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ABSTRACT

Control variates are variance reduction techniques for Monte Carlo estimators.
They play a critical role in improving Monte Carlo estimators in scientific and
machine learning applications that involve computationally expensive integrals. We
introduce multilevel control functionals (MLCFs), a novel and widely applicable
extension of control variates that combines non-parametric Stein-based control
variates with multi-fidelity methods. We show that when the integrand and the
density are smooth, and when the dimensionality is not very high, MLCFs enjoy
a faster convergence rate. We provide both theoretical analysis and empirical
assessments on differential equation examples, including Bayesian inference for
ecological models, to demonstrate the effectiveness of our proposed approach. Fur-
thermore, we extend MLCFs for variational inference, and demonstrate improved
performance empirically through Bayesian neural network examples.

1 INTRODUCTION

The paper focuses on the estimation of intractable integrals, where the integrands lack closed-form
solutions or expressions and are computationally expensive to evaluate. The integrals are of the form

Π[f ] =
∫
X f(x)π(x)dx, (1)

where Π is a distribution with a Lebesgue density π on X ⊆ Rd, and f : X → R is the integrand
of interest. Assume that f is square-integrable, that is, Π[f2] < ∞. This is a common challenge in
diverse applied fields such as finance (Glasserman, 2004; Chen et al., 2024), aerospace engineering
(Morio & Balesdent, 2015; Geraci et al., 2017), hazard analysis (Geist & Parsons, 2006; Dalbey et al.,
2008), medical physics (Rogers, 2006), among many others. This also frequently arises in statistics
and machine learning, such as computing normalizing constants in probabilistic models (Atay-Kayis
& Massam, 2005; Ohsaka & Matsuoka, 2020; Chehab et al., 2023), performing Bayesian inference
(Golinski et al., 2019), training energy-based models (Song & Kingma, 2021) and variational inference
(Buchholz et al., 2018; Vahdat & Kautz, 2020; Fujisawa & Sato, 2021).

Motivation Monte Carlo (MC) (Liu, 2001; Rubinstein & Kroese, 2016) is the most widely used
approach for estimating the integrals defined in Equation (1). However, MC estimators tend to
have high variance and slow convergence rates (Assaraf & Caffarel, 1999; Oates et al., 2019).
Meanwhile, when dealing with complex scientific models, sampling or evaluating the integrand can
be computationally expensive, e.g., large-scale computer simulators or costly experiments (Sánchez-
Linares et al., 2016). To achieve the desired accuracy, the overall sampling and evaluation cost
with standard MC can be prohibitive. One way to improve the efficiency of MC estimators is to
reduce the variance of the integrand by control variates. Control variates (CVs) (Robert et al., 1999),
including both parametrized CVs (Assaraf & Caffarel, 1999; South et al., 2022; Sun et al., 2023b)
and non-parameterized CVs (Oates et al., 2017; 2019), are variance reduction techniques for MC
estimators. This is achieved by designing and learning a function g (known as control variate) well
correlated to the integrand f . Another approach for computationally expensive functions is the use
of multi-fidelity methods (Peherstorfer et al., 2018; Fernández-Godino, 2023), which have shown to
be a useful scheme by compensating high-cost function approximations with low-cost ones, thereby
reducing the overall computational cost. This particular scheme is highly related to the framework of
multilevel Monte Carlo (MLMC) (Giles, 2008; 2015), which is designed for expensive integrands
when cheaper approximations are available or can be constructed at several levels, e.g. tsunami
modeling (Sánchez-Linares et al., 2016; Li et al., 2025). MLMC uses a sequence of multi-fidelity
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Figure 1: Illustration Example. (a): f0, f1 and f2 are coarse, medium and fine approximations to f .
(b)(c)(d): Compared with MLMC, after applying MLCF, the green curves become much flatter and
closer to Π[fl − fl−1] (red dotted lines) than the original fl − fl−1 (blue curves) used at each MLMC
level. (e): Compared with CF, although applying CF to f2 (purple curve) already reduces variance,
MLCF leverages the multilevel structure. Thus, fine levels, e.g. f2 − f1 (in (d)), themselves show
smaller variance than f2 (in (e)) and MLCF further decreases this variance (in (d)). This demonstrates
that MLCF reduces the variance significantly.

models to construct a telescoping sum for the original integral in Equation (1). The telescoping sum
consists of the expectations of increments between successive multi-fidelity models, namely fl and
fl−1, with l indexing the hierarchy of accuracy levels. Given a fixed computational budget, MLMC
yields more accurate estimates than standard MC estimators (Giles, 2015). This gain in performance
has led to the widespread use of MLMC, not only in scientific applications but also as a powerful
tool for enhancing many areas in machine learning, such as variational inference (Fujisawa & Sato,
2021). From the perspective of variance reduction for MC, MLMC treats the low-fidelity model
fl−1 as a control variate for the high-fidelity model fl. This implies, however, that the variance of
their differences is not minimized. Meanwhile, the existing work of CVs does not fully explore and
exploit the inherent property of these multi-fidelity models of which the ‘precision’ can be decided
and altered. See Figure 1 for an illustrative example, with the corresponding results in Appendix D.1.

Motivated by the above insights and unsolved problems, we propose a broadly applicable extension
of control variates that integrates the strengths of control variates and multi-fidelity methods, in
a manner analogous to multilevel Monte Carlo (Giles, 2008; 2015). In particular, we focus on
non-parametric Stein-based control variates, control functionals (CFs), which naturally lead to a novel
class of estimators named Multilevel Control Functionals (MLCFs). By leveraging the multi-fidelity
structure alongside a derived variance bound allows us to assign the optimal sample sizes across all
fidelity levels. Meanwhile, as we shown in Section 3 and Section 4, MLCFs are widely applicable. It
can be applied to inference problems under un-normalized densities which are common in Bayesian
inference, and can also be extended to variational inference as shown in this work.

Limitations of Previous Techniques Although several related methods exist, their practical use
is often constrained by inherent limitations. For example, (Li et al., 2023) combined Bayesian
quadrature with MLMC, but the method was restricted to specific kernel-distribution pairs and was
not suitable for complex distributions such as unnormalized distributions in Bayesian inference.
Similarly, existing works on multilevel control variates are tailored for specific cases. Nobile & Tesei
(2015) used the solution to an auxiliary diffusion problem with smoothed coefficients as the control
variate, which was only applicable to specific partial differential equations. Fairbanks et al. (2017)
used a low-rank representation for high-fidelity models to construct a control variate. Geraci et al.
(2017) used a simplified physical model, which required additional expert knowledge. In contrast, the
proposed MLCFs are broadly applicable and can be implemented without reliance on domain-specific
expertise.

Our Contributions In summary, the main contributions of this work are: (i) We propose a novel
variance reduction method, MLCFs, which leverages both the multi-fidelity structure of integrands
and CFs, and is broadly applicable; (ii) We provide theoretical variance bounds as well as theoretical
optimal sample sizes for MLCFs in Section 3; (iii) We extend MLCFs for variational inference in
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Section 3 and Section 4; (iv) We demonstrate that MLCFs are widely applicable through a series of
carefully designed experiments in Section 4.

2 BACKGROUND

In this section, we briefly review existing constructions for Stein-based control variates, multi-fidelity
models and multilevel Monte Carlo methods.

2.1 CONTROL VARIATES

Monte Carlo and Control Variates We assume f is in L2(Π) := {f : X −→ R s.t. Π[f2] < ∞}.
This assumption is often required as the variance of f , V[f ] := Π[f2]− (Π[f ])2, is bounded (Oates
et al., 2017; South et al., 2022). Given evaluations of the integrand f at n independent and identically
distributed (i.i.d) realisations {xi}ni=1 from Π, the Monte Carlo estimator of Equation (1) is

Π̂MC[f ] =
1
n

∑n
i=1 f(xi).

The above estimator follows a central limiting theorem:
√
n(Π̂MC[f ]−Π[f ]) −→ N (0,V[f ]). Thus,

the convergence rate of the estimator is often determined by the sample size n and the variance V[f ].
It often requires a large number of function evaluations to achieve the desired accuracy. Similar results
hold for Markov Chain Monte Carlo (MCMC) (Dellaportas & Kontoyiannis, 2012; Alexopoulos
et al., 2023) and quasi-Monte Carlo methods (Hickernell et al., 2005). In this work, we will focus
on the Monte Carlo case. One way to improve the performance of Monte Carlo (MC) estimators
is to identify a function g ∈ L2(Π) with known mean Π[g] such that V[f − g] is small. Such g is
also known as control variates (CVs). Finding g with a known mean Π[g] is then the first challenge.
When Π is relatively simple, ad-hoc methods such as Taylor expansions of the integrand f can be
used (Paisley et al., 2012; Wang et al., 2013). While for more general and complex distributions,
the ones often encountered in Bayesian inference, we can employ Stein’s method (Anastasiou et al.,
2023) to construct such functions which are also known as Stein-based control variates.

General Recipe of Stein-based Control Variates Stein-based control variates (Oates et al., 2017;
Si et al., 2022; South et al., 2022; Sun et al., 2023a) are variance reduction tools for Monte Carlo
integration. They are also widely used in the cases when the density is unnormalized and when the
samples are MCMC samples, which often appears in Bayesian inference. The first step is to construct
a candidate set G such that Π[g] = 0 for ∀g ∈ G. This can be achieved by using Stein’s operators SΠ

(e.g. the Langevin Stein operator); see (Anastasiou et al., 2023) for a detailed review. By using the
zero-mean property, we have Π[f − g] = Π[f ] for ∀g ∈ G. The second step is to select an effective
control variate g ∈ G with reduced variance, i.e., V[f − g] = Π[(f − g−Π[f − g])2] < V[f ] (Oates
et al., 2017; Zhu et al., 2019; South et al., 2022). Such an effective control variate g is often learnt by
minimizing the empirical (penalized) variance of V[f − g] conditioning on m samples {xi}mi=1 and
their function evaluations from all samples {xi}ni=1 available. Then, through estimating Π[f − g]
with the remaining n−m function evaluations, we can get an estimate of Π[f ] with reduced variance
and improved accuracy, given by

Π̂CV[f ] =
1

n−m

∑n
i=m+1 (f(xi)− g(xi)) .

Control Functionals We consider a non-parametric family of control variates, control functionals
(CFs) (Oates et al., 2017; 2019), which is designed for single Monte Carlo integration problems. It is
a class of non-parametric Stein-based control variates based on reproducing kernel Hilbert spaces
(RKHS). It applies the Langevin Stein operator SΠ onto vector-valued functions u ∈ C1(X )× · · · ×
C1(X ) which takes the form SΠ[u](x) := ∇x · u(x) + u(x) · ∇x log π(x) where ∇· denotes the
divergence operator and ∇ denotes the gradient operator. Each component function ui : X → R is
constrained to belong to a Hilbert space H. Let Hk be the RKHS induced by a reproducing kernel k.
The image of U := Hk × · · · × Hk under SΠ is a RKHS G with kernel k0 (also known as a Stein
kernel); see Equation (10) in Appendix A.2. Oates et al. (2017; 2019) used functional approximations
s(x) = β + SΠ[u](x) where β and u are selected by solving a constraint least-square optimisation
problem in G conditioning on m samples {xi}mi=1 and {f(xi)}mi=1. The control functional takes the
form of: gm(x) = s(x)−Π[s]. The standard control functional estimator is given by

Π̂n−m
CF [f ] := 1

n−m111⊤{f(X1)− k0(X
1, X0)k0(X

0, X0)−1[f(X0)− (1
11⊤k0(X

0,X0)−1f(X0)
111⊤k0(X0,X0)−1111

)111]}
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where X0 = (x1, . . . , xm)⊤, X1 = (xm+1, . . . , xn)
⊤, (f(X0))i = f(xi), (k0(X0, X0))i,j =

k0(xi, xj), for all i, j ∈ {1, . . . ,m}, and (f(X1))i = f(xm+i), (k0(X1, X0))i,j = k0(xm+i, xj),
for all i ∈ {1, . . . , n−m}, and for all j ∈ {1, . . . ,m}. A major drawback of control functional is
the O(m3) computational cost, which can be alleviated by using stochastic optimization as in (Zhu
et al., 2019; Si et al., 2022; Sun et al., 2023a;b). Meanwhile, this would not be an severe issue in
the setting considered in this work as such cost is much smaller than the cost of the evaluation of
integrand.

2.2 MULTI-FIDELITY MODELS AND MULTILEVEL MONTE CARLO

Multi-fidelity models have been used to accelerate a wide range of algorithms and related applications,
including uncertainty propagation, inference, and optimization. The main intuition behind multi-
fidelity models is to employ cheaper and less accurate models with low computational cost (a.k.a.
low fidelity models) to generate additional supplementary data for the expensive and more accurate
models (a.k.a. high fidelity models). See (Peherstorfer et al., 2018) for a detailed review.

Multilevel Monte Carlo (Giles, 2008; 2015) uses a hierarchy of approximations f0, f1, . . . , fL−1 to
fL := f with increasing levels of accuracy and cost to estimate the integral of interest. The method
can achieve a higher accuracy with a lower computational cost compared to MC using only the
fL := f . Given the sequence of approximations, MLMC sums up the estimates of the corrections
with respect to the consecutive lower level and obtain the telescoping sum

Π[f ] = Π[fL] =
∑L

l=0 Π[fl − fl−1], (2)

where f−1 := 0 to simplify the equations. MLMC estimates each of these integrals in the telescoping
sum independently. At each level, MLMC uses a MC estimator to estimate Π[fl − fl−1] by drawing
i.i.d samples {x(l,i)}nl

i=1 from Π and evaluating fl(x(l,i)) and fl−1(x(l,i)). Therefore, the unbiased
MLMC estimator takes the form

Π̂MLMC[f ] :=
∑L

l=0 Π̂MC[fl − fl−1] =
∑L

l=0
1
nl

∑nl

i=1

(
fl(x(l,i))− fl−1(x(l,i))

)
.

From the view of variance reduction, fl−1 can be regarded as a control variate for fl for all levels. It
has shown that by carefully analysis of the number of samples assigned to each level, MLMC can
largely improve efficiency over standard MC when the desired accuracy is fixed (Giles, 2015). Such
MLMC methods have also shown successes in various fields including probabilistic numeric (Li et al.,
2023), simulation-based inference for multiple simulators of various fidelity (Hikida et al., 2025) and
variational inference (Fujisawa & Sato, 2021; Shi & Cornish, 2021).

3 METHODOLOGY

We now present the proposed method multilevel control functionals (MLCFs). In general, a MLCFs
estimator of Π[f ] in Equation (1) takes the form of,

Π̂MLCF[f ] =
∑L

l=0
1

nl−ml

∑nl

i=ml+1(fl(x(l,i))− fl−1(x(l,i))− (sl(x(l,i))−Π[sl])), (3)

where sl −Π[sl] is the control functional at each level l, a non-parametric Stein-based control variate
as discussed in Section 2.
Proposition 3.1. Given Xl, the associated score evaluations {∇ log π(x(l,i))}nl

l=1, and the function
evaluations {fl(x(l,i)) − fl−1(x(l,i))}nl

i=1} for l ∈ {0, . . . , L}, we split it into two parts: X0
l =

(x(l,1), . . . , x(l,ml))
⊤ and X1

l = (x(l,ml+1), . . . , x(l,nl))
⊤ together with their score evaluations and

function evaluations. The MLCF estimator of Π[f ] is unbiased and has the following form:

Π̂n−m
MLCF [f ] :=

∑L
l=0 Π̂

nl−ml
CF [fl − fl−1] (4)

=
∑L

l=0 111
⊤{(fl(X1

l )− fl−1(X
1
l ))−kl

0(X
1
l , X

0
l )k

l
0(X

0
l , X

0
l )

−1[(fl(X
0
l )−fl−1(X

0
l ))−al111]}/(nl −ml),

where al = 111⊤kl0(X
0
l , X

0
l )

−1(fl(X
0
l )− fl−1(X

0
l ))/111

⊤kl0(X
0
l , X

0
l )

−1111.

The proof is provided in Appendix B.1. It is also common in practice to use a simplified estimator
for each level; see Appendix B.6 for details. Although the simplified estimator is biased, it usually
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has a superior mean squared error (Oates et al., 2019). We also provide practical methods for kernel
hyperparameter selection in Appendix C.2.

The proposed method, MLCFs, is simple yet effective, widely applicable, and offers several advan-
tages. (i) The MLCF estimator in Proposition 3.1 is unbiased and achieves a fast convergence rate
under mild assumptions. Moreover, users have the flexibility to modify the estimator, such as using
control functionals only on selected low levels. (ii) The restriction on Π can be relaxed. We only
assume that π is smooth and π(x) > 0, so that the gradient of log π can be evaluated pointwise.
In Bayesian statistics, we often only know π up to an unknown normalization constant due to the
intractable marginal likelihood. (iii) The simplified MLCF estimator defined in Equation (11) (in
Appendix B.6) has no restrictions on how to generate samples. It can employ any experimental design
to further improve efficiency. (iv) Implementing MLCFs is simple and straightforward and does not
require domain-specific expertise from users.

Next, we provide theoretical analysis of the variance of MLCF estimators, which is based on the proof
of Theorem 1 of (Oates et al., 2019). We will see that the convergence rate of MLCF is related to the
smoothness of π and fl. We use Cq(X ) to denote the set of measurable functions for which continuous
partial derivatives exist on X up to order q ∈ N0. For k ∈ Cq

2(X ), ∂2qk/∂xi1 · · · ∂xiq∂x
′
j1
· · · ∂x′

jq

is a continuous function for all i1, · · · , iq, j1, · · · , jq ∈ {1, . . . , d}.

Assumptions Let ∂X denote the boundary of X . We make following assumptions: (A1) X
satisfies the interior cone condition; (A2) π ∈ Ca+1(X ) for a ∈ N0; (A3) π > 0 on X ; (A4)
∇xi

log π ∈ L2(X ,Π′) for i = 1, . . . , d for all distributions Π′ on X ; (A5) π(x)kl(x, ·) = 0 for
x ∈ ∂X ; (A6) for each l ∈ {0, . . . , L}, kl ∈ Cbl+1

2 (X ) for bl ∈ N0; (A7) fl, fl−1 ∈ Hl
+, for

every l ∈ {1, . . . , L}, where Hl
+ is a RKHS with the kernel kl+(x, x

′) := cl + kl0(x, x
′) with

positive constant cl and Stein kernel kl0 obtained by plugging kl into Equation (10); (A8) for each
l ∈ {0, . . . , L}, the fill-distance of the samples X0

l , hl := supx∈X mini=1,...,ml
∥x − x(l,i)∥2,

satisfies hl ≤ qm
−1/d
l for a constant q > 0.

Assumption A1 ensures that the domain is sufficiently regular so that the scattering samples can
adequately cover the domain. A simple example of such a domain is a hyperrectangle. Assumption
A5 is satisfied by a constructive approach, as demonstrated in Oates et al. (2019) and in the syn-
thetic example of Section 4. Assumption A8 requires that X0

l at each level used to construct the
control functional is quasi uniform. This condition can be satisfied by space-filling designs such as
quasi–Monte Carlo sequences, Latin hypercube sampling, or other low-discrepancy point sets. The
rest of the assumptions ensure that the problem is well-defined.
Theorem 3.2. Suppose that the assumptions A1-8 hold and X1

l are i.i.d at each level, when X0
l are

sufficiently dense, the upper bound of the variance of MLCF estimator is given by

VX1
0 ,...,X

1
L
[Π̂MLCF[f ]] ≤

∑L
l=0

(rlm
−τl/d

l ∥fl−fl−1∥Hl
+
)2

nl−ml
, (5)

where τl := min{a, bl} and rl is a constant independent of fl, fl−1 and data points.

The proof is provided in Appendix B.2. Here, ‘sufficiently dense’ means that the fill distance is less
than a certain threshold. This condition is common in scattered data approximation theory (Wendland,
2004). The mean squared error of MLCF is MSE(Π̂MLCF[f ]) = EX1

0 ,...,X
1
L
[(Π̂MLCF[f ]−Π[f ])2] =

VX1
0 ,...,X

1
L
[Π̂MLCF[f ]] + (EX1

0 ,...,X
1
L
[Π̂MLCF[f ]] − Π[f ])2. Since MLCF is an unbiased estimator,

MSE(Π̂MLCF[f ]) = V[Π̂MLCF[f ]]. If we assume that the proportion ml/nl is the same at all levels,
then at each level, the convergence rate is O(n(−τl/d)−1/2). Compare to the convergence rate of
MLMC at each level, which is O(n−1/2), the convergence rate of MLCF is faster. The theoretical
results show that MLCF converges fast when the dimensionality is small or moderate and both the
integrand and the density are smooth.
Theorem 3.3. Suppose that assumptions A1–A8 hold, ml/nl = ρ and τ := τl = min{al, bl} do
not depend on l. Then nMLCF = nMLCF

0 , . . . , nMLCF
L is obtained by minimizing

∑L
l=0(rlm

−τl/d
l ∥fl −

fl−1∥Hl
+
)2/(nl −ml) subject to

∑L
l=0 Clnl = T for T > 0. The solution is

nMLCF
l = R(rl∥fl − fl−1∥Hl

+
)

d
τ+dC

− d
2τ+2d

l ∀l ∈ {0, . . . , L}, (6)

5
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where R = T

(∑L
l′=0 C

2τ+d
2τ+2d

l′ (rl′∥fl′ − fl′−1∥Hl′
+
)

d
τ+d

)−1

.

See Appendix B.3 for proof. According to the theorem, the higher the evaluation cost Cl at level l, the
fewer samples are assigned to that level. Since we expect function norm ∥fl − fl−1∥Hl

+
to decrease

with level, and Cl typically increases with level, Theorem 3.3 implies that the sample size decreases
with level. Moreover, for larger τ and lower dimensionality d, the allocation is less sensitive to
∥fl − fl−1∥Hl

+
and Cl, meaning that the penalty on higher levels is reduced.

The result is then used to compute the optimal sample size at each level for the synthetic example in
Section 4. Since the constant rl is independent of fl, fl−1 and data points, and the domain, d and
τ are the same across all levels, the effect of rl could be normalized away. Alternatively, one may
assume a uniform bound r ≥ maxl=0,1,...,L rl and use this in the proof of the theorem to get a result
without rl. The RKHS norm can be computed using reproducing property of reproducing kernels for
the synthetic example. Formally, Kanagawa et al. (2018, Theorem 2.4) provides a general equation
for the RKHS norm. In practical applications, though functions may not exist in the form of linear
combinations of kernel functions, users can use data-based methods to estimate the RKHS norm, For
example, Scharnhorst et al. (2022, Appendix A) provides an example of estimating the RKHS norm
using randomly sampled data. There are also other data-driven approaches illustrated in Karvonen
(2022); Tokmak et al. (2025a;b).

Plugging the optimal sample size from Theorem 3.3 into Theorem 3.2 yields,

VX1
0 ,...,X

1
L
[Π̂MLCF[f ]] ≤ A∗T− 2τ+d

d

(∑L
l=0 C

2τ+d
2τ+2d

l ∥fl − fl−1∥
d

τ+d

Hl
+

) 2τ+2d
d

(7)

where A∗ = 1
1−ρρ

−2τ/dr2. The detailed derivation of Equation (7) is provided in Appendix B.4. For
CF, there is only one level, which is the finest level L with evaluation cost C. Hence,

VX1 [Π̂CF[f ]] ≤ A∗T− 2τ+d
d C

2τ+d
d ∥fL∥2HL

+
.

We denote the two upper bounds by BMLCF and BCF, respectively. The behavior of BMLCF depends

on how the term C
2τ+d
2τ+2d

l ∥fl − fl−1∥
d

τ+d

Hl
+

in BMLCF varies with l. If this term increases rapidly

with level l, level L dominates and BMLCF ≈ A∗T− 2τ+d
d C

2τ+d
d

L ∥fL − fL−1∥2HL
+

. Comparing with

BCF gives BMLCF/BCF = C
2τ+d

d

L ∥fL − fL−1∥2HL
+
/(C

2τ+d
d ∥fL∥2HL

+
). Although CL > C, when

the evaluation cost of fL tends to be much higher than fL−1, the difference between CL and
C is moderate. Meanwhile, ∥fL − fL−1∥HL

+
is much smaller than ∥fL∥HL

+
. Hence, BMLCF <

BCF in this case. If the term decreases rapidly with level l, the coarsest level 0 dominates and

BMLCF ≈ A∗T− 2τ+d
d C

2τ+d
d

0 ∥f0∥2H0
+

, leading to BMLCF/BCF = C
2τ+d

d
0 ∥f0∥2H0

+
/(C

2τ+d
d ∥fL∥2HL

+
).

Since C0 < C and ∥f0∥H0
+
< ∥fL∥HL

+
, we again conclude BMLCF < BCF.

Extensions: MLCFs for Variational Inference MLCFs can be further extended for variational
inference (VI). To be precise, we consider the scenarios when the objective is to minimize the Kull-
back–Leibler (KL) divergence between the variational distribution q(z|λ) and the posterior p(z|D)
(D denotes the observations) with respect to the parameters λ. This minimization is equivalent
to maximizing the evidence lower bound (ELBO): L(λ) = Eq(z|λ)[log p(z,D) − log q(z|λ)]. We
will focus on the re-parameterized gradient estimator to optimize the objective function, where
z = T (x, λ) is expressed as a deterministic transformation T of a noise variable x with distribution
π(x). Fujisawa & Sato (2021) proposed the multilevel re-parameterized gradient (MLRG), which
reduces the variance by recycling the previous parameters and gradients. At iteration L, the multilevel
re-parameterized gradient (MLRG) has the following form: ∇MLRG

λL
L(λL) =

∑L
l=0 Π[fλl

− fλl−1
]

where fλl
(x) = ∇λl

log p(D, T (x, λl))−∇λl
log q(T (x, λl)|λl) with fλ−1

(x) = 0 for notational
convenience. Fujisawa & Sato (2021) used Monte Carlo to estimate MLRG and resulted in mul-
tilevel Monte Carlo re-parameterized gradient (MLMCRG) estimators, which took the form of
∇̂MLRG

λL
L(λL) = Π̂MLMC[fλL

] :=
∑L

l=0 Π̂MC[fλl
− fλl−1

]. The proposed MLCF then naturally re-
sults in a novel series of estimators, named as multilevel control functional re-parameterized gradient
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(MLCFRG) estimators:

∇̂MLCFRG
λL

L(λL) = Π̂MLCF[fλL
] :=

∑L
l=0 Π̂CF[fλl

− fλl−1
], (8)

whose variance is controlled as shown in Theorem 3.2. Furthermore, we also provide an simplified
form for MLCFRG estimators in Proposition 3.4.

Proposition 3.4. The update of MLCFRG estimator under stochastic gradient descent update can be
rewritten in a simplier form, given by,

λL+1 = λL + αL

αL−1
(λL − λL−1)− αLΠ̂CF[fλL

− fλL−1
], (9)

where αl is the learning rate at the l-th iteration. Under the same assumptions as Theorem 3.2,its
variance is bounded by V[∇̂MLCFRG

λL
L(λL)] ≤ (rLm

−τL/d
L ∥fλL

− fλL−1
∥HL

+
)2/(nL −mL).

See Appendix B.5 for proof. Note that this largely reduces the computation cost from O(d
∑L

l=0 ln
3
l )

to O(dn3
L) and the memory cost from O(d

∑L
l=0 ln

2
l ) to O(dn2

L) at iteration L where d is the number
of parameters of the neural networks. The variance bound is conditional on λL − λL−1 while the
variance of full optimization trajectory is bounded by Theorem 3.2. When nL is small, the extra
time and space cost is controlled. Meanwhile, it is also possible to further accelerate the method by
implementing modern model parallelism (Shoeybi et al., 2019), wrapping it as a new optimizer and
using PyTorch foreach operators (Paszke et al., 2019) to avoid loops through tensors individually.

4 EXPERIMENTAL RESULTS

We now assess the performance of MLCFs through: (i) A synthetic experiment validates the effec-
tiveness of the optimal sample sizes. (ii) A boundary-value ordinary differential equation (ODE)
example shows that MLCFs can be further enhanced by incorporating experimental design tech-
niques, and suggests that developing adaptive strategies would be a potential future direction. (iii)
The Lotka-Volterra system example shows that MLCFs can be used generally for Bayesian inference
(e.g. when the target density is unnormalized). For both (ii) and (iii), the implementation of the other
methods reviewed in Section 1 is either very difficult or not feasible. (iv) Examples of Bayesian
neural networks illustrate the extension of MLCF to variational inference. Additional results on the
illustration example are presented in in Appendix D.1 to demonstrate that the performance of MLCFs
aligns with the motivation and the intuition discussed in Section 1. All of these examples illustrate
the broad applicability and high efficiency of our method.

Synthetic Example The variation of the test-bed example in Oates et al. (2019) (Section 3.1) is used
as an illustrative example to verify the effectiveness of optimal sample size derived in Theorem 3.3. Π
is the uniform distribution in X = [0, 1]2. The kernel takes the form kl(x, x

′) = δ(x)δ(x′)k̃l(x, x
′)

such that the assumption A5 holds through Mateŕn 2.5 kernel k̃l(x, x′) times a smooth function
δ(x) =

∏d
i=1 xi(1− xi). In this example, fl(x) are defined as

fl(x) =
∑2

l=0 αlk
l
+(x, zl),

where the specific setups are provided in Appendix D.2. The optimal sample size nMLCF for MLCF
and nMLMC for MLMC (see Appendix B.7 for the expression) are then computed.

Under the same budget limit, we compare the performance of MLCF with nMLCF, MLCF with nMLMC,
MLMC with nMLMC and CF. The sample sizes are listed in Table 2. For each setting, we compute the
absolute error from 50 replications and visualize the result in Figure 2. MLCF with both nMLCF and
nMLMC significantly outperforms MLMC and CF. While MLCF with nMLMC slightly outperforms
MLCF with nMLCF when the sample size is small, this could be because nMLCF minimizes the upper
bound of the variance of MLCF, rather than minimizing the variance directly. When the sample size
is high, MLCF with nMLCF slightly outperforms MLCF with nMLMC. This is promising because,
although computing nMLCF may be difficult in various practice, implementing MLCF with nMLMC
still yields good performance.

7
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Figure 2: Synthetic Example: Absolute integration
error under a budget constraint (Y-axis log-scale).

Boundary-value ODE The boundary-value
ODE example can also be viewed as a one-
dimensional elliptic partial differential equation,
with random coefficient and random forcing:

d
dz (c(z)

du
dz ) = −502x2

2 for z ∈ (0, 1)

with u(0) = u(1) = 0 where c(z) = 1 + x1z,
x1 ∼ N (0, 0.2) and x2 ∼ N (0, 1). This exam-
ple is a variation of the test case for MLMC in
Section 7.1 of Giles (2015). The integral of inter-
est is Π[f ] =

∫
X f(x)dx, where x = (x1, x2),

X = R2. f(x) =
∫ 1

0
u(z)dz is approximated

with h
∑1/h

i=1 u(zi), where h is the step size and
each u(zi) is obtained by solving the ODE with
the finite difference method; see Appendix D.3 for more details.

To compare MCLF using quasi-Monte Carlo points (QMC), Latin hypercube sampling (LHS), and
i.i.d points (IID) with MLMC, multilevel Bayesian quadrature (MLBQ) (Li et al., 2023) and CF
using i.i.d points, we repeat the experiment 100 times. Multilevel methods in this example utilize the
optimal sample size for MLMC. Details about the sample size, evaluation cost at each level, and other
relevant information can be found in Appendix D.3. As shown in Figure 3, under the same evaluation
cost constraint, MLCF outperforms MLMC, MLBQ and CF. Figure 3 also shows that experimental
designs can improve the performance of MLCF.
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Figure 3: Boundary-value ODE: Absolute in-
tegration error under a budget constraint.
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Figure 4: Bayesian Inference for Lotka-
Volterra: Absolute integration error under a
budget constraint.

Bayesian Inference for Lotka-Volterra We now consider to perform Bayesian inference for the
Lotka-Volterra system (Lotka, 1925; 1927; Volterra, 1927), which is also known as the predator-prey
model. The model usually uses a system of differential equations:

du1(t)
dt = x1u1(t)− x2u1(t)u2(t),

du2(t)
dt = x3u1(t)u2(t)− x4u2(t),

to describe the interaction between a predator and its prey in an ecosystem. u1(t) and u2(t) are the
prey population and the predator population at time t ∈ [0, s], for some s ∈ R+. The initial conditions
of the system are u1(0) = x5 and u2(0) = x6. The observations u1(ti) and u2(ti) obtained exhibit
log-normal noise with independent standard deviation x7 and x8 respectively, for all i ∈ {1, . . . ,m}.
We can re-parameterize x as in (Sun et al., 2023a;b) such that the re-parameterized model has
parameters x̃ ∈ R8. With the Gaussian distribution priors we assign on x̃ and the observations, we
can construct the posterior distribution of x̃. The quantity of interest Π[f ] is the posterior expectation
of the average prey population over the time period between 0 and s, i.e. Π[f ] =

∫
R8 f(x̃)π(x̃)dx̃,

where π is the posterior probability distribution of x̃ and f(x̃) is the average prey population between 0

and s with the model parameter x̃. f(x̃) = s−1
∫ s

0
u1(t)dt is approximated with (s)−1h

∑s/h
i=1 u1(ti),

where h is the step size and each u1(ti) is obtained by solving the differential equations numerically.
The real-world dataset (Hewitt, 1921) consisting of the population of snowshoe hares (prey) and
Canadian lynxes (predators) is used as observations for our study. With the real-world observations,
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we conduct Bayesian inference and use a MCMC sampler (no-U-turn sampler) in Stan (Carpenter
et al., 2017) to obtain samples.

We compare (i) MLCF with MCMC points, (ii) MLMC framework with MCMC points (MLMCMC),
(iii) CF with MCMC points and (iv) MCMC. We repeat the experiment 50 times. The sample size,
sampling and evaluation cost at each level, and other details can be found in Appendix D.4. As shown
in Figure 4, under the same budget constraint, MLCF outperforms all other methods.

Variational Inference for Bayesian Neural Networks We further extend the proposed MLCF
estimators for variational inference, i.e. using MLCFRG estimators for the gradient of the ELBO. In
particular, we applied a Bayesian neural network regression model to the UCI wine-quality-red dataset
as (Fujisawa & Sato, 2021). The Bayesian neural network consists of a 15-unit or a 20-unit hidden
layer with ReLU activations. For each weight wi, we set its prior as Gaussian wi ∼ N(µw, σw),
and the response variable y ∼ N(ϕ(x, {wi}di=1), σ). The model then have a posterior of d = 392
(when the number of hidden units is 15) or d = 522 (when the number of hidden units is 20) and was
applied to a dataset sub-sampled from the wine-quality-red dataset. The posterior is approximated by
deploying a diagonal Gaussian distribution as the variational distribution. We compare the MLCFRG
with MLMCRG, MLMC (with the number of levels being 2) and MC estimators. For MLCFRG, we
use preconditioned squared-exponential kernels (Oates et al., 2017); see details in Appendix C.1.
The results, the average training ELBO/test log-likelihood (averaged over 10 runs) and associated
standard deviations, are illustrated in Figure 5 and Figure 6. For each run, the networks are initialized
under identical settings. See Appendix D.5 for extra details and experiments. Empirical results
show that the MLCFRG estimators tend to outperform the other estimators as they have shown a
faster convergence rate towards the optimal training ELBO and testing log-likelihood over number of
iterations or equivalently the number of training data.
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Figure 5: MLCF for Variation Inference of
Bayesian Neural Networks: Hidden Dimension
Size is 15 (num. of param. is 392).
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Figure 6: MLCF for Variation Inference of
Bayesian Neural Networks: Hidden Dimension
Size is 20 (num. of param. is 522).

5 CONCLUSION

We introduced a generally applicable, flexible, and efficient method for estimating intractable integrals,
MLCFs. MLCFs leverage the advantages of the multifidelity structure of integrands and CFs
simultaneously, and thus: (i) provide reduced variance and faster convergence rates under mild
conditions; (ii) are broadly applicable, e.g., suitable for complex and un-normalized distributions,
enabling their application in various areas; (iii) offer the flexibility to be combined with experimental
design techniques; (iv) have theoretically guaranteed variance bounds and optimal sample sizes
across levels. MLCFs are evaluated across diverse scenarios, including Bayesian inference for the
Lotka-Volterra system and variational inference for Bayesian neural networks, demonstrating the
versatility of our method.

MLCFs also have several limitations. For instance, the computational cost scales cubically due to
the inversion of the kernel Gram matrix; the smoothness of the integrands and the density impacts
the convergence rate; the method relies on the construction of a hierarchy of fidelity levels and the
coupling of coarse–fine level evaluations. There are a number of possible extensions. Firstly, on
a theoretical level, one could investigate the conditions on which MLCFs will lead to sufficient
improvement in accuracy. Secondly, on an implementation level, future work will be needed to make
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MLCFRG more efficient. For instance, one can improve the empirical running speed of MLCFRG by
wrapping it as an optimizer with hardware accelerated operators. Thirdly, on an algorithmic level,
one could consider a joint optimization of the way of sampling and the location of samples together
with the cost minimization of MLCFs.
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Appendix

In Appendix A, we provide relevant preliminaries such as the expression of the Stein kernels. In
Appendix B, we provide proofs of the theoretical results stated in the main text. In Appendix C, we
provide more details on the implementation of the proposed MLCFs. In Appendix D, we provide
additional details for the experiments and extra experiments.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, the authors used ChatGPT to polish the writing (e.g.,
improving grammar, readability, and clarity). The content, technical contributions, and conclusions
of the paper were developed entirely by the authors, who take full responsibility for all ideas and
results presented.

A PRELIMINARIES

A.1 AN ALTERNATIVE LANGEVIN STEIN OPERATOR

The Langevin Stein operator can also be adapted to apply to the derivative of twice differentiable
scalar-valued functions u : X → R, in which case it is called the second-order Langevin Stein
operator:

S ′
Π[u](x) := ∆xu(x) +∇xu(x) · ∇x log π(x),

where ∆x = ∇x · ∇x.

A.2 STEIN KERNELS

The Stein kernels from the first-order Langevin Stein operator have the following form,

k0(x, x
′) = ∇x · ∇x′k(x, x′) +∇x log π(x) · ∇x′k(x, x′) +∇x′ log π(x′) · ∇xk(x, y)

+ (∇x log π(x) · ∇x′ log π(x′))k(x, x′), (10)

where ∇x := (∂/∂x1, . . . , ∂/∂xd)
⊤.

B PROOFS OF THEORETICAL RESULTS

B.1 PROOF OF PROPOSITION 3.1

Proof. The unbiasedness can be obtained by taking the expectation with respect to the distribution Π
of the nl −ml random variables that constitute X1

l for l ∈ {0, . . . , L}. Firstly, we have that

E[kl0(X1
l , X

0
l )k

l
0(X

0
l , X

0
l )

−1((fl(X
0
l )− fl−1(X

0
l ))− al111ml

)] = 0,

14
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due to the property of the Stein kernel kl0 that the Stein kernel kl0 satisfies
∫
X kl0(x, x

′)π(x)dx = 0
for all x ∈ X (Oates et al., 2017; 2019). Then, we have

E[Π̂n−m
MLCF[f ]] := E[

L∑
l=0

Π̂n−m
CF [fl − fl−1]]

= E[
L∑

l=0

1

nl −ml
111⊤{(fl(X1

l )− fl−1(X
1
l ))

− kl0(X
1
l , X

0
l )k

l
0(X

0
l , X

0
l )

−1[(fl(X
0
l )− fl−1(X

0
l ))− al111]}]

=

L∑
l=0

1

nl −ml
111⊤{E[(fl(X1

l )− fl−1(X
1
l ))]

− E
[
kl0(X

1
l , X

0
l )k

l
0(X

0
l , X

0
l )

−1[(fl(X
0
l )− fl−1(X

0
l ))− al111]

]
}

=

L∑
l=0

Π[fl − fl−1]

= Π[f ].

B.2 PROOF OF THEOREM 3.2

Proof. Following the proof of Theorem 1 of (Oates et al., 2019) or Theorem 11.13 of (Wendland,
2004), under assumptions A1-7, there exists r∗l > 0 and h∗

l > 0, for hl < h∗
l ,

|fl(x)− fl−1(x)− sl(x)| ≤ r∗l h
τl
l ∥fl − fl−1∥Hl

+

for all x ∈ X . Since X1
l are i.i.d at each level, combing the bound above, we have

VX1
0 ,...,X

1
L
[Π̂MLCF[f ]]

= VX1
0 ,...,X

1
L
[

L∑
l=0

1

nl −ml

nl∑
i=ml+1

(
fl(x(l,i))− fl−1(x(l,i))− (sl(x(l,i))−Π[sl])

)
]

=

L∑
l=0

V[fl − fl−1 − sl]

nl −ml

=

L∑
l=0

Π[(fl − fl−1 − sl)
2]−Π[fl − fl−1 − sl]

2

nl −ml

≤
L∑

l=0

Π[(fl − fl−1 − sl)
2]

nl −ml

=

L∑
l=0

Π[|fl − fl−1 − sl|2]
nl −ml

≤
L∑

l=0

(r∗l h
τl
l ∥fl − fl−1∥Hl

+
)2

nl −ml
.

Under the assumption A8, and let rl = qτlr∗l , we can then write

VX1
0 ,...,X

1
L
[Π̂MLCF[f ]] ≤

L∑
l=0

(qτlr∗l m
−τl/d
l ∥fl − fl−1∥Hl

+
)2

nl −ml

=

L∑
l=0

(rlm
−τl/d
l ∥fl − fl−1∥Hl

+
)2

nl −ml
.
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B.3 PROOF OF THEOREM 3.3

Proof of Theorem 3.3. Suppose that 0 < ml/nl = ρ < 1, then nl = ml/ρ. The sample sizes
nMLCF
0 , . . . , nMLCF

L that minimize the variance of MLCF in Theorem 3.2 with the overall cost constraint
T are

nMLCF
0 , . . . , nMLCF

L := argmin
n0,n1,··· ,nL

L∑
l=0

Alm
− 2τ

d

l /(nl −ml) s.t.
L∑

l=0

Clnl = T,

where Al = (rl∥fl − fl−1∥Hl
+
)2. For convenience, we solve mMLCF

0 , . . . ,mMLCF
L and nMLCF

l can be
easily obtained by taking nMLCF

l = mMLCF
l /ρ. The optimisation problem above can be solved by

using Lagrange multipliers. For some λ > 0, we define

FMLCF(m0, . . . ,mL, λ) =

L∑
l=0

Alm
− 2τ

d −1

l /(
1

ρ
− 1)− λ

(
T −

L∑
l′=0

Cl′ml′/ρ
)
.

Differentiating FMLCF(m0, . . . ,mL, λ) with respect to m0, . . . ,mL, λ and setting the equations equal
to 0 gives

(−2τ

d
− 1)Alm

− 2τ
d −2

l /(
1

ρ
− 1) + λCl/ρ = 0 ⇔ ml =

(
λCl

ρ(2τ/d+ 1)Al
(
1

ρ
− 1)

)− d
2τ+2d

for l ∈ {0, . . . , L} and
L∑

l′=0

Cl′ml′/ρ = T.

By plugging the first equation into the second, we get

L∑
l=0

Cl′

(
λCl′

ρ(2τ/d+ 1)Al′
(
1

ρ
− 1)

)− d
2τ+2d

/ρ = T

λ = T− 2τ+2d
d

(
L∑

l′=0

Cl′

(
Cl′

ρ(2τ/d+ 1)Al′
(
1

ρ
− 1)

)− d
2τ+2d

/ρ

) 2τ+2d
d

.

Plugging this last expression for λ into our expression for ml, we get

mMLCF
l =T

(
Cl

ρ(2τ/d+ 1)Al
(
1

ρ
− 1)

)− d
2τ+2d

(
L∑

l′=0

Cl′

(
Cl′

ρ(2τ/d+ 1)Al
(
1

ρ
− 1)

)− d
2τ+2d

/ρ

)−1

,

=ρT

(
Cl

Al

)− d
2τ+2d

(
L∑

l′=0

Cl′

(
Cl′

Al′

)− d
2τ+2d

)−1

=ρT (rl∥fl − fl−1∥Hl
+
)

d
τ+dC

− d
2τ+2d

l

(
L∑

l′=0

C
2τ+d
2τ+2d

l′ (rl∥fl′ − fl′−1∥Hl′
+
)

d
τ+d

)−1

for l ∈ {0, . . . , L}.
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B.4 DERIVATION OF EQUATION 7

According the Theorem 3.2 and Theorem 3.3,

VX1
0 ,...,X

1
L
[Π̂MLCF[f ]] ≤

L∑
l=0

(rlm
−τ/d
l ∥fl − fl−1∥Hl

+
)2

nl −ml

=

L∑
l=0

r2l m
−2τ/d−1
l ∥fl − fl−1∥2Hl

+

1/ρ− 1

=

L∑
l=0

r2l (ρR(rl∥fl − fl−1∥Hl
+
)

d
τ+dC

− d
2τ+2d

l )−
2τ+d

d ∥fl − fl−1∥2Hl
+

1/ρ− 1

=

L∑
l=0

r2l ρ
− 2τ

d R− 2τ+d
d r

− 2τ+d
τ+d

l C
2τ+d
2τ+2d

l ∥fl − fl−1∥
d

τ+d

Hl
+

1− ρ

With R = T

(∑L
l′=0 C

2τ+d
2τ+2d

l′ (r∥fl′ − fl′−1∥Hl′
+
)

d
τ+d

)−1

and r ≥ maxl=0,1,...,L rl,

VX1
0 ,...,X

1
L
[Π̂MLCF[f ]]

≤
L∑

l=0

r2ρ−
2τ
d T− 2τ+d

d

(∑L
l′=0 C

2τ+d
2τ+2d

l′ ∥fl′ − fl′−1∥
d

τ+d

Hl′
+

) 2τ+d
d

C
2τ+d
2τ+2d

l ∥fl − fl−1∥
d

τ+d

Hl
+

1− ρ

= A∗T− 2τ+d
d

( L∑
l=0

C
2τ+d
2τ+2d

l ∥fl − fl−1∥
d

τ+d

Hl
+

) 2τ+2d
d

where A∗ = 1
1−ρρ

−2τ/dr2.

B.5 PROOF OF PROPOSITION 3.4

Proof. Note that, the multilevel re-parametrized gradient (MLRG) at iteration L can be written as,

∇MLRG
λL

L(λL) = E[fλ0(x)] +

L−1∑
l=1

(
E[fλl

(x)− fλl−1
(x)]

)
+ E[fλL

(x)− fλL−1
(x)]

= ∇MLRG
λL−1

L(λL−1) + E[fλL
(x)− fλL−1

(x)]

The multilevel re-parametrized control functional gradient (MLCFRG) at iteration L can be written
as,

∇̂MLCFRG
λL

L(λL) = Π̂MLCF[fλL
]

=

L∑
l=0

Π̂CF[fλl
− fλl−1

]

= Π̂CF[fλ0
] +

L−1∑
l=1

(
Π̂CF[fλl

− fλl−1
]
)
+ Π̂CF[fλL

− fλL−1
]

= ∇̂MLCFRG
λL−1

L(λL−1) + Π̂CF[fλL
− fλL−1

]

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Under stochastic gradient descent, the MLCFRG can then be simplified into the following update
rule of λ,

λL+1 = λL − αL

(
∇̂MLCFRG

λL−1
L(λL−1) + Π̂CF[fλL

− fλL−1
]
)

= λL − αL

αL−1
αL−1∇̂MLCFRG

λL−1
L(λL−1)− αLΠ̂CF[fλL

(x)− fλL−1
(x)]

= λL +
αL

αL−1
(λL − λL−1)− αLΠ̂CF[fλL

− fλL−1
].

Then, under the assumptions of Theorem 3.2, its variance is upper bounded by,

V[∇̂MLCFRG
λL

L(λL)] = α−2
L V[αL∇̂L(λL)]

= α−2
L V[

αL

αL−1
(λL − λL−1)− αLΠ̂CF[fλL

− fλL−1
]]

= V[Π̂CF[fλL
− fλL−1

]]

≤
(rLm

−τL/d
L ∥fλL

− fλL−1
∥HL

+
)2

nL −mL
.

B.6 SIMPLIFIED MLCFS

In this section, we provide a simplified version of MLCF estimators. The simplified MLCF estimator
takes the form of,

Π̂n
MLCF[f ] :=

L∑
l=0

Π̂nl

CF[fl − fl−1] =

L∑
l=0

111⊤kl0(Xl, Xl)
−1(fl(Xl)− fl−1(Xl))

(
111⊤kl0(Xl, Xl)

−1111
)−1

(11)

where Xl = (x(l,1), . . . , x(l,nl))
⊤.

B.7 OPTIMAL SAMPLE SIZE FOR MLMC

For completeness, we recall the optimal allocation of sample sizes for MLMC

nMLMC
0 , . . . , nMLMC

L .

Since MLMC is an unbiased estimator, the mean squared error (MSE) of MLMC is equal to its
variance:

MSE(Π̂MLMC) := E[(Π̂MLMC[f ]−Π[f ])2] = V[Π̂MLMC[f ]] + (E[Π̂MLMC[f ]]−Π[f ])2 =

L∑
l=0

Vln
−1
l

where Vl = V[fl − fl−1]. Thus, the optimal sample sizes nMLMC
0 , . . . , nMLMC

L are obtained by
minimizing the variance of MLMC estimates under a total computational cost budget T :

nMLMC
0 , . . . , nMLMC

L := argmin
n0,n1,··· ,nL

L∑
l=0

Vln
−1
l s.t.

L∑
l′=0

Cl′nl′ = T,

To solve this, we introduce the Lagrange multipliers with λ > 0:

FMLMC(n0, . . . , nL, λ) =

L∑
l=0

Vln
−1
l − λ

(
T −

L∑
l′=0

Cl′nl′
)
.

Differentiating FMLMC(n0, . . . , nL, λ) with respect to n0, . . . , nL, λ and setting the derivatives equal
to 0 yields expressions for λ and nl. Substituting the expression for λ into that of nl gives the closed
form expression:

nMLMC
l = T

√
Vl

Cl

(
L∑

l′=0

√
Vl′Cl′

)−1

for l ∈ {0, . . . , L}.
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C IMPLEMENTATION DETAILS

In this section, we provide implementation details which is helpful to use the proposed method in the
main text. We provide kernels and their derivatives which are important for coding the Stein kernels.
We then provide the approaches to select the associated kernel hyperparameters.

C.1 KERNELS AND THEIR DERIVATIVES

Mateŕn 2.5 Kernel The Mateŕn 2.5 Kernel

k(x, x′) = σ2(1 +

√
5
√
(x− x′)T (x− x′)

λ
+

5(x− x′)T (x− x′)

3λ2
) exp(−

√
5
√

(x− x′)T (x− x′)

λ
)

with amplitude σ2 and length-scale λ has derivatives given by

∇xk(x, x
′) = −5σ2

3
(x− x′)(

1

λ2
+

√
5
√

(x− x′)T (x− x′)

λ3
) exp(−

√
5
√

(x− x′)T (x− x′)

λ
),

∇x′k(x, x′) =
5σ2

3
(x− x′)(

1

λ2
+

√
5
√

(x− x′)T (x− x′)

λ3
) exp(−

√
5
√

(x− x′)T (x− x′)

λ
),

∇x · ∇x′k(x, x′) =
5σ2

3
(
1

λ2
+

√
5
√

(x− x′)T (x− x′)

λ3
− 5

λ4
(x− x′)T (x− x′))

· exp(−
√
5
√
(x− x′)T (x− x′)

λ
).

Squared-Exponential Kernel The squared-exponential kernel (also known as Gaussian kernel)

k(x, x′) = exp(−∥x− x′∥22
2λ

)

with lengthscale λ > 0 has derivatives given by

∇xk(x, x
′) = − (x− x′)

λ
k(x, x′)

∇x′k(x, x′) =
(x− x′)

λ
k(x, x′),

∇x · ∇x′k(x, x′) =

d∑
j=1

∂2

∂x′
j∂xj

k(x, x′) =

d∑
j=1

∂

∂x′
j

[
−
(xj − x′

j)

λ
k(x, x′)

]

=

d∑
j=1

[
1

λ
−

(xj − x′
j)

2

λ2

]
k(x, x′) =

[
d

λ
− (x− x′)⊤(x− x′)

λ2

]
k(x, x′).

Preconditioned Squared-Exponential Kernel A preconditioned squared-exponential kernel
(Oates et al., 2017) is:

k(x, x′) =
1

(1 + α∥x∥22)(1 + α∥x′∥22)
exp

(
−∥x− x′∥22

2λ2

)
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with lengthscale λ > 0 and preconditioner parameter α > 0. This kernel has derivatives given by:

∇xk(x, x
′) =

[
−2αx

1 + α∥x∥22
− (x− x′)

λ2

]
k(x, x′),

∇x′k(x, x′) =

[
−2αx′

1 + α∥x′∥22
+

(x− x′)

λ2

]
k(x, x′),

∇x · ∇x′k(x, x′) =

d∑
j=1

∂2

∂xj∂x′
j

k(x, x′) =

d∑
j=1

∂

∂x′
j

[(
−2αxj

1 + α∥x∥22
−

(xj − x′
j)

λ2

)
k(x, x′)

]

=

d∑
j=1

(
1

λ2
k(x, x′) +

[
−2αxj

1 + α∥x∥22
−

(xj − x′
j)

λ2

]
∂

∂x′
j

k(x, x′)

)

=

d∑
j=1

(
1

λ2
k(x, x′) +

[
−2αxj

1 + α∥x∥22
−

(xj − x′
j)

λ2

] [ −2αx′
j

1 + α∥x′∥22
+

(xj − x′
j)

λ2

]
k(x, x′)

)

= k(x, x′)
[ 4α2x⊤x′

(1 + α∥x∥22)(1 + α∥x′∥22)
+

2α(x− x′)⊤x′

λ2(1 + α∥x′∥22)
− 2α(x− x′)⊤x

λ2(1 + α∥x∥22)

+
d

λ2
− (x− x′)⊤(x− x′)

λ4

]
.

C.2 HYPER-PARAMETER SELECTION

In this section, we discuss and present the way of selecting hyper-parameters of kernels. Most kernels
have hyperparameters ν which we will have to select. For example, the squared-exponential kernel
will often have a length-scale or amplitude parameter, and these will have a significant impact on the
performance.

We propose to select kernel hyperparameters ν through a marginal likelihood objective by noticing
the equivalence between the optimal Stein kernel-based control variates on the objectives in (Oates
et al., 2017; Sun et al., 2023a) and the posterior mean of a zero-mean Gaussian process model with
covariance matrix k0(x, y). See (Oates et al., 2017) for a discussion in the scalar-valued control
variates case; see (Sun et al., 2023a) for a discussion in the vector-valued control variates case.
Denotes all kernel-hyperparameters by ν := {ν1, . . . , νL}, and we maximize the sum of the marginal
likelihood,

ν∗ := argmax
ν1,...,νL

−1

2

L∑
l=0

(
(fl(Xl)− fl−1(Xl))

⊤(kl0(Xl, Xl; ν) + λIml
)−1(fl(Xl)− fl−1(Xl))

+ log det[kl0(Xl, Xl; ν) + λIml
]
)
,

where kl0(Xl, Xl; ν) is a matrix with entries kl0(ν)ij = kl0(x(l,i), x(l,j); ν) with kl0 being a Stein
reproducing kernel of the form in Equation (10) specialized to the distribution Π with hyperparameter
ν. Equivalently, we can maximize the marginal likelihood for each fl − fl−1 as follows,

ν∗l := argmax
νl

−1

2
(fl(Xl)− fl−1(Xl))

⊤(kl0(Xl, Xl; ν) + λIml
)−1(fl(Xl)− fl−1(Xl))

+ log det[kl0(Xl, Xl; ν) + λIml
],

for l ∈ {1, . . . , L}. We found that it performed well in our experiments. Note that the regularization
parameter λ can also be selected through the marginal likelihood or cross validation. However, in
practice we are in an interpolation setting. Therefore, we choose λ as small as possible whilst still
being large enough to guarantee numerically stable computation of the inverse of the matrix above.

Additionally, for kernels with hyperparameters (such as the squared-exponential kernels) that can be
regarded as ‘length-scale’, median heuristics are also be adopted as effective estimators. That is, using
the median of the pairwise distances between all data points as an estimator for the length-scales.
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Figure 7: Illustration Example: Absolute integration error under a budget constraint (Y-axis log-
scale).

D ADDITIONAL DETAILS AND EXTRA EXPERIMENTS

In Section 4, the performance of MLCF is being evaluated through empirical assessments. We used
different probability distributions in these experiments including uniform, Gaussian and intractable
posterior distributions. Although some of the assumptions are not fulfilled in these experiments, we
still use these examples to study the versatility of our method across a variety of settings.

D.1 EXPERIMENTAL DETAILS FOR THE ILLUSTRATION EXAMPLE

Construction of Levels In this example, we use the forward Euler method to solve a first-order
ODE

f ′(x) = −f(x), f(0) = 1, x ∈ [0, 1].

The integral of interest is Π[x] =
∫ 1

0
f(x)dx. f0, f1 and f2 are constructed by using different step

size hl to approximate f(x) at grid points, and applying linear interpolation in between. MLCF, CF
and MLMC are used to estimate Π[f ] and the result from 50 replications is represented in Figure 7.
When using the same evaluation budget to estimate Π[f ], MLCF significantly outperforms MLMC,
and CF that only use evaluations at the finest level in this example. The result is consistent with those
shown in Figure 1.

At level l, we use the forward Euler method to approximate the solution fl(x) with step size hl by
updating the value:

fl(xi+1) = fl(xi)− hlfl(xi),

at {xi = ihl}1/hl

i=0 . After solving fl(xi) at grid point {xi = ihl}1/hl

i=0 , we construct a continuous
function fl(x) by using linear interpolation

fl(x) = fl(xi) +
x− xi

hl
(fl(xi+1)− fl(xi))

for x ∈ (xi, xi+1).

Additional Details For the illustration example, we use step size h0 = 0.25, h1 = 0.05 and
h2 = 0.005. Since the computational time is very low for this example, we approximate the cost
at level l by assuming Cl is inversely proportional to the step size. The sample sizes used for
MLCF, MLMC and CF under different budget constraints are presented in Table 1. The example is
implemented using a Mateŕn 2.5 kernel, with hyper-parameters tuned at each level, as discussed in
Appendix C.2.
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Table 1: Illustration example: Number of samples at level l given budget constraint T .

T l = 0 l = 1 l = 2 CF

low 11 4 3 4

medium 14 11 4 6

high 23 17 5 8

Table 2: Synthetic Example: Number of samples at level l given budget constraint T .

setting nMLCF nMLMC CF

T l = 0 l = 1 l = 2 l = 0 l = 1 l = 2 l = 2

low 97 24 7 153 13 3 67

medium 145 36 10 229 19 4 101

high 193 48 14 305 26 5 134

D.2 EXPERIMENTAL DETAILS FOR THE SYNTHETIC EXAMPLE

Construction of Levels In this synthetic example, fl(x) are defined as

f0(x) = α0k
0
+(x, z0),

f1(x) = α0k
0
+(x, z0) + α1k

1
+(x, z1),

f2(x) = α0k
0
+(x, z0) + α1k

1
+(x, z1) + α2k

2
+(x, z2)

where k0+, k1+, and k2+ are obtained by applying Stein operators to k0, k1, and k2, respectively, and
then adding positive constants c0, c1, and c2.

For implementation, we set α0 = 10, α1 = 3, α2 = 1, and choose z0 = (0.1, 0.5), z1 = (0.3, 0.7),
z2 = (0.1, 0.3). The amplitudes of k0+ k1+ k2+ are 6, 4 and 2, respectively. Their length-scales are√
0.1,

√
0.2, and

√
0.4. The constants c0, c1 and c2 are set to 1, 0.5 and 0.15.

Additional Details To determine the optimal sample size, we compute norm of fl−fl−1 as follows

∥f0∥2H0
+
= α2

0k
0
+(z0, z0) & ∥f1 − f0∥2H1

+
= α2

1k
1
+(z1, z1) & ∥f2 − f1∥2H2

+
= α2

2k
2
+(z2, z2).

Following the result of Theorem 3.3, we compute the optimal sample size nMLCF for MLCF when
evaluation budget is limited. With the expression in Appendix B.7, we also compute the optimal
sample size nMLMC for MLMC. The sample size is listed in Table 2.

D.3 EXPERIMENTAL DETAILS FOR THE ODE EXAMPLE

Construction of Levels We follow the settings described in (Giles, 2015; Li et al., 2023). For
completeness, we provide details of the solver (finite difference approximation). The boundary-value
ordinary differential equation (ODE) with random coefficient and random forcing is given by:

d

dz
(c(z)

du

dz
) = −502x2

2 for z ∈ (0, 1)

u(0) = u(1) = 0

where c(z) = 1 + x1z. Expanding the equation gives

x1
du

dz
+ (1 + x1z)

d2u

dz2
= 50x2

2 for z ∈ (0, 1).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Let u(zi) = u(ih) for i ∈ {i, . . . , (1 − h)/h} with boundary conditions u(0) = u(1) = 0. Using
a finite difference approximation with step size h > 0, the left-hand side of the equation above is
approximated as:

x1
u(zi)− u(zi − h)

h
+ (1 + x1zi)

u(zi + h)− 2u(zi) + u(zi − h)

h2
= 50x2

2

x1
u(zi)− u(zi−1)

h
+ (1 + x1ih)

u(zi+1)− 2u(zi) + u(zi−1)

h2
= 50x2

2,

which, after rearrangement, can be expressed as

x1
iu((i+1)h)−(2i−1)u(ih)+(i−1)u((i−1)h)

h + u((i+1)h)−2u(ih)+u((i−1)h)
h2 = 50x2

2.

Incorporating the random coefficient and the random forcing, the level-l approximation is given by

fl(x) =

1/hl−1∑
i=1

hlu(ihl, x),

where ul = (u(hl, x), u(2hl, x), . . . , u(1− hl, x))
⊤ solves the linear system

(x1Ql/hl + Ll/h
2
l )ul = 50x2

21.

Here 1 ∈ R(1−hl)/hl is a vector of ones. The stiffness matrices Ql ∈ R(1−hl)/hl×(1−hl)/hl and
Ll ∈ R(1−hl)/hl×(1−hl)/hl are tridiagonal:

(Ql)i,i = −2i+ 1, (Ql)i,i−1 = (Ql)i−1,i = i− 1,

and

(Ll)i,i = −2, (Ll)i,i−1 = (Ll)i−1,i = 1.

Additional Details For the ODE example, we have evaluation cost at each level C =
(C0, C1, C2) = (1.22, 3.57, 11.89) (all measured in 10−3 seconds). Under the same evaluation
cost constraint, we compared (1) MLCF with Quasi-Monte Carlo points (QMC), (2) MLCF with
Latin hypercube sampling (LHS), (3) MLCF with i.i.d points, (4) CF with i.i.d points, (5) MLMC with
i.i.d points, (6) MLBQ with i.i.d points. The sample size is the optimal sample size for MLMC, which
is listed in Table 3. In this example, we used squared-exponential kernels. The hyper-parameters of
the squared-exponential kernels are tuned independently at each level as illustrated in Appendix C.2.
The kernel hyper-parameters at each level are tuned by maximizing the marginal likelihood associated
with each fl − fl−1.

Table 3: ODE example: Number of samples at level l given budget constraint T .

T l = 0 l = 1 l = 2 CF

0.30 s 70 10 2 15

0.91s 209 31 5 45

1.52s 349 52 6 75

Extra Experiments: Effect of Kernels and Kernel Hyper-parameters We also study the effect
of kernels for the ODE example. We use i.i.d samples for all settings in Figure 8. Under the same
evaluation cost constraint, we compared (1) MLCF with the square exponential kernels (length-scale
tuned by maximizing marginal likelihoods) (2) MLCF with the preconditioned square exponential
kernels (length-scale tuned by maximizing marginal likelihoods) (3) MLCF with the square expo-
nential kernels (length-scale selected by median heuristic) (4) MLMC (5) CF (length-scale tuned by
maximizing marginal likelihoods). We still use the sample size listed in Table 3. We find that setting
the ‘length-scale’ of the square exponential kernels by median heuristic works well in practice.
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Figure 8: Effect of Kernels and Kernel Hyper-parameters: Absolute integration error under a budget
constraint (Y-axis log-scale). PSE stands for preconditioned square exponential kernels. SE stands
for square exponential kernels. MH stands for median heuristic.

D.4 EXPERIMENTAL DETAILS FOR THE LOTKA-VOLTERRA EXAMPLE

Construction of Levels The Lotka-Volterra system (Lotka, 1925; 1927; Volterra, 1927) of ordinary
differential equations is given by:

du1(t)
dt = x1u1(t)− x2u1(t)u2(t),

du2(t)
dt = x3u1(t)u2(t)− x4u2(t),

for t ∈ [0, s], with initial condition u1(0) = x5 and u2(0) = x6. To solve this system numerically,
we use Stan (Carpenter et al., 2017). Stan solves the ODE system for the times provided using the
Dormand-Prince algorithm, a 4th/5th order Runge-Kutta method. For the multilevel construction, we
consider a uniform time discretization with step size hl at level l. The grid points are {ti = ihl}s/hl

i=1 .
At higher levels l, smaller values of hl are chosen. fl is then defined as fl(x̃) = (s)−1hl

∑s/hl

i=1 u1(ti),
which corresponds to an approximation of the time average of the prey population u1(t) over the
interval [0, s].

Additional Details For the Lotka-Volterra example, we have sampling and evaluation cost at each
level C = (C0, C1, C2) = (6.88, 34.41, 165.18) (all measured in 10−4 seconds). We use different
step sizes for different levels. Under the same budget constraint, we compare (1) MLCF with MCMC
points, (2) MLMC framework with MCMC points (MLMCMC), (3) CF with MCMC points, (4)
MCMC. The sample size is listed in Table 4. We used squared-exponential kernels in this example,
whose hyperparameters are tuned by maximizing marginal likelihood for fl − fl−1 at each level.

Table 4: Lotka-Volterra: Number of samples at level l given budget constraint T .

T l = 0 l = 1 l = 2 CF MCMC

0.26 s 207 23 2 20 20

0.51s 413 47 4 40 40

0.77s 620 70 6 60 60

Re-parametrization and Priors For completeness, we recall the reparameterization of model
parameters in this section. The log-exp transform on model parameters is as follows:

xj = exp(x̃j) ⇔ x̃j = log(xj),
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for j in {1, . . . , 8}, with Gaussian distribution priors:
x̃1, x̃4 ∼ N (0, 0.52)

x̃2, x̃3 ∼ N (−3, 0.52)

x̃5, x̃6 ∼ N (log 10, 12)

x̃7, x̃8 ∼ N (−1, 12).

Then, the Lotka-Volterra system is
du1(t)

dt
= exp(x̃1)u1(t)− exp(x̃2)u1(t)u2(t),

du2(t)

dt
= exp(x̃3)u1(t)u2(t)− exp(x̃4)u2(t).

The observations are
y1(0) ∼ Lognormal(x̃5, exp(x̃7))

y2(0) ∼ Lognormal(x̃6, exp(x̃8))

y1(t) ∼ Lognormal(log(u1(t)), exp(x̃7))

y2(t) ∼ Lognormal(log(u2(t)), exp(x̃8)).

D.5 EXPERIMENTAL DETAILS FOR VARIATIONAL INFERENCE OF BAYESIAN NEURAL
NETWORKS

Construction of Levels In this case, the term level of MLCFs naturally corresponds to the term
iteration of optimization of the Bayesian neural networks.

Additional Details To demonstrate the effectiveness of the proposed method for variational in-
ference, we utilize two-layer Bayesian neural networks, with the middle hidden layer having some
hidden units, and use ReLU as the activation function. The prior of weights are set to be standard
Gaussians N(0, 1). We use Adam as the stochastic optimizer to training the variational parameters
λ with initial learning rate 10−4 and a step-based decay function for the learning rate at iteration
l: ηl = βfloor(l/r) with drop parameter r = 250 and β = 0.95. For MC, MLMC and MLMCRG
estimators, we use 5 Monte Carlo samples to estimate the gradients during the optimization process
while for MLCFRG estimators, we only use 1 sample. The details of optimized training ELBO and
test log-likelihood are presented in Table 5 and Table 6.

Table 5: Training ELBO and Test Log-likelihood (Hidden Dimension Size is 15)

Method Training ELBO Test Log-likelihood
MC −6979.50 (±1593.7) −1683.71 (±542.1)

MLMC −5214.09 (±949.3) −1353.94 (±395.8)
MLMCRG −2187.77 (±83.8) −388.42 (±0.5)
MLCFRG −2101.95 (±36.3) −388.34 (±0.9)

Table 6: Training ELBO and Test Log-likelihood (Hidden Dimension Size is 20)

Method Training ELBO Test Log-likelihood
MC −3581.99 (±57.8) −771.04 (±15.3)

MLMC −3534.61 (±63.9) −762.67 (±27.5)
MLMCRG −2010.09 (±18.1) −386.27 (±0.1)
MLCFRG −2014.54 (±20.2) −386.57 (±0.3)

Extra Experiments: Effect of Kernels We also study the effects of kernels used in variational
inference for BNNs. In Figure 9 and Figure 10, we use square-exponential kernels for the cases when
the number of hidden states is 15 and 20, respectively. The hyperparameters of kernels is chosen by
median heuristics. For MC, MLMC and MLMCRG estimators, we use 5 Monte Carlo samples to
estimate the gradients during the optimization process while for MLCFRG estimators, we only use 1
sample.
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Figure 9: MLCFRG (hidden dimension size is 15)
with square-exponential kernels.
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Figure 10: MLCFRG: (hidden dimension size is
20) with square-exponential kernels.

Extra Experiments: Effect of Sample Sizes We also study the effect of sample sizes: we test
the effect of using the same strategy of sample sizes as in (Fujisawa & Sato, 2021). We used
preconditioned squared-exponential kernels in this example. The hyperparameters of kernels is
chosen by median heuristics. For both Figure 11 and Figure 12, MLMCRG use the sample size
strategy as in (Fujisawa & Sato, 2021) with starting sample size n0 = 5. In Figure 11, MLCFRG use
the same sample size strategy as MLMCRG. In Figure 12, sample size is fixed to be 1 for MLCFRG
for all iterations.
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Figure 11: MLCFRG (Hidden Dimension Size is
5). Same strategy of sample sizes.
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Figure 12: MLCFRG (Hidden Dimension Size is
5). Sample size is fixed to be 1 for MLCFRG.
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