1) is sum of Ta, Tb, Tc, and
Td, while length of Ta, Tb, Tc, and Td are the same and all equal to Te. 20% of N dimensions are
randomly selected to be masked with a fixed random series in Te. Then, the left 80% original series
and 20% masked series in Te, as well as all series in Ta to Td, are input series of GenAD. Network
architecture of GenAD: GenAD consists of four parts, which are position encoding, 4 hidden
layers with Time-Series Attention and Multi-Correlation Attention in each layer, linear layer and
loss function. Positional encoding is injected into time series in order not to lose the Sequentiality.
4 hidden layers are introduced to represent temporal patterns and correlations of multivariate time
series. Layer-4 and Linear output reconstructed series of masked 20% of N dimensions in Te, while
loss is capture by MSE of reconstructed series and 20% original series in Te. Model training: we
employ Adam Optimizer to minimize the MSE loss. 20% of N dimensions in preprocessing are
randomly selected at each epoch of model training, so GenAD does not know which series of N
have been used to be reconstructed or have been selected to be masked during model training. This
will force the model to learn temporal patterns and correlations of multivariate time series in order
to minimize loss after sufficient number of training epochs.

3.2.1 TIME-SERIES ATTENTION

GenAD employs Time-Series Attention, instead of RNN, GRU, LSTM, etc., to represent the various
temporal patterns of multivariate time series, including Sequentiality, Trend, Delay, and Periodicity.
Given one of the time series xi(n) in X(n) as an example, Time-Series Attention is implemented
by Eq.(2)

TimeSeriesAttention[xi
Te(n)] =

∑
t=(Ta,Tb,Tc,Td)

softmax(
(Qi

Te)(Ki
t)

Transpose

√
d

)Vi
t (2)

Where Qi
Te is the transformation of xi(n) in time Te; Ki

Te and ViTe are the transformation of
xi(n) in time Ta, Tb, Tc, Td; Transpose is the transpose of a matrix; d is the length of xi(n) in time
Te. Eq.(2) means that GenAD learns the various temporal patterns of xi(n) in Ta, Tb, Tc, Td and
reconstructs xi(n) in time Te.

Sequentiality Representation:

Since Time-Series Attention does not contain convolution or recurrence, in order not to lose the
Sequentiality, positional encoding is injected into the time series data. The encoding algorithm
can choose the sin and cos functions mentioned in Transformer(Devlin et al., 2018), or use learned
positional encoding variables. The two versions produce nearly identical results, and the latter is
chosen here.
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Trend Representation:

Assuming there are trends in xi(n), we can simplify that only linearly increasing trend exists:

xi(n)=Ait+ bias, s.t. Ai > 0 (3)

Ai is the linearly increasing coefficient of xi(n), bias is xi(n) when t = 0. According to the network
architecture in 3.2,

xi
Te(n) = Ai(T1 + ∆t, T ) + bias (4)

∆t is sample interval of xi(n). Assuming that Te can be reconstructed by xi(n) in Ta, Tb and Td,
then setting Eq(2) that

(
(Qi

Te)(Ki
t)

Transpose

√
d

) = 1

Vi
t = xi

t × V _Arrayit, t = (Ta, Tb, Tc, Td)

(5)

We let V _ArrayiTa = I×(−3), V _ArrayiTb = I×3, V _ArrayiTc = I×0, V _ArrayiTd = I×3,
where I is identity matrix, so

TimeSeriesAttention[xi
Te(n) =

∑
t=(Ta,Tb,Tc,Td)

softmax(
(Qi

Te)(Ki
t)

Transpose

√
d

)Vi
t

=-
1

3
× (3× ViTa)+

1

3
× (3× ViTb) +

1

3
× (3× ViTd)

= −(Ai(0 + ∆t, T_ab) + bias) + (Ai(T_ab + ∆t, T_bc) + bias) + (Ai(T_cd + ∆t, T1) + bias)

= AiTa + (Ai(T_cd + ∆t, T1) + bias) = (Ai(T1 + ∆t, T ) + bias) = xi
Te(n)

(6)

xi(n) in Te can be reconstructed by xi(n) in Ta, Tb and Td. With the complexity of trends, the
correlation between xi(n) in Te and xi(n) in other times also changed, which can be learned by
module training.

Delay Representation:

As there may exist delay between xi(n) in time Te and xi(n) in Ta, Tb, Tc, Td, GenAD captures
delay by V _Arrayit mentioned in Eq(5). Simplify Eq(2) that only correlation between xi(n) in Te
and xi(n) in Ta exists, and assuming xi(n) in Te is [a, b, c] and xi(n) in Ta is [0, a, b], then setting

( (Qi
Te )(Ki

t)
Transpose

√
d

) = 1 and V _ArrayiTa =

0, 1, 0

0, 0, 1

0, 0, 0

, so

TimeSeriesAttention[xi
Te(n)] =

∑
t=(Ta,Tb,Tc,Td)

softmax(
(Qi

Te)(Ki
t)

Transpose

√
d

)Vi
t

=xiTa(n)×

0, 1, 0

0, 0, 1

0, 0, 0

=[a,b,c]×

0, 1, 0

0, 0, 1

0, 0, 0

=[0,a,b]=xiTe(n)

(7)

which delay xi(n) in Ta by one timestamp for xi(n) in Te.

Periodicity Representation

GenAD captures the Periodicity of time series in Ta, Tb, Tc, Td, and reconstructs the series in
Te according to the captured Periodicity. Simplify Eq(2) that only correlation between xi(n) in
Te and xi(n) in Ta exists, then softmax =1. Assuming that Qi

Te = cos((2π/N)kn), Ki
Ta =

2 × xiTa(n) ×
√
d, ViTe = 1, where 0 ≤ k ≤ (Num − 1)/2, 0 ≤ n ≤ Num − 1, Num = Ta

∆t ,
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then

TimeSeriesAttention[xi
Te(n)] = (

(Qi
Te)(Ki

Ta)
Transpose

√
d

)Vi
t

= cos ((−2π/N)kn)× (
(2× xiTa(n)×

√
d)√

d
)

Transpose

× 1

=

Num−1∑
n=0

cos((−2π/N)kn)× (2× xiTa(n)×
√
d)√

d

= FFTk(xi
Ta(n))

(8)

The output of Time-Series Attention of the first hidden layer is the kth frequency point of xi(n)
in Ta, and Multi-head Attention is employed to get other k frequency points of xi(n), where the
number of Multi-head isNum/2. The formula of IFFT is similar to FFT, which can also be realized
by Time-Series Attention in the second hidden layer. So xi(n) in Te can be better reconstructed by
the Periodicity of xi(n) in Ta.

After model training for Time-Series Attention, GenAD can represent the various temporal patterns
of multivariate time series, including Sequentiality, Trend, Delay, and Periodicity.

3.2.2 MULTI-CORRELATION ATTENTION

Existing deep models use CNN, AE, VAE, etc. to represent correlations of multivariate time series.
Once model training has been completed offline, the correlations will not change during online
inference. However, the N-dimensions of the multivariable time series are not identically distributed
in practice. For example, there may exist strong correlation between xi(n) and xj(n) of X(n) in
(0, T1), but when distribution of xi(n) and xj(n) has changed, there will be weak or no correlation
between xi(n) and xj(n) in (T1, T ). GenAD introduces Multi-Correlation Attention, instead of
CNN, AE, VAE, etc., to capture the dynamic correlation, as well as non-linear, coupling, and high-
order correlations. Assuming the original series in (T1, T ) is XTe , and the reconstructed series is
X̃Te . Given one of the reconstructed series x̃Te

i in X̃Te as an example, Multi-Correlation Attention
is implemented by Eq(9):

x̃Te
i =MultiCorrelationAttention[xi

Te(n)]

=
∑

j=(0,1,...,i−1,i+1,...,N)

softmax(
(Qi

Te)(Kj
Te)

Transpose

√
d

)Vj
Te

(9)

where Qi
Te is obtained through transformation of xi(n) in (T1, T ), Ki

Te and ViTe are obtained
through transforming of surrounding xi(n) in (T1, T ). Multi-Correlation Attention first obtains the

correlations between Qi
Te and all Kj

Te by (Qi
Te )(Kj

Te )
Transpose

√
d

, then reconstructes xiTe(n) by a

weighted sum of VjTe :

x̃Te
i =

∑
j=(0,1,...,i−1,i+1,...,N)

simjVj
Te (10)

sim is correlations and obtained through the real-time Dot-Product of Qi
Te and Kj

Te . Although
transformation parameters of Q and K remain constant after offline training, as xi(n) and sur-
rounding xi(n) keep changing online, the result of Q and K also keep changing, with the dynamic
correlations(sim) between xi(n) and all series being captured, as well as non-linear and coupling
correlations from ReLU activation function and Dot-Product operation. The ability to represent cor-
relation can be increased by introducing Multi-head. Multi-Correlation Attention also captures the
higher-order correlation by stacking multiple layers. Adding coherent accumulation (Appendix A)
and dropout to improve robustness to noise. In summary, Multi-Correlation Attention consists of
two layers at least. The first layer learns the dynamic, non-linear and coupling correlation, and the
second layer learns high-order correlations.

3.2.3 SUMMARY OF NETWORK ARCHITECTURE

GenAD introduces Time-Series Attention and Multi-Correlation Attention to capture the tempo-
ral patterns and correlations of multivariate time series. The four layers model is constructed for
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GenAD with independent Time-Series Attention and Multi-Correlation Attention. We can set the
first and third layers of GenAD are Time-Series Attention, while the second and fourth layers are
Multi-Correlation Attention. However, such an independent architecture will artificially reduce the
representation of GenAD, so we adopt the fusion of Time-Series Attention and Multi-Correlation
Attention. Each layer captures both the temporal patterns of series and the correlations among se-
ries. The fusion can be implemented by concatenating two kinds of attention or adopt the general
attention representations which can support two kinds of attention at the same time. GenAD chooses
the latter, and automatically learns the representation parameters.

3.3 METHOD FOR ANOMALY DETETION

GenAD evaluate the reconstruction error between the original signal and the reconstructed sig-
nal to detect anomalies. We set a two-level dynamic threshold (denoted as metric-level threshold
Gatemetric and entity-level threshold Gateentity), which is derived from the anomaly rate. For
the metric-level, if reconstruction error of one time series at time t is greater then Gatemetric, the
time series is declared as anomalous. For an N-dimensional entity at time t′, if there are M time
series (M > Gatemetric) that are anomalous, then the entity is declared as anomalous. How to get
anomaly threshold by anomaly rate is shown in Appendix B.

4 EXPERIMENTS

In this section, we first introduce the experimental datasets, comparison methods and evaluation
metrics. We further conduct experiments to verify the effectiveness of our model for anomaly detec-
tion in multivariate time series. In addition, we also show the feasibility of our model in large-scale
anomaly detection scenarios.

4.1 EXPERIMENTAL SETUP

Datasets. We use SMD (Server Machine Dataset) (Su et al., 2019) and MSL (Mars Science Labo-
ratory rover) for empirical studies. (i) SMD is a 5-week-long dataset collected from a large Internet
company, where each observation is equally spaced by 1 minute. SMD contains three groups of
machines (denoted as SMD-1, SMD-2 and SMD-3 respectively), a total of 28 machines, and each
of which contains 38-dimensional metrics. Each machine subset contains approximately 28000 time
steps, and is divided into two parts of the same length as a training set and a testing set. (ii) MSL has
132,046 time steps, of which the training set size is 58317 and the testing set size is 73729. Com-
pared with SMD, MSL contains more metrics, a higher anomaly rate and more types of anomalies.

Baseline methods. We compare GenAD with the following baseline methods: MSCRED, LSTM-
NDT(Hundman et al., 2018) and the state-of-the-art unsupervised method OmniAnomaly. Of these
baselines, LSTM-NDT applies LSTM for multivariate time series prediction, MSCRED detects
anomalies based on reconstruction errors, and OmniAnomaly is based on reconstruction probability.

Evaluation metrics. We use 3 metrics of Precision, Recall, and F1-Score to evaluate the anomaly
detection performance of GenAD and baseline methods. In practice, abnormal observations usually
appear continuously to form an anomaly segment. Generally, operation personnel care more about
whether the anomaly detection model can detect a continuous anomaly segment, rather than finding
every anomaly in the segment. Following the suggestion of (Su et al., 2019), we adopt a point-
adjust approach (Xu et al., 2018)to calculate the evaluation metrics, that is, if any observation in
the anomaly segment is detected, it is considered that the entire segment is correctly detected. In
addition, we set a two-level dynamic threshold (denoted as single-dimensional threshold and multi-
dimensional threshold), which is derived from the distribution of anomaly scores in the testing set.

Model parameters and thresholds. All models in the experiment use the same architecture
and parameters, details are in Appendix C. We also show the thresholds used for each dataset. In
addition, we explore the impact of important model parameters and the results are in Appendix D.
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Table 1: Results of GenAD and baselines

Method
SMD-1 SMD-2 SMD-3 MSL

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1
LSTM-NDT 0.773 0.298 0.431 0.767 0.282 0.412 0.819 0.428 0.557 0.452 0.389 0.418
MSCRED 0.869 0.853 0.861 0.922 0.898 0.910 0.839 0.908 0.872 0.746 0.881 0.808

OmniAnomaly 0.891 0.926 0.908 0.829 0.994 0.904 0.858 0.875 0.866 0.847 0.873 0.860
GenAD(Ours) 0.924 0.941 0.933 0.941 0.964 0.952 0.884 0.903 0.893 0.855 0.871 0.863
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Figure 2: Evaluation of the latency of anomaly detection. (a) F1 and latency on SMD-2. (b) The
correlation between abnormal metrics when anomalies occur, taking machine-2-4 as an example.

4.2 RESULTS COMPARED WITH BASELINES

We evaluate GenAD and baselines on 4 datasets: SMD-1, SMD-2, SMD-3 and MSL. Table 1 re-
ports the precision, recall, and F1-score of various anomaly detection methods, in which the best
score is highlighted in bold. Note that the precision and recall are the average values of the datasets,
and F1 is derived from the precision and recall. Although each of these methods provides an algo-
rithm for calculating the anomaly threshold, they all need a parameter (e.g. the parameter "level"
in OmniAnomaly) that quantifies the degree of anomaly as input. Therefore, we conduct multiple
experiments to choose parameters to get the best results for all the methods.

Overall, GenAD performs better than all baseline methods, with F1-score increasing by 0.3% to 5%
over the best baseline. We observe that reconstruction-based models perform better than prediction-
based models(e.g. LSTM-NDT). This is because the prediction-based method is more sensitive to
noise, and some time series are less predictable due to some uncontrollable factors (such as changes
in the network environment). Compared with MSCRED and OmniAnomaly, GenAD performs bet-
ter on representations of complex correlations and various temporal patterns. Moreover, introducing
coherent accumulation and dropout techniques make GenAD robust to noise. Therefore, GenAD
has the highest precision and F1-score on the 4 datasets.

4.3 RAPID DETECTION OF ANOMALIES

As mentioned earlier, abnormal observations usually appear continuously, and an abnormal segment
with a long duration is likely to cause a system failure. Therefore, it is essential to detect the anomaly
of the abnormal segment as early as possible. In this section, we conduct experiments to evaluate the
latency of anomaly detection, where latency is defined as the average value of the time points that
have passed when anomalies are detected in the abnormal segment. We select the SMD-2 dataset
with the best average performance of all anomaly detection models for the experiment, and the
results are shown in Figure 2a. Compared to MSCRED and GenAD, OmniAnomaly has a smaller
latency. This is due to a trade-off between a higher F1-score and a smaller latency, and the higher
Precision of the threshold set by GenAD also leads to longer latency. To illustrate this, we slightly
lower the threshold, denoted as GenAD(L). Compared with GenAD, GenAD(L) reduces the latency
by 46.79% at the cost of a 1.79% drop in F1-score, and is better than MSCRED and OmniAnomaly
in terms of latency and F1-score. A case of latency of anomaly detection is shown in Appendix E.

In addition, we explore why our method can quickly detect anomalies. According to the analysis
in Appendix F, anomalies in multivariate time series have Ripple Effect, and GenAD detect anoma-
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Figure 3: Evaluation of the generality of GenAD. (a) Performance of GenAD and GenAD(G). (b)
F1-score on each machine, compared to GenAD result.

lies based on the precise representation of correlation among time series, so as to infers anomalies
quickly. We randomly select a machine, denoted as "machine-2-4", which has 20 anomaly seg-
ments and 38-dimensional metrics such as CPU load, memory usage, etc.. We further analyze
whether there are correlations among the abnormal metrics. Specifically, for each anomaly seg-
ment Tanomaly, Given N is the number of abnormal metrics, and the Pearson Correlation is calcu-
lated within Tanomaly. According to Benesty et al. (2009), when Pearson Correlation Coefficient
is greater than 0.4, correlation is considered to be moderate or strong. Given the correlation degree
Corr_result in Tanomaly, which is formulated as Corr_result=Ncorr/N , where Ncorr represents
the metrics with Pearson Coefficient greater than 0.4. As shown in Figure 2b, except for two anomaly
segments of 8 and 9, the Corr_result of the other anomaly segments is high, and the overall av-
erage correlation reaches 80.4%. It is worth noting that Pearson Coefficient only represents linear
correlation, and there are also complex correlations among multivariate metrics such as dynamic,
non-linear, coupling, and higher-order, so the actual Corr_result is much higher than 80.4%.

4.4 GENERALITY FOR ANOMALY DETECTION

It is impossible to deploy existing deep learning models on large-scale multivariate time series in
real-world scenarios, due to the huge overhead in model training and parameter adjustment for each
node-specific pattern. Unlike these models, GenAD pre-trains a general model for the representation
of large-scale multivariate time series with self-supervision. Furthermore, for each node-specific
pattern, only a small amount of data is required to fine-tune the model for the anomaly detection
tasks.To learn the general representation of time series for anomaly detection, We use the data of
the first 4 machines in each SMD-1, SMD-2 and SMD-3 for pre-training, and fine-tune the general
model based on 10% of the training data in each test machine. As shown in Figure 3a, despite the
reduction in training data, the performance of the generic model of GenAD (denoted as GenAD(G))
is not significantly reduced. Interestingly, GenAD (G) performs better than GenAD on SMD-2.
This is understandable because GenAD may be over-fitted on some specific training sets and thus
sensitive to noise. On the contrary, GenAD(G) obtains fewer details of specific data, which can
prevent overfitting and get a better F1-score. Figure 3b shows the F1-scores of different anomaly
detection algorithms normalized to GenAD on each tested machine. We observe that GenAD and
GenAD(G) have higher F1 scores and better stability on all tested machines compared with the
baseline method.

5 CONCLUTION

In this paper, we propose a novel model named GenAD, a General representations of multivariate
time series for Anomaly Detection. In GenAD we employ Time-Series Attention to represent the
various temporal patterns of each time series and adopts Multi-Correlation Attention to represent
the complex correlations among the multivariate time series. We also propose a general pre-training
algorithm on large-scale multivariate time series, which can be easily transferred to a specific AD
tasks with only a few fine-tuning steps. Through extensive experiments, GenAD outperforms the
state-of-the-art approaches on four public datasets, while the generic model of GenAD achieves
excellent performance with only 10% of the training data.
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A IMPROVE ROBUSTNESS BY COHERENT ACCUMULATION

There are noises in multivariate time series, which affect series reconstruction and abnormal detec-
tion. GenAD introduces coherent accumulation to obtain Information Gain, which is denoted as
Information_Gain = 10× log10N , where N is the number of accumulations. GenAD choose 32
times accumulation to improve robustness to noise.

B GET ANOMALY THRESHOLD BY ANOMALY RATE

Assuming that the anomaly rate is AR, the anomaly threshold is Gate, and the single-dimensional
or multi-dimensional data is E, then

P (E ≥ Gate) = AR (11)

Assume that the probability density function of E is f(e), and the probability distribution function
F (e) =

∫ e

−∞ f(t)dt, then Eq.(11) becomes

F (Gate) =

∫ Gate

−∞
f(t)dt = AR (12)

We need to get the probability distribution function F (e) of E, and then calculate the anomaly
threshold Gate. A simple idea is to obtain F (e) by analyzing the characteristics of E, for example,
E obeys Gaussian-distribution or t-distribution, etc. However, this method is not available in large-
scale service or equipment scenarios. Futhermore, (Siffer et al., 2017; Su et al., 2019) applies
Extreme Value Theory (EVT) to estimate the parameters of the distribution of E. However, the
complexity of this method is high, which makes it difficult to quickly obtain the anomaly threshold
Gate. Different from the above methods, we estimate the probability density function f(e) of E
based on the sampled data of E,

f(e)=
∑

y , y =

{
1, if(e−∆e ≤ E ≤ e)

0, else
(13)

Then we integrate f(e) to get the probability distribution function F (e) =
e∑

min(E)

f(t), and get

the dynamic threshold Gate by Eq.(12). It is worth noting that in order to reduce the error of
parameter estimation through sample data, we set A′R = η + AR and Eq.(12) becomes F (Gate) =∫ Gate

−∞ f(t)dt = A′R , where η ∈ [−0.01, 0.01] is set to maximize the F1-score during the validation
period. Subsequent experimental results show that this threshold selection method is simple but
effective.

C MODEL PARAMETERS AND THRESHOLDS

All models in the experiment use the same architecture and parameters, as shown in Table 2. In
addition, we also show the thresholds used for each dataset in Table 3, where threshold 1 represents
the single-dimensional threshold, and threshold 2 represents the multi-dimensional threshold.
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Table 2: Model parameters

attention head numbers 12
hidden layer numbers 4

training iterations 100000
dropout 0.1

training batch size 16
testing batch size 8

mask ratio 0.2

Table 3: The reference threshold of GenAD for the four datasets

SMD-1
1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8

threshold 1 0.999 0.9965 0.9995 0.9985 0.9995 0.999 0.9985 0.999
threshold 2 0.997 0.991 0.99 0.99 0.997 0.99 0.99 0.99

SMD-2
2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9

threshold 1 0.9995 0.9985 0.999 0.997 0.999 0.997 0.999 0.995 0.9985
threshold 2 0.99 0.99 0.99 0.99 0.99 0.99 0.996 0.997 0.99

SMD-3
3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11

threshold 1 0.999 0.9985 0.9985 0.9965 0.9965 0.998 0.9975 0.999 0.997 0.9985 0.996
threshold 2 0.996 0.998 0.992 0.99 0.998 0.99 0.99 0.99 0.99 0.99 0.998

MSL
threshold 1 0.999
threshold 2 0.99

Table 4: F1-score of GenAD with different number of attention heads and hidden layers

(Attention heads, Hidden layers) (12, 2) (12, 6) (12, 4) (8, 4) (16, 4)
F1-score 0.913 0.927 0.933 0.923 0.902
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Figure 4: Case of latency of anomaly detection

D IMPACT OF NUMBER OF ATTENTION HEADS AND HIDDEN LAYERS

The number of attention heads and hidden layers is important for GenAD. Table 4 shows F1-score
of GenAD on SMD-1 by varying different attention head numbers and hidden layer numbers. We
observe that keeping the number of heads constant and changing the number of layers, the 4-layers
perform best. The 2-layer Multi-Correlation Attention is weak in represent deep and high-order
correlations, which leads to a decrease in F1-score; the 6-layer requires a higher amount of training
data, and the model convergence is not as good as the 4-layer. In addition, we try the 12-layer
attention, and the model can not converge, which further verifies the analysis results. Similarly,
keeping 4-layers unchanged, and changing the number of heads, 12-head attention performs best.
The 8-head Time-Series Attention has a decline in the ability to capture the number of periodic
frequencies and trends, while the Multi-Correlation Attention has weak ability to capture dynamic,
non-linear and coupling relationships, resulting in a decline in F1; 16 heads are consistent with the
6-layer analysis. Overall, we empirically set the number of heads and layers of all datasets to 12 and
4, respectively.

E STUDY OF LATENCY OF ANOMALY DETECTION

We randomly select a machine in SMD-2, denoted as "machine-2-2". The size of the testing set is
approximately 28,000. Figure 4 shows the three longest duration anomaly segments of the machine.
The red box represents the anomaly label, and the blue vertical line represents the anomalies detected
by the algorithm. We observe that GenAD (L) has the highest timeliness in detecting abnormalities.

F RIPPLE EFFECT FOR RAPID DETECTION OF ANOMALY SEGMENT

GenAD finds anomalies by measuring the relationship, including the internal relationship of the
series itself, and the relationship between the series and the surroundings in the current period.
Here, we analyze the above-mentioned second relationship, and the other relationship are the same.

xi
T1+∆t̃ T = β × f2(x0

T1+∆t̃ T , x1
T1+∆t̃ T , · · ·, xi−1

T1+∆t̃ T , xi+1
T1+∆t̃ T , · · ·, xNT1+∆t̃ T )
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Figure 5: Model without Time-Series Attention

For the convenience of analysis, assuming there are only 3 time series, then

x0
T1+∆t̃ T = β0_0 × f12_0(x1

T1+∆t̃ T , x2
T1+∆t̃ T + β0_1 × f12_1(x1

T1+∆t̃ T × x2
T1+∆t̃ T ))

x1
T1+∆t̃ T = β1_0 × f02_0(x0

T1+∆t̃ T , x2
T1+∆t̃ T + β1_1 × f02_1(x0

T1+∆t̃ T × x2
T1+∆t̃ T ))

x2
T1+∆t̃ T = β2_0 × f01_0(x0

T1+∆t̃ T , x1
T1+∆t̃ T + β2_1 × f01_1(x0

T1+∆t̃ T × x1
T1+∆t̃ T ))

The correlations here have dynamic, non-linear and high-order properties(f12_0(·),f02_0(·),f01_0(·)),
and also has coupling properties (f12_1(·),f02_1(·),f01_1(·)). β represents the weight value of each
function. Assuming that x0

T1+∆t̃ T has changed, x̃T1+∆t̃ T
0 =x0

T1+∆t̃ T +∆x0, the change of each
time series is

∆x0 = ∆x0

∆x1 = β1_0 ×
d(f02_0(x0

T1+∆t̃ T , x2
T1+∆t̃ T )

dx0
∆x0 + β1_1 ×

d(f02_1(x0
T1+∆t̃ T × x2

T1+∆t̃ T ))

dx0
∆x0

∆x2 = β2_0 ×
d(f01_0(x0

T1+∆t̃ T , x1
T1+∆t̃ T )

dx0
∆x0 + β2_1 ×

d(f01_1(x0
T1+∆t̃ T × x1

T1+∆t̃ T ))

dx0
∆x0

It can be seen from the formula that after x0
T1+∆t̃ T has changed, due to the relevance, other series

have also changed. We can first measure the reconstruction error of each single series and then vote
on all series (for example, meeting two series are abnormal at a time point) to find out whether
multiple series are abnormal. The analysis method of the internal relationship of the series itself is
similar. After an series is abnormal, the abnormal series and other related series have large recon-
struction errors at the abnormal time, and the abnormality can be found as soon as possible through
this method.

G MODEL WITHOUT TIME-SERIES ATTENTION

We further evaluate the performance of the model without Time-Series Attention (denoted as GenAD
(WT)), and the results are shown in Figure 5. We observe that GenAD performs best overall. Due
to the loss of some temporal information, the performance of GenAD (WT) decreases, but it is still
better than OmniAnomaly.
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