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ABSTRACT

This work explores optimizing transformer-based language models by integrating
model compression techniques with inhibitor attention, a novel alternative atten-
tion mechanism. Inhibitor attention employs Manhattan distances and ReLU ac-
tivations instead of the matrix multiplications and softmax activation of the con-
ventional scaled dot-product attention. This shift offers potential computational
and energy savings while maintaining model effectiveness. We propose further
adjustments to improve the inhibitor mechanism’s training efficiency and evalu-
ate its performance on the DistilBERT architecture. Our knowledge distillation
experiments indicate that the modified inhibitor transformer model can achieve
competitive performance on standard NLP benchmarks, including General Lan-
guage Understanding Evaluation (GLUE) and sentiment analysis tasks.

Introduction. Transformer-based language models have revolutionized natural language process-
ing (NLP), achieving state-of-the-art performance across a wide range of tasks, from machine trans-
lation to sentiment analysis (Vaswani et al., 2023). However, the computational and energy demands
of these models, particularly those arising from the self-attention mechanism, pose significant chal-
lenges for deployment in resource-constrained environments. The self-attention mechanism, while
highly effective, relies heavily on matrix multiplications, which are computationally expensive and
energy-intensive. As the scale of transformer models continues to grow, so does their environmental
impact, with studies estimating that training a single large model can emit as much carbon as five
cars over their lifetimes (Strubell et al., 2019). This has spurred research into more efficient alter-
natives, including model compression techniques such as knowledge distillation (Sanh et al., 2020)
and alternative attention mechanisms, like ReLUFormer (Shen et al., 2023) or Linformer (Wang
et al., 2020). Another alternative is inhibitor attention (Brännvall, 2024), which was introduced as a
means to avoid using the softmax function and matrix multiplications.

The motivation for this work is driven by the potential advantages of inhibitor attention over con-
ventional dot-product-based attention under low-bit precision quantization. Scaled dot-product at-
tention relies on floating-point matrix multiplication and Softmax activations, which can become
challenging when quantized, leading to precision loss. This work takes a first step towards inhibitor
transformer model compression by demonstrating that it can be trained via knowledge distillation
to perform well on NLP benchmark tasks. Conducted as a Master Thesis project during the fall of
2024, it faced several resource limitations (e.g., access to powerful GPUs). Therefore, it is presented
here as a Tiny-paper contribution to the SLLM workshop to invite collaborators.

Inhibitor attention. The conventional scaled dot-product attention is replaced according to

S =
QKT

√
dk

=⇒ Zij =
∑
k

γ√
dk

|Qik −Kjk| (1)

where Q,K, V are the same query, key, and value matrices of (Vaswani et al., 2023) and dk is the
size of the latent dimension. The attention head output is then similarly replaced

H = softmax(S)V =⇒ H ′
ik = η

∑
j

(V +
jk − Z̄ij)

+ + (V −
jk + Z̄ij)

− (2)

such that the attenuating effect of the softmax function is instead obtained by ReLU applied sepa-
rately to the positive and negative parts of V, thresholded by the inhibitor attentions score Z̄ij , which
here has been centered and then shifted by an amount δ (see appendix). Here, (x)+ = max(x, 0)
and (x)− = min(x, 0). In this work, we introduce learnable scalar parameters γ, η, and δ.
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Experiments. Our experiments were based on the DistilBERT (Sanh et al., 2020) paper, but
instead of using a full-sized BERT model as the teacher, we used the smaller pre-trained DistilBERT
model for computational convenience and simpler alignment. The weights were also initialized from
the teacher model. We only discuss task-agnostic KD and refer to the Appendix for supplementary
information on the experiments, including results for task-specific KD and hyperparameter listings.

The initial phase involved layerwise training to align the contextual representations between the
teacher and student models using 10% of the Wikitext-103 corpus. In this phase, all weights in the
student model were frozen except for the weight matrices of the query, key, and value components
in the current layer being trained. The Mean Squared Error (MSE) loss function was applied to align
the context outputs of corresponding layers in both models. Each layer was trained iteratively from
the bottom to the top layer (layer 0 to layer 5). After training a layer for two epochs, its weights
were frozen, and the next layer in the sequence was unfrozen.

Following the layerwise training, a full-layer training phase was conducted using 60% of the
Wikipedia 20231101 corpus. In this phase, all layers in the student model were unfrozen, allow-
ing parameter updates across the entire network. MSE loss was applied to the hidden states to align
the hidden layer outputs between the teacher and student models.

Once the task-agnostic knowledge distillation was completed, the final weights of the inhibitor Dis-
tilBERT model were stored and used as the foundation for fine-tuning to more specific NLP tasks.

Table 1: Experiment comparing a pre-trained conventional DistilBert with the Inhibitor alternative
pre-trained by task-agnostic knowledge distillation. Each model was finetuned to the GLUE Bench-
marks and the IMDB tasks. The performance on each test was averaged over three runs.

Models Score CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI IMDb
Conv. DistilBERT 77.0 51.3 82.2 87.5 89.2 88.5 59.9 91.3 86.9 56.3 92.82
Inhibi.DistilBERT 74.5 40.0 79.2 86.8 85.4 89.5 59.2 90.2 83.5 56.3 92.81

Results. We evaluate our inhibitor-based DistilBERT model against the conventional scaled dot-
product attention DistilBERT on the GLUE benchmark (Wang et al., 2019), which consists of 9 dif-
ferent language understanding tasks. We fine-tuned each model for three epochs using the AdamW
optimizer in accordance with standard practices also followed in the original DistilBERT paper. For
reference, results for the IMDB sentiment analysis task are also presented.

The performance comparison in Table 1 indicates that a fine-tuned inhibitor DistilBERT achieves
competitive accuracy, with a modest 3.2% average drop on GLUE compared to dot-product Dis-
tilBERT across the different tasks. Overall, the fine-tuned inhibitor maintained competitive perfor-
mance across most tasks but faced notable challenges for the CoLA task, which would require a
more detailed analysis as to why. We note that a performance drop may be expected as we used the
original Distilbert model both as a teacher model and as a benchmark baseline.

Discussion. We demonstrate that inhibitor-based attention mechanisms can achieve competitive
performance on NLP benchmarks while relying on simpler arithmetic operations. However, while
theoretical analysis suggests potential energy savings, actual measurements on conventional server
hardware showed higher energy consumption and lower throughput compared to traditional dot-
product attention. This discrepancy underscores the need for specialized hardware, such as custom
FPGA designs optimized for ReLU and addition-based operations, to fully realize the theoretical
benefits of this novel attention mechanism. The original report can be provided upon inquiry for a
detailed analysis of energy efficiency and throughput.

Future work will focus on further optimizations, including specialized hardware implementations
and different model compression techniques, such as quantization. Additionally, exploring knowl-
edge transfer from a full-sized BERT model instead of DistilBERT could improve performance.
With more powerful GPUs, direct pretraining of Inhibitor Transformers and experiments with larger,
modern architectures would be feasible. Additionally, efforts could assess the mechanism’s perfor-
mance in generative language models (GPT family) and Vision Transformers.
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APPENDIX: SUPPLEMENTARY MATERIAL

MORE ON THE METHOD

Conventional transformers Vaswani et al. (2023) utilize the scaled dot-product attention defined as

S =
QKT

√
dk

(3)

H = softmax (S)V (4)
where Q,K, V are query, key, and value matrices. The inhibitor Brännvall (2024) rewrites attention

Zij =
∑
k

γ√
dk

|Qik −Kjk| (5)

where the Manhattan (L1) distance replaces the dot-product (which is related to cosine similarity).

The final output is computed as

H ′
ik = η

∑
j

(V +
jk − Z̄ij)

+ + (V −
jk + Z̄ij)

− (6)

where we used the notation (x)+ = max(x, 0) and (x)− = min(x, 0) for the positive and negative
ReLU functions, respectively.

To allow for further calibration of the inhibition effect, a shift is applied to the inhibition score by
first centering the score and then adjusting it with a shifting parameter δ

Z̄ij = (Zij − ⟨Zij⟩j − δ)+ (7)

where ⟨Zij⟩j denotes that the mean is calculated over the axis corresponding to index j. The purpose
is to control when values from V can pass through unmodified. This article introduces a new set of
learnable scalar parameters for the inhibitor, γ, η, and δ, which are specific to each attention head.
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MORE ON THE KNOWLEDGE DISTILLATION EXPERIMENT

This section supplements the main text with more details on the knowledge distillation experiments,
including a comparison with task-specific knowledge distillation presented in Table 2 that expands
on the comparison between fine-tuned transformers of Table 1 for conventional dot-product attention
and inhibitor attention. At the end of this appendix, we have included tables that list the hyperpa-
rameters used in our experiments.

Our approach draws inspiration from the original DistilBERT (Sanh et al., 2020), TinyBERT (Xiaoqi
et al., 2020), and Greedy Layer-Wise Training (Bengio et al., 2007) papers. For the task-agnostic
KD experiments, we used as teacher the smaller pre-trained DistilBERT model for computational
convenience and simpler alignment, while a BERT already fine-tuned to the GLUE task was used
for the task-specific KD. Weights were initialized from the teacher model.

Experiment 1. We transfer knowledge from a dot-product-based DistilBERT teacher model to an
inhibitor-based DistilBERT student model using a task-agnostic knowledge distillation strategy:

• Layerwise Training: Each layer was trained sequentially using Mean Squared Error
(MSE) loss to align self-attention outputs. Only the query, key, and value matrices of the
current layer were updated, while all other weights remained frozen. The layerwise training
followed a bottom-up approach, freezing all layers except for the current one being trained.

• Full-Layer Training: After layerwise alignment, all layers were unfrozen and trained to-
gether using MSE loss applied to hidden states to refine the representations.

Experiment 2. Building upon the task-agnostic distillation, we performed task-specific knowl-
edge distillation using a fine-tuned BERT model on GLUE benchmark (Wang et al., 2019) tasks.
The goal was to transfer task-specific knowledge to the inhibitor model by using the BERT model
as a teacher. The loss components consisted of:

• Soft Probability Distillation Loss: The distillation loss function uses the teacher model’s
soft probabilities to encourage the student model to replicate the teacher’s predictions.

• Hidden State Loss: To help guide the inner layers of the student model toward better
alignment with the teacher’s representations.

The performance comparison in Table 2 indicates that fine-tuned inhibitor DistilBERT (FT In-
hibi.DistilBERT) achieves competitive accuracy, with a modest 3.2% average drop on GLUE com-
pared to dot-product DistilBERT across different tasks. Overall, the fine-tuned Inhibitor DistilBERT
(trained by task-agnostic knowledge distillation) maintained competitive performance across most
tasks but faced notable challenges in tasks like CoLA, which would require a more detailed analysis.

Task-specific knowledge distillation (KD Inhibi.DistilBERT) lags behind, indicating that improve-
ments in layer alignment and training strategies are needed. Although the task-specific model per-
forms somewhat better on the CoLA benchmark, it shows materially worse results for most other
benchmarks, particularly MNLI, MRPC, QNLI, and QQP.

Results from a third experiment on computational efficiency were inconclusive (details can be pro-
vided upon inquiry). While our theoretical analysis suggested potential energy savings, the practical
experiments showed higher energy consumption and lower throughput on the available computer
architecture, indicating the need for further experimentation on more specialized hardware.

Table 2: Supplementary results showing that the performance on GLUE is somewhat weaker for
Task-Specific Knowledge Distillation (KD, bottom row) compared to the case with Fine-Tuning
after Task-Agnostic Distillation (FT, same as Table 1). Task scores are averaged over three runs.

Models Score CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI
Conv. DistilBERT (FT) 77.0 51.3 82.2 87.5 89.2 88.5 59.9 91.3 86.9 56.3
Inhibi.DistilBERT (FT) 74.5 40.0 79.2 86.8 85.4 89.5 59.2 90.2 83.5 56.3
Inhibi.DistilBERT (KD) 68.7 47.5 72.2 77.0 80.0 63.4 47.3 91.0 83.5 56.3
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Table 3: Hyperparameters for the layer-wise
training.

Hyperparameter Value
Number of Layers 6
Hidden size 768
FFN inner hidden size 3072
Attention heads 12
Attention head size 64
Dropout 0.1
Attention Dropout 0.1
Warmup Ratio 5%
Peak Learning Rate 5e-4
Batch Size 16
Gradient accumulation steps 4
Epochs 2
Learning Rate Decay Cosine
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999

Table 4: Hyperparameters for the full-layer
training.

Hyperparameter Value
Number of Layers 6
Hidden size 768
FFN inner hidden size 3072
Attention heads 12
Attention head size 64
Dropout 0.1
Attention Dropout 0.1
Warmup Ratio 5%
Peak Learning Rate 3e-4
Batch Size 16
Gradient accumulation steps 32
Epochs 3
Learning Rate Decay Cosine
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999

Table 5: Hyperparameters for the task-
specific knowledge distillation.

Hyperparameter Value
Number of Layers 6
Hidden size 768
FFN inner hidden size 3072
Attention heads 12
Attention head size 64
Dropout 0.1
Attention Dropout 0.1
Warmup Ratio 0
Peak Learning Rate 2e-5
Batch Size 16
Gradient accumulation steps 0
Epochs 3
Learning Rate Decay Linear
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Temperature 4
Distillation loss weight 0.5
Hidden state loss weight 0.5

Table 6: Hyperparameters for fine-tuning
after task-agnostic distillation.

Hyperparameter Value
Number of Layers 6
Hidden size 768
FFN inner hidden size 3072
Attention heads 12
Attention head size 64
Dropout 0.1
Attention Dropout 0.1
Warmup Ratio 0
Peak Learning Rate 2e-5
Batch Size 16
Epochs 3
Learning Rate Decay Linear
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
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