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Abstract

The current state-of-the-art defense methods against adversarial examples typically focus
on improving either empirical or certified robustness. Among them, adversarially trained
(AT) models produce empirical state-of-the-art defense against adversarial examples with-
out providing any robustness guarantees for large classifiers or higher-dimensional inputs.
In contrast, existing randomized smoothing based models achieve state-of-the-art certified
robustness while significantly degrading the empirical robustness against adversarial exam-
ples. In this paper, we propose a novel method, called Certification through Adaptation,
that transforms an AT model into a randomized smoothing classifier during inference to
provide certified robustness for ℓ2 norm without affecting their empirical robustness against
adversarial attacks. We also propose Auto-Noise technique that efficiently approximates
the appropriate noise levels to flexibly certify the test examples using randomized smooth-
ing technique. Our proposed Certification through Adaptation with Auto-Noise technique
achieves an average certified radius (ACR) scores up to 1.102 and 1.148 respectively for
CIFAR-10 and ImageNet datasets using AT models without affecting their empirical ro-
bustness or benign accuracy. Hence, our work is a step towards bridging the gap between
the empirical and certified robustness by providing certification using AT models while main-
taining the empirical robustness against adversarial examples in the proposed framework.

1 Introduction

Deep neural network (DNN) based models are found to be brittle to minor, adversarially-chosen perturbations
for their inputs that remain undetectable to human eyes. A DNN classifier that correctly classifies a clean
image x, can be easily fooled by choosing such adversarial attacks to misclassify x + δ (Szegedy et al., 2014;
Goodfellow et al., 2015; Madry et al., 2018). Here, δ is a minor adversarial perturbation such that the change
between x and x + δ remains imperceptible.

Among the existing successful defense models, adversarial training (AT) produces the best empirical robust-
ness against the known adversarial attacks, however, without providing any guarantee Madry et al. (2018);
Tramèr & Boneh (2019); Zhang et al. (2019); Rice et al. (2020); Gowal et al. (2020). It trains a DNN
classifier using strong adversaries from a specific class of perturbation (e.g., a small ℓp-norm) to provide ro-
bustness for the same perturbation types. Several certification techniques are proposed that can be applied
to adversarially trained models to certifiably verify if the prediction of a test example, x remains constant
within its neighborhood Wong & Kolter (2018); Wang et al. (2018); Salman et al. (2019b); Dvijotham et al.
(2018); Gehr et al. (2018); Sheikholeslami et al. (2021). However, these certification techniques typically do
not scale for larger networks (e.g., ResNet50) and datasets (e.g., ImageNet). Hence, we cannot guarantee
for large networks or data-sets that a powerful, not yet known attack would not break these defenses. In
fact, several recently proposed empirical defense models are later broken by stronger adaptive adversarial
attacks, indicating the importance of investigating certified defenses with suitable robustness guarantees Car-
lini & Wagner (2017); Athalye et al. (2018). In contrast to these models, the randomized smoothing based
models can provide scalable ℓ2-certification framework for any classification model, which is robust against
large isotropic Gaussian noise (Cohen et al., 2019; Salman et al., 2019a). However, the existing randomized
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CIFAR-10 models with the best hyper-parameters for ℓ2 certifications
Certified ℓ2 Radius 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 ACR
Adv∞ (Rice et al., 2020) 13.82 12.22 10.48 9.12 7.69 6.32 5.1 3.79 0.0 0.0 0.0 0.0 0.0 0.154
Adv∞ + Auto-Noise 69.46 63.12 35.73 30.63 17.54 14.78 10.27 9.16 8.01 7.2 6.21 5.31 3.78 0.649
Adv∞ + Adaptation + Auto-Noise 70.75 64.54 50.63 43.38 32.5 24.43 18.05 12.2 8.31 5.37 3.36 1.96 1.23 0.76
Adv2 (Rice et al., 2020) 30.37 26.98 23.98 21.35 18.4 15.94 13.52 10.63 0.0 0.0 0.0 0.0 0.0 0.367
Adv2 + Auto-Noise 64.45 60.57 45.73 41.06 28.48 22.92 15.1 10.77 7.23 4.8 2.77 1.67 1.1 0.702
Adv2 + Adaptation + Auto-Noise 61.96 58.58 53.64 49.67 42.76 38.69 34.54 30.36 24.65 20.77 17.09 13.66 9.18 1.102

Table 1: CIFAR-10: Certified accuracy at different ℓ2 radii and ACR scores with the best training hyper-parameters
(i.e., ℓ∞ = 12/255 for Adv∞ and ℓ2 = 3.0 for Adv2). For detailed comparative results with different state-of-the-
art methods on both ImageNet and CIFAR-10, please refer to Table 4 and 5 respectively in Appendix. Notably,
column ℓ2 = 0.0 denotes the performance of the smoothed classifier under Gaussian noise. Our ‘certification through
adaptation’ provides better benign (clean) accuracy by obtaining the predictions directly from the original AT models.

smoothing-based models significantly degrade the empirical robustness compared to the state-of-the-art AT
models. In summary, a high empirical robustness along with certification guarantees are necessary to im-
prove the reliability of DNN based frameworks for sensitive real-world applications. However, to the best
of our knowledge, none of the existing frameworks provide high performance for both empirical robustness
with such certified guarantees using the same DNN classifier.

In this paper, we propose a novel certification through adaptation framework that transforms an AT model
into a randomized smoothing framework during inference to provide non-trivial ℓ2 certification without
any additional training or architecture modifications. Our proposed certification technique consists of two
steps: We first adapt the AT model using popular batch normalization (BN) adaptation technique with an
appropriate levels of Gaussian noise separately for each test example (Cariucci et al., 2017; Li et al., 2016).
This process significantly boosts the performance of the AT models against the random isotropic Gaussian
noises. Hence, we can now directly apply the randomized smoothing based certification technique to provide
ℓ2 certification in the next step. However, choosing the Gaussian noise for each test example is a challenging
task. The existing randomized smoothing based models that use Gaussian noises for training, use the same
noise levels to certify each test example, significantly compromising their certification performance. Towards
this, we also propose an Auto-Noise technique to efficiently approximate the appropriate Gaussian noise
levels for correctly certifying each test example during inference. For a given test image, we first obtain
the class-prediction using the original AT models (i.e. without adaptation). This step ensures that we can
produce the same benign accuracy and empirical robustness for our framework. Next, we certify the predicted
class-label using our certification through adaptation framework with appropriate noise-level, obtained using
Auto-Noise technique. We return "ABSTAIN" for test samples where the predicted class from AT classifier
is not certifiable. Hence, we provide certification without reducing the same empirical robustness and benign
accuracy as the existing AT models (Rice et al., 2020; Madry et al., 2018).

In the following, we summarize the list of contributions for our paper:

1. To the best of our knowledge, we are the first to investigate BN adaptation for certification robustness. Our
proposed certification through adaptation framework is the first to produce non-trivial ℓ2 certified robustness
from an AT model for large-scale networks (e.g. ResNet) and datasets (e.g. ImageNet). Our proposed
technique only requires a set of clean images, obtained from training/validation or test set to adapt the AT
models for providing the ℓ2 certification.

2. We also propose Auto-Noise technique to efficiently approximate the appropriate Gaussian noise levels
for certifying each test example during inference. Auto-Noise is applicable even for existing randomized
smoothing based models and often significantly improves the certification performance. Our Certification
through Adaptation together with Auto-Noise technique produces average certified radius (ACR) scores upto
1.102 and 1.148 for CIFAR-10 and ImageNet for AT models, achieving the state-of-the-art performance
for CIFAR-10. Notably, our proposed method is applied during inference, without affecting the empirical
robustness or benign accuracy of AT models to produce these non-trivial ℓ2 certification results.

3. Our results also suggests a stronger correlation between empirical and certified robustness that empirically
stronger AT models also produce better ℓ2 certification performance.
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2 Related Work

2.1 Adversarial Robustness for DNN models

2.1.1 Empirical Defenses and Adversarial Training.

Defense models against adversarial examples can be broadly categorized as: empirical and certified defenses.
Empirical defenses demonstrate empirical robustness against adversarial attacks, typically without out pro-
viding any certification guarantees (Schott et al., 2019; Moosavi Dezfooli et al., 2019; Nandy et al., 2020;
Mao et al., 2021). Adversarial training achieves the state-of-the-art empirical defense (Madry et al., 2018).
It optimizes the following loss function for a DNN classifier, f , to provide robustness within an ϵ-bounded
threat model for an ℓp norm, where the perturbations, δ ∈ ∆ are constrained as ∆ = {δ : ||δ||p ≤ ϵ}:

min
θ

E(x,y)[max
δ∈∆

L(fθ(x + δ), y)] (1)

where, θ denotes the model parameters. L is the classification loss.

The inner maximization in Eq. 1 is solved by producing adversarial examples using strong iterative ad-
versaries, e.g., projected gradient descent (PGD) attack (Kurakin et al., 2016; Madry et al., 2018). Wong
et al. (2020) found that even a single-step fast gradient sign method (FGSM) attack-based AT models also
achieves high empirical robustness (Goodfellow et al., 2015). Zhang et al. (2020b) proposed to use the least
adversaries for training. Recently TRADES (Zhang et al., 2019), Adv-LLR (Qin et al., 2019) introduced
additional regularizers to achieve higher empirical robustness by smoothing the loss surface. Rice et al.
(2020) showed that even the standard PGD based AT model with early-stopping criteria provides one of the
best empirical defenses for a given perturbation type. Recent works also explored the importance of different
hyper-parameters for adversarial training (Gowal et al., 2020; Pang et al., 2021) as well as incorporating
additional data in a semi-supervised fashion (Carmon et al., 2019; Uesato et al., 2019) to further improve
their empirical robustness against adversarial attacks. Recently, Kireev et al. (2021) also demonstrated that
adversarial training with smaller perturbation can also improve the performance against random corruptions.

2.1.2 Certified Defenses.

Empirical defenses demonstrate robustness only against the known adversaries without providing any guaran-
tees. In fact, most empirical defenses proposed in the literature were later broken by appropriate adversaries,
highlighting the importance of certified defenses models (Athalye et al., 2018; Uesato et al., 2018).

Certified defenses provide guarantees that for an input x, the classifier’s prediction is constant within its
neighborhood for a specific class of adversarial perturbation. Several works focus on certifying a trained
model by introducing deterministic verification techniques (Tjeng et al., 2017; Gehr et al., 2018; Weng et al.,
2018; Wang et al., 2018; Bunel et al., 2018; Zhang et al., 2018; Henriksen & Lomuscio, 2020; Xu et al., 2021;
Wang et al., 2021b; Henriksen & Lomuscio, 2021; Palma et al., 2021a;b). Another set of works attempted
to train neural network models with provable robustness guarantees, typically using cheaper and incomplete
verification techniques. These works include methods based on semidefinite relaxations (Raghunathan et al.,
2018), linear relaxations and duality (Wong & Kolter, 2018; Wong et al., 2018), abstract interpretation
(Mirman et al., 2018), and interval bound propagation (Gowal et al., 2018). Recently, notable progress are
made towards closing the gap between adversarial and provable robustness (Zhang et al., 2020a; Balunovic &
Vechev, 2020). Mueller et al. (2021) combined a small verification network with a large, empirically robust
AT model to boost the benign accuracy and empirical robustness of their certified framework. However, these
techniques do not scale well for large networks (e.g., ResNet50) or higher-dimensional data (e.g., ImageNet).

2.1.3 Randomized Smoothing.

Randomized smoothing is a promising technique for certifying large-scale networks and higher-dimensional
datasets. However, unlike deterministic certification methods, this technique provides robustness certification
with probabilistic guarantees. This technique was initially proposed as a heuristic defense (Cao & Gong,
2017; Liu et al., 2018) and later shown to be certifiable (Lecuyer et al., 2019; Li et al., 2019). In the following,
we describe the randomized smoothing technique to produce certified ℓ2 robustness.
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Consider a classification model, f , that maps inputs in Rd to Y classes. The randomized smoothing framework
transforms the original base classifier, f into a new, smoothed classifier g Cohen et al. (2019). In particular,
for an input x ∈ Rd, the smoothed classifier g returns the most probable class to be predicted by the base
classifier f under isotropic Gaussian noises of x. That is,

g(x) = arg max
y∈Y

P(f(x + δ) == y) s.t. δ ∼ N (0, σ2I). (2)

where, σ2I is the covariance matrix and σ denotes the noise level for certifying x. σ controls the trade-
off between robustness at different ℓ2 radii: Increasing σ improves the robustness of g at higher ℓ2 radii.
However, it degrades the robustness at smaller ℓ2 radii.

Cohen et al. (2019) presented a tight robustness guarantee using Neyman-Pearson lemma for the smoothed
classifier, g and provided an efficient algorithm using Monte Carlo sampling for certification. We can also
obtain the same guarantee by explicitly computing the Lipschitz constant of the smoothed classifier as shown
in (Salman et al., 2019a; Yang et al., 2020). The certification procedure is as follows: Suppose a base classifier
f classifies N (x, σ2I) to return the “most probable" class, cA with probability pA = P(f(x + δ) == cA) and
the “runner-up" class cB with probability pB = maxy ̸=cA

P(f(x + δ) == y). Then, the smooth classifier, g
is certifiably robust around x within an ℓ2 radius of R, as follows:

R = σ

2

(
Φ−1(pA) − Φ−1(pB)

)
(3)

where, Φ−1 denotes the inverse of the standard Gaussian CDF.

However, computing the exact values for pA and pB is impossible in practice when f is a DNN. Cohen et al.
(2019) addressed this problem using Monte Carlo sampling to estimate pA and pB such that pA ≤ pA and
pB ≥ pB with arbitrarily high probability. The certified radius for input x is then computed by replacing
pA and pB with pA and pB respectively in Eq. 3.

As we can see in Equation 2 that the base classifier, f needs to be robust against large Gaussian noises
to produce non-trivial robustness certification results. Otherwise, it leads to lower pA and hence a lower
certification of R for the test examples. Existing randomized smoothing-based models applies custom-
trained using explicit Gaussian noises to learn their original base classifier. Cohen et al. (2019) proposed
to train their base-classifier by incorporating random Gaussian noises. Several recent works focused on
improving the base classifiers to achieve better certification performance by adversarially choosing the noise
(Salman et al., 2019a), incorporating additional regularizers (Zhai et al., 2020; Jeong & Shin, 2020), by
ensembling multiple base-models (Horváth et al., 2022) etc. Several works also investigated on improving
certification guarantees using different smoothing measures (Li et al., 2019; Lee et al., 2019; Yang et al.,
2020) or divergences (Dvijotham et al., 2020). Salman et al. (2020) also demonstrated that we can achieve
non-trivial certified robustness even for a standard DNN classifier by incorporating an additional denoising
module as a pre-processing unit. Notably, randomized smoothing is the only scalable certification framework
and also provides superior performance for different perturbation types (Dvijotham et al., 2020).

However, while achieving the state-of-the-art certification performance, randomized smoothing significantly
degrades the empirical robustness against adversarial attacks compared to the state-of-the-art AT models
(Lecuyer et al., 2019; Salman et al., 2019a; Cohen et al., 2019). Towards this, our proposed technique
transforms an AT model into a randomized smoothing classifier without requiring additional training or
architectural modification. Since AT models already provide the state-of-the-art empirical defense, we achieve
both empirical and certified robustness against adversarial examples using the same classifier.

2.1.4 Batch-normalization and Robustness.

Several recent papers investigate the effects of batch-normalization layers for different aspects of robust-
ness. Many of these works focused on improving robustness against random corruptions by adapting batch-
normalization using a sufficiently large set of test images from the same covariate shift (Schneider et al.,
2020; Nado et al., 2020; Benz et al., 2021a). By hypothesizing that clean and adversarial examples belongs
to different domains, several recent works proposed to apply different branches of BN to separately capture
their distributions (Xie et al., 2020a; Xie & Yuille, 2020; Jiang et al., 2020; Wang et al., 2020b; 2021a). Benz
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et al. (2021b) presents empirical evidence to argue that BN shifts a model towards being more dependent on
non-robust features (NRFs). Unlike these previous works, we proposed to adapt BN layers using appropriate
Gaussian noise levels to provide ℓ2 certified robustness for AT models.

2.2 Test-time Adaptation & applications

Test-time adaptation techniques have been widely explored before in the field of domain adaptation (Sun
et al., 2017; Roy et al., 2019; Huang et al., 2018; Li et al., 2016) and covariate-shift adaptation (Sun et al.,
2020; French et al., 2017; Xie et al., 2020b; Wang et al., 2020a; Schneider et al., 2020; Nado et al., 2020;
Benz et al., 2021a). However, to the best of our knowledge, such techniques are never applied for adversarial
robustness and certification. Our paper mainly focuses on one of the most popular and effective mechanisms,
called adaptive batch-normalization.

A batch-normalization (BN) layer computes the mean and variance of the hidden activation maps across the
channels to normalize these activations to N (0, 1) before feeding into the next hidden layer (Ioffe & Szegedy,
2015). This process reduces the dependencies among different hidden layers, improving the training efficiency
for deep architectures. However, the distributional shifts in the test examples lead to different activation
statistics compared to the training examples. Hence, the statistics estimated during training fail to correctly
normalize the activation tensors to N (0, 1). Consequently, it breaks the crucial assumption for the subsequent
hidden layers to work. Adaptive BN technique computes the BN statistics from the feature activations, µt,
s2

t , of the test batch. We can adapt them with the existing training statistics, µT , s2
T , learned using the

training batches as (Cariucci et al., 2017; Li et al., 2016; Schneider et al., 2020):

µ = ρ · µt + (1 − ρ) · µT s = ρ · st + (1 − ρ) · sT (4)

where, ρ ∈ [0, 1] is the momentum. The choice of ρ = 0 is equivalent to the standard inference setup
with a deterministic DNN classifier in the IID settings. As we receive larger set of samples, we can select
full-adaptation with ρ = 1 to obtain a better estimation of the test distributions.

Assumptions and Limitations. The existing BN-adaptation techniques typically require a large set of
test images from the same “unknown” test distributions. However, this assumption may not hold for several
real-world applications, e.g., stateless web APIs. Also, these test images should be semantically diverse,
preferably over multiple classes, to effectively estimate the test distributions. Hence, it further limits the
practical usability of these frameworks for real-world applications, e.g., autonomous cars.

Unlike these models for domain adaptation and corruption robustness, our proposed certification framework
does not make any such assumptions. As we shall see that we can appropriately approximate the required
Gaussian noise level for adaptation to certify a test image. Therefore, we can pre-select a diverse set of
clean images, Xclean and inject the random Gaussian noises to appropriately adapt the models as required,
addressing both of these limitations.

3 Proposed Methodology

Existing randomized smoothing-based models applies custom-trained using explicit Gaussian noises to learn
their original base classifier (Lecuyer et al., 2019; Cohen et al., 2019; Salman et al., 2019a; Zhai et al., 2020;
Jeong & Shin, 2020). However, these models produce significantly lower empirical robustness compared to
the AT models (Madry et al., 2018; Zhang et al., 2019; Rice et al., 2020; Gowal et al., 2020). In contrast, AT
models are not robust against large Gaussian noises in the standard inference settings (Gilmer et al., 2019).
In the following, we present certification through adaptation with auto-noise framework towards bridge this
gap between these two research directions by producing certified robustness from AT models.
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Algorithm 1: Certification-through-Adaptation (f , xtest, σ, Xclean, N)
Input: f : classifier, xtest: test example, σ: noise-level, Xclean: batch of clean images sampled from

train/validation data or test stream, N : No. of noisy samples for Monte-Carlo estimation (Eq. 3)
Output: Certifiably robust ℓ2 radius of R for a single test image, xtest.

/* (I) Adapt the original classifier f to fadapt with ρ = 1 (Eqn 4). */
1 X̃ = {x + N (0, σI) ∀ x ∈ Xclean} // Perturb Xclean with random noise.
2 fadapt = BN-Adaptation(f, X̃, ρ = 1) // Obtain fadapt using BN-adaptation with ρ = 1.

/* (II) Certifying xtest using randomized smoothing with fadapt as the base classifier. */
3 g = getRandomizedModel(fadapt) // Convert fadapt to g (Eq 2).
4 R = Certify(g, xtest; σ, N) // Execute 3 for ℓ2 certification.
5 return ℓ2 certified radius, R

3.1 Proposed Certification through Adaptation

Given a test image xtest, our certification through adaptation framework consists of two steps: (I) adapting
the original classifier f to fadapt, followed by (II) certification using randomized smoothing with fadapt as
the base classifier. We summarize our proposed method in Algorithm 1 and describe the steps below:

(I) Adaptation step: Recall that adaptive BN requires a large set of diverse test images to correctly
re-estimate the BN layer statistics (Cariucci et al., 2017; Li et al., 2016; Schneider et al., 2020). In contrast,
for ℓ2 certification, we only need to adapt the model, f against Gaussian perturbations using a given noise
level σ for each xtest. Hence, unlike existing test-time adaptation-based models for covariate shift or domain
adaptation problems, we can pre-select a sufficiently large and diverse set of clean images, Xclean from
the training or validation set. In our experiments, we randomly select 1, 000 and 500 training images for
CIFAR-10 and ImageNet respectively.
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Figure 1: Certification for CIFAR-10 as we apply
training data vs test data for adaptation in Algo-
rithm 1. Adv∞[8/255] and Adv2[1.0] respectively
denote AT models, trained at ℓ∞ ≤ 8/255 and
ℓ2 ≤ 1.0 threat-boundaries.

We first obtain the noisy image-batch, X̃ = {x +
N (0, σI) ∀x ∈ Xclean}. Next, with large and diverse
noisy image-batch, X̃, we can apply full BN adaptation us-
ing ρ = 1 (Eq. 4) and obtain the adapted model as: fadapt

= BN-Adaptation(f, X̃, ρ = 1).

(II) certification step: We use fadapt as the base classifier
to obtain the smoothed classifier, g. Finally, we execute Eq.
3 to return the ℓ2 certified radius for xtest using g.

Model adaptation using training versus test images.
We can sample Xclean from training/validation or a stream
of test images (if available). Since the underlying distribu-
tion of these clean images remains the same, it does not
affect the certification performance. Figure 1 verifies this
argument. We observe that the certification performance of
AT models remains almost the same as we randomly sample
Xclean from training vs. test sets. The slight differences in their performances typically arise due to the
underlying randomization of Xclean and added random noise to update the BN parameters.

3.2 Proposed Auto-Noise: Appropriate Noise level for Certification

Robustness of a classification model can significantly vary at different input spaces. Hence, choosing ap-
propriate noise-level for certifying is an important but challenging task for randomized smoothing based
certification techniques. While choosing a lower noise level produces significantly lower-estimates of certi-
fied radii, over-estimation of noise may fail to provide any certification robustness for a test example. A
brute-force approach to address this problem would be to evaluate the certification results on multiple noise
levels and report the maximum certified ℓ2 radii. However, certification using randomized smoothing is an
extremely time-consuming process: it evaluates a large number of noisy samples (of cardinality N = 100, 000)
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to estimate pA and pB using Monte-Carlo sampling (Eq. 3). For example, it can take upto 110 seconds to
certify an ImageNet test example with ResNet-50 models on NVIDIA RTX 2080 Ti (Cohen et al., 2019).
Hence, existing randomized smoothing based models typically use the same Gaussian noise level as applied
to train their base classifiers (Cohen et al., 2019; Salman et al., 2019a; Zhai et al., 2020; Jeong & Shin,
2020). However, we demonstrate that it significantly underestimates the certification performance of the
randomized smoothing framework. Towards this, we present a simple but effective Auto-Noise technique to
choose appropriate σ for a given test example, xtest from a given set of noises, σ = {σ1, σ2, · · · }:

Method. First, we note that randomized smoothing does not require 100, 000 noisy samples to produce ℓ2
certified radii. Even a smaller set of noisy examples (e.g. Nauto = 1000) can provide certification with high
probability (e.g. 99.9% confidence), however, for smaller ℓ2 certified radii (Cohen et al., 2019). Therefore, it
allows us to fairly compare the relative certification of different choices of σ, separately for each given test
image xtest. We compute the ℓ2 certified radii for all σ ∈ σ with 99.9% confidence using Nauto = 1000 noisy
samples. Our Auto-Noise technique selects the best σauto that provides the largest ℓ2 certification using
Nauto noisy samples. More formally,

σauto = arg max
σ∈σ

Certify(g, xtest; σ, Nauto) (5)

where, g denotes the smoothed classifier obtained using the base classifier, f (Eq. 2). For AT models, we
adapt the models, fadapt with noise level σ as the base classifier. Finally, we use the best noise level, σauto for
certifying xtest with a large number of noisy samples, N = 100, 000. For our certification process, Auto-Noise
technique can be incorporated using Algorithm 1 as a sub-routine as shown in Algorithm 2.

Algorithm 2: Certification-through-Adaptation using Auto-Noise (f , xtest, σ, Xclean, Nauto, N)
Input: f : AT classifier, xtest: test image, σ: noise list, Xclean: clean-image set, Nauto: No. of noisy

samples for Auto-Noise (Eq. 3) N : No. of noisy samples for final certification (Eq. 3).
Output: Certifiably robust ℓ2 radius of R for a single test image, xtest.

/* Auto-noise step: Execute Algorithm 1 with Nauto noisy samples for each σ ∈ σ. */
1 σauto = arg maxσ∈σ Certification-through-Adaptation(f , xtest, σ, Xclean, Nauto)

/* Algorithm 1 with N number of noisy samples. */
2 R = Certification-through-Adaptation(f , xtest, σauto, Xclean, N)
3 Return ℓ2 certified radius, R

Computational Overhead. In practice, σauto can be chosen from a reasonably small set
of noises, σ for each test example, xtest. For example, in our experiments, we select σ =
{0.12, 0.25, 0.37, 0.50, 0.67, 0.75, 0.87, 1.0}, i.e. of cardinality=8 and set Nauto = 1, 000. Hence, we require an
additional 8, 000 iterations to obtain the appropriate σ for each test-examples, along with 100, 000 iterations
to get the final certification. In other words, with very little computational overhead, we can approximate
the appropriate noise levels for each test example.

Note that our Auto-Noise algorithm using a small set, Nauto = 1, 000 may not provide reliable estimation of
the most appropriate noise-level, σ. However, as shown in Table 1, it significantly improves the certification
performance for both AT models and the existing randomized smoothing based models, compared to the fixed
choices of σ (Cohen et al., 2019; Li et al., 2019). Furthermore, by using certification through adaptation
along with Auto-Noise method, we can produce state-of-the-art certification performance for AT models,
trained using ℓ2 bounded adversarial examples.

Empirical robustness and benign (clean) accuracy. Our proposed certification through adaptation
framework takes an AT model, f and adapt to fadapt to obtain the smooth classifier g to provide ℓ2 certifi-
cation. To maintain the same empirical robustness and benign (clean) accuracy as f for our framework, we
obtain class-label prediction from the original classifier, f as the only prediction model. We use fadapt or g
only for certification. More formally, for a given test image, xtest and ground-truth label y:

Step 1 [Class-Prediction]. Return f(xtext) as the predicted-class. This step ensures that the benign
accuracy and empirical robustness of our framework remains the same as f .
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Models Benign Acc.
(Using f)

Empirical Robustness
(Using f) Certified Acc.

at ℓ2 = 0
(Using g)Robust

Acc.
Threat

boundary
Adv∞[8/255] 82.6 53.4 ℓ∞ ≤ 8/255 79.69
Adv2[1.0] 83.0 54.5 ℓ2 ≤ 1 82.34

Table 2: CIFAR-10: Certification-through-adaptation
directly returns the predictions from original AT model,
f to maintain the same benign accuracy and empirical
robustness. The smoothed classifier, g typically produces
lower accuracy at ℓ2 = 0.

Step 2 [Certification]. Next we obtain fadapt

and g from f . We only certify xtest iff (a) the pre-
dicted class for both f and g remains the same i.e.,
f(xtest) == g(xtest) and (b) pA > 0.5 (in Eq. 3).
Therefore, for a sample xtest, we may predict the cor-
rect class using f . However, we may not achieve cer-
tified radius using g when fadapt is not robust in the
neighborhood of xtest.

In Table 2 presents the benign accuracy obtained from
f and certified accuracy of g at ℓ2 = 0. We can see
that f typically produces higher benign accuracy than the certified accuracy of g at ℓ2 = 0. However, by
incorporating σ = 0 in the noise-list for Auto-Noise, we can achieve the same benign accuracy as f from g.

Applicability. Our certification through adaptation with Auto-Noise method can be applied to any classi-
fier, f with BN layers. However, we cannot improve the robustness of standard non-robust DNN classifiers
against large random Gaussian perturbations. Therefore, we can only achieve higher ℓ2 certification guaran-
tees at very small ℓ2 radii for these models (see in Table 4 and Table 5). Further,we also observe that adapting
the existing randomized smoothing models does not necessarily improve the overall certification performance
(see Table 1 and Figure 6 in Section 4.3) In contrast, we can significantly improve the performance for AT
models against large Gaussian perturbations, providing non-trivial certification robustness.

4 Experimental Results

Setup. We use CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009) datasets for our
experiments. For CIFAR-10, we use pre-activation ResNet18 and for ImageNet, we use ResNet50 (He et al.,
2016a;b). For our experiments, we train the AT models using the early stopping criteria (Rice et al., 2020).
For ImageNet, we use two AT models, Adv∞[4/255] and Adv2[3], learned at ℓ∞ and ℓ2 threat models with
threat boundaries of 4/255 and 3 respectively. For CIFAR-10, we train multiple AT models with different
threat boundaries. We denote them by incorporating their corresponding threat boundaries, applied for
training. For example, we denote an AT model, trained with threat boundary of 8/255 as Adv∞[8/255].

For our comparisons, we use the standard DNN Baseline and Randσ=0.5 models. Baseline is the standard,
non-robust models, trained using clean images. Randσ=0.5 is trained by augmenting random noise, sampled
from N (0, σ2I) with σ = 0.5 Cohen et al. (2019). We also compare with the state-of-the-art SmoothAdv
models for CIFAR-10 (Salman et al., 2019a). Please refer to Appendix A.3 for additional details 1.

(a) ImageNet (b) CIFAR-10

Model σ = 0 σ = 0.25 σ = 0.5 σ = 0.75 Model σ = 0 σ = 0.25 σ = 0.5 σ = 0.75
Baseline 75.2±0.0 11.8±0.22 0.3±0.01 0.1±0.0 Baseline 95.2±0.0 10.9±0.88 10.6±0.76 10.5±1.19

+ adaptive BN 74.4±0.04 31.0±0.27 7.7±0.24 2.4±0.01 + adaptive BN 95.0±0.57 40.1±0.97 22.0±0.83 17.2±0.66

Adv∞[4/255] 62.8±0.0 3.9±0.03 0.4±0.01 0.2±0.01 Adv∞[8/255] 82.1±0.0 40.2±4.56 16.1±7.85 12.2±5.23

+ adaptive BN 60.8±0.16 53.4±0.15 44.9±0.08 33.7±0.28 + adaptive BN 81.6±0.96 74.2±0.95 62.4±0.64 51.0±1.03

Adv2[3] 59.8±0.0 9.8±0.08 0.9±0.01 0.3±0.0 Adv2[1] 81.6±0.0 47.5±5.1 21.5±7.79 14.3±5.63

+ adaptive BN 58.3±0.08 53.7±0.14 47.3±0.14 39.8±0.18 + adaptive BN 81.8±0.7 75.8±0.43 64.9±0.73 53.5±1.71

Table 3: Top-1 accuracy of AT models significantly improve using adaptive BN under different levels of Gaussian
noises (when σ > 0). We randomly sample the noises and report (mean ± 2 × sd) for five different runs.

4.1 Performance under Gaussian Noise.

We first investigate the performance of AT models as we significantly increase the Gaussian noises. As
we note in Equation 2 and 3, it is a necessary condition to provide non-trivial robustness certification at
larger ℓ2 radii. In Table 3, we present a comparative performance for Baseline, Adv∞, and Adv2 models for
both ImageNet and CIFAR-10 datasets. We can see that the classification performance of all these models

1For ImageNet, we obtain Adv∞ and Adv2 from https://github.com/locuslab/robust_overfitting and Baseline and
Randσ=0.5 models from https://github.com/locuslab/smoothing.
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sharply degrades under large Gaussian noises in standard inference settings. However, we can improve these
performances by adapting them under the same level of Gaussian noises using adaptive BN techniques. In
particular, we observe that AT models achieve significantly higher performance gain using adaptive BN than
the non-robust, Baseline models under Gaussian noise levels. For example, at σ = 0.5, Baseline, Adv2[3]
and Adv∞[4/255] respectively achieve top-1 accuracy of 0.3%, 0.4%, and 0.9% for ImageNet without using
BN adaptation (Table 3 (a)). However, adaptive BN for Adv2[3] and Adv∞[4/255] significantly improves
the top-1 accuracy to 47.3% and 44.9% respectively. In contrast, the baseline model only achieves 7.7%
accuracy. We also observe similar results for CIFAR-10 in Table 3 (b).

(a) σ = 0 (Clean) (b) σ = 0.25 (c) σ = 0.5 (d) σ = 0.75

Figure 2: Visualizing loss-gradients produced by AT models as we apply different levels of Gaussian noises. Additional
examples are provided in Figure 10 (Appendix).

Adaptive BN for AT models correctly extracts robust features under Gaussian noises. In
Figure 2, we further investigate the performance of AT models by visualizing the loss gradients of individual
pixels of an image as we increase the noise level , σ. Loss-gradients reflect the most relevant input pixels
for classification predictions. Here, we scale, translate and clip the loss-gradient values without using any
sophisticated techniques (as in Tsipras et al. (2019)). At σ = 0 (i.e., for clean images), the loss-gradients
from AT models align properly with perceptually relevant features (as observed previously (Tsipras et al.,
2019; Etmann et al., 2019)). However, as we choose higher noise using σ=0.5 and σ=0.75, the overall loss
gradients become noisier. Specifically, we can see that AT models without BN adaptation produce larger
gradient values (i.e., greater importance) even for background pixels. In contrast, AT models with BN
adaptation using Gaussian noises allows to correctly extract perceptually relevant features from the object
of interest, suppressing the gradients for background (refer to Figure 2(c) and Figure 2(d)). In other words,
it allows us to extract the required semantic information for correct classifications. Also, it is interesting to
note that Adv2 produces significantly more human-aligned loss gradients compared to Adv∞. This behavior
is also reflected in their classification performance in Table 3 and certification robustness in Table 1. We can
see that Adv2 overall produces better performance compared to Adv∞. These results indicate that we can
achieve non-trivial certification results by appropriately adapting the AT models.

4.2 Certified Robustness for AT models

Setup. We now present the comparative ℓ2 certification results for AT models using Certification through
adaptation framewrok. We randomly select 1, 000 and 500 training images to adapt the AT models for
CIFAR-10 and ImageNet respectively (Algorithm 1). We estimate the class-label probabilities of g (Equation

9
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3) using 100, 000 noisy samples and certify the test images with 99.9% confidence, as in (Cohen et al., 2019).
We use the entire 10, 000 test images for CIFAR-10 and a sub-sample of 500 test images for ImageNet.
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Figure 3: Certification through adaptation produces non-trivial certification at various ℓ2 radii for AT models,
compared to the non-adapted AT models and Baselines (i.e. standard non-robust DNNs) without adaptation. (Left)
ImageNet and (Right) CIFAR-10.

Non-trivial certification for AT models. We note that randomized smoothing technique can be
applied to any classifier. However, models that are not robust against large Gaussian noises, produces
“trivial” performance i.e., very small ℓ2 certified accuracy. In Figure 3, we first demonstrate that AT models
can achieve non-trivial ℓ2 certified robustness using our proposed certification through adaptation for both
ImageNet and CIFAR-10, compare to non-adapted AT models and Baseline without adaptation. Here, we
use Adv∞[4/255] and Adv2[3] for ImageNet and Adv∞[8/255] and Adv2[1] for CIFAR-10. We apply fixed
noise levels of σ = 0.5 to certify all test examples using proposed Algorithm 1. Here, we compare with
the certification results of the Baseline, Adv∞ and Adv2 models at σ = 0.25 in the standard settings (i.e.,
without adapting these models). We can see a significant boost of ℓ2 certification results for both Adv∞ and
Adv2 models using our proposed framework. Further, Adv2 models consistently achieve better certification
performance compared to Adv∞. We also compare with Randσ=0.5 models at fixed σ = 0.5, as in Cohen
et al. (2019). For CIFAR-10, both Adv∞[8/255] and Adv2[1] outperform the Randσ=0.5 models (Cohen
et al., 2019). Furthermore, for ImageNet, Adv2[3] achieves better certified accuracy compared to Randσ=0.5
beyond ℓ2-radii of 1.5. Please refer to Table 4 and 5 (Appendix) for detailed comparisons of different models,
trained using different specifications.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
2 radius

0.0

0.2

0.4

0.6

0.8

1.0

ce
rti

fie
d 

ac
cu

ra
cy

Adv [4/255]  (ACR:=0.361)
Adv [8/255]  (ACR:=0.52)
Adv [12/255]  (ACR:=0.583)
Adv [16/255]  (ACR:=0.599)

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
2 radius

0.0

0.2

0.4

0.6

0.8

1.0

ce
rti

fie
d 

ac
cu

ra
cy

Adv2[0.5]  (ACR:=0.386)
Adv2[1.0]  (ACR:=0.582)
Adv2[1.25]  (ACR:=0.644)
Adv2[1.5]  (ACR:=0.687)
Adv2[2.5]  (ACR:=0.726)
Adv2[3.0]  (ACR:=0.721)

(b)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
2 radius

0.0

0.2

0.4

0.6

0.8

1.0

ce
rti

fie
d 

ac
cu

ra
cy

Adv2[1.0]  (ACR:=0.582)
Adv2[1.25]  (ACR:=0.644)
Adv2[1.5]  (ACR:=0.687)
Adv2[2.5]  (ACR:=0.726)
SmoothAdv = 0.5, = 0.25  (ACR:=0.614)
SmoothAdv = 0.5, = 0.5  (ACR:=0.665)
SmoothAdv = 0.5, = 1  (ACR:=0.694)
SmoothAdv = 0.5, = 2  (ACR:=0.733)
Rand = 0.5  (ACR:=0.494)

(c)

Figure 4: CIFAR-10: (a) Adv∞ and (b) Adv2 models, trained using larger threat boundaries, produces better
certification results for higher ℓ2 radii and overall larger ACR scores. Here, we apply Algorithm 1 with fixed noise-
level σ = 0.5. (c) Comparing Adv2 with SmoothAdv (Salman et al., 2019a), trained and certified using σ = 0.5.

Larger Threat Boundary for Better Certification. AT models, trained using a higher threat bound-
ary, produces better certified robustness at higher ℓ2 radii as well as larger ACR scores. Figure 4(a) and
4(b) demonstrate this phenomena for CIFAR-10 on both Adv∞ and Adv2 models respectively .

Figure 4(c) also compares the certified accuracy of Adv2 models with the existing state-of-the-art SmoothAdv
models (Salman et al., 2019a). SmoothAdv utilizes adversarial training using an adaptive attack with an
ℓ2 threat boundary of ϵ and Gaussian noises, N (0, σ2I) (See details in Appendix A.3). We set the noise to
σ = 0.5 and vary ϵ for their training to compare with different SmoothAdv models in Figure 4(c). As we can
see that by adapting Adv2 models at σ = 0.5 using our proposed Algorithm 1, we can already achieve similar
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performance as SmoothAdv in terms of ACR scores. Next, we demonstrate that our Auto-Noise technique
further improves the performance of both AT models and existing randomized smoothing models.
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Figure 5: Auto-Noise (denoted as "auto") vs. fixed noise at σ = 0.5 (denoted as "fixed") for ℓ2 certification on (a)
ImageNet and (b) CIFAR-10 datasets for AT models. (c) SmoothAdv vs Adv2 models for CIFAR-10 using Auto-Noise
technique. Here, we only present the results with the best ACR scores.

4.3 Auto-Noise: Flexibility of choosing appropriate σ for certification.

In Table 3, we can see that the classification models remain robust only for a few test examples under higher
Gaussian noise. It suggests that the optimal noise levels for certifying different test examples may vary
significantly, indicating the importance of our proposed Auto-Noise technique that efficiently approximate
the appropriate noise-level, σauto from σ = {0.12, 0.25, 0.37, 0.50, 0.67, 0.75, 0.87, 1.0} with Nauto = 1000.

Auto-Noise for AT models. Figure 5(a) and 5(b) present the certification performance of AT models
as we apply both certification through adaptation (Algorithm 1) and Auto-Noise technique for for ImageNet
and CIFAR-10 datasets respectively. We compare their performance by certifying using a fixed noise level,
σ = 0.5. We can see that the Auto-Noise technique can significantly improve the performance to achieve
1.148 and 1.102 ACR scores for the best AT models on ImageNet and CIFAR-10 datasets. Figure 5(c)
demonstrates that the Auto-Noise technique also improves the performance of the best SmoothAdv model
to an ACR score of 0.965 for CIFAR-10. However, our Certification through Adaptation with Auto-Noise
technique for Adv2[3] model outperforms SmoothAdv on CIFAR-10. In Appendix A.2, we also present the
distribution of noise-levels obtained by Auto-Noise technique for different models.
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Figure 6: Effect of adaptation and Auto-Noise technique for existing randomized smoothing based models.

Certification through Adaptation for existing models. In Figure 6, we compare the performance
of existing randomized smoothing based models as we apply “Certification through Adaptation” with fixed
noise-level σ = 0.5 (i.e. Algorithm 1) and Auto-Noise technique (i.e. Algorithm 2). We can see in Figure 6(a)
that our adaptation along with Auto-Noise (Algorithm 2) improves Randσ=0.5 model to achieve ACR score
of 1.095 on ImageNet dataset. However, our adaptation method alone leads to degrade the overall ACR score
from 0.811 to 0.771. In contrast, the certification performance for both Randσ=0.5 and SmoothAdv models
degrades for CIFAR-10 in presence of BN adaptation using Algorithm 2 (see Figure 6(b) and Figure 6(c)).
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Such unusual behavior for these models appear because these models are already trained using Gaussian
noise. Hence, further improvement in robustness against different levels of Gaussian noise for a given image
becomes challenging by only incorporating BN adaptation techniques.
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Figure 7: CIFAR-10: Certification performance degrades for over-fitted AT models when trained without applying
early-stopping criteria (Rice et al., 2020). The over-fitted models are denoted as Advoverfit.

4.4 Over-fitted AT models degrades certification

Rice et al. (2020) demonstrate that AT models overfit when trained without early stopping criteria. It
degrades their empirical robustness against adversarial attacks. Figure 7 compares with the certification
results of such overfitted AT models, denoted as Advoverfit. We observe that Advoverfit models also degrade
the certified robustness compared to their corresponding AT models, trained with early stopping criteria. In
particular, the difference in their certification performance is more prominent at higher ℓ2 radii. Hence, these
results (as well as results in Figure 5) indicate that empirical and certified robustness are closely related:
improving the empirical robustness for a model also allows to provide better certified robustness.

5 Conclusion

We propose a novel certification through adaptation with Auto-Noise method that automatically selects ap-
propriate noise-levels to adapt the AT models and transform into a smoothed classifier to provide ℓ2 certifica-
tion. Empirically we improve the performance of both AT models and existing randomized smoothing-based
models on CIFAR-10 and ImageNet datasets using the Auto-Noise technique. Further, our Certification
through Adaptation together with Auto-Noise technique significantly improves the ACR scores using AT
models. Notably, our framework does not affect the empirical robustness or benign accuracy of an AT model
to provide these ℓ2 certification results.

Several recent methods have significantly improved the state-of-the-art empirical robustness against adver-
sarial attacks (Croce et al., 2021; Mao et al., 2022; Paul & Chen, 2022). Hence, it would be interesting future
work to study the interplay between their empirical robustness and certification using the proposed method.

We further note that several modern class of networks have replaced BN with LayerNorm or other instance-
based normalization techniques (Ali et al., 2021; Steiner et al., 2022; Liu et al.). Therefore, investigating
other adaptation techniques, e.g., self-supervised domain adaptation on single images (Sun et al., 2020),
pseudo-labeling (French et al., 2017; Xie et al., 2020b), entropy-minimization (Wang et al., 2020a) etc., is
also an useful future study for these modern networks.

Broader Impact Statement

Improving empirical robustness against adversarial examples along with certification guarantees is an im-
portant problem to enhance the reliability of a DNN model for sensitive real-world applications. However,
the current state-of-the-art defense methods against adversarial examples typically focus on improving either
empirical or certified robustness. In this paper, we aim to bridge this gap by significantly improving the cer-
tification performance of AT models without affecting the benign accuracy or reducing their state-of-the-art
empirical robustness.
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A Appendix

A.1 Detailed Certification results for different models using proposed method

ImageNet
Model Noise-level ℓ2 Radius

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 ACR

Baseline σ = 0.25 13.6 7.8 4.8 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.055
Baseline Auto-Noise 52.4 36.8 5.0 3.2 0.6 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.194
Baseline + Adaptation Auto-Noise 57.4 25.8 4.6 1.8 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.15

Adv∞[4/255] Auto-Noise 34.6 31.2 4.0 3.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 0.0 0.169
Adv∞[4/255] + Adaptation σ = 0.5 47.4 43.6 39.4 35.8 31.4 27.6 23.4 18.2 0.0 0.0 0.0 0.0 0.0 0.609
Adv∞[4/255] + Adaptation Auto-Noise 65.6 59.4 50.6 46.6 38.0 33.2 26.2 20.8 12.0 8.6 6.0 4.0 1.6 0.859

Adv2[3.0] Auto-Noise 44.0 41.6 11.8 11.2 2.8 2.6 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.261
Adv2[3.0] + Adaptation σ = 0.5 50.2 47.0 43.0 39.0 36.4 32.8 30.8 27.0 0.0 0.0 0.0 0.0 0.0 0.711
Adv2[3.0] + Adaptation Auto-Noise 66.6 63.8 58.6 55.4 45.6 41.0 35.8 32.4 23.6 18.6 15.0 12.8 7.4 1.148

Randσ=0.5 σ = 0.50 68.2 60.8 54.4 47.8 38.8 33.8 28.6 23.4 0.0 0.0 0.0 0.0 0.0 0.811
Randσ=0.5 Auto-Noise 71.4 65.6 58.8 51.4 42.8 37.0 28.8 23.8 2.6 1.6 0.2 0.2 0.2 0.88
Randσ=0.5 + Adaptation Auto-Noise 74.8 69.8 64.4 56.6 47.8 40.0 34.4 27.4 20.2 15.8 10.4 6.4 3.2 1.095

Table 4: ImageNet: Certified top-1 accuracy at various ℓ2 radii as we vary σ for BN adaptation and
certification along with average certified radii (ACR). ‘Baseline’ denotes the standard, non-robust DNN
classifier. We use ResNet50 for ImageNet.
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ImageNet
Model Noise-level ℓ2 Radius

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 ACR

Baseline σ = 0.25 10.49 6.96 2.04 0.09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.035
Baseline Auto-Noise 33.57 18.56 10.25 4.44 0.83 0.07 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.124
Baseline + Adaptation Auto-Noise 59.64 21.66 7.81 3.97 1.28 0.36 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.154

Adv∞[4/255] Auto-Noise 73.71 63.04 28.75 23.91 17.96 14.19 10.12 7.08 4.99 4.14 3.24 2.49 1.84 0.57
Adv∞[4/255] + Adaptation σ = 0.5 63.23 47.34 31.83 18.78 9.98 4.44 1.62 0.28 0.0 0.0 0.0 0.0 0.0 0.361
Adv∞[4/255] + Adaptation Auto-Noise 85.53 76.02 49.42 36.23 21.05 13.4 8.7 5.58 3.15 1.69 0.66 0.19 0.07 0.654
Adv∞[8/255] Auto-Noise 74.46 66.57 36.32 30.15 18.87 13.71 8.7 5.29 2.89 1.88 1.17 0.75 0.46 0.578
Adv∞[8/255] + Adaptation σ = 0.5 64.2 53.65 42.91 32.58 22.68 14.24 7.88 2.94 0.0 0.0 0.0 0.0 0.0 0.52
Adv∞[8/255] + Adaptation Auto-Noise 79.69 71.78 53.76 43.61 29.68 20.87 14.04 9.08 5.53 3.33 1.71 0.81 0.35 0.741
Adv∞[12/255] Auto-Noise 69.46 63.12 35.73 30.63 17.54 14.78 10.27 9.16 8.01 7.2 6.21 5.31 3.78 0.649
Adv∞[12/255] + Adaptation σ = 0.5 59.19 51.53 43.94 36.41 28.69 21.25 14.53 8.03 0.0 0.0 0.0 0.0 0.0 0.583
Adv∞[12/255] + Adaptation Auto-Noise 70.75 64.54 50.63 43.38 32.5 24.43 18.05 12.2 8.31 5.37 3.36 1.96 1.23 0.76
Adv∞[16/255] Auto-Noise 58.47 53.41 31.48 26.76 16.68 14.04 10.89 9.17 7.42 5.62 3.81 2.43 1.53 0.55
Adv∞[16/255] + Adaptation σ = 0.5 53.8 48.07 42.51 36.54 30.55 24.68 18.49 12.11 0.0 0.0 0.0 0.0 0.0 0.599
Adv∞[16/255] + Adaptation Auto-Noise 61.07 56.01 45.76 40.29 31.6 24.53 18.73 14.23 10.39 7.37 5.05 3.36 2.13 0.731

Adv2[0.5] Auto-Noise 71.6 61.2 22.17 17.64 12.26 10.97 10.17 9.76 9.48 9.12 8.53 7.52 6.61 0.603
Adv2[0.5] + Adaptation σ = 0.5 63.77 48.81 33.82 20.95 11.5 5.64 2.29 0.62 0.0 0.0 0.0 0.0 0.0 0.386
Adv2[0.5] + Adaptation Auto-Noise 86.26 77.52 61.25 46.44 23.42 16.22 11.55 9.2 7.62 6.47 5.07 3.81 2.51 0.796
Adv2[1.0] Auto-Noise 81.08 74.0 43.82 34.77 17.25 11.15 6.19 3.68 1.76 1.02 0.52 0.27 0.15 0.608
Adv2[1.0] + Adaptation σ = 0.5 66.05 56.45 46.24 35.6 26.89 18.73 11.37 5.41 0.0 0.0 0.0 0.0 0.0 0.582
Adv2[1.0] + Adaptation Auto-Noise 82.34 75.38 64.53 53.8 36.04 27.55 19.53 12.61 7.29 4.33 2.39 1.21 0.67 0.871
Adv2[1.25] Auto-Noise 78.32 72.56 44.86 39.13 25.98 21.02 16.31 12.17 8.18 5.18 2.25 1.25 0.66 0.741
Adv2[1.25] + Adaptation σ = 0.5 66.22 57.73 48.8 39.64 31.07 22.61 15.82 8.96 0.0 0.0 0.0 0.0 0.0 0.644
Adv2[1.25] + Adaptation Auto-Noise 80.52 74.25 64.95 56.56 40.81 32.71 24.96 17.87 11.5 8.07 5.88 4.05 2.59 0.972
Adv2[1.5] Auto-Noise 75.26 69.75 48.42 41.73 26.44 20.82 14.12 10.14 6.87 4.75 3.02 1.81 0.87 0.733
Adv2[1.5] + Adaptation σ = 0.5 63.67 56.55 49.19 41.72 34.47 27.36 20.23 12.98 0.0 0.0 0.0 0.0 0.0 0.687
Adv2[1.5] + Adaptation Auto-Noise 76.22 70.47 62.39 55.91 42.45 35.79 29.01 21.71 14.23 10.04 6.51 4.07 2.29 0.99
Adv2[2.5] Auto-Noise 61.2 57.42 42.26 38.0 26.56 21.41 14.21 10.34 7.33 4.96 3.24 2.06 1.07 0.662
Adv2[2.5] + Adaptation σ = 0.5 54.73 50.53 46.26 41.84 37.74 33.2 28.69 23.34 0.0 0.0 0.0 0.0 0.0 0.726
Adv2[2.5] + Adaptation Auto-Noise 63.36 59.53 54.68 50.3 42.95 38.62 33.97 29.42 23.03 19.22 15.3 11.34 7.51 1.073
Adv2[3.0] Auto-Noise 64.45 60.57 45.73 41.06 28.48 22.92 15.1 10.77 7.23 4.8 2.77 1.67 1.1 0.702
Adv2[3.0] + Adaptation σ = 0.5 53.75 49.41 45.57 41.52 37.43 33.37 28.82 23.65 0.0 0.0 0.0 0.0 0.0 0.721
Adv2[3.0] + Adaptation Auto-Noise 61.96 58.58 53.64 49.67 42.76 38.69 34.54 30.36 24.65 20.77 17.09 13.66 9.18 1.102

Randσ=0.5 σ = 0.5 62.13 51.68 40.38 30.25 20.81 13.36 7.71 3.38 0.0 0.0 0.0 0.0 0.0 0.494
Randσ=0.5 Auto-Noise 79.48 71.75 60.23 48.72 35.97 25.16 15.09 10.13 6.98 5.58 4.18 2.94 1.76 0.821
Randσ=0.5 + Adaptation Auto-Noise 78.27 69.51 57.16 44.73 31.19 19.27 10.4 4.25 1.65 0.57 0.14 0.01 0.0 0.695

SmoothAdvσ=0.5,ϵ=0.25 σ = 0.5 67.35 57.8 47.63 37.41 27.88 20.33 13.53 8.03 0.0 0.0 0.0 0.0 0.0 0.614
SmoothAdvσ=0.5,ϵ=0.25 Auto-Noise 72.88 65.23 55.25 44.87 34.93 24.79 16.44 9.17 4.92 1.91 0.73 0.21 0.07 0.737
SmoothAdvσ=0.5,ϵ=0.25 + Adaptation Auto-Noise 74.45 65.68 54.28 42.59 31.76 21.61 13.19 7.16 3.41 1.43 0.52 0.16 0.05 0.697

SmoothAdvσ=0.5,ϵ=0.5 σ = 0.5 67.21 58.82 49.68 40.35 31.93 24.18 17.05 10.57 0.0 0.0 0.0 0.0 0.0 0.665
SmoothAdvσ=0.5,ϵ=0.5 Auto-Noise 71.85 65.28 56.41 48.2 39.47 29.82 21.44 13.55 7.54 3.45 1.35 0.41 0.12 0.807
SmoothAdvσ=0.5,ϵ=0.5 + Adaptation Auto-Noise 73.54 66.14 56.81 47.04 37.2 26.99 18.46 10.78 5.67 2.6 1.0 0.44 0.13 0.773

SmoothAdvσ=0.5,ϵ=1.0 σ = 0.5 63.95 56.53 49.53 41.38 34.63 27.81 21.22 14.41 0.0 0.0 0.0 0.0 0.0 0.694
SmoothAdvσ=0.5,ϵ=1.0 Auto-Noise 67.91 62.28 55.36 48.41 41.14 33.57 26.27 18.42 11.87 6.1 2.64 0.95 0.32 0.854
SmoothAdvσ=0.5,ϵ=1.0 + Adaptation Auto-Noise 69.6 63.04 55.52 47.65 38.93 30.7 22.57 15.34 9.21 4.51 2.02 0.9 0.33 0.813

SmoothAdvσ=0.5,ϵ=2.0 σ = 0.5 57.59 52.82 47.67 42.68 37.55 32.64 27.52 22.42 0.0 0.0 0.0 0.0 0.0 0.733
SmoothAdvσ=0.5,ϵ=2.0 Auto-Noise 61.27 57.27 52.52 48.17 43.49 38.02 33.15 27.47 21.86 15.81 9.5 4.97 2.01 0.965
SmoothAdvσ=0.5,ϵ=2.0 + Adaptation Auto-Noise 61.23 56.9 51.33 46.44 41.05 35.65 30.11 24.35 18.48 12.8 7.76 4.27 2.3 0.908

Table 5: CIFAR-10: Certified top-1 accuracy at various ℓ2 radii as we vary σ for test-time BN adaptation
along with average certified radii (ACR) for individual settings. ‘Baseline’ denotes the standard, non-robust
DNN classifier. We use pre-activation ResNet-18 model for CIFAR-10.

A.2 Distribution of σauto generated by Auto-Noise Method.
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Figure 8: ImageNet: Visualizing the distribution of noise-level produced by Auto-Noise technique for the 500 sub-
sampled images. (Left) AT models, (Right) Randσ=0.5 without adaptation.
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Figure 9: CIFAR-10: Visualizing the distribution of noise-level produced by Auto-Noise technique for the entire
10, 000 test images. (Left) Adv∞ models, (Middle) Adv2 models (Right) existing randomized smoothing models
without adaptation.

A.3 Implementation Details

We present our experimental results on CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009)
datasets. The descriptions of different models and training hyper-parameters are provided in the following:

A.3.1 CIFAR-10.

We use pre-activation ResNet18 architecture (He et al., 2016b) for our experiments on CIFAR-10. We apply
the SGD optimizer with a batch size of 128. We execute a total of 200 training epochs and apply a step-wise
learning rate decay set initially at 0.1 and divided by 10 at 100 and 150 epochs, and weight decay 5 × 10−4.

AT models (Madry et al., 2018; Rice et al., 2020): Unless and otherwise specified, our AT models
are learned using early stopping criteria as described in (Rice et al., 2020). We learn several AT models
with different threat boundaries for our experiments. We denote them by specifying their corresponding
threat model and threat boundaries. For example, Adv2[1.5] denotes an AT model that is learned using
PGD adversary with ℓ2 threat model and a threat boundary of ϵ = 1.5, along with early-stopping criteria
(Rice et al., 2020). We also learn AT models without using early-stopping criteria, as in (Madry et al., 2018)
for our comparison in Figure 7. These models are denoted as Advoverfit.

We use projected gradient descent (PGD) adversarial attack (Madry et al., 2018) to train these AT models
as follows: For Adv∞, we use 10 iterations and an ℓ∞ step size of ϵ/4. For Adv2, we use 10 iterations and
an ℓ2 step size of ϵ/8.5. This is the same experimental setup as in (Rice et al., 2020)). We choose a small
set of 1, 000 images from the CIFAR-10 test set for our validation. We apply the PGD attack with the
same hyper-parameters for our validation during training. We save the best model using the early-stopping
criteria (Rice et al., 2020).

Randomized smoothing model by Cohen et al. (2019): We also train Randσ=0.5 by training with
augmented random noise, sampled from an isotropic Gaussian distribution N (0, σ2I) with σ = 0.5. Here, we
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keep the same model architecture, learning rates, batch sizes, and other hyper-parameters as used to learn
the AT models.

Randomized smoothing model by Salman et al. (2019a): We also compare with the state-of-the-art
certification models, called ‘SmoothAdv’, by Salman et al. (2019a) for our experiments on ℓ2 certification We
train the SmoothAdv models by choosing random noise vectors followed by an adaptive adversarial attack
with specified ℓ2 threat boundary of ϵ at each iteration. The noise vectors are sampled from an isotropic
Gaussian distribution N (0, σ2I).

We note that the training hyper-parameter ϵ has the most significant impact on the certification curve for a
SmoothAdv model (please refer to Table 7-15 of (Salman et al., 2019a) for more details). For our experiments,
we train 4 different SmoothAdv models with ϵ = {0.25, 0.5, 1, 2} and σ = 0.5 using adaptive PGD attack
with 10 steps. We denote them as SmoothAdvσ=0.5,ϵ=0.25, SmoothAdvσ=0.5,ϵ=0.5, SmoothAdvσ=0.5,ϵ=1 and
SmoothAdvσ=0.5,ϵ=2 respectively. We use the same training set-up and other hyper-parameters as specified
in their Github: https://github.com/Hadisalman/smoothing-adversarial.

A.3.2 ImageNet.

We use ResNet50 architecture (He et al., 2016a) for ImageNet. We obtain the Baseline and Randσ=0.5
models from (Cohen et al., 2019)2. These models are trained using Gaussian augmented noises, sampled
from isotropic Gaussian distribution N (0, σ2I) with σ = 0.0 (i.e., no noise) and σ = 0.5 respectively.

The AT models i.e., Adv∞[4/255] and Adv2[3.0] are learned for ℓ∞ and ℓ2 threat models with threat boundary
of 4/255 and 3, respectively. We use the publicly available models provided by Rice et al. (2020) 3. These
models are fine-tuned using PGD-based adversarial training with early stopping criteria, originally provided
by Engstrom et al. (2019) 4.

We resize the input images to 256×265 pixels and crop 224×224 pixels from the center. For our experiments
on certification, we use a set of 500 test images by choosing at most 1 sample for each class.

A.4 Choice of Adaptive BN hyper-parameters

BN adaptation technique is controlled by two hyper-parameters, i.e., the test batch-size and momentum (ρ)
(see Equation 4) to update the statistics of the batch-normalization layers. Assuming that the test images
are obtained independently from the same test distribution, we can efficiently compute the BN statistics
from these images. The hyper-parameter ρ ∈ [0, 1] controls the tread-off between pre-computed training
statistics and test statistics. We can obtain a better estimation of the test distribution from a large test
batch. Hence, we can choose a higher value of ρ.

Here, we compare the top-1 test accuracy of AT models under Gaussian augmented noise with σ = 0.5
for different choices of ρ and the batch size. We skip the standard baseline models from our analysis and
refer to the previous works (Schneider et al., 2020; Nado et al., 2020) that analyzed the effects of these
hyper-parameters for the standard baseline DNN classifiers.

Momentum (ρ). We first investigate the effect of momentum (ρ) as we choose a large batch size of 512.
In Table 6, we present the performance of AT models for different values of ρ. Recall that, ρ = 1 denotes
full adaptation (Equation 4). Here, we completely ignore the training statistics and recompute the BN
statistics using the test batches. In contrast, ρ = 0 represents no adaptation, i.e., the same as the standard
‘deterministic’ inference setup. In this case, we use the previously computed BN statistics obtained during
training.

We observe that for ImageNet (Table 6 [Left]) the performance started converging at ρ = 0.7. For CIFAR-10
(Table 6 [Right]), the convergence started even earlier at ρ = 0.5.

2https://github.com/locuslab/smoothing
3https://github.com/locuslab/robust_overfitting
4https://github.com/MadryLab/robustness
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(a) ImageNet (b) CIFAR-10

ρ Adv∞ Adv2 ρ Adv∞ Adv2
0.0 (No adaptation) 0.4±0.01 0.9±0.01 0.0 (No adaptation) 16.1±7.85 21.5±7.79

0.1 2.1±0.04 7.7±0.09 0.1 45.1±0.49 46.9±0.48

0.3 20.6±0.16 36.6±0.09 0.3 59.2±0.42 60.8±0.33

0.5 41.1±0.09 45.5±0.13 0.5 62.4±0.27 64.4±0.6

0.7 43.5±0.14 46.7±0.13 0.7 62.8±0.52 64.9±0.31

0.9 44.2±0.12 46.8±0.13 0.9 62.8±0.71 64.9±0.31

1.0 (Full adaptation) 44.8±0.13 47.2±0.14 1.0 (Full adaptation) 62.4±0.64 64.9±0.73

Table 6: Top-1 accuracy using fixed test batch-size = 512 for AT models under Gaussian augmented noise
with σ = 0.5 for different choices of momentum, ρ during inference. We randomly shuffle the test images to
report (mean + 2 × sd) of 5 different runs.

(a) ImageNet (b) CIFAR-10

Batch Size Adv∞ Adv2 Batch Size Adv∞ Adv2
w/o BN adapt 0.4±0.01 0.9±0.01 w/o BN adapt 16.1±7.85 21.5±7.79

8 11.5±0.22 9.1±0.15 8 57.2±1.23 59.5±0.38

16 28.1±0.22 26.7±0.14 16 60.2±0.79 62.3±0.87

32 37.1±0.24 37.6±0.2 32 61.5±0.46 63.6±0.55

64 41.4±0.26 42.9±0.12 64 62.3±0.5 64.0±0.38

128 43.3±0.15 45.4±0.13 128 62.7±0.68 64.4±0.53

256 44.4±0.21 46.7±0.07 256 62.7±0.68 64.9±0.48

512 44.8±0.13 47.2±0.14 512 62.4±0.64 64.9±0.73

Table 7: Top-1 accuracy using fixed ρ = 1 for AT models under Gaussian augmented noise with σ = 0.5 for
different size of test batches during inference. We randomly shuffle the test images to report (mean+2×s.d.)
of 5 different runs.

Batch Size. Next, we investigate the minimum size of the test batches to choose ρ = 1 (i.e., full-
adaptation). In Table 7, we fix ρ = 1 and vary the test batch sizes as we evaluate these AT models. We
observe that the performance of these models started improving even when we are using the test batches of
size 8. The performance further improves as we choose larger sizes of test batches. We can see that their
performance started converging as we choose the test batches of size 64 for ImageNet. On the other hand,
the convergence started much earlier for CIFAR-10.

A.5 Performance against different corruptions

We mainly focus on ℓ2 certification using Gaussian noise in this paper. However, we note that randomized
smoothing techniques have been also applied to provide certifications for other perturbation types as well
(e.g., random uniform noise for ℓ1 norm (Yang et al., 2020)). Consequently, we can apply our proposed
Algorithm 1 to adapt an AT model for any given perturbation types without any additional training for
different applications.

Further, Hendrycks & Dietterich (2019) recently introduced ImageNet-C and CIFAR10-C datasets by algo-
rithmically generated random corruptions from noise, blur, weather, and digital categories with 5 different
severity levels for each corruption. Several recent works demonstrated that adaptive BN techniques can
significantly improve the performance of any classifier (including AT models) against different random cor-
ruptions. Further, – also demonstrated the effectiveness of AT models even without applying any adaptation.
Hence, our proposed certification framework for AT models is a step forward towards further improving the
reliability of sensitive real-world applications.
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(a) σ = 0.25

(b) σ = 0.50

(c) σ = 0.75

Figure 10: Additional images for visualizing loss-gradients produced by AT models at different σ = {0.25, 0.5, 0.75}.
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