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Abstract

In causal inference involving interacting units (e.g., individ-
uals in a contact network), peer effects quantify how the ac-
tions or behaviors of peers (e.g., wearing a mask) affect an
individual’s outcome (e.g., viral infection). Measuring peer
effects involves defining exposure mapping function that out-
puts peer exposure, a high-level causal variable summarizing
peer treatments (or interventions), and estimating the differ-
ence in counterfactual outcomes for different peer exposures.
Most of the existing approaches for defining exposure map-
ping functions consider homogeneous influence from peers
and use peer exposure based on the fraction of treated peers.
There is a growing interest in work that acknowledges het-
erogeneous influence among units (e.g., due to local neigh-
borhood structure) and captures those influence mechanisms
by automatically learning exposure mapping function. Re-
cently, graph neural networks (GNNs) have been extensively
used for causal effect estimation in networks, but their use has
been mostly limited to automatic feature aggregation and ad-
dressing confounding. This work explores the capabilities of
GNNs to automatically capture peer influence based on local
neighborhood structure. We show GNNs using homogeneous
peer exposure or GNNs learning peer exposure naively face
difficulty capturing such influence mechanisms. To address
this issue, we propose EGONETGNN to learn exposure map-
ping function by capturing peer influence mechanisms based
on local neighborhood structure. We show that our approach
reduces the error in estimating peer effects using synthetic
network models.

Introduction
Causal inference is crucial for developing artificial intelli-
gence (AI) systems that can make informed decisions by an-
ticipating the consequences of actions or interventions and
understanding underlying mechanisms. Decision-making in
real-world scenarios often involves complex environments
with interacting units, such as an online social network or
an epidemiological contact network. In such environments,
it is important to assess whether and to what extent a unit’s
outcome is influenced by the actions, behaviors or interven-
tions of other connected units. For example, we may want
to determine whether the vaccination status (treatment) of
peers affects an individual’s viral infection rate (outcome)
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in the contact network or whether the political affiliation
(treatment) of peers influences one’s stance on a policy issue
(outcome) in the social network. In causal inference, peer ef-
fect measures the difference in a unit’s outcome for different
treatment regimes of peers (e.g., some contacts vaccinated
versus no contact vaccinated, or observed peer political af-
filiations versus flipped peer affiliations). Therefore, peer
effect estimation has become important for policy-making
and targeted intervention design in various domains such as
healthcare (Barkley et al. 2020), online advertisement (Nabi
et al. 2022), and education (Patacchini, Rainone, and Zenou
2017).

Peer effect estimation requires modeling interference be-
tween units where the outcome of a unit in the network
can be influenced by treatments or outcomes of their peers.
The treatments could be either assigned (e.g., with random-
ized controlled trials (RCTs) or A/B tests) or observed from
the data. The critical step in peer effect estimation is defin-
ing peer exposure, which summarizes treatments of a unit’s
peers and captures the extent to which peer treatments spill
over to the unit. For example, in the contact network, peer
exposure is zero if no contacts are vaccinated; however, if
some contacts are vaccinated, the peer exposure could de-
pend on the proportion of vaccinated peers or the frequency
of contact with vaccinated peers. Peer effect for a unit is
measured as the difference in the unit’s outcome entailed by
two different counterfactual peer exposure conditions. For
instance, peer effect, in the contact network, is the difference
in outcome, i.e., infection rate, for two exposure conditions,
e.g., three fourth of peers vaccinated versus one fourth of
peers vaccinated.

Peer exposure is modeled through exposure map-
ping (Aronow and Samii 2017), which is a function that
maps peer treatments and other contexts to a representation
that summarizes exposure to peer treatments, reduces high
dimensionality, and is invariant to irrelevant contexts (e.g.,
permutation). Usually, domain experts define exposure map-
ping appropriate to the causal question and the domain of
interest. Existing research has mainly considered two types
of peer exposure: binary peer exposure (e.g., Bargagli-Stoffi,
Tortù, and Forastiere (2020)), which captures if any friends
are treated, and homogeneous peer exposure (e.g., based on
the number or the fraction of treated peers (Ugander et al.
2013; Jiang and Sun 2022; Chen et al. 2024)). Homogeneous



peer exposure assumes all neighbors influence equally and
is agnostic to the identity of the treated peers. While binary
and homogeneous peer exposure assumptions make possibly
unrealistic simplifying assumptions, they are intuitive to in-
terpret and less likely to violate the positivity assumption in
causal inference. Positivity assumption is a necessary con-
dition for valid causal inference that requires all subpopu-
lations to have a positive probability of receiving any level
of treatment. It is imperative to design exposure mappings
that capture complex peer influence mechanisms while be-
ing easy to interpret and less prone to violation of causal
inference assumptions.

There is a growing interest in research that acknowl-
edges heterogeneous influence among units (e.g., due to
local neighborhood structure or tie strengths) and designs
exposure mapping to capture those influence mechanisms.
Prior works have considered exposure mapping that uses
the weighted fraction of treated peers based on known edge
weights (Forastiere, Airoldi, and Mealli 2021) or known
node attributes (Qu et al. 2021). Recent research have con-
sidered learning the exposure mapping function that sum-
marize peer exposure conditions. Zhao et al. (2022) have
used attention weights to automatically learn weights in the
weighted fraction of treated peers based on the similarities
of the units’ covariates. Ma and Tresp (2021) summarize
the covariates of treated peers using a graph neural network
(GNN) to learn a peer exposure embedding in addition to
homogeneous peer exposure. Ma et al. (2022) employ simi-
lar method but for hypergraphs to model group interactions.
(Adhikari and Zheleva 2024) use GNNs to learn peer ex-
posure embedding by addressing unknown peer influence
mechanisms, but their scope is limited to direct effect es-
timation, i.e., the effect of a unit’s own treatment. Yuan, Al-
tenburger, and Kooti (2021) learn peer exposure embedding
based on counts of causal network motifs to capture het-
erogeneous peer influence due to local neighborhood con-
ditions. Causal network motifs are attributed subgraphs with
treatment assignments as the attributes. Counting such sub-
graphs can be computationally expensive, and they may not
be able to capture every local structure.

Recently, GNNs have been extensively used for causal ef-
fect estimation in networks (Guo, Li, and Liu 2020; Jiang
and Sun 2022; Chen et al. 2024), but their use has been
mostly limited to automatic feature aggregation and address-
ing network confounding. While some methods have used
exposure mapping function learning with GNNs, they have
focused on summarizing covariates of treated peers. To the
best of our knowledge, there is no prior work that uses GNNs
to learn an exposure mapping function for explicitly captur-
ing peer influence based on local neighborhood structure.
We show that GNN-based approaches that solely rely on ho-
mogeneous peer exposure or naively learn exposure map-
ping lack expressiveness in capturing heterogeneous peer
influence based on local neighborhood conditions. To ad-
dress this gap, we propose EGONETGNN, a GNN-based ap-
proach to learn an exposure mapping function that is expres-
sive enough to capture peer influence due to local neighbor-
hood structure. Furthermore, EGONETGNN is designed to
promote invariance to irrelevant contexts and balanced rep-

resentation for adding robustness to the downstream peer
effect estimation task. Experimental evaluation with syn-
thetic network data shows the advantage of our approach in
peer effect estimation when there is heterogeneous influence
based on local neighborhood structure.

Peer Effect Estimation Problem Setup
We represent the network as an undirected graph G = (V,E)
with a set of N = |V | vertices and a set of edges E. We
denote node attributes with X and edge attributes with Z. Let
T =< T1, ..., Ti, ..., TN > be a random variable comprising
the treatment variables Ti for each node vi in the network
and Yi be a random variable for vi’s outcome. Let π =<
π1, ..., πi, ..., πN > be an assignment to T with πi ∈ {0, 1}
assigned to Ti.

Let T−i = T \ Ti and π−i = π \ πi denote random vari-
able and its value for treatment assignment to other units
except vi. We focus on estimating individual peer effects
when the contexts for heterogeneous peer influence depend
on local neighborhood structure. Let Zi denote effect mod-
ifiers, which are contexts responsible for variable effects
for the same level of treatment and peer exposure. Zi are
unknown contexts defined by some functions of node at-
tributes X, edge attributes Z, and network structure G, i.e.,
Zi = ϕf (G,X,Z). The individual peer effect (IPE) for a
unit vi, denoted as δi, for peer treatments T−i = π−i versus
T−i = π′

−i and unit’s treatment Ti = πi given contexts Zi

and G is defined as
δi = E[Yi(Ti = πi, T−i = π−i)|Zi, G]−
E[Yi(Ti = πi, T−i = π′

−i)|Zi, G],
(1)

where the counterfactual outcome of unit vi, Yi(Ti =
πi, T−i = π−i), expresses the idea that the outcome is in-
fluenced by the entire treatment assignment vector π due to
interference. A common simplifying assumption in causal
inference under interference is that the counterfactual out-
come of a unit is influenced only by the treatments of units
in its neighborhood, rather than all other units in the net-
work (Arbour, Garant, and Jensen 2016; Forastiere, Airoldi,
and Mealli 2021; Jiang and Sun 2022; Chen et al. 2024).
Assumption 1 (Neighborhood Interference). The counter-
factual outcome of a unit depends on its immediate neigh-
borhood, i.e., Yi(Ti = πi, T−i = π−i) = Yi(Ti =
πi, TN i = πNi), where TN i denotes random variable to
capture neighborhood assignments πNi .

Next, we assume the counterfactual outcome actually de-
pends on peer exposure manifested due to some underlying
mechanisms based on local neighborhood structure. In the
social network example, the counterfactual outcome (e.g.,
stance polarity) of a unit is dependent on its own treatment
assignment (e.g., political affiliation) and peer exposure con-
ditions (e.g., political polarity of friends). This assumption
can be integrated with the consistency requirement in causal
inference that enables equivalence between counterfactual
and factual outcomes.
Assumption 2 (Consistency under heterogeneous peer in-
fluence due to local neighborhood conditions). If Ti = πi

and TNi
= πNi

, then Yi(Ti = πi, TN i = πNi
) = Yi(Ti =

πi, PN i = ϕe(πNi
, G,Z)) = Yi, where PN i is a random



variable to capture peer exposure from neighborhood of vi
and ϕe is the exposure mapping function that takes peer
treatments, network structure, and edge attributes to output
peer exposure embedding.

The goal of our paper is to learn the exposure mapping
function ϕe and then estimate individual peer effect δi as

δi = E[Yi(Ti = πi, PNi = ϕe(πNi , G,Z))|Zi]−
E[Yi(Ti = πi, PNi = ϕe(π

′
Ni

, G,Z))|Zi].
(2)

For simplicity of exposition, we set π′
Ni

to 0⃗ to capture
the peer exposure condition when no neighbors are treated.
For example, this setting captures peer effects due to some
peers being vaccinated versus none being vaccinated or peer
effects due to somewhat diverse peer political affiliation ver-
sus peer political affiliations with no diversity.

Next, identification of peer effects involves expressing
counterfactual expressions in terms of observational or inter-
ventional distribution. Peer effects in Eq. 2 can be expressed
in terms of interventional distribution for experiments like
A/B tests given the contexts Zi are not mediators as fol-
lows (Pearl 2009):

δi = E[Yi|do(Ti = πi, PNi = ϕe(πNi , G,Z)),Zi]−
E[Yi|do(Ti = πi, PNi = ϕe(π

′
Ni

, G,Z)),Zi],
(3)

where do(.) operator denotes intervention. Notice, Zi, by
definition, are effect modifiers or confounders and do not
mediate the treatments. Since the treatments are randomized,
we do not need to worry about confounding in experimental
data. But we still need to learn ϕe and estimate the condi-
tional expectations in Eq. 3. To do this, we need the posi-
tivity assumption that requires every possible treatment and
peer exposure condition to have non-zero probability.
Assumption 3 (Positivity). There is non-zero probabil-
ity of treatment and peer exposure condition, i.e., 0 <
P (Ti, PNi

) < 1, for every level of Ti and PNi
.

For identification of peer effects in observational stud-
ies, we need unconfoundedness assumption that restricts the
presence of hidden confounders between peer exposure con-
ditions and the outcome as well as treatment and outcome.
Assumption 4 (Unconfoundedness for observational data).
The counterfactual outcomes are independent of treatment
and peer exposure conditions given the contexts Zi, i.e.,
Yi(Ti = πi, PNi

= ϕe(πNi
, G,Z)), Yi(Ti = πi, PNi

=
ϕe(π

′
Ni

, G,Z)) ⊥ {Ti, PNi
}|Zi.

With unconfoundedness assumption, we can rewrite Eq.
2 as follows:
δi = E[Yi(Ti = πi, PNi = ϕe(πNi , G,Z))|Ti, PNi ,Zi]−
E[Yi(Ti = πi, PNi = ϕe(π

′
Ni

, G,Z))|Ti, PNi ,Zi],
(4)

δi = E[Yi|Ti = πi, PNi = ϕe(πNi , G,Z),Zi]−
E[Yi|Ti = πi, PNi = ϕe(π

′
Ni

, G,Z),Zi],
(5)

Eq. 5 follows from the consistency assumption and its in-
ference from observational data is valid if the positivity as-
sumption holds. Eq. 3 can also be expressed as Eq. 5 because
experimental data is guaranteed to satisfy the unconfounded-
ness assumption. Thus, peer effects can be estimated using

the network structure, node attributes, edge attributes, treat-
ment, and outcome as inputs by learning two functions ϕf

for Zi and ϕe for peer exposure along with estimating two
conditional expectations.

EGONETGNN: Learning Exposure Mapping
Function with GNNs

Figure 1 shows the high-level overview of our peer effect
estimation framework with the exposure mapping function
learned with the EGONETGNN model. First, the attributed
network is passed through a standard GNN that approx-
imates feature mapping ϕ̂f to learned feature embedding
Zi that captures confounders or effect modifiers. Second,
EGONETGNN approximates the exposure mapping function
ϕ̂e by taking the ego network extracted from the attributed
network and aggregating the edge attributes and peer treat-
ments to produce peer exposure embedding. The feature em-
bedding, exposure embedding, treatments, and outcomes are
passed to an off-the-shelf peer effect estimator to get the peer
effects. In this work, we demonstrate an end-to-end exposure
mapping learning with EGONETGNN along with the Treat-
ment Agnostic Representation Network (TARNet) (Shalit,
Johansson, and Sontag 2017) estimator adopted for peer ef-
fect estimation.

Feature Mapping with GNN
The purpose of learning feature mapping is to capture con-
texts that are potentially confounders or effect modifiers.
Capturing confounders ensures the estimates are unbiased
and valid, while capturing effect modifiers reduces error in
unit-level causal effect estimates. Prior works (Guo, Li, and
Liu 2020; Jiang and Sun 2022; Adhikari and Zheleva 2024)
have established GNNs are suitable for capturing such con-
texts in network settings. We employ a GNN similar to the
one proposed by Adhikari and Zheleva (2024) because it
uses feature mapping considering node and edge attributes.
However, our framework is agnostic to the specific GNN
architecture, i.e., any GNN (e.g., GCN (Kipf and Welling
2016) or GAT (Veličković et al. 2018)) could be used to ex-
tract the feature embedding. Let Θ denote a multi-layer per-
ceptron (MLP) and || denote a concatenation operator. The
feature embedding Zi is obtained for l-th layer as:

Zi = Θ0(Xi)||
∑
j∈Ni

Θlh
l−1
j , with h0

j = Xj ||Zij

, where Ni denote neighbors of node vi.

Exposure Mapping with EGONETGNN

The reliability of an exposure mapping function ϕe can be
assessed in terms of three key properties: 1) expressiveness,
2) invariance, and 3) bounded and balanced representation.
The expressiveness property ensures the peer exposure rep-
resentation PNi

returned by the function ϕe is unique for
different relevant contexts, while the invariance property as-
sures the representation PNi

does not vary due to irrele-
vant contexts. For example, in a social network, if the un-
derlying peer influence depends on the number of mutual
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Figure 1: An overview of the proposed EGONETGNN model to learn exposure mapping function for peer effect estimation.

connections, the function ϕe is expressive if it can actually
capture the number of mutual connections, e.g., by count-
ing the number of triangles. For the above example, the
function ϕe is invariant to irrelevant contexts if the differ-
ence in other features like edge weights does not change
the learned representation PNi

. To satisfy the third property
of bounded representation, the learned representation PNi

should be bounded, e.g., between 0 and 1, to reflect no expo-
sure and maximum exposure. Moreover, the representation
should be balanced, which means that the learned represen-
tation PNi

should be distributed across the entire bound.
Previous research has investigated the expressiveness of

GNNs in terms of their ability to distinguish isomorphic
graphs (Xu et al. 2018) or count substructures (Chen et al.
2020). Despite the flexibility of message-passing GNNs
(e.g., GCN or GAN), they lack the expressiveness to count
subgraphs with cycles like triangles. On the other hand,
causal network motifs counts have been shown as reliable
features to capture peer exposure due to local neighbor-
hood structure (Yuan, Altenburger, and Kooti 2021). Due to
the above limitation of GNNs, they cannot capture closed
triad motifs (i.e., triangular motifs). Our proposed method
EGONETGNN is designed to make GNNs as expressive or
better than the approach of feature extraction by counting
motifs. To this end, we transform the node regression task to
graph regression by extracting ego networks for each unit. In
an ego network, the triangle structures involving an ego node
are transformed as edges, which mitigates the limitation of
GNNs to capture closed triad motifs. Next, we describe the
ego network construction and the architecture of our model.

Ego network construction. First, an ego network
Ḡi(V̄i, Ēi) is extracted from G(V,E) for each node vi such
that node set V̄i consists neighbors of vi, i.e., V̄i = {vj :
eij ∈ E ∧ vj ∈ V } and edge set Ēi consists edges between
neighbors of vi, i.e., Ēi = {ejk : ejk ⊂ E ∧ vj ∈ V̄i ∧ vk ∈
V̄i}.

Node aggregation. Next, node attribute X̄j of node vj ∈
V̄i in the ego network is set using edge attributes of ego node
vi and peer vj , i.e., X̄j = Zij . Here, we consider transform-
ing an ego’s edge attributes as node attributes of peers in

the ego network because the ego node itself is not present in
the ego network, and we want to capture the heterogeneous
influence due to local neighborhood conditions. The node
aggregation is performed in the ego network Ḡifor l layers
as:

hl
j =

∑
k∈Nj

hl−1
k , with h0

j = Tj ||X̄j .

Encoder MLP. Now, the aggregated representation and
raw edge attributes are passed into an encoder MLP to ex-
tract a low dimensional embedding. The goal of this module
is to capture complex mechanism based on the local neigh-
borhood. Formally, the output embedding hexp

j is obtained
as follows:

hexp
j = ReLU(Θexp(tanh(Θenc(X̄j ||hl

j))))

Here, the intermediate layer uses tanh activation function
to capture mechanisms that may involve proportions (i.e.,
multiplication or division) and tanh helps the subsequent
MLP to learn it by bounding the input.

Graph aggregation. Finally, the low-dimensional repre-
sentation output from the MLP module is aggregated on the
entire ego network. The peer exposure embedding is ob-
tained as follows:

PNi =

∑
j(Tj × hexp

j )∑
j h

exp
j

||1− e−
∑

j(Tj×hexp
j ).

We consider two aggregations such that the peer exposure
embedding is bounded between zero and one, with zero be-
ing the case of no peer exposure. The first aggregation is
similar to the fraction of treated peers, but we weight each
peer by hexp

j learned by the preceding layer. The second ag-
gregation is analogous to the number of treated peers, except
that each peer is weighted by hexp

j .

Peer Effect Estimation with TARNet
The TARNet architecture (Shalit, Johansson, and Sontag
2017) consists of a single MLP with two predictors pre-
dicting counterfactual outcomes under treatment and con-
trol, i.e.,

hemb
i = Θemb(Zi),



Yi(0, PNi) = ΘY (0)(h
emb
i ||PNi), and

Yi(1, PNi) = ΘY (1)(h
emb
i ||PNi).

The peer effect for observed or assigned treatments is ob-
tained as δ̂i = Yi(0, PNi) − Yi(0, 0⃗) if Ti = 0 and δ̂i =

Yi(1, PNi) − Yi(1, 0⃗) if Ti = 1. However, one could query
for arbitrary peer effect with Yi(πi, PNi)− Yi(πi, P

′
Ni

).

End-to-end Learning

For the end-to-end learning of the exposure mapping func-
tion and the counterfactual outcomes using TARNet, we
minimize the standard TARNet loss function to minimize
mean square error (MSE) in factual outcome prediction
along with the other loss functions designed for EGONET-
GNN. These custom loss functions introduce priors to make
the learned exposure mapping function stable (Balance loss)
and reliable (Bound loss).

TARNet outcome prediction loss. This loss function
minimizes the MSE error between predicted outcome and
observed outcome, i.e., Lpred = (Yi − Ŷi)

2, where Ŷi =
Y (1, PNi

) if Ti = 1 else Y (0, PNi
).

Balance loss. For stability, we use a prior that encourages
a balanced distribution of the learned peer exposure embed-
ding. This loss function checks how far the learned peer em-
bedding distribution is from a continuous uniform distribu-
tion between 0 and 1, i.e., Lbal = (mean(PNi

) − 0.5)2 +
(var(PNi

)− 1
12 )

2+(range(PNi
)− 1)2. Here, we consider

MSE of mean, variance, and range of learned embedding
PNi

against corresponding value of the uniform distribution.
Bound loss. For reliability, we use a prior that peer effects

for the instances with no exposure are zero. This loss func-
tion checks if peer effects for the instances with PNi = 0 are
zero, i.e., Lbound = (Yi(πi, PNi

) − Yi(πi, 0⃗))
2 if PNi

= 0
else 0. This is required for the reliability of the EGONET-
GNN framework and for preserving the interpretation that
PNi

= 0 means no peer exposure. Notice the second term
Yi(πi, 0⃗) represents a counterfactual setting with no peer ex-
posure for all units and it is a significant distribution shift
from the observed peer exposure conditions. This loss func-
tion aims to mitigate the effect of distribution shifts.

Overall loss. We combine the above losses to obtain over-
all loss function L to minimize as

L = Lpred+λbal×Lbal+λbound×Lbound+λL1×||Θgnn||1,
(6)

where Θgnn denote overall parameters in feature mapping
GNN and EGONETGNN, and the last term is L1 loss to pro-
mote invariance to irrelevant contexts by preferring sparse
weights. λbound and λbal are hyperparameters to weigh
bound loss and balance loss, respectively.

Experiments and Results
Here, we describe the datasets and experimental setup for the
evaluation of our method, EGONETGNN. Then, we present
the main takeaways from the results.

Dataset
Similar to other works in causal inference, we rely on syn-
thetic and semi-synthetic data for the evaluation. We adapt
the dataset used by Adhikari and Zheleva (2024) for the
evaluation of peer effect estimation. We consider two syn-
thetic network models with different edge densities: (1) the
Watts Strogatz (WS) network (Watts and Strogatz 1998),
which models small-world phenomena, and (2) the Barabási
Albert (BA) network (Albert and Barabási 2002), which
models preferential attachment phenomena. We generate
both networks by fixing the number of nodes to 3000 and
controlling the density of edges. For the BA model, the
preferential attachment parameter pba of [1, 5, 10] is used
to generate sparse to dense networks, where a new node
connects to pba existing nodes to form the network. For
the WS model, we use mean degree parameters pws to
[0.002N, 0.005N, 0.01N ] with fixed rewiring probability of
0.5, similar to prior works (Yuan, Altenburger, and Kooti
2021; Adhikari and Zheleva 2024).

Treatment model. The treatment assignments depend on
the unit’s covariates as well as peer covariates and some edge
attribute. We generate treatment Ti for a unit vi as Ti ∼
θ(a(τcWT ×

∑
j∈Ni

Xc
j∑

j∈Ni
Zc

ij
) + (1 − τc)WT · Xc

i), where θ

denotes Bernoulli distribution, a : R 7→ [0, 1] is an activation
function, τc ∈ [0, 1] controls spillover influence from unit
vi’s peers, Xc ⊂ X is a subset of node attributes, Zc ∈ Z is
an edge attribute, and WT is a weight matrix.

Outcome model. The outcomes depend on unit’s treat-
ment, peer treatments based on local neighborhood condi-
tion, and confounders. We generate outcome Yi for a unit vi
as:

Yi = (δexp + δem × Ti)× ϕe(G,Z, T−i)+

(τd + τem × ϕem(G,X,Z))× Ti + g(Xc, Zc, G) + ϵ.
(7)

Here, the first term (δexp + δem × Ti)× ϕe(G,Z, T−i) cap-
tures peer effects, where ϕe(G,Z, T−i) captures peer expo-
sure that depends on local neighborhood condition (e.g., the
number of mutual connections between treated peers and
ego unit) and δexp and δem are coefficients controlling mag-
nitude/direction of peer effects. The term g(Xc, Zc, G) cap-
tures confounding and ϵ ∼ N (0, 1) is random noise. The
remaining term captures direct effect due to unit’s own treat-
ment with effect modification by some contexts.

Experimental Setup
We design our experimental setup to answer the following
research questions (RQ).

RQ1. How well do methods for peer effect estimation
perform when peer exposure mechanisms depend on lo-
cal neighborhood conditions? RQ1 investigates the perfor-
mance of peer estimation baseline methods, including those
considering homogeneous or heterogeneous peer influence,
compared to our method, when peer influence mechanisms
are based on local neighborhood conditions. We generate
synthetic networks, BA and WS, with low, medium, and
high edge density. For each network, we generate treatment



and outcome according to treatment and outcome models
above. For the outcome model, we consider three mech-
anisms for true peer exposure conditions (ϕe(G,Z, T−i)):
1) peer exposure is given by a weighted fraction of treated
peers with weights depending on the number of mutual con-
nections; 2) peer exposure is the clustering coefficient be-
tween the treated peers; and 3) peer exposure depends on
the number of connected components among treated peers.
Here, the only challenge is detecting peer effects. Therefore,
the coefficients τd and τem in the outcome model (Eq. 7)
are set to zero. The coefficients scaling peer effects δexp and
δexp are set to 20 for the first two mechanisms and 1 for the
third mechanism because true peer exposure in the first two
are bounded from 0 to 1 while the last one is unbounded.

Evaluation metrics. To evaluate the performance of in-
dividual peer effect (IPE) estimation, we use the Precision
in the Estimation of Heterogeneous Effects (ϵPEHE) (Hill
2011) metric defined as ϵPEHE =

√
1
N

∑
i(δi − δ̂i)2, where

δi and δ̂i = ˆYi(πi, PNi) −
ˆYi(πi, 0⃗) are true and estimated

IPEs. ϵPEHE (lower better) measures the deviation of esti-
mated IPEs from true IPEs.

Baselines. We compare our proposed approach,
EGONETGNN, with state-of-the-art (SOTA) peer esti-
mation methods. The approaches DWR (Zhao et al. 2022)
and 1-GNN-HSIC (Ma and Tresp 2021) use neural-network
or GNN-based method to learn peer exposure embedding.
NetEst (Jiang and Sun 2022) and TNet (Chen et al. 2024)
use the fraction of treated peers as peer exposure but the
estimator is based on adversarial learning and doubly robust
method, respectively, for robustness. We also consider
GNN-TARNet-Motifs and GNN-CFR-Motifs approaches
that consider manually extracted causal motifs (Yuan,
Altenburger, and Kooti 2021) as peer exposure and TARNet
and counterfactual regression (CFR) estimators (Shalit,
Johansson, and Sontag 2017) as strong baselines. GNN-
TARNet-Motifs and GNN-CFR-Motifs serve as references
to check whether the exposure mapping function learned by
our method is as good as or better than manually extracted
causal motifs. We also include INE-TARNet (Adhikari
and Zheleva 2024) adapted for peer effect estimation as
a baseline, although it was developed for direct effect
estimation.

Hyperparameters and model selection. For the experi-
ments, we choose λbound = 1 and λbal = 0.1 for the loss
function. Moreover, we perform grid search hyperparame-
ter tuning by varying GNN learning rate {0.02, 0.05} and
λL1 = {0.1, 1}, and setting TARNet learning rate to 0.01.
A 20% held-out dataset is used for model selection, where
model with lowest Lpred + Lbal + Lbound is chosen for re-
porting. The baselines INE-TARNet, GNN-TARNet-Motifs,
and GNN-CFR-Motifs are also tuned similarly. Other base-
lines are tuned by varing the learning rate {0.02, 0.01},
keeping other hyperparameters default. DWR is calibrated
for 5 epochs to balance representation. We set the output
embedding dimension of encoder MLP to 1 giving two-
dimensional peer exposure.

Figure 2: Peer effect estimation error when true peer expo-
sure depends on number of mutual connections. Our method
significantly outperforms all baselines showing its capabil-
ity to count triangles in the ego network.

Figure 3: Peer effect estimation error when true peer ex-
posure depends on connected components among treated
peers. Our method performs well compared to all baselines
when underlying peer exposure mechanism cannot be ex-
plained totally with motifs structures only.

Figure 4: Peer effect estimation error when true peer expo-
sure depends on clustering coefficient among treated peers.
Our method is better than or competitive to motif-count
based baseline when the underlying peer exposure mecha-
nism can be explained by causal motif counts.

Results
Figures 2 to 4 depict results for the research question and
reveal our model performs reliably well in estimating peer
effects when peer exposure depends on local neighborhood
structure. Each figure shows the performance of peer estima-
tion approaches in terms of the PEHE metric (lower is bet-
ter) for BA and WS network models, each generated using
three different edge density parameters. For each setting, the
experiment is repeated for 5 seeds, and we show the mean
value and standard deviation as error bars. The x − axis
shows the edge density parameters (low to high) used for
generating the networks. The performance of our method



EGONETGNN with TARNet estimator is shown as blue bar.
It is evident from the figures that our method is better than
all of the baselines across most of the settings, and it is com-
petitive with approaches that use causal motif counts.

In Figure 2, our method significantly outperforms all
baselines showing its capability to count triangles in the
ego network and hence capture the number of mutual con-
nections between an ego and other peers. In Figure 4, our
method performs well compared to all baselines when un-
derlying peer exposure mechanism, i.e., based on the num-
ber of connected components, cannot be explained totally
with motifs structures only. In Figure 3, our method is better
than or competitive to motif-count based baselines when the
underlying peer exposure mechanism can be explained by
causal motif counts. By construction, the BA network with
p=1 does not have mutual friends, and the clustering coeffi-
cient is zero. So, all methods perform comparatively well for
this network in Figure 2 and 4 because there is homogeneous
or no peer exposure. By construction, the BA network with
p=1 does not have mutual friends, and the clustering coef-
ficient is zero. So, all methods perform comparatively well
for this network in Figures 2 and 4 because there is homoge-
neous or no peer exposure. For other settings, most baselines
perform poorly.

Discussion
This work motivates the problem of learning exposure
mapping function for peer effect estimation and proposes
EGONETGNN for addressing influence due to local neigh-
borhood structure. Our experiments demonstrate increased
expressiveness of our method to capture complex local
neighborhood exposure conditions. Ongoing work is explor-
ing the generalizability of the method to semi-synthetic data
and ablation studies. This work can be applied to the esti-
mation of other network effects like direct effects and total
effects. Future work should extend the method to capture
generic unknown influence mechanisms for peer effect es-
timation by addressing the invariance to irrelevant contexts.
Another extension should consider relaxing the assumption
of neighborhood interference condition.
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