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ABSTRACT

In this paper, we address the challenge of predicting models’ Out-of-Distribution
(OOD) performance from in-distribution measurement. We found that prior evalua-
tions, notably Miller et al. (2021) Baek et al. (2022), become less robust in com-
paring models pretrained on different dataset, or Vision-only vs Vision-language
models on significant distribution shift datasets(like ObjectNet Barbu et al. (2019)).
In this work, we reintroduce the Least Common Ancestor (LCA) distance, a metric
that has been largely overshadowed since ImageNet Challenge. By leveraging class
hierarchy like WordNet, we utilize the LCA to measure the taxonomic distance
between labels and predictions, presenting it as a benchmark for model general-
ization. On 75 models spanning five severe shifted ImageNet-OOD datasets, we
proven LCA is especially robust among models of different settings by revealing
a strong linear correlation between in-domain ImageNet LCA scores and OOD
Top1 accuracy across ImageNet-S/R/A/ObjectNet. This discovery gives rise to a
novel evaluation framework termed ‘LCA-on-the-Line’, facilitating unified and
consistent assessments across a broad spectrum of models and datasets. This bench-
mark might help explaining the surprising results that zero-shot vision-language
models with poor top-1 accuracy generalize better to novel datasets compared to
state-of-the-art vision models.
Besides introducing an evaluative tool, we also delve into the intricate ties between
the LCA metric and model generalization. By aligning model predictions more
closely with the WordNet hierarchy and refining prompt engineering in zero-shot
vision-language models, we offer tangible strategies to improve model general-
ization. We challenge the prevailing notion that LCA offers no added evaluative
value over top-1 accuracy, our research provides invaluable insights and actionable
techniques to enhance model robustness and generalization across various tasks
and scenarios.

1 INTRODUCTION

Generalizing models trained on in-distribution (ID) data to out-of-distribution (OOD) conditions
is a notoriously challenging task. This is primarily because distribution shifts can undermine the
IID assumption between training and testing data, thereby affecting robust performance. Work from
OOD detection have target shrift in distribution by identifying anomalies (Sun et al., 2021; Ren et al.,
2021; Liang et al., 2018; Liu et al., 2020). Besides, numerous OOD datasets have been proposed
to study the effects of different interventions, such as temporal shifts (Hu et al., 2022; Lomonaco
& Maltoni, 2017; Lin et al., 2021), artificial noise (Hendrycks & Dietterich, 2019; Arjovsky et al.,
2019; Larochelle et al., 2008), and natural distribution shifts (Hendrycks et al., 2021; Hendrycks &
Dietterich, 2019; Barbu et al., 2019; Recht et al., 2019). Notably, the challenge of maintaining model
robustness becomes significantly more difficult with severe visual shifts in the image domain.

Estimating OOD Generalization: Within the sphere of model generalization, numerous attempts,
following the concept of effective robustness (Taori et al., 2020), have been made to estimate a
model’s performance on OOD datasets based on in-domain measurements(Fig 1). These approaches
have been referred to as ‘XX-on-the-line’(Miller et al., 2021; Baek et al., 2022), which involve
modeling correlations of OOD performance with in-domain accuracy (Miller et al., 2021; Recht et al.,
2019; Miller et al., 2020; Roelofs et al., 2019) or models consensus on in-domain accuracy (Jiang
et al., 2021; Baek et al., 2022).
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Figure 1: We focus on evaluating how well models
generalize to unseen, out-of-distribution (OOD)
datasets. Specifically, we aim to predict a model’s
OOD performance, based on its performance in a
familiar, in-domain setting.

In prior attempts, several methods rely on do-
main generalization strategies that necessitate
prior knowledge of the target domain or re-
quire an estimation of OOD domain informa-
tion (Chen et al., 2021; Li et al., 2022a). These
can lead to computationally intensive processes
in practice, particularly when involving multiple
models or inferences (Baek et al., 2022; Deng
et al., 2022).

Furthermore, many of these studies target gen-
eralization on OOD datasets with limited visual
shifts or only involved artificial noise, such as
ImageNet-v2 or ImageNet-C (Recht et al., 2019;
Arjovsky et al., 2019). Such datasets fail to re-
flect a model’s generalization capability when confronted with severe distribution shifts(Hendrycks
et al., 2021; Hendrycks & Dietterich, 2019; Barbu et al., 2019), as there is often limited transfer of
robustness from synthetic to natural distribution shifts (Taori et al., 2020).

Moreover, most prior researches has focused solely on evaluating supervised vision-only models
trained on ImageNet (Taori et al., 2020; Mustafa et al., 2020). However, the rise of large-scale
language models trained on dataset like LAION, particularly given their impressive performance
in robust OOD generalization, underscores the necessity to evaluate and compare models across
different families under a unified evaluation framework.

Unlike Vision Models (VMs), VLMs leverage more diverse training data, contrastive base loss,
and language supervision. There have been prior attempts to solely measure VLM generaliza-
tion (HaoChen et al., 2021; Fang et al., 2022; Schuhmann et al., 2022; Kaur et al., 2022), specifically,
training data diversity has been suggested as an indicator of model generalization, but collecting or
training on such extensive data can be non-trivial (Schuhmann et al., 2022). Among prior attempts, a
unified, simple benchmark between both VLMs and VMs that can explain model generalization and
be converted into actionable improvements is still lacking.

In light of this, it is essential to establish a unified benchmarking metric robustly applicable across
both VMs and VLMs, to assess model generalization. Our experiment observed that prior art, like
accuracy-on-the-line(Miller et al., 2021), fail to explain the increment on effective robustness from
VLMs to VMs. Recently, (Shi et al., 2023) have observed the same problem and propose to evaluating
OOD accuracy using multiple ID test sets, but still required multiple evaluation.

To address these issues, we propose to adopt Least Common Ancestor (LCA) score, to measure
model generalization. LCA distance is the taxonomic distance between labels and predictions,
given a predefined class hierarchy, such as WordNet. Through a series of empirical experiments
involving 75 models of different modalities (36 VMs and 39 VLMs), we show, for the first time to
our knowledge, that the in-domain LCA metric strongly correlates with multiple ImageNet-OOD
datasets under severe visual shifts (ImageNet-Rendition (Hendrycks et al., 2021), Sketch (Hendrycks
& Dietterich, 2019), Adversarial (Hendrycks et al., 2021), and ObjectNet (Barbu et al., 2019)).
This finding may help explain the surprising result that zero-shot vision-language models with poor
top-1 accuracy generalize better to novel datasets compared to state-of-the-art vision models, which
spurs us to further investigate and discuss the potential of the LCA benchmark for improving model
generalization. Please refer to section 3 for our motivation and hypothesis of adopting LCA,
and settings comparison to prior work are illustrate in Fig 8.

In summary, this paper contributes the following:

(1). We propose a novel benchmark, the Least Common Ancestor (LCA) distance, to assess model
generalization. This approach utilizes the class hierarchy like WordNet to encode interclass rela-
tionships. (2). We perform large-scale experiments to validate our proposed benchmarking strategy.
We empirically study 75 models across five ImageNet-OOD datasets, showcasing a strong linear
relationship between in-domain LCA and OOD Top1 performance across models with different
configurations, establishing an ‘LCA-on-the-Line’ framework. (3). We provide a detailed analysis
and discussion of the underlying connection between the LCA and model generalization, offering
fresh insights to stimulate future work. (4). We demonstrate the potential usage of this benchmark by
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showing how model generalization can be improved by aligning model predictions with the WordNet
hierarchy.

2 LCA DISTANCE AND ELCA DISTANCE MEASURE MISTAKE SEVERITY

Figure 2: Our method involves measuring a
model’s generalization based on its in-domain se-
mantic severity of mistake. We use the ’Least
Common Ancestor’ (LCA) distance, which is the
distance between the model’s prediction and the
ground truth class in a predefined taxonomy hi-
erarchy, like WordNet. LCA distance is ratio to
shortest path from prediction to ground truth class
in hierarchy tree

We propose the use of in-domain Lowest Com-
mon Ancestor (LCA) distance, or taxonomy
loss, as a benchmark for model generalization.
Here, we will formally define how taxonomy
loss can be measured using in-domain data.

Taxonomy loss measure the distance between
model’s prediction of each class likelihood, to
a predefined class order encoded by class taxon-
omy. Lower loss expect model to ’make better
mistake’ Bertinetto et al. (2020), by assigning
higher likelihood to class that is semantically
closer to the ground truth class. Following previ-
ous research (Bertinetto et al., 2020; Deng et al.,
2009a), we utilize WordNet (Miller et al., 1990),
a large-scale lexical database inspired by psy-
cholinguistic theories of human lexical memory
(Miller, 1995), to encode class taxonomy. A
example of LCA distance is shown in Fig 2.

Given two classes, y (the ground truth class) and
y′, we define the LCA distance according to
(Bertinetto et al., 2020) as lcad(y′, y) := f(y)−
f(lca(y, y′)), where f(y) ≥ f(lca(y, y′)) and
lca((y′, y)) denotes the lowest common ances-
tor of nodes y and y′ within the predefined Word-
Net hierarchy, and f(·) represents a function of a node, such as the tree depth. We use the information
content as described in (Valmadre, 2022).

For each sample Xi in the given dataset D := X1, . . . , Xn: LCAD(model,D) :=
1
n

∑n
i=1 lcad(ŷi, yi) ⇐⇒ yi ̸= ŷi, where ŷi is the predicted class for sample Xi using the

model, yi is the true class for sample Xi, and yi ̸= ŷi. Intuitively, a model with a lower LCA distance
demonstrates greater semantic understanding on class ontology in WordNet.

We can also generalize LCA distance to settings where the model outputs a distribution over
all possible classes for each sample (like using softmax). For a sample Xi whose ground truth
class is yi, and the model outputs (p̂i,1, . . . , p̂K,1) over the K classes (e.g., 1000 in ImageNet),
we define Expected Lowest Common Ancestor Distance (ELCAD): ELCAD(model,D) :=
1

nK

∑n
i=1

∑K
k=1 p̂k,i · lcad(k, yi). From a probabilistic perspective, ELCAD is a weighted measure

of mistake severity according to the model’s confidence on each node in hierarchy. Intuitionally, it
combine LCA distance with cross entropy measurement.

Model ImageNet ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet
LCA ELCA Top1 LCA ELCA Top1 LCA ELCA Top1 LCA ELCA Top1 LCA ELCA Top1 LCA ELCA Top1

ResNet18 He et al. (2016) 6.643 7.505 0.698 6.918 7.912 0.573 8.005 9.283 0.202 8.775 8.853 0.330 8.449 9.622 0.011 8.062 8.636 0.272
ResNet50 He et al. (2016) 6.539 7.012 0.733 6.863 7.532 0.610 7.902 9.147 0.235 8.779 8.668 0.361 8.424 9.589 0.018 8.029 8.402 0.316

CLIP_RN50 Radford et al. (2021) 6.327 9.375 0.579 6.538 9.442 0.511 6.775 9.541 0.332 7.764 9.127 0.562 7.861 9.526 0.218 7.822 8.655 0.398
CLIP_RN50x4 ?radford2021learning} 6.166 9.473 0.641 6.383 9.525 0.573 6.407 9.518 0.415 7.435 8.982 0.681 7.496 9.388 0.384 7.729 8.354 0.504

Table 1: Model performance corresponds to mistake severity. LCA ↓LCA ↓ / ELCA ↓ELCA ↓ /Top1 ↑Top1 ↑ indicate measure-
ment on given dataset. We present two pairs of model comparisons from the VM and VLM families with
different generalization abilities. We observe that models with higher Top 1 accuracy on OOD datasets typically
have lower LCA and ELCA distances on OOD (except for ImageNet-v2, which is visually closer to ImageNet).
Note that ELCA should not be compared across modalities, as it is sensitive to logit temperature.

The proposed ELCAD provides a more generalized metric for assessing model performance compared
to Top 1, LCA distance and cross entropy. Top 1 accuracy only considers the top-ranked class; LCA
distance measures the Top n class rankings but often treats each class equally (Bertinetto et al., 2020);
Cross-entropy solely focuses on the model’s assigned probability on the ground truth class, and
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ELCA extends it to all classes. ELCAD captures the probabilistic distribution of mistake severity
across all potential classes.

In Table 1, we empirically demonstrate that models with better OOD generalization (OOD Top 1
accuracy) also have lower LCAD/ELCAD.

3 THE SUITABILITY OF LCA AS A BENCHMARK FOR MODEL
GENERALIZATION

This section explores the hypothesis that links taxonomy loss (LCA) with a model’s generalization
ability. Furthermore, we discuss how such insightful observations can be put into meaningful,
actionable use.

Obstacles to Model Generalization. In traditional learning, models establish connections between
image features and class labels. Nonetheless, such associations are subject to spurious correlations
that may arise in the training data (Zhang et al., 2021). An example of this is erroneously associating
the class ‘ostriches’ with the feature ‘grass in the background’ since ‘ostriches’ often appear in
grasslands. These correlations are likely to fail when applied to an OOD dataset (Zhang et al., 2021).

Figure 3: Capturing transferable feature for model
generalization. Despite pronounced distribution shifts,
ImageNet-R serves as a valid OOD test set for ImageNet
classes as the images of ostriches, for instance, still main-
tain shape information (Geirhos et al., 2018) like “long
neck”, “big belly”, and “long legs”. We hypothesize that
models exhibiting good generalization should capture
these transferable semantic features rather than suffer
from spurious correlation on feature like ’grass’.

Essentials for Model Generalization. Fig-
ure 3 demonstrates an OOD dataset, ImageNet-
R, where, despite severe distribution shifts, hu-
mans can effortlessly identify the correct classes.
This is because humans can identify the univer-
sally transferable semantic distinctions between
classes as distinguishable feature for classifica-
tion. Therefore, we posit that a model’s general-
ization capabilities depends on the transferabil-
ity of these learned features during training, and
only semantic features that align with human un-
derstanding of object definitions are universally
transferable to any OOD dataset.

But how can we measure what feature a model
has learned during training? The decision-
making process of deep neural networks trained
end-to-end has become less interpretable. There
have been attempts to decipher the decision pro-
cess of models and form a decision-tree-like model (Wan et al., 2020; Gare et al., 2022), but these
efforts have not linked this to an understanding of model generalization.

Alignment to Class Taxonomy as representation measurement.

Ideally, a model that captures more generalizable features tends to ‘make better mistakes’ by predict
classes that are semantically closer to the ground truth class. As illustrate in Fig 4, model that learns
to associate ostriches with features like ’long legs’ and ’long neck’, which are more transferable to
OOD datasets, will likely predict classes like flamingos or Crane. In contrast, a model influenced
by spurious correlations by falsely associate ostrich with grass, might predict a semantically distant
class, like an Jaguars or Lions, which are also appear often on grass.

Figure 4: We hypothesize that models captured
more transferable feature tend to predict classes
that’s semantically closer to ground truth.

Our method involves measuring a model’s gener-
alization based on its in-domain semantic sever-
ity of mistake. We use the ’Least Common An-
cestor’ (LCA) distance, which is the taxonomic
distance between the model’s prediction and the
ground truth class in a predefined taxonomy hi-
erarchy, like WordNet. If a model consistently
makes better mistakes on in-domain data, we
can reasonably assume that the model has cap-
tured more transferable features for class dis-
crimination.
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Class Taxonomy and Mistake Severity: Class taxonomy or ontology has been widely utilized in
the literature to indicate class formation (Deng et al., 2009a; Van Horn et al., 2018) and semantic
relationships (Frome et al., 2013; Barz & Denzler, 2019; Wan et al., 2020; Redmon & Farhadi,
2017; Lin et al., 2022) between classes, offering a hierarchical organization of classes or categories.
Following these works, we consider the WordNet class taxonomy (Miller, 1995) as an approximation
of natural class taxonomy.

The severity of a mistake in many studies is quantified as the shortest path from the prediction
node to the least common ancestor (LCA) in a predefined class hierarchy. This metric, known as
‘LCA distance’ or ‘hierarchical error’, was used in the early years of the ImageNet (Deng et al.,
2009a) challenge. However, it was largely dismissed as it was widely believed to follow the same
ordering as Top 1 accuracy (Deng et al., 2009a; Bertinetto et al., 2020). In this work, we revisit this
metric and empirically demonstrate that Top 1 accuracy and LCA distance do not always align when
VLMs are involved, which challenge the common notion. We also appeal for community attention to
revisit this benchmark with its potential usage in measuring model’s semantic awareness to indicate
generalization.

Causal/Invariant Representation Learning for OOD generalization. Recently, there has been a
notable increase in the field of OOD generalization research towards formulating training and testing
distributions with causal structures (Arjovsky et al., 2019; Bühlmann, 2020; Peters et al., 2016), where
the shifts in distribution primarily arise from interventions or confounding factors. Building upon this
motivation, a series of methods have been proposed (Yang et al., 2021; Schölkopf et al., 2021; Shen
et al., 2022; Subramanian et al., 2022) with the objective of achieving causal representation learning.
For instance, CausalVAE (Yang et al., 2021). These methods leverage learned causal representations
to capture the causal relationships underlying the data generation process (Kaur et al., 2022), which
helps to mitigate the distributional shifts caused by interventions.

While the connection between OOD generalization and the causal concept is not entirely novel,
those attempts have solely focused on the causal structure at the latent or abstract level, lacking both
interpretability and transparency. Our method aligns with this growing interest in Causal/Invariant
learning, which aims to capture the invariant latent data generation process. One should expect
a model prediction that better align to the data generation process could be more robust under
intervention thus generalize better. Although it’s less feasible to model the data generation process of
natural image (ImageNet), we essentially follow the same intuition and hypothesize that the WordNet
class hierarchy serves as an approximation of the invariant relationship between class concepts.
WordNet is a widely recognized and effective means of encoding semantic relationships between
concepts, making it an appropriate proxy for aligning human semantic knowledge (Miller et al.,
1990). Unlike previous work, the WordNet hierarchy provides interpretability, which adds a level of
transparency to our understanding of model generalization.

4 EXPERIMENT

In this section, we are going to present experiment benchmarking relationship between LCA and
generalization.

Setup This paper leverages 75 pretrained models sourced from open repositories on GitHub for
empirical analysis. Our selection includes 36 Vision Models (VMs) pretrained on ImageNet, and
39 Vision-Language Models (VLMs), which incorporate language as part of the supervision. A
comprehensive list of the model details will be provided in C to ensure reproducibility. In this work, we
use ImageNet(Deng et al., 2009a) as the source in-distribution (ID) dataset, while ImageNet-v2(Recht
et al., 2019), ImageNet-Sketch(Hendrycks & Dietterich, 2019), ImageNet-Rendition(Hendrycks et al.,
2021), ImageNet-Adversial(Hendrycks et al., 2021), and ObjectNets(Barbu et al., 2019) are adopted
as out-of-distribution datasets, exemplifying natural distribution shift. We utilize the ImageNet
hierarchy as depicted in (Bertinetto et al., 2020).

For our correlation experiment, we employ R2 (Coefficient of Determination) and PEA (Pearson
correlation coefficient) to measure the strength and direction of linear relationships between two
variables. In addition, we use KEN (Kendall rank correlation coefficient) and SPE (Spearman
rank-order correlation coefficient) to assess the correspondence of the rankings of two variables.
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The importance of these measurements lies in their different focus. Linearity measures, such as
R2 and PEA, are primarily interested in the fit of a linear model to the data points, allowing us to
quantify the predictability of the changes in one variable based on the other. Ranking measures, like
KEN and SPE, on the other hand, provide insights into how the rankings of the variables relate to
each other, which is particularly vital in downstream applications such as image retrievals and search
engine optimization, where understanding and predicting the ordering of data points is often more
important than predicting their exact values. For prediction experiments, we utilize MAE (Mean
Absolute Error) to quantify the absolute difference between prediction and ground truth.

Although ImageNet-v2 is predominantly deemed an OOD dataset in most prior literature (Shankar
et al., 2020; Miller et al., 2021; Baek et al., 2022), our experiments suggest that ImageNet-v2 aligns
more closely with ImageNet than with other OOD datasets; we delve into these details in D.

Element ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet
ID OOD R^2 PEA R^2 PEA R^2 PEA R^2 PEA R^2 PEA

ALL

Top1 Top1 0.962 0.980 0.075 0.275 0.020 0.140 0.009 0.094 0.273 0.522
LCA Top1 0.339 0.582 0.838 0.915 0.779 0.883 0.869 0.932 0.915 0.956
Top1 Top5 0.889 0.943 0.052 0.229 0.004 0.060 0.013 0.115 0.262 0.512
LCA Top5 0.445 0.667 0.883 0.940 0.738 0.859 0.909 0.953 0.924 0.961

VLM

Top1 Top1 0.996 0.998 0.860 0.927 0.851 0.923 0.578 0.761 0.945 0.972
LCA Top1 0.956 0.978 0.922 0.960 0.889 0.943 0.792 0.900 0.936 0.968
Top1 Top5 0.988 0.994 0.867 0.931 0.820 0.906 0.740 0.860 0.970 0.985
LCA Top5 0.930 0.964 0.949 0.974 0.848 0.921 0.828 0.910 0.931 0.965

VM

Top1 Top1 0.996 0.998 0.824 0.908 0.801 0.895 0.523 0.723 0.900 0.949
LCA Top1 0.976 0.988 0.895 0.945 0.768 0.877 0.833 0.912 0.913 0.956
Top1 Top5 0.993 0.997 0.829 0.910 0.821 0.906 0.696 0.834 0.919 0.959
LCA Top5 0.970 0.985 0.925 0.962 0.777 0.882 0.925 0.962 0.936 0.967

Table 2: Correlation measurement of ID LCA/Top1 with OOD Top1/Top5 on 75 models across modality
(36 VMs and 39 VLMs) following Fig 5. The ‘ALL grouping’ demonstrates that LCA has a strong correlation
with OOD performance on all datasets (except ImageNet-v2). We take the absolute value of all correlations for
simplicity. Equivalently, LCA is also a very good OOD indicator when only involved VM or VLM.

4.1 LCA-ON-THE-LINE: IN-DOMAIN TAXONOMY DISTANCE (LCA) AS AN OUT OF
DISTRIBUTION (OOD) PERFORMANCE BENCHMARK

The model’s in-distribution (ID) accuracy and its out-of-distribution (OOD) accuracy are largely
considered to be strongly correlated, as corroborated by (Miller et al., 2021). This potent correlation
forms a significant baseline for comparison in our research. Differing from the framework presented
in (Miller et al., 2021) that only compare models within same modality, our work fill in the gap
to contrast model of different modality, involving Vision Models (VM) trained on ImageNet, and
Vision-Language Models (VLM) trained on Laion. In addition to the Top1 OOD accuracy, we
incorporated Top5 OOD accuracy, yielding a more holistic evaluation of model generalization.

As displayed in table 2, the ImageNet in-domain accuracy (Miller et al., 2021) forms a robust
predictor for most OOD datasets when the comparison is limited to models with similar setups (VM
or VLM). However, this predictor falls short when attempting to unify models of different modality.
As highlighted in Fig 5 (indicated in red), when adhering to ‘accuracy on the line’ (Miller et al.,
2021), all four OOD datasets plotted showcase two distinct linear trends, representing models that
belong to the VM and VLM families. This observation aligns with (Cherti et al., 2022), where
it was found that VLM models, despite exhibiting significantly lower ID accuracy, could attain
higher OOD performance than their state-of-the-art VM counterparts. As a consequence, in-domain
accuracy (Miller et al., 2021) fail to explain this misalignment between generalization of VMs and
VLMs.

As shown in Fig 6, our method adopting in-domain LCA score could restore the linear trends among
model of different modality. As demonstrated in table 2 and Fig 5 (colored in green), the severity of
in-domain errors serves as a more effective indicator of model performance compared to in-domain
accuracy. It consistently exhibits a strong linear correlation with all OOD benchmark accuracies for
natural distribution shifts (both R2 and the Pearson correlation coefficient approach 0.9).

Notably, our experiments showed that (Miller et al., 2021) is a more reliable indicator solely for
ImageNet-v2, given its visual similarity to ImageNet. Please refer to D for discussion. In G, we will
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Figure 5: Correlating OOD Top-1/Top-5 Accuracy (VM+VLM, 75 models) on 4 ImageNet-OOD Datasets.
Following Tab 2. Each plot’s x-axis represents the OOD dataset metric (with OOD Top-1 in the top row, and
OOD Top-5 accuracy in the bottom row); Red represents in-domain classification accuracy (Top-1); Green
denotes in-domain taxonomy distance (LCA). The plots clearly demonstrate that the in-domain LCA has a strong
correlation with the model’s OOD performance across all OOD datasets. Even though in-domain Top-1 accuracy
is widely considered a good OOD performance indicator (Miller et al., 2021), it falls short in providing a unified
metric encompassing both VMs and VLMs. As seen, the plots often exhibit a pattern of two distinct lines rather
than a single line. If necessary, please find png of this image in supplementary for better legibility.

also include measurements from the KEN and SPE, which similarly demonstrate robust scores in
preserving the relative ordering of model OOD performance.

4.2 PREDICTING OOD PERFORMANCE WITH IN DOMAIN LCA

Figure 6: Our method restore the "on-the-line" lin-
ear relationship by unifying both VMs and VLMs.
Our method provide a compelling alternative to un-
derstand why vision-language models with lower
in-domain accuracy might generalize better to
OOD datasets than vision models.

We further highlight the effectiveness of the
‘LCA-on-the-Line’ approach by estimating
model OOD performance using a linear function
derived from in-domain LCA scores. For com-
parison, we included four competitive baselines:
Average Confidence (AC), which leverages the
OOD logit after temperature scaling; two meth-
ods from Agreement-on-the-Line (Aline-D and
Aline-S), which utilize consensus of pairs of
models on OOD benchmarks; and ‘Accuracy
on the Line’ (ID Top1), which employs the in-
domain accuracy of established measurement
models to fit a linear function. Furthermore, in-
stead of performing a probit transform as done
in (Baek et al., 2022) and (Miller et al., 2021),
we implemented min-max scaling because LCA
does not fall within the [0,1] range.

As illustrated in Table 3, in-domain LCA proves
to be a significantly more robust OOD error
predictor than other baselines across four OOD
benchmarks with varying distribution shifts. This robustness is especially apparent for ImageNet-A,
an adversarial dataset derived from the misclassification of ResNet50 on ImageNet. Consequently,
models pre-trained on ImageNet tend to underperform on this dataset, particularly those with lower
accuracy than ResNet50. This leads to a decrease in robustness for the in-domain accuracy(Miller
et al., 2021), methods calibrated from in-domain validation sets (Hendrycks & Gimpel, 2017), and
OOD agreement of models from different families (Baek et al., 2022). In contrast, the LCA, which
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relies solely on the relative ranking of class predictions from a single model, is less sensitive to these
issues and thus delivers more consistent performance. This further underscores the efficacy of the
LCA as a powerful predictor in challenging OOD scenarios.

4.3 ENHANCING GENERALIZATION THROUGH CLASS TAXONOMY ALIGNMENT.

Building upon the earlier discussion, we explore how the devised benchmarking method can be
utilized to enhance a model’s generalization capability.

Inferring Class Taxonomy from a Pretrained Model Using K-Means Clustering. While the
number of publicly available datasets providing class taxonomy is limited (Deng et al., 2009a;
Van Horn et al., 2018), the usefulness of such taxonomy is unquestionable. Hence, we propose a
method to construct a latent class taxonomy, expanding the potential applications of our work.

Figure 7: Visualization of K-mean clustering process
over 8 class.

The essence of class taxonomy lies in its repre-
sentation of the inter-class distance, encoding
class proximity and identifying which classes
cluster closely in semantic space. In this spirit,
we construct a class taxonomy matrix using K-
means clustering. Experiment in Tab 4 shows
that our method is very robust regardless which
model were used to construct class hierarchy.
As illustrated in Fig 7, we adopt average class
features to cluster data hierarchically at 10 differ-
ent levels, with increasing number of cluster to
indicate class adjacency. Implementation detail
in F.2 in appendix.

ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet
ALL ID Top1 (Miller et al., 2021) 0.040 0.230 0.277 0.192 0.178

AC (Hendrycks & Gimpel, 2017) 0.043 0.124 0.113 0.324 0.127
Aline-D (Baek et al., 2022) 0.121 0.270 0.167 0.409 0.265
Aline-S (Baek et al., 2022) 0.072 0.143 0.201 0.165 0.131
(Ours) ID LCA 0.162 0.078 0.107 0.061 0.048

VLM ID Top1 (Miller et al., 2021) 0.014 0.077 0.064 0.127 0.052
AC (Hendrycks & Gimpel, 2017) 0.029 0.050 0.044 0.217 0.088
Aline-D (Baek et al., 2022) 0.151 0.250 0.081 0.296 0.260
Aline-S (Baek et al., 2022) 0.070 0.069 0.068 0.080 0.153
(Ours) ID LCA 0.047 0.059 0.062 0.094 0.043

VM ID Top1 (Miller et al., 2021) 0.013 0.099 0.108 0.143 0.068
AC (Hendrycks & Gimpel, 2017) 0.059 0.204 0.188 0.441 0.168
Aline-D (Baek et al., 2022) 0.083 0.427 0.313 0.665 0.364
Aline-S (Baek et al., 2022) 0.105 0.182 0.092 0.574 0.216
(Ours) ID LCA 0.029 0.079 0.113 0.080 0.056

Table 3: Error Prediction of OOD Datasets across 75 models of diverse settings with MAE loss ↓MAE loss ↓. Top1
in bold and Top2 in underline. Despite ImageNet’s in-domain accuracy maintain as a significant indicator
of ImageNet-v2 accuracy, the in-domain LCA outperforms it as a robust error predictor across four naturally
distributed OOD datasets, particularly ImageNet-A, which stumps other methods.

75 LCA Stats Element ImageNetV2 ImageNet-S ImageNet-R ImageNet-A ObjectNetID OOD
Top1_corr Top1 Top1 0.980 0.274 0.141 0.093 0.522

LCA_corr (Mean) LCA Top1 0.815 0.773 0.712 0.662 0.930
LCA_corr (Min) LCA Top1 0.721 0.715 0.646 0.577 0.890
LCA_corr (Max) LCA Top1 0.863 0.829 0.780 0.717 0.952
LCA_corr (std) LCA Top1 0.028 0.022 0.027 0.025 0.010

Table 4: Correlation Measurement between ID LCA/Top1 and OOD Top1 across 75 Latent Hierarchies
Derived from K-means. For each pretrained model, we constructed a 75-class taxonomy hierarchy using
the K-means clustering method described previously. We then calculated the LCA for each hierarchy as an
in-domain indicator and compared it to the OOD accuracy using the same settings as in 2. This shows our
hierarchy construction method is robust across all pretrained models.

Employing Class Taxonomy as Soft Labels. We propose a straightforward approach to demonstrate
the potential of LCA as a benchmarking tool for generalization. We encode the normalized pairwise
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LCA between each class as soft labels and apply linear probing over the pretrained model. Contrary
to the rigid probabilistic distribution of single-label classification, we formulate the problem as
multi-labeling. We employ a sigmoid-style (Beyer et al., 2020) BCE loss instead of softmax, relaxing
the constraints on inter-class interaction. A more detailed setup will be included in the appendix.

Following method above, we have constructed class taxonomy matrices for AlexNet (Krizhevsky
et al., 2017) and Swin Transformer (Liu et al., 2021), which respectively represent the best and
worst performing models on ImageNet in our model pool. Intriguingly, the hierarchy constructed
from the model’s pretrained features partially encapsulates the model’s interpretation of interclass
relationships. As table 5 illustrates, incorporating accurate inter-class distance consistently enhances
OOD performance across all four OOD benchmarks, albeit with a slightly lower Top 1 accuracy.

However, this approach does lead to a slight drop in in-domain accuracy as it less intensively optimizes
towards the ground truth class. Inspired by the notion that models are more confident where they
excel (Wortsman et al., 2022), we apply linear interpolation between linear layers trained from
cross-entropy and our proposed loss function. The results suggest that this method strikes a balance,
delivering competitive performance on both ID and OOD datasets.

Importantly, we find that models using hierarchies constructed from pretrained models fall short in
OOD generalization compared to those utilizing WordNet hierarchy, even though they exhibit slightly
improved ID performance. This indicates that enforcing arbitrary inter-class relationships, derived
from in-domain datasets, can negatively affect OOD performance.

For result of using class taxonomy base prompt engineering on zero-shot vision-language models,
please refer to appendix.

ImageNet ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet
Baseline 0.690 0.5618 0.199 0.322 0.010 0.267
AlexNet Hier 0.665 0.5402 0.189 0.294 0.017 0.247
Swin-T Hier 0.668 0.5429 0.196 0.312 0.023 0.259
WordNet Hier 0.664 0.5387 0.199 0.329 0.024 0.272
(CE + CE) Interp 0.695 0.5645 0.196 0.325 0.011 0.273
(AlexNet + CE) Interp 0.694 0.5665 0.200 0.325 0.012 0.274
(Swin-T + CE) Interp 0.695 0.5694 0.202 0.331 0.012 0.274
(WordNet + CE) Interp 0.694 0.5638 0.2073 0.335 0.014 0.282

Table 5: Interpolating Class Taxonomy to Linear Probing on ResNet18 Feature. The top table displays
results from models trained using a class hierarchy constructed from the indicated model via K-means. The
bottom table presents the results of the aforementioned models when interpolated with layers trained from
cross entropy in the weight space (Wortsman et al., 2022). Training with a WordNet hierarchy delivers the
most significant improvements across OOD benchmarks despite lower Top 1 accuracy, whereas models using
hierarchies inferred from pretrained models yield lesser gains.

5 LIMITATIONS, CONCLUSIONS, AND FUTURE DIRECTIONS

While we benchmarked and used LCA based on class hierarchy to measure model generalization, the
findings from this work indicate that it is not an effective indicator for datasets visually similar to In-
domain data (like ImageNet2). For these datasets, In-domain Top1 remains a strong indicator, which
potentially limits the utility of LCA. Also, it’s expected that LCA will shows a weaker discrimination
between models on datasets with small number of class (like Cifar (Krizhevsky et al.)).

In conclusion, this work reinvigorates the LCA distance using WordNet hierarchy as a benchmark for
model OOD generalization. WordNet’s class taxonomy represents a form of semantic knowledge
that aligns with human cognition of class relationships. Ideally, models that capture correct semantic
representation should make fewer severe mistakes. We discovered that severity of in domain mistakes
(i.e., the ability to capture WordNet ontology) has strong relationship with model’s OOD Top 1
accuracy across multiple ImageNet-OOD datasets. This relationship is not reflected when using the
widely-accepted in-domain Top 1 accuracy (Miller et al., 2021) as a measurement when comparing
vision-only and vision-language zero-shot models. Furthermore, we demonstrated that aligning model
predictions with class taxonomy, whether through prompt engineer or introducing regularization loss,
can enhance model generalization. Future direction could focus on provide theoretical justification
under LCA-on-the-line, and perform larger scale empirical study regarding this benchmark. This
work provides new insights into model generalization using existing resources and encourages further
investigation in this direction.
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A REPRODUCIBILITY STATEMENT

In an effort to promote transparency and ease of replication, our code will be made publicly available
upon acceptance of this paper. Detailed hyperparameters and experimental procedures will be
comprehensively documented in the appendix. All experiments were conducted under fixed random
seed conditions to ensure consistent outputs. Furthermore, we utilized checkpoints retrieved from
publicly accessible codebases. These steps have been taken to provide a solid foundation for
replication and extension of our work. Hence, the results presented in this paper should be easily
reproducible, fostering further research in this domain.

B ETHICS STATEMENT

While this research primarily serves to deepen our understanding of model generalization mechanisms,
it is imperative to acknowledge the potential for misuse. The methods proposed in this work could
conceivably be leveraged to guide adversarial attacks aimed at reducing the generalization capabilities
of existing models. While our research was not specifically intended for such purposes, it is crucial
to be cognizant of the duality that our understanding of model generalization could bring about.
This potential for exploitation underscores the importance of developing robust, secure models, and
implementing ethical guidelines for the deployment of such knowledge.

C MODEL ARCHITECTURES

We list all models used in ours experiment as follows, including 36 Vision Only Models ( VM ) and
39 Vision-Language Models ( VLM ).

15



Under review as a conference paper at ICLR 2024

Model Category Architecture Number of models Checkpoint Link

VM (Vision-Only-Models)

AlexNet (Krizhevsky et al., 2017) 1 alexnet
ConvNeXt (Liu et al., 2022) 1 convnexttiny

DenseNet (Huang et al., 2017) 4

densenet121
densenet161
densenet169
densenet201

EfficientNet (Tan & Le, 2019) 1 efficientnet_b0
GoogLeNett (Szegedy et al., 2015) 1 googlenet
Inceptionv3 (Szegedy et al., 2016) 1 inceptionV3

MnasNet (Tan et al., 2019) 4

mnasnet0.5
mnasnet0.75
mnasnet1.0
mnasnet1.3

Mobilenet-V3 (Howard et al., 2019) 2 mobilenetv3_small
mobilenetv3_large

Regnet (Radosavovic et al., 2020) 1 regnet_y_1_6gf
Wide ResNet (Zagoruyko & Komodakis, 2016) 1 wide_resnet101_2

ResNet (He et al., 2016) 5

resnet18
resnet34
resnet50
resnet101
resnet152

ShuffleNet (Zhang et al., 2018) 1 shufflenet_v2_x2_0

SqueezeNet (Iandola et al., 2016) 2 squeezenet1_0
squeezenet1_1

Swin Transformer (Liu et al., 2021) 1 swin_b

VGG (Simonyan & Zisserman, 2015) 8

vgg11
vgg13
vgg16
vgg19
vgg11_bn
vgg13_bn
vgg16_bn
vgg19_bn

ViT (Dosovitskiy et al., 2020) 2 vit_b_32
vit_l_32

VLM (Vision-Language-Models)

ALBEF (Li et al., 2021) 1 albef_feature_extractor
BLIP (Li et al., 2022b) 1 blip_feature_extractor_base

CLIP (Radford et al., 2021) 7

RN50
RN101
RN50x4
ViT-B-32.pt
ViT-B-16.pt
ViT-L-14.pt
ViT-L-14-336px

OpenCLIP (Cherti et al., 2023) 30

openCLIP:
openCLIP_(’RN101’, ’openai’)
openCLIP_(’RN101’, ’yfcc15m’)
openCLIP_(’RN101-quickgelu’, ’openai’)
openCLIP_(’RN101-quickgelu’, ’yfcc15m’)
openCLIP_(’RN50’, ’cc12m’)
openCLIP_(’RN50’, ’openai’)
openCLIP_(’RN50’, ’yfcc15m’)
openCLIP_(’RN50-quickgelu’, ’cc12m’)
openCLIP_(’RN50-quickgelu’, ’openai’)
openCLIP_(’RN50-quickgelu’, ’yfcc15m’)
openCLIP_(’RN50x16’, ’openai’)
openCLIP_(’RN50x4’, ’openai’)
openCLIP_(’RN50x64’, ’openai’)
openCLIP_(’ViT-B-16’, ’laion2b_s34b_b88k’)
openCLIP_(’ViT-B-16’, ’laion400m_e31’)
openCLIP_(’ViT-B-16’, ’laion400m_e32’)
openCLIP_(’ViT-B-16-plus-240’, ’laion400m_e31’)
openCLIP_(’ViT-B-16-plus-240’, ’laion400m_e32’)
openCLIP_(’ViT-B-32’, ’laion2b_e16’)
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D DISCUSSION

Reestablishing LCA as a Comprehensive Measure of Model Generalization. While Top 1 ID
accuracy shows a pronounced linear trend with OOD datasets when models follow similar training
mechanisms, the relationship blurs with vision-only and VLMs — a phenomenon observed in early
work (Fang et al., 2022; Wortsman et al., 2022; Cherti et al., 2022). This correlation could elucidate
the unexpected outcome where zero-shot VLMs with lower top-1 accuracy outperform competitive
vision models when generalizing to unfamiliar datasets. While several works suggest that the data
diversitysignificantly impacts generalization (Fang et al., 2022; Schuhmann et al., 2022; Kaur et al.,
2022), our results imply that the LCA could offer a more holistic evaluation of model generalization.
By taking into account elements such as training data size, architecture, loss, and more, LCA allows
for a more complete measure of model ability to capture correct semantic distinctions shared across
ID and all OOD benchmarks. This establishes a comprehensive benchmark that encapsulates various
generalization factors and mitigates the inflation of VLM on “Effective Robustness” (Taori et al.,
2020). We encourage future work to conduct large-scale analytic studies on generalization factors in
tandem with the LCA.

Is it Possible for a Semantically-Aware (Low LCA) Model to Have Low Top 1 Accuracy? Our
empirical analyses reveal a correlation: models in the wild (not deliberately tuned on class taxonomy)
with lower Top 1 accuracy tend to have higher LCA distances. However, this relationship is correlative
rather than causal. It remains possible to adversarially design a model that consistently predicts the
semantically closest class to the true class, where the model would exhibit a low LCA distance while
maintaining zero Top 1 accuracy. Thus, while a correlation exists between Top 1 and LCA, causality
cannot be implied, and this relationship can be disrupted under intentional adversarial training.

Does ImageNet LCA (Taxonomy Distance) Reflect ImageNet Top 1 Accuracy? Literature often
posits that LCA and Top-1 accuracy follow the same trend on same dataset (Deng et al., 2009a;
Bertinetto et al., 2020). Intuitively, a high perform model would better fit data distribution, leads
to fewer severe errors. This trend generally holds true when considering only models under similar
settings (either VM or VLM). However, when including both VM and VLM models, ImageNet and
ImageNet-v2 show a weak correlation between LCA and Top-1 accuracy, while other semantically
distinct OOD datasets exhibit a stronger relationship. This challenges the prevailing belief that in
domain Top-1 accuracy and LCA maintain same ranking (Deng et al., 2009b; Bertinetto et al., 2020).

ImageNet-v2 Demonstrates Similar Class Discrimination Features to ImageNet. ImageNet-
v2, a recollection of the ImageNet, is frequently used as an OOD dataset for ImageNet in various
studies (Shankar et al., 2020; Miller et al., 2021; Baek et al., 2022). Nonetheless, as shown in table 2
above and Figure 4 and Table 3 in appendix, our experiments suggest that ImageNet-v2 bears more
resemblance to ImageNet than other OOD datasets. We hypothesize that fewer external interventions
in ImageNet-v2’s data generation process lead to visual similarity to ImageNet, allows even spurious
relationships encoded from ImageNet to successfully transfer to ImageNet-v2. Thus model pretrained
on imageNet (VMs) will inflate the accuracy on ImageNetv2, preventing it from aligning with trend
from VLMs.

E METRIC

In this section, we outline the metrics adopted for our experiment.

E.1 CORRELATION MEASUREMENT

Correlation measurements quantify the degree of association between two variables. This can be
further subdivided into linearity and ranking measurements.

E.1.1 LINEARITY MEASUREMENT

Linearity measurement evaluates the strength and direction of a linear relationship between two
continuous variables. We use the R² and Pearson correlation coefficients to assess linearity.
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R² (Coefficient of determination): The R², or coefficient of determination, quantifies the proportion
of the variance in the dependent variable that can be predicted from the independent variable(s). It
ranges from 0 to 1, where 1 indicates perfect predictability. It is defined as:

R2 = 1−
∑n

i=1(yi − f(xi))
2∑n

i=1(yi − ȳ)2
(1)

where f(xi) is the prediction of yi from the model, ȳ is the mean of the actual y values, and n is the
number of data points.

PEA (Pearson correlation coefficient): The Pearson correlation coefficient, denoted as r, measures
the linear relationship between two datasets. It is defined as:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2)

where x̄ and ȳ are the mean values of the datasets x and y, respectively, and n is the number of data
points.

E.1.2 RANKING MEASUREMENT

Ranking measurement evaluates the degree of correspondence between the rankings of two variables,
even when their relationship is non-linear. The Kendall and Spearman rank correlation coefficients
are metrics used for this purpose.

KEN (Kendall rank correlation coefficient): Also known as Kendall’s tau (τ ), this coefficient
measures the ordinal association between two variables. It is defined as:

τ =
(number of concordant pairs)− (number of discordant pairs)

1
2n(n− 1)

(3)

where n is the number of data points.

SPE (Spearman rank-order correlation coefficient): The Spearman rank-order correlation co-
efficient, denoted as ρ, assesses the monotonic relationship between two variables. It is defined
as:

ρ = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
(4)

where di is the difference between the ranks of corresponding data points in the two datasets and n is
the number of data points.

E.2 TAXONOMY MEASUREMENT

Taxonomy measurement is designed to assess the alignment between the model-predicted class
ranking and the predefined class taxonomy hierarchy tree. This is also referred to as ’mistake severity’
or ’taxonomy distance’.

E.2.1 LCA DISTANCE

Following (Bertinetto et al., 2020; Valmadre, 2022), we define LCA distance using a predefined
hierarchy tree, as indicated in Fig2. We adopt class distance in a hierarchical tree format to denote
inter-class relationships, which is necessary to calculate LCA and ELCA. Given a ground truth node
y (node 1 in the plot) and a model prediction node y′ (node 3 in the plot), their LCA node lca(y, y′)
is node 6 in the plot. We define it as:

lcad(y′, y) := f(lca(y′, y))− f(y), (5)

where f(·) represents a function for a node’s score, such as the tree depth or information content.

Scores as tree depths: We define a function d(x) to retrieve the depth of node x from tree T. Then,
LCA distance is defined as:

lcad(y′, y)d := (d(y)− d(lca(y′, y))) + (d(y′)− d(lca(y′, y))), (6)
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Figure 8: Illustration of settings comparison to prior work. Left: prior work settings; Right: our
settings for LCA-on-the-Line

where we also append d(lca(y′, y))− d(y′) to counter tree imbalance.

Scores as information: Defining score as tree depth may be vulnerable to an imbalanced hierarchical
tree. Thus, we also define a node’s score as information to put more weight on nodes with more
descendants. Formally, following (Valmadre, 2022), we apply a uniform distribution p to all leaf
nodes in the tree that indicate a class in the classification task. The probability of each intermediate
node in the tree is calculated by recursively summing the scores of its descendants. Then, the
information of each node is calculated as i(node) := −log2(p). The LCA distance is then defined
as:

lcadi(y
′, y) := i(y)− i(lca(y′, y)), (7)

In this work, we adopt lcadi(y′, y) for objectNet, ImageNet-R, and ImageNet-v2, and lcadd(y
′, y)

for ImageNet-S, and ImageNet-A to achieve optimal performance. Both metrics can significantly
outperform Top1 in-domain accuracy.

E.3 ELCA DISTANCE

We define ELCA as a more general form of LCA distance; it’s a weighted combination of each leaf
node [1,2,3,4] as in Fig 2, weighted by class probability. Formally, for each prediction node, the
probabilistic distribution over all candidate classes can be obtained by applying a softmax function
softmax(x) : R → [0, 1] to get model outputs probability (p̂i, 1, . . . , p̂K, 1) over the K classes
(e.g., 1000 in ImageNet). The ELCA distance can then be defined as:

ELCAD(model,D) :=
1

nK

n∑
i=1

K∑
k=1

p̂k,i · lcad(k, yi) (8)

F EXPERIMENT SETUP

F.1 SETUP COMPARE TO PRIOR WORK

Fig 8 showns the setting comparision between prior work and our work. To the best of our knowledge,
LCA-on-the-line is the first approach to uniformly measure model robustness across different model
modalities and OOD datasets with significant distribution shifts.

F.2 K-MEAN CLUSTERING FOR LATENT CLASS HIERARCHY CONSTRUCTION

As shown in Fig 7, we start with a pretrained model M , in-domain image data X , and labels y for k
classes. We first extract the in-domain data features M(X). Knowing the labels, we can categorize
M(X) by y, resulting in k average class features, denoted as KX . Using these per-class features,
we perform a 10-layer hierarchical clustering. For KX , we execute the K-means algorithm where
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the number of cluster centers is 2i, with i in the range of 1, 2, 3, 4, ...9 as 29 < 1000. This process
results in 9 cluster outcomes. Subsequently, we compute the pairwise LCA between the k classes,
establishing the cluster level where both classes share the same cluster as the height of LCA. By
definition, all classes have a base cluster level of 10.

F.3 LOSS FOR LINEAR PROBING EXPERIMENT

For our linear probing experiment, we define our loss function as follows. For a class with n
classes, we first define an n*n LCA distance matrix M, where M[i,k] indicates pairwise LCA
distance lcad(i, k), where lca is calculated from either using WordNet hiearchy, or hierarchy
constructed from K-mean algorithm(introduced in the main paper). Then, we scale M by ap-
plying an exponential function, MinMax scaling, and normalize to 1 for each row, i.e., M =
normRow(minmaxScaling(M.exp())). In computing the loss, we use Binary Cross Entropy
(BCE) and adopt the corresponding row value as a soft label. Specifically, if class-i is the ground
truth for the given data, we use M[i,:] as the soft label.

F.4 LCA MATRIX FROM PRETRAIN MODEL

Figure 9: Comparison between LCA distance matrices. From left to right: WordNet hierarchy;
matrix constructed from AlexNet (Krizhevsky et al., 2017); and matrix constructed from CLIP
ResNet50 (Radford et al., 2021). We observe a higher alignment between the CLIP RN50 LCA
distance matrix and the WordNet hierarchy as compared to the one from AlexNet.
We showcase an example of LCA distance matrix comparison in Figure 9, with the diagonal index
reflecting the lowest distance. The class distance between a given class and the reference class, from
small to large, is indicated in ascending weight in each row. Moreover, we generate 36 LCA distance
matrices from pretrained models on ImageNet. The results depicted in Figure 10 and Table 6 show
an intermediate correlation between the in-domain LCA of the source model and the generalization
of the linear probe model. They also indicate that a model’s generalization could be modified by
enforcing different inter-class distances, with limited changes to in-domain accuracy. Our future
work will continue to explore the relationship between inter-class distance in pretrained models and
their generalization.

ImageNet ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet

LCA ->Hierarchy Linear Prob PEA SPE PEA SPE PEA SPE PEA SPE PEA SPE PEA SPE
0.672 0.462 0.712 0.466 0.719 0.625 0.799 0.733 0.640 0.526 0.622 0.424

Table 6: Correlation measurement between LCA matrix and In-domain LCA on ResNet18.
Following the algorithm of K-Means Clustering, we construct 36 LCA distance matrices (class
hierarchies) from different pretrained models on ImageNet. We then use the LCA distance matrices as
soft labels to guide linear probing on ResNet18 features. The table indicates the relationship between
the In-domain LCA of the pretrained model and the out-of-distribution (OOD) accuracy on the linear
probe model using the corresponding LCA distance matrix. The result is calculated from the average
of three random seeds. Visualization is shown in Figure 10.

F.5 HYPERPARAMETERS AND COMPUTATIONAL RESOURCES

In the linear probing experiment, we chose hyperparameters based on the task at hand. The learning
rate was set to 0.001, batch size=1024. We used the AdamW optimizer with a weight decay and a
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Figure 10: Coorelation measurement between LCA matrix and In domain LCA on ResNet18.
Visualization on result in Tab 6. Plot shows an intermediate correlation between the two variable. If
necessary, please find png of this image in supplementary for better legibility.

cosine learning rate scheduler with a warm-up iteration. The warm-up type was set to ’linear’ with a
warm-up learning rate of 1e-5. The experiment was run for 50 epochs.

For our computational resources, we utilized a single NVIDIA GeForce GTX 1080 Ti GPU.

G SUPPLEMENTARY RESULT

G.1 IMPROVING GENERALIZATION BY CLASS TAXONOMY ALIGNMENT WITH PROMPT
ENGINEERING

In this section, we present result of improving model Generalization by Taxonomy Integration in
Vision-Language Models.

For vision-language models, we can easily incorporate taxonomy-specific knowledge by providing
in-context information during zero-shot evaluation. Naturally, the WordNet (Miller, 1995) hierarchy
implies the inter-class distance in data generation. For instance, adjacency in the hierarchy suggests
that ‘dalmatian’ and ‘husky’ are semantically very close since both classes are derived from the same
parent node ‘dog’.

We present the results with CLIP-vit32 (Radford et al., 2021) in Tab 7. In an experiment to validate
our proposal, we explicitly incorporated hierarchical taxonomy relationships into the prompt for
zero-shot VLM prediction. We designed the prompt as ’A, which is a type of B, which is a type
of C’ to inform the model to make predictions that align with the correct taxonomy. In addition,
we included two ablation comparisons to show cases when 1) the correct taxonomy path is given,
but the model is not informed of relationship between class names (Stack Parent); and 2) the
model is explicitly informed that a hierarchical ’is-a’ relationship exists between class name, but
the incorrect taxonomy relationship randomly sample from tree (Shuffle Parent) is provided. Our
results demonstrate that only informing the model of the correct taxonomy and their hierarchical
relationships can improve generalization. This is evidenced by improvements in Top-1 accuracy,
ELCAD, and test-time cross-entropy across all datasets for all tested models.
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Model ImageNet ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet
Top1 Test CE ELCA Top1 Test CE ELCA Top1 Test CE ELCA Top1 Test CE ELCA Top1 Test CE ELCA Top1 Test CE ELCA

Baseline 0.589 1.635 9.322 0.517 2.014 9.384 0.379 2.817 9.378 0.667 1.348 8.790 0.294 3.098 9.358 0.394 2.631 8.576
Stack Parent 0.381 3.730 9.389 0.347 3.948 9.395 0.219 5.540 9.561 0.438 3.287 9.258 0.223 4.469 9.364 0.148 5.127 9.076

Shuffle Parent 0.483 2.236 9.679 0.432 2.586 9.696 0.329 3.251 9.718 0.557 1.919 9.281 0.236 3.532 9.586 0.329 3.067 8.785
Taxonomy Parent 0.626 1.457 9.102 0.553 1.824 9.165 0.419 2.544 9.319 0.685 1.279 8.658 0.319 2.839 9.171 0.431 2.433 8.515

Table 7: Accuracy on OOD dataset by enforcing class taxonomy: Baseline: <dalmatian>; Stack
Parent: <dalmatian, dog, animal>; Taxonomy Parent:<dalmatian, which is type of a dog, which
is type of a animal >; Shuffle Parent: <dalmatian, which is type of a organism, which is type of a
seabird>; We have shown that only integrating the correct structure (inform the hierarchical ’is-a’
relationship between class name) as well as correct value(valid taxonomy relationship) on WordNet
could boost model performance and generalization.

G.2 DOES IMAGENET LCA (TAXONOMY DISTANCE) REFLECT IMAGENET TOP 1
ACCURACY?

Here we present numeric result for discussion in the main paper. We challenge the common belief
that LCA and Top-1 accuracy follow the same trend within the same dataset (Deng et al., 2009a;
Bertinetto et al., 2020). As shown in 11 8, when including both VM and VLM zero-shot models,
ImageNet and ImageNet-v2 show a weak correlation between LCA and Top-1 accuracy, while other
semantically distinct OOD datasets exhibit a stronger relationship.

We hypothesize that it’s due to overfitting of in domain feature. In our LCA-on-the-Line framework,
we define model generalization(often noted as Top1 accuracy) related to the degree of alignment
between model’s prediction and the latent data generation process. In general case, LCA should be
an unbiased measurement of such alignment. However, when we evaluate on In domain dataset(like
ImageNet), and dataset that are visually similar to In domain dataset (like ImageNetv2), Top 1
accuracy fail to accurate reflect model’s performance on general dataset(like naturally shrift semantic
dataset) as it’s ’inflated’ from overfitting to specific training paradigms for in-distribution data. Thus
model from different family (specifically VM and VLM) will overfit to their specific training mode
as shown in two linear trend in plot of ImageNet/v2 in Fig 11, which weaken the correlation between
LCA and Top1 accuracy.

For example, vision-only models often use cross-entropy to optimize class discrimination, which only
trying to separate each class embedding cluster and fails to distribute embeddings in a semantically
meaningful way. In contrast, vision-language models employ contrastive learning to align visual
space with a well-regularized language embedding space, leading to semantically related classes
being grouped closer together. This discrepancy in training paradigms means that Top 1 accuracy
cannot accurately reflect the encoded decision process of class relationships for in domain dataset.

Model Group ImageNet ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet

Top1->LCA

ALL

K^2 PEA K^2 PEA K^2 PEA K^2 PEA K^2 PEA K^2 PEA
0.237 0.488 0.259 0.509 0.838 0.915 0.749 0.865 0.869 0.932 0.672 0.820
KEN SPE KEN SPE KEN SPE KEN SPE KEN SPE KEN SPE
0.293 0.302 0.298 0.380 0.828 0.937 0.600 0.795 0.813 0.948 0.727 0.901

VLM

K^2 PEA K^2 PEA K^2 PEA K^2 PEA K^2 PEA K^2 PEA
0.934 0.966 0.886 0.941 0.922 0.960 0.889 0.943 0.792 0.890 0.570 0.755
KEN SPE KEN SPE KEN SPE KEN SPE KEN SPE KEN SPE
0.848 0.955 0.684 0.853 0.867 0.959 0.686 0.861 0.689 0.879 0.494 0.704

VM

K^2 PEA K^2 PEA K^2 PEA K^2 PEA K^2 PEA K^2 PEA
0.976 0.987 0.893 0.945 0.895 0.945 0.095 0.310 0.833 0.913 0.913 0.956
KEN SPE KEN SPE KEN SPE KEN SPE KEN SPE KEN SPE
0.911 0.982 0.821 0.942 0.825 0.949 0.149 0.222 0.782 0.917 0.838 0.957

Table 8: Correlation measurement between Top 1 and LCA on 77 models across modality
(37 VM and 40 VLM) on 6 datasets; For instance, Corr(ImageNet Top1 Acc, ImageNet LCA) or
Corr(ImageNet-A Top1 Acc, ImageNet-A LCA); Follow Fig 11. We highlight strong correlation
indications. We take the absolute value of all correlations for simplicity.

G.3 RANKING MEASUREMENT OF LCA-ON-THE-LINE

Here we present the numeric result for ranking measures of KEN (Kendall rank correlation coefficient)
and SPE (Spearman rank-order correlation coefficient) in comparision to common use Top1 In domain
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Figure 11: Predicting LCA (VM+VLM, 75 models) on 6 ImageNet-variant Datasets Following
Tab 8. For each plot, the x-axis indicates dataset Top-1 accuracy, while the y-axis indicates LCA
distance. From the plots, it is clear that ImageNet and ImageNet-v2 do not show a strong correlation
between LCA and Top-1 accuracy, while other semantically distinct OOD datasets exhibit a stronger
relationship. Additionally, this challenges the common belief that in-domain Top-1 accuracy and
LCA distance follow the same order (Deng et al., 2009b; Bertinetto et al., 2020). Please refer to the
discussion for further details. If necessary, please find png of this image in supplementary for better
legibility.

accuracy in 9. Equalevently, in domain LCA measure present strong result in both preserving linearity
and ranking.

Element ImageNetv2 ImageNet-S ImageNet-R ImageNet-A ObjectNet
ID OOD KEN SPE KEN SPE KEN SPE KEN SPE KEN SPE

ALL

Top1 Top1 0.840 0.947 0.170 0.092 0.146 0.042 0.068 0.037 0.317 0.339
LCA Top1 0.421 0.517 0.828 0.937 0.761 0.911 0.813 0.948 0.867 0.967
Top1 Top5 0.672 0.818 0.151 0.059 0.134 0.004 0.108 0.021 0.279 0.297
LCA Top5 0.571 0.729 0.843 0.948 0.752 0.897 0.817 0.947 0.861 0.966

VLM

Top1 Top1 0.971 0.997 0.840 0.936 0.864 0.943 0.753 0.915 0.905 0.982
LCA Top1 0.882 0.972 0.867 0.959 0.762 0.886 0.800 0.942 0.870 0.972
Top1 Top5 0.908 0.980 0.848 0.951 0.882 0.959 0.753 0.910 0.842 0.964
LCA Top5 0.900 0.981 0.856 0.950 0.775 0.907 0.794 0.943 0.829 0.955

VM

Top1 Top1 0.948 0.993 0.771 0.901 0.743 0.887 0.735 0.877 0.822 0.927
LCA Top1 0.910 0.981 0.825 0.949 0.705 0.862 0.782 0.920 0.838 0.957
Top1 Top5 0.939 0.992 0.752 0.894 0.758 0.901 0.818 0.941 0.815 0.920
LCA Top5 0.894 0.977 0.832 0.951 0.707 0.871 0.824 0.939 0.846 0.958

Table 9: Ranking measurement of ID LCA/Top1 with OOD Top1/Top5 on 75 models across
modality(36 VM and 39 VLM); As shown in the ’ALL grouping’, LCA shows a much better result
in preserve in model relative ranking to model OOD performance on all OOD datasets (with the
exception of ImageNet-v2), which indicate the superiority for model selection.
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