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ABSTRACT

Weight pruning is an effective technique to reduce the model size and inference
time for deep neural networks in real-world deployments. However, since mag-
nitudes and relative importance of weights are very different for different lay-
ers of a neural network, existing methods rely on either manual tuning or hand-
crafted heuristic rules to find appropriate pruning rates individually for each layer.
This approach general leads to suboptimal performance. In this paper, by directly
working on the probability space, we propose an effective network sparsification
method called probabilistic masking (ProbMask), which solves a natural sparsifi-
cation formulation under global sparsity constraint. The key idea is to use prob-
ability as a global criterion for all layers to measure the weight importance. An
appealing feature of ProbMask is that the amounts of weight redundancy can be
learned automatically via our constraint and thus we avoid the problem of tuning
pruning rates individually for different layers in a network. Extensive experimen-
tal results on CIFAR-10/100 and ImageNet demonstrate that our method is highly
effective, and can outperform previous state-of-the-art methods by a significant
margin, especially in the high pruning rate situation. Notably, the gap of Top-1
accuracy between our ProbMask and existing methods can be up to 10%. As a by-
product, we show ProbMask is also highly effective in identifying supermasks,
which are subnetworks with high performance in a randomly weighted dense neu-
ral network.

1 INTRODUCTION

Weight pruning (Han et al.l [2015a)) is a popular technique for alleviating the weight redundancy in
deep neural networks (DNN5s) to improve inference efficiency and decrease computation demands.
Typical pruning algorithms usually prune the unimportant weights by developing proper criteria. It
is repeatedly reported in the literature (Guo et al. 2016} [Liu et al., 2018}, [Zeng & Urtasun, [2018;; [Li
et al.,|2016) that by pruning one can reduce the neural network size and improve the inference effi-
ciency significantly with quite slight or even negligible loss on performance, which makes deploying
large-scale DNNs on equipment with limited computational and memory budget possible.

What can serve as a suitable global comparator to measure weight importance and identify sparsity
level for different layers is a long-standing problem (Gale et al., [2019) though impressive results
have been achieved. We know that the core module in pruning is the explicit or implicit criterion for
identifying the redundant weights, and it is difficult to develop a global criterion for the weights in
all the layers. For example, in[Han et al.|(2015a), the authors propose a simple yet effective criterion,
i.e., for each layer it prunes all the weights below a certain threshold in a fully trained network. The
threshold is obtained by sorting weight by its magnitude and retrieving the weight magnitude at the
target pruning rate. The criterion is weight magnitude in this case. Notice that the magnitudes of
the weights across layers could be quite different and different layers could have different amount
of redundancy. If we use a global threshold for all the layers, then almost all the weights in certain
layers could be pruned in order to achieve high enough pruning ratio, which will be verified in Sec-
tion[4.3] Thus, we need to set a proper threshold or pruning ratio for each layer individually. In the
networks with numerous layers, it is very difficult and even impossible to find the optimal thresholds
or pruning ratios for all the layers manually. One reasonable compromise for such dilemma is to set
sparsity level uniformly for different layers. However, this results in imperfect weight allocation ob-
viously and gives unsatisfactory results on high pruning rates. Recently [Kusupati et al. (2020) also



Under review as a conference paper at ICLR 2021

notice the drawback of uniform weight allocation and gives considerable improvements by learnable
sparsity. However, its performance is limited by both the modification of original network pruning
problem and the imperfect manual choice of threshold function.

In this paper, to address the above limitations, we propose an effective network sparsification method
called probabilistic masking (ProbMask). Firstly, we know that network pruning can be naturally
formulated into a problem of finding a sparse binary mask m as well as the weights at the same time
to minimize the empirical loss (I). If the component m; is equal to 0, it means that the corresponding
weight is pruned. However, it is a discrete optimization problem and hard to solve. We notice that if
we view the components 1m; in the mask as independent Bernoulli random variables with probability
s; being 1 and probability (1—s;) being 0 and reparameterize them w.r.t. its probability, then the loss
in problem (1)) would become continuous over the probability space. Due to the nature of probability,
probability can be used as a global criterion in all the layers. Therefore, we can control the model
size via forcing the sum of all the probabilities s; of the mask smaller than a proper value, leading to
a global sparsity constraint in the probability space. In this way, the discrete optimization problem
(I) is transformed into a constrained expected loss minimization problem (2)) over a probability
space, which is continuous. Finally, we adopt the Gumbel-Softmax trick to solve the continuous
problem. As the optimizer goes on, the probabilities s; would converge to either O or 1, i.e., m
would become close to a deterministic sparse mask. Thus, a fully trained mask would have quite
low variance, making the loss of the sampled sparse network according to m close to the excepted
loss in problem (2). Another appealing feature of our proposed method is that the amount of weight
redundancy in each layer can be identified automatically by our global sparsity constraint and thus
we do not need to choose different pruning ratios for different layers.

Experimental results on network pruning and supermask (Zhou et al., 2019)) finding demonstrate that
our method is much more effective than the state-of-the-art methods on both small scale datasets and
large scale datasets and can outperform them with a significant margin when the pruning rate is high.

The contribution and novelty of ProbMask can be summarized as follows:

1) We provide evidence showing that probability can serve as a suitable global comparator to mea-
sure weight importance and identify sparsity level for different layers, which is a long-standing
problem (Gale et al.|[2019).

2) We present a natural formulation of global sparsity constraint, and an optimization method that
is practically effective. Our solution fixes the training and testing performance discrepancy problem
observed in practice, which led to the failure of previous methods (Louizos et al.,[2017) on ImageNet
(Gale et al.,|2019).

3) We demonstrate the effectiveness of using probability as global comparator on small-scale and
large-scale problems and various models and achieve state-of-the-art results on Top-1 accuracy and
accuracy-versus-FLOPS curve.

4) We show ProbMask can also serve as a powerful tool for identifying supermasks, which are
subnetworks with high performance in a randomly weighted dense neural network, and we achieve
state-of-the-art results on Top-1 accuracy on CIFAR-100 under high pruning rates.

Notations: Let || - ||o, || - |1 and || - ||2 be the £y, ¢1 and 5 norm of a real valued vector, respectively.
We denote 1 € R" to be a vector with all components equal to 1. In addition, {0, 1}"™ is the set of
n-dimensional vectors with each coordinate valued in {0, 1}.

2 RELATED WORKS

Below, we first review the related work on network pruning. Then we review training methods
for obtaining sparse networks which can be divided into two groups: dense-to-sparse training and
sparse-to-sparse training.

2.1 NETWORK PRUNING

Network Pruning (Han et al., [2015b; |Guo et al., [2016; Zeng & Urtasun, 2018 L1 et al., 20165 |Luo
et al., 2017} |He et al., [2017; [Zhu & Guptal 2017} Kang & Han, [2020; [Wang et al., 2019; Renda;
et al.l 2020; |Ye et al.l [2020) has been extensively studied in recent years to reduce the model size
and improve the inference efficiency of deep neural networks. Since it is a widely-recognized prop-
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erty that modern neural networks are always over-parameterized, pruning methods are developed
to remove unimportant parameters in the fully trained dense networks to alleviate such redundancy.
According to the granularity of pruning, existing pruning methods can be roughly divided into two
categories, i.e., unstructured pruning and structured pruning. The former one is also called weight
pruning, which removes the unimportant parameters in an unstructured way, that is, any element
in the weight tensor could be removed. The latter one removes all the weights in a certain group
together, such as kernel and filter. Since structure is taken into account in pruning, the pruned net-
works obtained by structured pruning are available for efficient inference on standard computation
devices. In both structured and unstructured pruning methods, their key idea is to propose a proper
implicit or explicit criterion (e.g., magnitude of the weight (Han et al., 2015aibj |Guo et al., 2016
Zhu & Gupta, 2017; [Frankle & Carbin, |2018; Mostafa & Wangl 2019; Bellec et al.l 2017; [Mocanu
et al., 2018; |Wortsman et al., |2019)), scores based on Hessian, momentum or gradient (Menick &
Elsen; Lee et al.l[2018; Zeng & Urtasun, 2018} [LeCun et al.,|1990; Hassibi & Storkl, [1993} Dettmers
& Zettlemoyerl, [2019)) to evaluate the importance of the weight, kernel or filter and then remove
the unimportant ones. The results in the literature (Guo et al., 2016; [Liu et al., |2018} Zeng & Ur-
tasunj, 2018 |Li et al.| 2016} [Renda et al.| |2020; [Kusupati et al., 2020; Menick & Elsen; Wortsman
et al.| 2019) demonstrate that pruning methods can significantly improve the inference efficiency of
DNNs with minimal performance degradation, making the deployment of modern neural networks
on resource limited devices possible.

2.2 DENSE-TO-SPARSE AND SPARSE-TO-SPARSE TRAINING

We follow the convention of |[Kusupati et al.|(2020) to divide training algorithms for obtaining sparse
networks into two groups: dense-to-sparse training and sparse-to-sparse training. Dense-to-sparse
training starts with a dense network and obtains a sparse network at the end of the training (Han
et al., |2015b; Zhu & Guptal [2017; Molchanov et al., 2017} [Frankle & Carbin, 2018; Renda et al.,
20205 Xiao et al.L 2019} [Srinivas et al., 2017 [Louizos et al.,[2017;|Wortsman et al.,[2019). ProbMask
belongs to the group of dense-to-sparse training. Han et al.|(2015a); Zhu & Guptal (2017); |[Frankle
& Carbin| (2018)); Renda et al.| (2020) follows the idea of using weight magnitude as the criterion.
Zhu & Guptal (2017) manually set a uniform sparsity budget for different layers. Renda et al.|(2020)
achieves strong results but needs multiple rounds of pruning and retraining. |Xiao et al.| (2019)
assigns auxiliary scores to weights and use it as the criterion. [Xiao et al.| (2019) suffers from the
bias induced by the approximation of the step function and will have gradient vanishing problem
when using ReLU and SoftPlus as the approximator. This makes the auxiliary scores hard to act
as a global criterion. |Srinivas et al.| (2017); Louizos et al.| (2017); [Molchanov et al.| (2017) base its
criterion on reparameterization of probability and have the most connections with our work. We will
fully discuss them in the next subsection.

Sparse-to-sparse training starts with a sparse network and maintain the sparsity during training (Bel-
lec et al.,|2017; Mocanu et al., [2018; Mostata & Wang| 2019, [Menick & Elsen; Dettmers & Zettle-
moyer, 2019). It uses criterion like weight magnitude, weight gradient magnitude, momentum of
weight to reallocate sparsity through training. Conceptually, sparse-to-sparse training can reduce
the computational cost during training but it is hard to take effect without the support of sparse
convolution framework on GPU. The performance of sparse-to-sparse training generally falls be-
hind dense-to-sparse training under the same setting as shown in/Wang et al.| (2020); Kusupati et al.
(2020).

3 EFFECTIVE SPARSIFICATION WITH GLOBAL SPARSITY CONSTRAINT

Below, we present our proposed network sparsification framework and the method for solving the
minimization problem in the framework.

3.1 A PROBABILISTIC SPARSIFICATION FRAMEWORK

Let D be a dataset consisting of NV i.i.d. samples {(x1,¥1),..., (XN, yn)}, w € R" be the weights
of a neural network. We denote m € {0,1}" to be the masks of the weights. m; = 0 means the
weight w; is pruned and otherwise w; is kept. The problem of training sparse neural networks can
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be naturally formulated into the following empirical risk minimization problem:

1
e B L0 m) = ;f (h(xi;wom),yi),st. [m], <K, (1)
where h(-;w o m) is output of the pruned network with o being the element-wise product of two
vectors, and £(-, -) is the loss function, e.g, the squared loss for regression or cross entropy loss for
classification. K = kn is the model size we want to reduce the network to, i.e., the number of
remaining weights after pruning, here k is the remaining ratio of model weights. Different from
the existing pruning methods, in this framework, the model size is controlled by a single constraint
which avoids tuning the pruning rate for each layer. However, since the objective is discrete with
respect to the mask mm, problem () is hard to solve and thus cannot be applied in practice.

We notice that if we view each component of mask m as a binary random variable and repram-
eterize problem (I) with respect to the distributions of this random variable, then problem ()
can be reformulated into an excepted loss minimization problem over the weight and probabil-
ity spaces, which is continuous. Specifically, we can view m; as a Bernoulli random variable
with probability s; to be 1 and 1 — s; to be 0, that is m; ~ Bern(s;), where s; € [0,1]. As-
suming the variables m; are independent, then we can get the distribution function of m, i.e.,
p(mls) = M, (s;)™ (1 — s;)(1~™:). Thus, the model size can be controlled by the sum of
the probabilities s;, i.e., 175, since Epyp(mis)lmllo = D;_; si. Then the discrete constraint
|m|lo < K in problem (1) can be transformed into 1" s < K with each s; € [0, 1], which is contin-
uous and convex. Therefore, by reparameterizing with respect to s, problem (I)) can be reformulated
into the following excepted loss minimization problem:

| N
wrénﬂ%gys Eprmp(m|s) L(w, m) = i 21( (h(x;;wom),y;),st.1"s < Kands € [0,1]" (2)
Discussion. We do not reparameterize problem (1)) in the logit space (probability is generated by
sigmoid transformation of logit), since we need a simple feasible region, in a sense that the projection
on this region can be solved very efficiently. Another benefit of directly optimizing on the probability
space is that we can avoid gradient vanishing induced by sigmoid transformation. Moreover, our
framework has the following appealing features:

e The constraints in problem (2)) can be rewritten as ||s||; < K and s € [0,1]™. Due to this
{1 norm constraint, the optimal m is sparse, and most of m; would be either 0 or 1 with
high probability, making m converge to a deterministic mask. Therefore, m after training
would have a quite low variance and thus the loss of a randomly sampled m would close
to the expected loss in Eqn.(2).

e Compared with problem (IJ), problem (@) is continuous. Moreover, the feasible region of
problem (2)) is quite simple, which is actually the intersection of the cube [0, 1]™ and the
half space 1" s < K. For such simple set, the projection operator has an explicit expres-
sion, please see Theorem [I] for the details. This makes it possible to adopt the efficient
optimization algorithms such as projected gradient descent to solve problem (2).

e In our framework, the problem is reparameterized with respect to probability, which can be
used as a global criterion to measure the importance of the weights in different layers. The
amount of redundancy in each layer of the neural network, can be learned automatically in
the process of solving problem (2). Therefore, we avoid to set pruning ratio for each layer
manually. The benefits of such nice feature on the model size and the accuracy of the final
pruned network will be verified in the experiments.

3.2  OPTIMIZATION WITH PROJECTED GRADIENT DESCENT

Below, we present our training method for problem (2). We train both the weights w and the prob-
ability s at the same time, and finally sparse network by sampling according to the final probability
s. We adopt projected gradient descent(PGD) as the optimizer and the details are as follows.

[Gradient Computation] The difficulty lies in computing the gradient of the expected loss with
respect to the probability. Therefore, in this paper, we adopt Gumbel-Softmax trick to calculate the
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gradient, with which the gradient w.r.t. weights and probability can be calculated in the following
form:

vs,w]Ep(m\s)E ('w,m) = Ego,glvs,wﬁ(wv ll(log(s) - 1Og(1 - S) +91 — 9o > 0)) (3)

Q

(log(s) —log(1—s)+g1 — go))

Ego,sh Vs,wﬁ(w, o T

“4)
)

I B B @
~ %sz’wﬁ(wvo(log(s) log(1 TS) +9g; 9o ))7 )
=1

where 1(A) € {0,1}" is the indicator function. go and g; are two random variables in R™, with

each element i.i.d sampled from Gumbel(0, 1) distribution. g§") and g((f) withi = 1,2,...,1

are 21 sampled instances. o(-) : R™ — (0,1)™ here is the element-wise sigmoid function, i.e.,
o(x) = H% for any x € R™. 7 is a temperature annealing parameter decreasing during training,

making o (+) become closer to the indicator function. We find in the experiments that this would help
the mask converge to a deterministic one. The proof of the equations above are given in appendix.

From Eqn.(@) to Eqn.(5), multiple networks are sampled to obtain a steady gradient flow with a low
variance. The constraint ||m||; < K can be transformed into ||s||; < K in sight of the fact that
E(||m||;) = ||s||, and the probabilities would converge to either 1 or O during the training process.

[Projected Gradient Descent] We denote the feasible region of problem (2) as C, thatis C' = {s |
Is|l; < K and s € [0,1]™}. The theorem below shows that the projection of a vector onto C' can be
calculated efficiently, which makes PGD applicable.

Theorem 1. For each vector z, its projection s in the set C can be calculated as follows:
s = min(1, max(0, z — v31)).
where v5 = max(0, v}) with v} being the solution of the following equation

1" [min(1, max(0, z — v}1))] = K = 0. (6)

The equation (6)) can be solved by bisection method very efficiently.

Algorithm 1 Probabilistic Masking (ProbMask)

Input: target remaining ratio k¢, a dense network w.

1: Initialize w, assign probabilities s to weights w, let s =1land 7 =k = 1.

2: for training epocht =1,2...7 do

3:  Decrease the temperature annealing parameter by 7 = 0.97(1 — ¢/T) + 0.03.

4:  Update k according to Eqn.(7).

5:  for each training iteration do

6: Sample mini batch of data B = {(x1,y1),.-.,(XB,¥B)}

7: Generate ggz) and g((f) with each element sampled from Gumbel(0, 1),7 =1,2,...,1I.

log(1—8)+g() _g®
8: s« projo(z), with z = s — 97 Zle VsLp (w,a(log(s) ! g(lT St 9 ))
. (D) _ ()

9: w<—w-—1n7 S Vwls (w7 U(log(s)fbg(lf)ﬂ]l —90 )))

10:  end for
11: end for

12: return A pruned network w o m by sampling a mask m from the distribution p(m/|s).

Now we can apply PGD to solve problem (Z2)), the detailed steps are given in Algorithm|I]

[Gradually Increased Pruning Rate] Following (Zhu & Guptal |2017), we increase the pruning
rate to make a smooth transformation from dense to extremely sparse status. That is, we let

t—11

ta —t1

3
k=kp+(1—kf) (1— > fort e {ty,t1+1,...,t}, 7)

t is the current epoch number. ¢; and ¢, are two integers. k keeps 1 before epoch ¢, and k; after
epoch to. ky is the targeted remaining ratio.
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4 EXPERIMENT

In this section, we conduct a series of experiments to evaluate the performance of our proposed
method. We divide the experiments into two parts. In part one, we conduct lots of relatively small-
scaled experiments on CIFAR-10/100 datasets with modern architectures VGG19 (Simonyan & Zis-
serman, 2014) and ResNet32 (He et al., 2016)) to verify some appealing properties of our method.
In part two, we verify the superiority of our method over state-of-the-art methods by conducting
experiments on ImageNet (Deng et al., 2009). We choose six representative methods PBW (Prun-
ing by Weight, |[Han et al,| (2015b)), MLPrune (Zeng & Urtasun [2018), RIGL (Menick & Elsen),
STR (Kusupati et al., 2020), DNW(Maddison et al., [2016), GMP (Zhu & Gupta, [2017)) as base-
lines. PBW (Han et al.| [2015b) is a classic magnitude-based pruning method. MLPrune (Zeng &
Urtasun, 2018)) is a latest Hessian-based pruning method showing overall better performance (Wang
et al.,|2020) against various sparse-to-sparse training methods (SET (Mocanu et al., 2018)), DEEPR
(Bellec et al., |2017), DSR (Mostafa & Wang| [2019)), so we compare with these sparse-to-sparse
training methods implicitly in CIFAR experiments. DNW (Wortsman et al., [2019), GMP (Zhu &
Guptal 2017), STR (Kusupati et al.l |2020) are state-of-the-art methods on dense-to-sparse training.
RIGL (Menick & Elsen) is the state-of-the-art sparse-to-sparse training method. Due to the space
limitation, we postpone the experiment of identifying supermasks and experimental configurations
and into appendix.

4.1 VGG19 AND RESNET32 oN CIFAR-10/100

VGG-19 on CIFAR-10 75 VGG19 on CIFAR-100 o5 ResNet32 on CIFAR-10 75 ResNet32 on CIFAR-100
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Figure 1: Comparison of Top-1 Accuracy on CIFAR-10/100.

Table|l| presents the detailed accuracy of PBW, MLPrune and ProbMask at different pruning ratios.
It is very hard to accurately tune weight decay parameter in STR to obtain the desired pruning ratio.
Therefore we tune the weight decay parameter manually to make it have roughly the same pruning
ratio range with ProbMask, i.e., 90% to 99.9%.

The results in both Table [I] and Figure [I| demonstrate that our ProbMask can steadily outperform
the baselines and the superiority becomes more significant at higher pruning ratios. From Table
we can see that when prune rate come to 99.5% or higher on CIFAR-10/100, PBW and MLPrune
would seriously degrade or even collapse, while our ProbMask can still achieve significantly higher.
Figure 1 shows that on CIFAR-100 with VGG19, the gap between ProbMask and STR would be
roughly 2% on average when the remaining ratio is in the range of [0.9,0.98]. Pruning ResNet32
is more challenging since VGG19 has about 10 times parameters than ResNet32. In this case, the
gap becomes more significant especially at high pruning ratios, which can be up to 5% on CIFAR-
100 experiments. The superiority of ProbMask over such high prune ratios attributes to our global
sparsity constraint, allowing us to have non-uniform sparsity budgets across layers. This will be
further validated in the ablation study in Section

4.2 RESNET50 ON IMAGENET-1K

In this section, we evaluate the performance of our ProbMask on ImageNet with ResNet50. Table
and Figure [2| report the detailed accuracy at different pruning ratios. ProbMask steadily outper-
form state-of-the-art methods with a large margin, especially when the pruning ratio is high than
98%. Notably the gap comes up to 5% at 98% sparsity and 10% at 99% sparsity. DNW and GMP
allocate uniform sparsity budget. They present reasonably good performance at 90% sparsity while
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Dataset CIFAR-10 CIFAR-100
Ratio 0% 95% 98% 99% 99.5% 99.9% 90% 95% 98% 99% 99.5% 99.9%
VGG19 93.84 - - - - - 72.56 - - - - -

PBW 93.87 93.57 92.83 90.89 10.00 10.00 72.41 70.53 5891 1.00 1.00 1.00
MLPrune  93.70 93.45 9248 91.44 88.18 65.38 71.56 70.31 66.77 60.10 50.98 5.58
ProbMask  93.94 94.00 94.05 93.38 92.65 89.79 74.48 73.94 72.22 71.41 70.10 60.41
ResNet32 9478 - - - - - 75.94 - - - - -

PBW 93.67 92.68 89.04 77.03 73.03 38.64 72.19 68.42 5823 43.00 20.75 5.96
MLPrune  93.20 91.70 85.64 76.88 67.66 36.09 70.33 61.73 37.86 22.38 13.85 5.50
ProbMask  94.96 94.16 93.30 91.79 89.34 76.87 74.09 73.06 70.35 65.57 57.25 26.72

Table 1: Accuracy of VGG19 and ResNet32 on CIFAR-10/100 at different pruning ratios.

fall behind ProbMask by about 9% at 98% sparsity. This validates our previous claim that identi-
fying weight allocation for different layers really matters. Uniform sparsity budget is a reasonable
compromise but obviously don’t give a perfect solution. STR attempts to learn weight allocation for
different layers but don’t give perfect results. ProbMask presents much better perfomance on high
spasity regions, leading to a gap about 10% percent at 99% sparsity. With the global comparable
nature of probability, ProbMask easily learns a much better weight allocation scheme for different
layer. We also compare ProbMask with Sparse VD (Molchanov et al.,2017)) on sparsity 90%. Sparse
VD finds a subnet with 73.84% Top-1 Acuucracy, a weaker result than ProbMask. We also observe
noticable fluctuations between different runs, and this can be expected because Sparse VD adopts
crude cut-off practice rather than sampling. This inevitably results in perfomance gap in training
and testing phases. ProbMask learns a deterministic mask at the end of training, fixing the training
and testing performance discrepancy problem. Figure [2|also reports the accuracy-versus-FLOPs for
ProbMask and compared methods. It shows that ProbMask finds a smaller mask with comparable
accuracy and FLOPs and achieve state-of-the-art result on it.
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Figure 2: ProbMask comfortably beats state-of-the-art methods in all sparsity regions. Notably, the gap comes
up to 5% at 98% sparsity and 10% at 99% sparsity. ProbMask obtains a smaller sparse network with comparable
accuracy and FLOPs, still achieving state-of-the-art result on accuracy-vesus-FLOPs curve.

4.3 ABLATION STUDY

In this section, we will show global comparability of probability adopted by ProbMask to measure
weight importance, the superiority of our global sparsity constraint over layer-wise constraint, and
the convergence of scores to an almost deterministic mask.

[Global Comparability of Probability] Table[T|shows that PBW and MLPrune collapse on CIFAR-
10/100 when the pruning ratio is as high as 99.9%. To explore the reason, we plot the remaining
ratio across layers at pruning ratio of 90% and 99.9% on CIFAR-10 in Figure It shows that
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Dataset ImageNet

Ratio 90% 95% 98% 99%

ResNet50 77.01 - - -
PBW (Han et al., [2015a) 69.44  56.84 2246 5.98
MLPrune (Zeng & Urtasun, 2018)  60.98  30.89 3.16 0.77
GMP (Zhu & Guptal 2017) 7391 7059 5790 44.78

DNW (Wortsman et al.| [2019) 74.00 6830 58.20 -
STR (Kusupati et al., 2020) 7431 7040 6146  50.35

RIGL (Menick & Elsen) 72.00  67.50 - -
ProbMask 74.68 7150 66.83 61.07

Table 2: Accuracy of ResNet50 on ImageNet at different pruning ratios. ProbMask steadily beats
previous state-of-the-art methods on Hessian-based pruning, weight magnitude pruning, dense-to-
sparse training and sparse-to-sparse training. RIGL improves with the help of ERK (Erdés-Rényi-
Kernel) but will result in doubling the FLOPs at inference time, so we put it in Figure 2)).

when the pruning ratio is high, PBW and MLPrune prune almost all the weights in certain layers
with remaining ratio approaching 1076, e.g., layer 10 and 11 in VGG 19 and layer 23, 24 and 26
in ResNet32. Such pruned networks would never achieve good performance even with finetuning.
The reason is that the proposed weight importance measure in PBW and MLPrune are not globally
comparable. To be precise, although the weight importance scores in different layers have been
normalized in MLPrune, their magnitudes are still quite different, which is verified in Figure [4]
Thus a global threshold could remove almost all the weights in certain layers in order to achieve
high enough pruning ratio. Figure [3|also shows that the pruning ratio of ProbMask varies in a proper
range. This attributes to the probability that we adopt as the weight importance measure, which is
globally comparable and enables us to use a global sparsity constraint. That is, by training under the
global sparsity constraint, ProbMask can learn optimal sparsity budget allocation automatically for
all the layers and we do not need to set proper pruning ratio for each layer manually.

VGG19 Prune Rate 90% 100 VGG19 Prune Rate 99.9% 109 ResNet32 Prune Rate 90% 109 ResNet32 Prune Rate 99.9%

\/\/ 107 \\_/ o M
1074 107!

PBW: 93.87

10°

Remaining Ratio
=
2

PBW: 10.00 PBW: 93.67 PBW: 38.64

10°°

i MLPrune: 93.70 MLPrune: 65.38 MLPrune: 93.20 MLPrune: 36.09
10 —— ProbMask: 93.94 —e— ProbMask: 89.79 —=— ProbMask: 94.96 —=— ProbMask: 76.87
T T T T T T T 107 T T T T T T T 1072 +————————— 1078 +————————
1 3 5 7 9 11 13 15 17 1 3 5 7 9 11 13 15 17 1 4 7 101316192225283134 1 4 7 101316192225283134
Layer Index Layer Index Layer Index Layer Index

Figure 3: Remaining ratio in each layer on CIFAR-10.
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Figure 4: Weight importance score histogram of ResNet32 from MLPrune with pruning rate 99.9%.

[Superiority of Global Sparsity Constraint over Layer-wise Constraint] To show this superi-
ority, we evaluate the performance of ProbMask under global sparsity constraint and layer-wise
sparsity constraint. In layer-wise constraint, we force all the pruning ratios in each layer to be equal
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and also equal to the one in the global constraint. The experiment is conducted on CIFAR-10 with
ResNet32 and the results are given in Table 3| It shows that the gap of the accuracy under global
and layer-wise constraints are small when prune rate is lower than 95%, however, it would grow up
rapidly when the pruning ratio is larger than 98%. For example, when the pruning ratio is 99.9%,
the accuracy of global sparsity constraint can be up to 57.75% higher than the layer-wise one.

Table 3: Comparing layerwise sparsity budget and global sparsity budget of ProbMask on ResNet32.

Dataset CIFAR-10
Ratio 90% 95% 98% 9%  99.5% 99.9%
ResNet32 94.78 - - - - -

Layerwise Sparsity Budget 9489 94.09 92.64 90.89 74.6 19.12
Global Sparsity Budget 94.96 94.16 93.30 91.79 89.34 76.87
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Figure 5: Probability histogram of VGG19 trained by ProbMask on CIFAR-10 at pruning rate 90%.

[Convergence to Deterministic Mask] To show that the mask trained by our ProbMask can con-
verge to a deterministic mask after training, we randomly choose some layers from VGG19 and
present their distribution of the probability value after training in Figure 5] We can see that after
training, almost all of the probabilities s; can converge to either 0 and 1, leading to a deterministic
mask. This nice feature attributes to ¢; norm in our global sparsity constraint over the probability
space and the temperature annealing technique.

5 CONCLUSION

This paper proposes an effective network sparsification method ProbMask and demonstrate state-
of-the-art results on various models and datasets. We provide evidence that probability can serve
as a suitable global comparator to measure weight importance and solve the training and testing
performance discrepancy problem observed in practice. ProbMask can also serve as a powerfull tool
for identifying subnetworks with high performance in a randomly weighted dense neural network.
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A APPENDIX

In this appendix, we present the general experimental configurations, results of applying ProbMask
for finding supermasks, proof for equation 3] and proof for theorem|I]

A.1 EXPERIMENTAL CONFIGURATIONS

Dataset CIFAR  ImageNet
GPUs 1 4
Batch Size 256 256
Epochs 300 100
Weight Optimizer SGD SGD
Weight Learning Rate 0.1 0.256
Weight Momentum 0.9 0.875
Probability Optimizer Adam Adam
Probability Learning Rate 6e-3 6e-3
t1 48 16
to 180 60
Warmup X v
Label Smoothing X 0.1

Table 4: The bold-face probability learning rate 6e-3 is the only hyperparameter obtained by grid
search on CIFAR-10 experiments on a small size network Conv-4 (Frankle & Carbin, [2018)) and
applied directly to larger datasets and networks. This demonstrates the generality of our proposed
ProbMask to different datasets, different networks and different tasks, i.e., pruning networks and
finding supermasks. Other hyperparameters are applied following the same practice of previous
works (Ramanujan et al., [2020; |Kusupati et al., [2020; [Liu et al., 2018} [Zhu & Guptal, 2017). The
channels of ResNet32 for CIFAR experiments are doubled following the same practice of Wang
et al.| (2020). The temperature annealing scheme follows the same practice of Xie et al.| (2018))

A.2 APPLYING PROBMASK FOR FINDING SUPERMASKS IN RANDOMLY WEIGHTED
NEURAL NETWORKS

Previous works on supermasks, i.e, subnetworks achieving good performance with weights fixed at
random state, focus on sparsity region [10%, 90%]. Here, we would like to explore the performance
of supermasks with higher sparsity, [90%, 99%]. We conduct experiments on modern architeture
ResNet32 and dataset CIFAR-100, a harder task than CIFAR-10 where a large portion of previous
experiments are conducted. In this experiment, weights are fixed at initialization state by Kaiming
Normal |He et al.[(2015). Hyperparameters follow the same as previous CIFAR experiments. Ac-
cording to Figure[6] we observe that ProbMask easily scales to ultra sparse region with about 50%
accuracy and 2% remaining weights, while state-of-the-art method edge-popup Ramanujan et al.
(2020) collapse with less than 30% accuracy. It is a surprising result that a subnet with 2% fixed
random weights still succeeds in obtaining nearly 50% accuracy on a task with 100 categories. It
shows that the structure in networks already provides valuable information for classification.

12
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Resl\égt32 on CIFAR-100 for Finding Supermasks
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Figure 6: ProbMask can find a supermask with just 2% remaining weights and nearly 50% accuracy

on CIFAR-100. Weights are fixed at initialization state.

Table 5: ResNet32 on CIFAR-100 for finding supernets

Dataset CIFAR-100
Ratio 90% 95%  98% 99%
ResNet32 75.94 - - -
edge-popup 6294 53.07 26.6 15.39
ProbMask  63.67 59.51 48.59 3791

A.3 PROOF FOR EQUATION[3|
Proof. The PDF (probability density function) of Gumbel(u, 1) is

P pe———)
The CDF (cumulative distribution function) of Gumbel(u, 1) is

_e— ()

F(z;p) =e
We just need to prove that
Vi, P(log(s;) —log(l —s;)+ g1 — g2, > 0) = s;.

®)

€))

(10)

g1,; and go ; are two Gumbel(0, 1) random variables sampled for s;. The probability is taken with

respect to g1 ; and g2 ;. s; can be seen as a constant in the following proof.

Let 21 = log(s;) + g1, 22 = log(l — s;) + g2,;. Then z; ~ Gumbel(log(s;),1), zo ~

Gumbel(log(1 — s;), 1).
P(log(si) —log(1 —5;) + g1,i — g2,: > 0)
(

=P Z9 S Zl)
+oo 21
:/ / f(z2;1log(1 — 5;)) f(21; log(si))dzadzy
+oo
/ F(z1;1og(1 — ;) f(21;10g(s;))dz1
_ /+OO 6_57(217103(1—%)) ) e—(21—10g Si)_e—(zl—log Si)dzl
—o0

“+o0
:/ 6_6721(1_57L)_Zl+10g5i_5721S’idzl
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+oo —
=s; / e ¢ " Tdy (17
=s; (18)
_t;o e~¢ =214z is the integral of a Gumbel(0,1) random variable. O

A.4 PROOF FOR THEOREMII]

Proof. The projection from z to set C can be formulated in the following optimization problem:

1
min = |s — 2|2,
seR” 2

st1Ts< Kand0 < s; <1.

Then we solve the problem with Lagrangian multiplier method.

1
L(s,v) = 5||s—z||2+v(1Ts—1r<) (19)
1
:§||5—(z—v1)H2+v(1Tz—K)—ng,UZO. (20)
with the implicit constraint 0 < s; < 1. Minimize the problem with respect to s, we have
§=1._p1>1+ (2 —v1)152-01>0 2n
We have
_ 1
g(v) =L(5,v) = 5||[z —vl]_4z—(+ D1 P +v(1Tz—s) - 302 (22)
1 1
=5z = o1 7 + Sl = (0 + DI * + 01Tz - 5) - gzﬂ,v >0, (23)
gW)=1Twl —2]; +17[(v+ 1)1 - 2]+ (1T2—s) —mw (24)
=17 min(1, max(0, z — v1)) — K,v > 0. (25)

It is easy to verify that ¢’(v) is a monotone decreasing function with respect to v and we can use a
bisection method solve the equation ¢g’(v) = 0 with solution v]. Then we get that g(v) increases in
the range of (—o0, v7] and decreases in the range of [v}, +00). The maximum of g(v) is achieved at
0if v} < 0and v] if v > 0. Then we set v3 = max(0, v]). Finally we have

S* :1z—v§121 + (Z - 'U;]-)l>z—1);1>0 (26)
=min(1, max(0,z — v31)). (27)
O

A.5 COMPARISON WITH PREVIOUS STOCHASTIC METHODS

We notice a few existing stochastic methods aiming to optimize the expected loss. [Louizos et al.
(2017) proposes an method based on reparameterization to the expected loss minimization and but
is reported to fail to work on ImageNet (Gale et al.| [2019). [Louizos et al.| (2017) cannot learn a
deterministic mask and thus lead to much difference between the training and test-time versions of
models. [Srinivas et al.|(2017) solves the expected loss minimization using straight-through estimator
(Bengio et al.,|2013)) and ensures the convergence of probabilities to O or 1 through two regularizers.
However it includes much bias produced by ignoring the Heaviside in the likelihood during the
gradient evaluation (Louizos et al.,|2017).
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