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ABSTRACT

The pre-training and fine-tuning paradigm has become prominent in transfer learn-
ing. For example, if the model is pre-trained on ImageNet and then fine-tuned to
PASCAL, it can significantly outperform that trained on PASCAL from scratch.
While ImageNet pre-training has shown enormous success, it is formed in 2D, and
the learned features are for classification tasks; when transferring to more diverse
tasks, like 3D image segmentation, its performance is inevitably compromised
due to the deviation from the original ImageNet context. A significant challenge
lies in the lack of large, annotated 3D datasets rivaling the scale of ImageNet
for model pre-training. To overcome this challenge, we make two contributions.
Firstly, we construct AbdomenAtlas 1.1 that comprises 9,262 three-dimensional
computed tomography (CT) volumes with high-quality, per-voxel annotations of 25
anatomical structures and pseudo annotations of seven tumor types. Secondly, we
develop a suite of models that are pre-trained on our AbdomenAtlas 1.1 for trans-
fer learning. Our preliminary analyses indicate that the model trained only with 21
CT volumes, 672 masks, and 40 GPU hours has a transfer learning ability similar to
the model trained with 5,050 (unlabeled) CT volumes and 1,152 GPU hours. More
importantly, the transfer learning ability of supervised models can further scale
up with larger annotated datasets, achieving significantly better performance than
preexisting pre-trained models, irrespective of their pre-training methodologies or
data sources. We hope this study can facilitate collective efforts in constructing
larger 3D medical datasets and more releases of supervised pre-trained models.

1 INTRODUCTION

Pre-training and fine-tuning is a widely adopted transfer learning paradigm (Zoph et al., 2020). Given
the relationship across different vision tasks, a model pre-trained on one dataset is expected to benefit
another. Over the past few decades, pre-training has been important in AI development (Kumar, 2017;
Radford et al., 2021). For 2D vision tasks, there are two available options: (i) supervised pre-training
and (ii) self-supervised pre-training, but for 3D vision tasks, option (i) is often not available simply
due to the lack of large, annotated 3D volumetric datasets (Wang et al., 2022).

Supervised pre-training can learn image features that are transferable to many target tasks. It has
been common practice to pre-train models using ImageNet and then fine-tune the model on target
tasks that often have less training data, e.g., PASCAL. However, two challenges arise in ImageNet
pre-training. Firstly, ImageNet predominantly comprises 2D images, leaving a palpable void in
large-scale 3D datasets and investigation in 3D transfer learning (Huang et al., 2023). Secondly,
ImageNet is intended for image classification, so the benefit for segmentation (and other vision tasks)
can be somewhat compromised (He et al., 2019). If such an ImageNet-like dataset exists—formed
in 3D and annotated per voxel—supervised pre-trained models are expected to transfer better to 3D
image segmentation than self-supervised ones for two reasons.

1. Supervised pre-training is more efficient in data and computation because of its explicit
learning objective. While self-supervised pre-training can learn features without manual an-
notation, it often requires a large corpus of datasets (Xiao et al., 2022). Extracting meaningful
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features directly from raw, unlabeled data is inherently challenging. Unlabeled data have a high
degree of redundancy (Haghighi et al., 2020; 2021) and noise (Mahajan et al., 2018), which can
complicate the learning process. Therefore, self-supervised pre-training often calls for greater
computational resources and time to match the outcomes achieved by supervised pre-training
(Chen et al., 2020a; Tang et al., 2022). We have quantified the improved data and computational
efficiency from perspectives of both pre-training (Figure 2a; 99.6% fewer data) and fine-tuning
(Figure 2b; 66% less computation). Specifically, the model trained with 21 CT volumes, 672
masks, and 40 GPU hours shows transfer learning ability similar to that trained with 5,050 CT
volumes and 1,152 GPU hours, highlighting the remarkable efficiency of supervised pre-training.

2. Supervised pre-training enables the model to learn image features that are relevant to image
segmentation. Self-supervised pre-training must extract images features from raw, unlabeled
data using pretext tasks such as mask image modeling (Chen et al., 2019a; Tao et al., 2020;
Zhou et al., 2021b; He et al., 2022), instance discrimination (Xie et al., 2020; Chaitanya et al.,
2020; Shekoofeh et al., 2021), etc. Despite their efficacy in pre-training, these pretext tasks share
no obvious relation to the target image segmentation. In contrast, supervised pre-training uses
semantically meaningful annotations (e.g., organ/tumor segmentation) as supervision, with which
the model can mimic the behavior of medical professionals—identifying the edge and boundary
of specific anatomical structures. As a result, the pre-training is interpretable, and the learned
features are expected to be relevant to image segmentation tasks (Zamir et al., 2018; Ilharco et al.,
2022; You et al., 2022). We have demonstrated that the learned features can be direct inference for
organ segmentation on CT volumes collected from hospitals worldwide (Table 3; evaluated on
three novel hospitals). The features learned by supervision can also be fine-tuned to perform novel
class segmentation (unseen in the pre-training) with higher accuracy and less annotated data than
the features learned by self-supervision (Table 4; evaluated on 63 novel classes).

This paper seeks to answer the question how well the model transfers to 3D medical imaging tasks IF
it is pre-trained on large, annotated 3D datasets. Naturally, we start with creating an IF dataset at a
massive scale. Firstly, we construct a dataset (termed AbdomenAtlas 1.11) of 9,262 CT volumes
with per-voxel annotations of 25 anatomical structures and pseudo annotations of seven types of
tumors. This large-scale, fully-annotated dataset enables us to train models in a fully supervised
manner using multi-organ segmentation as the pretext task. As reviewed in Table 1, this dataset
is much more extensive (considering both the number of CT volumes and annotated classes) than
public datasets (Wasserthal et al., 2022; Ma et al., 2022; Qu et al., 2023). Scaling experiments in
§3.1 suggested that pre-training models on more annotated datasets can further improve the transfer
learning ability. Secondly, we develop a suite of Supervised Pre-trained Models, termed SuPreM,
that combined the good of large-scale datasets and per-voxel annotations, demonstrating the efficacy
across a range of target segmentation tasks. As reported in §3.2, some of the dominant segmentation
backbones have been pre-trained and will be available to the public. Current pre-trained backbones
are U-Net (CNN-type) (Ronneberger et al., 2015), SegResNet (CNN-type) (Myronenko, 2019), and
Swin UNETR (Transformer-type) (Tang et al., 2022), and more backbones will be added along time.

In prospective endeavors, we anticipate that the expansion of datasets and annotations will not only
enhance feature learning, as demonstrated in this study, but also promote the development of advanced
AI algorithms and benchmark the state of the art in terms of segmentation performance, inference
efficiency, and domain generalizability.

2 BRIEF HISTORY: SUPERVISED PRE-TRAINING

In a major initiative aimed at developing widely transferable AI models—known as Foundation
Models in the medical domain (Moor et al., 2023; Butoi et al., 2023; Ma & Wang, 2023a)—one faces
a critical decision: should the focus of pre-training be supervised or self-supervised? While human
annotations undeniably improve task-specific performance, such as semantic segmentation, the best
strategy for learning generic image features that can be transferable across a spectrum of tasks has yet
to be determined. For 2D vision tasks, the advent of ImageNet (Deng et al., 2009) makes it possible
to debate the merits and limitations of supervised pre-trained models for transfer learning compared

1Segmentation is fundamental in the medical domain (Ma & Wang, 2023b). It can be viewed as a per-voxel
classification task. Therefore, the per-voxel supervision used in our pre-training (272.7B annotated voxels) is
much stronger than the per-image supervision used in ImageNet pre-training (14M images).
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with self-supervised ones. We refer the readers to Yang et al. (2020) and Tendle & Hasan (2021) for
a plethora of viewpoints from either side. In essence, the debates are about clarifying the learning
objective (loss function) of emulating human vision (Zhou, 2021).

The learning objective of supervised pre-training is to minimize the discrepancy between AI predic-
tions and semantic labels annotated by humans. Over the years, supervised pre-training on ImageNet
has shown marked success in transfer learning (Yosinski et al., 2014). Moreover, the transfer learning
ability can be further enhanced when models are trained on increasingly expansive datasets, such as
ImageNet-21K (Kolesnikov et al., 2020), Instagram (Mahajan et al., 2018), JFT-300M (Sun et al.,
2017), and JFT-3B (Zhai et al., 2022). In general, supervised pre-training exhibits clear advantages
over self-supervised pre-training when sizable annotated datasets are available (Steiner et al., 2021;
Ridnik et al., 2021). However, acquiring millions of manual annotations is labor-intensive, time-
consuming, and challenging to scale—but certainly not impossible—evidenced by several recent
influential endeavors (Kuznetsova et al., 2020; Mei et al., 2022; Kirillov et al., 2023; Bai et al., 2023).

On the other hand, self-supervised pre-training offers an alternative by enabling AI models to learn
from raw, unlabeled data (Jing & Tian, 2020; Zoph et al., 2020; Ren et al., 2022; 2023), thus reducing
the need for manual annotation. Self-supervised pre-training has historically lagged behind the
state-of-the-art supervised pre-training in ImageNet benchmarks (Pathak et al., 2016; Noroozi &
Favaro, 2016). The recent pace of progress in self-supervised pre-training has yielded models whose
performance not only matches but, at times, surpasses those achieved by supervised pre-training
(Chen et al., 2020a; Grill et al., 2020; Chen et al., 2020b; Zhou et al., 2021a; Wei et al., 2022). This
has raised hopes that self-supervised pre-training could indeed replace the ubiquitous supervised
pre-training in advanced computer vision going forward. The caveat, however, is the significant
demand for both data and computational power, often exceeding the resources available in academic
settings. For example, He et al. (2020) have demonstrated that self-supervised features trained on 1B
images (a factor of 714× larger) can transfer comparably or better than ImageNet features.

Supervised pre-training on ImageNet has demonstrated benefit for 2D medical image tasks after
transfer learning (Tajbakhsh et al., 2016; Shin et al., 2016; Zhou et al., 2017). Unfortunately, it has
been constrained for 3D medical imaging tasks due to the lack of a 3D counterpart to ImageNet.
Although there are a great number of raw, unlabeled medical images available (Team, 2011; Baxter
et al., 2023; Zhao et al., 2023; Saenz et al., 2024), annotating these images is a labor-intensive under-
taking for professionals. Our contribution to a large, annotated 3D dataset could spark the debate of
whether self-supervised or supervised pre-training leads to better performance and data/computational
efficiency, which would not be possible without the invention of a dataset of such a scale.

3 MATERIAL & METHOD

We constructed an AbdomenAtlas 1.1 dataset comprising 9,262 three-dimensional CT volumes
and over 251,323 masks spanning 25 anatomical structures and 7 types of tumors. In addition, we
released a suite of supervised pre-trained models (SuPreM) to benefit 3D medical imaging tasks.

3.1 EXTENSIVE DATASET: ABDOMENATLAS 1.1

Interactive segmentation, an integration of AI algorithms and human expertise, was used to create
AbdomenAtlas 1.1 in a semi-automatic procedure. We recruited a team of ten radiologists to
perform manual annotations to ensure the annotation quality2. Given the complexity of 3D data,
rather than annotating the entire dataset voxel by voxel, we asked the radiologists to focus on the
most important CT volumes and regions therein. In doing so, an importance score for each volume
was computed, derived from the uncertainty, consistency, and overlap (Qu et al., 2023). Six junior
radiologists revised the annotations predicted by AI under the supervision of four senior radiologists,
and in turn, AI improved its predictions by learning from these revised annotations. This interactive
procedure continued to enhance the quality of annotations until no major revision was required from
the radiologists. Subsequently, four senior radiologists went through the final visualizations for
all the annotations, detecting and revising major errors as needed before the dataset was released.
Annotation tools employed included a licensed version from Pair and an open-source MONAI Label.

2Ensuring high-quality annotations is costly and time-consuming, yet it is critical for transfer learning, as
quantified in Appendix A.3, and for reducing ambiguity when training AI models for image segmentation.
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Table 1: Contribution #1: An extensive dataset of 9,262 CT volumes with per-voxel annotations
of 25 anatomical structures. This dataset is unprecedented in terms of data and annotation scales,
providing over 251,323 organ/tumor masks and 2,789,975 annotated images that are taken from 88
hospitals worldwide. In 2009, before the advent of ImageNet (Deng et al., 2009), it was challenging
to empower an AI model with generalized image representation using a small or even medium size of
labeled data, the same situation, we believe, that presents in 3D medical image analysis today. As
seen in the table, the annotations of public datasets are limited, partial, and incomplete, and the CT
volumes in these datasets are often biased toward specific populations, medical centers, and countries.
Our constructed dataset mitigates these gaps, representing a significant leap forward in the field. The
CT volumes in datasets 1–17 are used to construct AbdomenAtlas 1.1. The domain gap across
these datasets is illustrated in Appendix A.1.

dataset (year) [source] # of
organ

# of†

volume
# of

center dataset (year) [source] # of
organ

# of†

volume
# of

center

1. Pancreas-CT (2015) [link] 1 42 1 2. CHAOS (2018) [link] 4 20 1
3. CT-ORG (2020) [link] 5 140 8 4. BTCV (2015) [link] 12 47 1
5. AMOS22 (2022) [link] 15 200 2 6. WORD (2021) [link] 16 120 1
7-12. MSD CT Tasks (2021) [link] 9 945 1 13. LiTS (2019) [link] 1 131 7
14. AbdomenCT-1K (2021) [link] 4 1,050 12 15. KiTS (2020) [link] 1 489 1
16. FLARE’23 (2022) [link] 13 4,100 30 17. Trauma Det. (2023) [link] 0 4,711 23
18. AbdomenAtlas 1.0 (2023) [link] 9 5,195 26 19. AbdomenAtlas 1.1 25 9,262‡ 88
†Our reported number of CT volumes may differ from original publications, as some CT volumes are reserved for validation purposes.
‡The number of CT volumes in AbdomenAtlas 1.1 is lower than the sum of datasets 1–17 due to overlaps within these public datasets.

AbdomenAtlas 1.1 is a composite dataset that unifies CT volumes from public datasets 1–17 as
summarized in Table 1. AbdomenAtlas 1.1 presents a level of diversity because the CT volumes
are sourced from 88 hospitals worldwide, including pre, portal, arterial, and delayed phases. The gap
between these CT volumes includes changes in image quality due to different acquisition parameters,
reconstruction kernels, and contrast enhancement, shown in Appendix A.1. Moreover, we provide
per-voxel annotations for 25 anatomical structures, including 16 abdominal organs, two thorax organs,
five vascular structures, and two skeletal structures. We also provide pseudo annotations for seven
types of tumors, namely liver, kidneys, pancreatic, hepatic vessel, lung, colon tumors, and kidney
cysts. In total, more than 272.7B voxels are annotated in AbdomenAtlas 1.1, marking a significant
leap compared with the 4.3B voxels annotated in the public datasets, amplifying the annotations by a
factor of 63.4× (shown in Appendix Figure 4). The high annotation quality is due to the uniform
annotation standards described in Appendix A.2. We commit to releasing AbdomenAtlas 1.1 to the
public. However, this dataset, the largest public per-voxel annotated CT collection by far, accounts
for around 0.01% of the CT volumes annually acquired in the United States (Papanicolas et al., 2018).
Therefore, cross-institutional collaboration is crucial for accelerating data sharing, annotation, and AI
development (Saenz et al., 2024).

3.2 A SUITE OF PRE-TRAINED MODELS: SUPREM

The magnitude of our AbdomenAtlas 1.1 is unprecedented in terms of data and annotations. One
of the advantages is that it enables us to train AI models in both a supervised and self-supervised
manner. At the time this paper is written, neither supervised nor self-supervised pre-training has
been performed on this scale of dataset (9,262 volumetric data)3. We have developed models (termed
SuPreM) pre-trained on data and annotations in AbdomenAtlas 1.1, which leverage established
CNN backbones, such as U-Net and SegResNet, as well as Transformer backbones, such as Swin
UNETR. With the growing trend of using pre-trained models, we have maintained a standardized,
accessible model repository for sharing public model weights as well as a suite of supervised pre-
trained models (SuPreM) released by us. Releasing pre-trained models should be considered a
marked contribution as they offer an alternative way of knowledge sharing while protecting patient
privacy (Sellergren et al., 2022; Zhang & Metaxas, 2023; Ma et al., 2023a). In this study, all of the
models in SuPreM follow pre-training and fine-tuning configurations as below.

3For supervised pre-training, the largest study to date was by Liu et al. (2023), which was developed on 3,410
(2,100 for training and 1,310 for validation) annotated CT volumes. For self-supervised pre-training, the largest
one was by Tang et al. (2022), which was trained on 5,050 unannotated CT volumes. Concurrently, Valanarasu
et al. (2023) pre-trained a model on 50K volumes of CT and MRI using self-supervised learning.
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Table 2: Contribution #2: A suite of pre-trained models (termed SuPreM) comprising several
widely recognized AI models. We provide pre-trained AI models based on CNN, Transformer, and
their hybrid versions, and more AI models will be added. Each model was supervised pre-trained on
large datasets and per-voxel annotations from AbdomenAtlas 1.1. Compared with learning from
scratch and publicly available models, fine-tuning the models in SuPreM consistently achieves state-
of-the-art organ and tumor segmentation performance on two datasets. All of the results, including the
mean and standard deviation (mean±s.d.) across ten trials. In addition, we have further performed an
independent two-sample t-test between learning from scratch and fine-tuning models in our SuPreM.
The performance gain is statistically significant at the P = 0.05 level, with highlighting in a light red
box. Detailed per-class performance can be found in Appendix §B.1.

TotalSegmentator v1 proprietary dataset
model (# of param) pre-training organ muscle cardiac organ gastro cardiac

U-Net (2015)
family
(19.08M)

scratch 88.9±0.6 92.9±0.4 88.8±0.7 85.6±0.5 69.8±1.2 38.1±1.1
Zhou et al. (2019b) 87.8 90.1 86.3 80.1 65.5 36.9
Chen et al. (2019b) 86.9 91.4 87.4 79.0 66.2 36.7
Xie et al. (2022) 88.5 92.9 89.0 - - -
Zhang et al. (2021) 89.3 93.8 89.1 85.7 72.7 38.3
SuPreM 92.1±0.3 95.4±0.1 92.2±0.3 90.8±0.2 76.2±0.8 70.5±0.5

Swin UNETR (2021)
(62.19M)

scratch 86.4±0.5 88.8±0.5 84.5±0.6 77.3±0.9 65.9± 1.7 35.5±1.4
Tang et al. (2022) 89.3 93.8 88.3 87.9 72.5 38.9
Liu et al. (2023) 89.7 94.1 89.4 89.1 74.6 67.6
SuPreM 91.3±0.3 94.6±0.2 90.3±0.3 90.4±0.7 75.9±1.2 69.8±0.9

SegResNet (2019)
(4.7M)

scratch 88.6±0.5 91.3±0.4 89.8±0.4 80.6±0.8 67.0±1.4 36.0±1.3
SuPreM 91.3±0.5 94.0±0.1 91.3±0.5 86.6±0.3 73.7±1.0 67.9±0.8

To perform a fair and rigorous comparison, we benchmarked with public pre-training methods by
pre-training SuPreM using 2,100 CT volumes (same as Liu et al. (2023) and fewer than Tang et al.
(2022)) in Tables 2, 4 and Figures 1, 2b, 3. Then, we scaled up the number of CT volumes for
pre-training to 9,262 CT volumes to perform direct inference in Table 3. Lastly, we scaled down the
number of CT volumes to 21 to explore the edge of our SuPreM in Figure 2a. All these pre-trained
models and configurations have been summarized in Appendix Table 8. The best-performing model
was selected based on the highest average DSC score over 32 classes on a validation set of 1,310 CT
volumes. Implementation details of both pre-training and fine-tuning can be found in Appendix B.2.

The transfer learning ability is assessed by segmentation performance on two datasets, i.e., TotalSeg-
mentator v1 and a proprietary dataset. Benchmarking results in Table 2 indicate that, in comparison
with learning from scratch and with existing public models, those fine-tuned from our SuPreM
consistently attain superior organ, muscle, cardiac, and gastro segmentation performance on both
datasets. U-Net, as a simple and lightweight segmentation backbone, still performs competitively
compared with alternative choices like Swin UNETR. This observation is aligned with the majority
of the medical imaging community (Isensee et al., 2021; Eisenmann et al., 2023), suggesting that
more exploration is needed for advancing segmentation backbones. Moreover, in the scenarios of
either small data regimes shown in Figure 1 or large data regimes shown in Appendix Figure 7a–d,
supervised models transfer better than their self-supervised counterparts. In summary, our SuPreM
surpasses all existing 3D pre-trained models by a large margin in transfer learning performance,
irrespective of their pre-training methodologies or data sources.

Figure 1: We present the transfer performance on a pro-
prietary dataset with few-shot examples (N = 5, 10, 20).
The transfer performance (Y-axis) stands for the aver-
age DSC score across 20-class organ segmentation and
3-class tumor segmentation. Generally speaking, in a
few-shot learning setting, supervised pre-trained models
(in red) transfer better than self-supervised pre-trained
models (in gray). Notably, our SuPreM achieves the
best transfer performance over other well-known pub-
licly available models.
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Figure 2: Analysis of pre-training and fine-tuning efficiency. For a fair comparison, both supervised
(in red) and self-supervised (in gray) models use Swin UNETR as the backbone, and the compared
self-supervised pre-training is the current state of the art (Tang et al., 2022). The target task was
on TotalSegmentator v1. (a) scales the model transfer learning ability when pre-trained on varying
numbers of images. The results indicate a consistent improvement in transfer learning ability when
pre-training on more images. The model trained with 21 CT volumes, 672 masks, and 40 GPU hours
shows a transfer learning ability similar to that trained with 5,050 CT volumes and 1,152 GPU hours.
Specifically, supervised pre-training is more efficient, requiring 99.6% fewer data and 96.5% less
computation. (b) assesses the annotation & learning efficiency by fine-tuning models on different
numbers of annotated CT volumes from TotalSegmentator. Specifically, SuPreM, fine-tuned on 512
per-voxel annotated CT volumes, can achieve a segmentation performance on par with self-supervised
models fine-tuned on 1,024 volumes, reducing 50% manual annotation cost for target tasks.

4 EXPERIMENT & ANALYSIS

4.1 DATA, ANNOTATION, AND COMPUTATIONAL EFFICIENCY

Summary. We demonstrate the remarkable efficiency: (1) SuPreM trained with 21 CT volumes,
672 masks, and 40 GPU hours shows transfer learning ability similar to that trained with 5,050 CT
volumes and 1,152 GPU hours. (2) SuPreM requires 50% fewer manual annotations for organ/tumor
segmentation than self-supervised pre-training.

Data efficiency for pre-training. As shown in Figure 2a, supervised pre-training requires less data (21
vs. 5,050 CT volumes) for the pretext task than self-supervised pre-training. This discrepancy arises
from the inherent differences in their learning learning objectives and the information they leverage.
Supervised pre-training benefits from explicit annotations, which provide direct guidance for the task,
i.e., segmentation in this study. The model learns features from both data and annotations, which offer
strong and precise supervision. On the other hand, self-supervised learning relies on pretext tasks
derived from the raw data, which may offer a more ambiguous learning signal, therefore requiring
more examples to capture meaningful features. Importantly, our finding suggests that supervised pre-
training is more scalable with increased data. When data are increased from 21 to 1,575 volumes, the
transfer learning performance on TotalSegmentator improves from 90.4% to 91.3%. In comparison,
for self-supervised pre-training, an increase in data from 1,000 to 5,050 volumes only marginally
improves performance from 89.7% to 89.9%. Therefore, supervised pre-training requires significantly
less data than self-supervised and is more scalable and effective with increased data.

Annotation efficiency for fine-tuning. We have assessed the annotation efficiency by fine-tuning
SuPreM and self-supervised models (Tang et al., 2022) on the TotalSegmentator dataset. Figure 2b
suggests that fine-tuning SuPreM can reduce annotation costs for the segmentation task by 50%,
averaged over the classes that were not used for pre-training (per-class performance can be found in
Appendix Figure 8a–d). Specifically, SuPreM fine-tuned on 512 per-voxel annotated CT volumes
can achieve segmentation performance similar to Tang et al. (2022) fine-tuned on 1,024 annotated
CT volumes. The fine-tuning performance improvement gets bigger when the number of annotated
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Table 3: Direct inference on three external datasets. We conduct external validation across four
hospitals worldwide. Specifically, our SuPreM—trained on 9,262 CT volumes—is directly inferred
on three external datasets, i.e., TotalSegmentator (representing the Central European population
from Switzerland; one hospital), DAP Atlas (the Central European population from Germany; two
hospitals), and the proprietary dataset (the North American population from the United States; one
hospital) measured by DSC scores. For every dataset, we compare the out-of-distribution (OOD)
performance obtained by SuPreM with independently and identically distributed (IID) performance
obtained by AI models directly trained on that specific dataset, which are often considered as upper
bound performance in domain transfer literature. We find that SuPreM can be generalized well across
external datasets without additional fine-tuning, yielding comparable or even superior performance
to the IID counterparts, evidenced by the one-sample t-test results. Appendix D.1 provides visual
examples of anatomical structure segmentation.

class TotalSegmentator v1 DAP Atlas our proprietary dataset
SuPreM (OOD) Liu et al. (IID) SuPreM (OOD) Jaus et al. (IID) SuPreM (OOD)) Wang et al. (IID)

spleen 96.0±0.0 ∗∗∗∗ 93.6 96.8±0.0 ns 96.8 95.0±0.0 ∗∗∗∗ 89.6
kidney right 93.3±0.1 ∗ 94.1 96.3±0.1 ∗∗∗∗ 95.3 92.2±0.0 ∗∗∗∗ 88.0
kidney left 91.2±0.2 ∗∗∗∗ 87.7 96.4±0.1 ∗∗∗∗ 97.4 91.6±0.1 ∗∗∗∗ 83.9
gall bladder 81.8±0.3 ∗∗∗∗ 73.9 87.6±0.4 ∗∗∗∗ 71.2 83.6±0.2 ns 85.4
liver 96.4±0.1 ns 96.8 97.3±0.1 ∗∗∗∗ 98.5 95.0±0.3 ∗∗∗∗ 91.4
stomach 87.3±0.3 ns 89.2 95.3±0.2 ∗∗∗∗ 96.1 92.2±0.1 ∗ 93.6
aorta 80.8±0.4 ∗∗∗∗ 90.7 90.7±0.5 ∗∗∗∗ 97.7 73.9±0.3 ∗∗∗∗ 87.0
postcava 77.9±0.3 ∗∗∗∗ 82.1 89.1±0.4 ∗∗∗∗ 95.9 77.7±0.4 ∗∗ 80.8
pancreas 84.6±0.2 ∗∗∗∗ 80.8 90.6±0.2 ∗∗∗∗ 93.7 79.0±0.3 ns 79.3
average 87.7±0.2 ns 87.6 93.3±0.2 ∗∗∗∗ 93.6 86.7±0.2 ns 86.1
ns P > 0.05 ∗ P ≤ 0.05 ∗∗ P ≤ 0.01 ∗∗∗ P ≤ 0.001 ∗∗∗∗ P ≤ 0.0001

CT volumes is limited in the target task (e.g., 64, 128, 256). In addition, similar levels of annotation
efficiency (reduced 50% cost) are observed when fine-tuning SuPreM on the three-class tumor
segmentation task using the proprietary dataset, as presented in Appendix Figure 8e–g.

Computational efficiency for both pre-training and fine-tuning. This efficiency stems, in part, from
the reduced data requirements inherent to supervised pre-training, as discussed above. As shown in
Figure 2a, supervised pre-training only needs 40 GPU hours to achieve a transfer learning performance
comparable to that of self-supervised pre-training, which requires 1,152 GPU hours—a factor increase
of 28.8×. When fine-tuning on target tasks, such as on a 10% subset of TotalSegmentator in Appendix
Figure 9, the supervised pre-trained model converges much faster than the self-supervised one,
reducing the GPU hours needed from 60 to 20. This implies that image features learned by supervised
pre-training are intrinsically more expressive, enabling the model to seamlessly adapt across a myriad
of 3D image segmentation tasks with minimal annotated data for fine-tuning. This computational
efficiency makes supervised pre-training a compelling choice for 3D image segmentation without
compromising model performance, especially when the large, annotated dataset is available.

4.2 ENHANCED FEATURES FOR NOVEL DATASETS, CLASSES, AND TASKS

Summary. The learned features manifest considerable generalizability and adaptability. The features
can direct inference for organ segmentation on external datasets of CT volumes taken from different
hospitals. The features can also be fine-tuned to segment novel organ/tumor classes and classify
tumor sub-types with higher accuracy and less annotated data than those learned by self-supervision.

Direct inference on external datasets. AI models trained on a specific dataset often encounter
challenges in generalizing to novel datasets when a marked difference—referred to as a domain
gap—exists between them (Zhang & Metaxas, 2023). While domain adaptation and generalization
are prevalent research strategies to mitigate this challenge (Guan & Liu, 2021; Zhou et al., 2022a),
we choose to address this issue by training a model on an expansive and diverse dataset (elaborated
in Appendix A.1). We assume the domain gap between CT volumes from different hospitals is not
as pronounced as those in computer vision. This is because of the relatively standardized nature of
computer tomography as an imaging modality, where pixel intensity conveys consistent anatomical
significance (Zhou et al., 2022b). AbdomenAtlas 1.1 presents impressive diversity, covering CT
volumes with variations in contrast enhancement, reconstruction kernels, CT scanner types, and
acquisition parameters. This breadth and diversity are imperative for developing an AI model with
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Table 4: Fine-tuning SuPreM on 66 novel classes. Following the standard transfer learning
paradigm, we fine-tune our SuPreM on the segmentation task of novel classes. These tasks include
segmenting 19 muscles, 15 cardiac structures, 5 organs, and 24 vertebrae from TotalSegmentator, as
well as three fine-grained pancreatic tumor types from the proprietary dataset. It is important to note
that these classes were not part of the pre-training of SuPreM. We observe that SuPreM, supervised
pre-trained on only a few classes, can transfer better than those self-supervised pre-trained on raw,
unlabeled data measured by DSC scores (per-class results in Appendix D.3). In other words, it is
the task of segmentation itself that can enhance the model’s capability of segmenting novel-class
objects. This benefit is much more straightforward and understandable than such self-supervised
tasks as contextual prediction, mask image modeling, and instance discrimination in the context of
transfer learning. We hypothesize that it is because the model learns to understand the concept of
objectness in a broader sense through full supervision, as suggested by Kirillov et al. (2023), but this
certainly deserves further exploration. In addition, an independent two-sample t-test was performed
between the self-supervised pre-trained model and the supervised pre-trained model.

novel class self-super. super. ∆ novel class self-super. super. ∆

humerus left 92.8±0.7 93.2±0.3 ns 0.4 vertebrae L5 94.1±0.2 95.7±0.3 ∗∗∗∗ 1.6
humerus right 87.5±1.0 95.0±0.5 ∗∗∗∗ 7.6 vertebrae L4 90.4±0.6 93.0±0.5 ∗∗∗∗ 2.6
· · · (15 more classes) · · · (20 more classes)
iliopsoas left 84.4±0.3 85.7±0.3 ∗∗∗∗ 1.3 vertebrae C2 86.8±2.0 91.8±0.2 ∗∗∗∗ 5.1
iliopsoas right 87.4±0.3 88.7±0.2 ∗∗∗∗ 1.3 vertebrae C1 87.1±0.8 87.4±0.8 ns 0.3
average (muscle) 93.9±0.1 94.3±0.1 ∗∗∗∗ 0.4 average (vertebrae) 86.4±0.3 89.2±0.2 ∗∗∗∗ 2.7

trachea 93.4±0.1 93.4±0.1 ns 0.0
heart myocardium 88.9±0.2 89.8±0.2 ∗∗∗∗ 0.9
· · · (11 more classes) PDAC 53.3±0.4 53.6±0.3 ∗ 0.3
urinary bladder 90.5±0.9 91.5±0.9 ∗ 1.0 Cyst 41.5±0.3 49.4±0.3 ∗∗∗∗ 7.9
pulmonary artery 89.0±0.9 92.0±0.2 ∗∗∗∗ 3.0 PanNet 35.5±0.8 46.0±0.5 ∗∗∗∗ 10.5
average (cardiac) 88.9±0.1 90.7±0.1 ∗∗∗∗ 1.8 average (tumor) 43.4±0.3 49.7±0.2 ∗∗∗∗ 6.2
ns P > 0.05 ∗ P ≤ 0.05 ∗∗ P ≤ 0.01 ∗∗∗ P ≤ 0.001 ∗∗∗∗ P ≤ 0.0001

the robustness required to accommodate the variations present in novel datasets. We conduct external
validation on several novel datasets sourced from Switzerland and East Asia to challenge the AI
model on the data distribution that it has not encountered during the training. This result is referred
to as out-of-distribution (OOD) performance. For comparison, we also collect the result achieved
by dataset-specific AI models—those individually trained on the specific datasets—referred to as
independently and identically distributed (IID) performance. As shown in Table 3, our SuPreM can
be generalized well to novel data distribution without the need for further fine-tuning or adaptation,
consistently offering OOD performance that matches or even exceeds that of its IID counterparts.

Fine-tuning on novel classes. The value of transfer learning lies in fine-tuning the pre-trained models
on novel scenarios (Zhou et al., 2021b), such as novel classes, image modalities, and vision tasks
that are completely unseen during the pre-training. In this study, we evaluate the proficiency of
SuPreM when transferred to a wide variety of novel classes for 3D image segmentation tasks4.
These novel classes include 19 muscles, 15 cardiac structures, 5 organs, and 24 vertebrae from the
TotalSegmentator dataset, as well as three fine-grained pancreatic tumor types from the proprietary
dataset. As shown in Table 4, our SuPreM, supervised pre-trained on 25 classes, can transfer better
to novel classes than those self-supervised models pre-trained on raw, unlabeled data. We find that
the pretext task of segmentation itself can enhance the model capability of segmenting novel classes.
The benefit of same-task transfer learning, i.e., segmentation as pretext and target tasks, is much
more straightforward and understandable than other pretext tasks such as contextual prediction, mask
image modeling, and instance discrimination. Through full supervision in segmentation tasks, the
model learns to understand the concept of objectness5, wherein the model gains a more profound
understanding of what characterizes an object. The model does not just recognize predefined objects
but begins to understand the foundational factors of objects in general. Such factors include texture,
boundary, shape, size, and other low-level visual cues that are often deemed essential for image
segmentation. This resonates with our assertion in the introduction: just as classification-based

4The fine-tuning performance of 17 seen classes, detailed in Appendix D.2, is promising, but this is expected
because the model is exposed to more examples of these classes in both pre-training and fine-tuning phases.

5Objectness refers to the inherent attributes that distinguish something as an object within an image, differen-
tiating it from the background or other entities.
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Figure 3: Fine-tuning SuPreM on fine-grained tumor classification. We plot receiver operating
characteristic (ROC) curves to evaluate the transfer learning performance of tumor classification.
Detecting Cysts and PanNETs raises additional challenges for AI because these lesions exhibit a
greater variety of texture patterns than PDACs. This diversity in texture patterns is reflected in the
values of the Area Under the Curve (AUC) that we obtained. For all three sub-types of pancreatic
tumors, SuPreM (in red) demonstrates superior performance over the self-supervised model (Tang
et al., 2022) (in gray), showcasing its effectiveness in fine-grained tumor classification.

features from ImageNet transfer optimally for classification tasks (Huh et al., 2016; He et al., 2019;
Zoph et al., 2020; Ridnik et al., 2021), segmentation-based features are optimal for segmentation
tasks. Our findings do not negate the value of self-supervised pre-training. With 9,262 CT volumes,
should self-supervised pre-training outperforms supervised pre-training in model transferability in
the future, its value will be further highlighted by eliminating the need for manual annotations.

Fine-tuning on novel tasks. We have investigated the cross-task transfer learning ability of SuPreM
between organ segmentation and fine-grained tumor classification. The distance between the two
tasks is much larger than transferring among segmentation tasks. It is challenging to benchmark
fine-grained tumor classification, particularly due to the scarcity of annotations in public datasets
(often limited to hundreds of tumors). To overcome this limitation, we employed our proprietary
dataset (Xia et al., 2022), which comprises 3,577 annotated pancreatic tumors, including detailed sub-
types: 1,704 PDACs, 945 Cysts, and 928 PanNETs. This extensive dataset enabled us to thoroughly
assess the transfer learning ability of SuPreM in tumor-related tasks. Figure 3 shows that supervised
models (SuPreM) transfer better to target classification tasks than self-supervised models (Tang et al.,
2022), leading to improved Area Under the Curve (AUC) for identifying each tumor type. Notably,
the transfer learning results detailed in Appendix D.4 reveal a sensitivity of 86.1% and specificity
of 95.4% for PDAC detection. This performance surpasses the average radiologist’s performance
in PDAC identification by 27.6% in sensitivity and 4.4% in specificity, as reported in Cao et al.
(2023). Moreover, Appendix Figure 8 shows that SuPreM requires 50% fewer manual annotations
for fine-grained tumor classification than self-supervised pre-training. This is particularly critical for
tumor imaging tasks because annotating tumors requires much more effort and often relies on the
availability of pathology reports.

5 CONCLUSION AND DISCUSSION

This study examines the transfer learning ability of supervised models that are pre-trained on
3D annotated datasets and fine-tuned on 3D image segmentation tasks. We start by constructing
AbdomenAtlas 1.1, an extensive collection of 9,262 three-dimensional CT volumes with high-
quality, per-voxel annotations. The magnitude of this dataset is unprecedented regarding data
volume (2,789,975 images), granularity of annotations (251,323 masks), and inclusive diversity
(88 hospitals). This dataset facilitates the development of a suite of pre-trained models, termed
SuPreM, that can be effectively transferred to a broad spectrum of 3D image segmentation tasks.
Notably, SuPreM transfers better than all existing 3D models by a large margin, especially when
transferred to under-annotated datasets. The model trained with 21 CT volumes, 672 masks, and 40
GPU hours shows a transfer learning ability similar to that trained with 5,050 CT volumes and 1,152
GPU hours, highlighting the remarkable efficiency of supervised pre-training. We also demonstrate
that the learned features can direct inference effectively on external datasets and fine-tune to segment
novel classes and classify multiple types of tumors with higher accuracy and less annotated data than
those learned by self-supervision.
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