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Abstract

Mamba has recently emerged as a promising alternative to Transformers, offering
near-linear complexity in processing sequential data. However, while channels in
time series (TS) data have no specific order in general, recent studies have adopted
Mamba to capture channel dependencies (CD) in TS, introducing sequential order
bias. To address this issue, we propose SOR-Mamba, a TS forecasting method
that 1) incorporates a regularization strategy to minimize the discrepancy between
two embedding vectors generated from data with reversed channel orders, thereby
enhancing robustness to channel order, and 2) eliminates the 1D-convolution
originally designed to capture local information in sequential data. Furthermore,
we introduce channel correlation modeling (CCM), a pretraining task designed
to preserve correlations between channels from the data space to the latent space,
thereby improving the ability to capture CD. Extensive experiments demonstrate the
efficacy of the proposed method across standard and transfer learning scenarios.

1 Introduction
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Figure 1: Mamba for TS.

Transformer [28] has been widely used for TS forecasting
task [38, 42] due to its ability to capture long-term dependen-
cies, but its quadratic complexity limits its practicality. Recently,
Mamba [10] enhanced state-space models (SSMs) [11, 26] by
incorporating a selective mechanism that mimics the attention
mechanism with near-linear complexity. Due to its strong com-
putational efficiency, Mamba has been applied in the TS domain
to capture temporal dependencies (TD) by treating input in a
time order [17], channel dependencies (CD) by treating input in a channel order [29], or both [4].
In this paper, we focus on utilizing Mamba for capturing CD, in line with recent work [19] using
attention mechanisms for CD while using simple multi-layer perceptrons (MLPs) for TD. However,
applying Mamba to capture CD is challenging due to the sequential order bias, as the channels lack
an inherent sequential order, whereas Mamba is designed for sequential inputs, as shown in Figure 1.
To this end, we introduce Sequential Order-Robust Mamba for TS Forecasting (SOR-Mamba), a TS
forecasting method that handles the sequential order bias by 1) incorporating a regularization strategy
to minimize the distance between two embedding vectors generated with reversed channel orders to
enhance robustness to the order, and 2) removing the 1D-convolution (1D-conv) originally designed
to capture local information in sequential input. Additionally, we propose Channel Correlation
Modeling (CCM), a pretraining task that aims to maintain the correlation between channels from the
data space to the latent space. The main contributions are summarized as follows:

• We propose SOR-Mamba, a TS forecasting method that handles the sequential order bias by 1) reg-
ularizing Mamba to minimize the distance between two embedding vectors generated from data
with reversed channel orders for robustness to channel order and 2) removing the 1D-convolution
from the original Mamba block, as channels lack an inherent sequential order.

∗Equal contribution.
†Equal advising.
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Figure 2: Overall framework of SOR-Mamba and CCM. (a) shows the architecture of SOR-
Mamba, where CD-Mamba block is regularized to minimize the distance between two vectors derived
from reversed channel orders. CD-Mamba block is the proposed architecture of Mamba block with
the 1D-conv removed, as channels do not have an inherent sequential order. (b) illustrates CCM,
which aims to preserve the correlation between channels from the data space to the latent space.

• We introduce CCM, a novel pretraining task that preserves the correlation between channels from
the data space to the latent space, thereby enhancing the model’s ability to capture CD.

• We provide extensive experiments on various datasets, demonstrating that our proposed method
improves state-of-the-art (SOTA) performance in both standard and transfer learning settings.

2 Methodology
In this paper, we introduce SOR-Mamba, a TS forecasting method designed to alleviate the sequential
order bias by regularizing Mamba to minimize the distance between two embedding vectors generated
from data with reversed channel orders and removing the 1D-conv from the original Mamba block.
The overall framework of SOR-Mamba is shown in Figure 2(a), consisting of four components:
1) embedding layer, 2) Mamba for capturing CD, 3) MLP for capturing TD, and 4) prediction head.
Furthermore, we introduce a novel pretraining task, CCM, which preserves the correlation between
channels from the data space to the latent space to align with recent emphasis on using attention
mechanisms to capture CD over TD. The overall framework of CCM is illustrated in Figure 2(b).

2.1 Architecture of SOR-Mamba
1) Embedding layer. To tokenize the TS in a channel-wise manner, we use an embedding layer that
treats each channel as a token, following the approach used in iTransformer [19]. Specifically, we
transform x ∈ RL×C into z ∈ RC×D using a single linear layer.
2) Mamba for CD. The original Mamba combines the H3 block [9] with a gated MLP, where the
H3 block includes the 1D-conv before the SSM layer to capture local information within previous
steps. However, since channels in TS do not have any sequential order, we find this convolution
unnecessary for capturing CD. Accordingly, we remove the 1D-conv from the original Mamba block,
resulting in the proposed CD-Mamba block. With the proposed CD-Mamba block, we obtain two
hidden representations with reversed channel orders, which are then element-wise added via a residual
connection and used for regularization to mitigate the sequential order bias.

Algorithm 1 The procedure of SOR-Mamba
Input: X = [X1, . . . ,XL] : (B,L,C)

Output: Ŷ = [X̂L+1, . . . , X̂L+H ] : (B,H,C)

1: Z : (B,C,D)← Linear(X⊤)
2: for m in layers do
3: Z1 : (B,C,D)← CD-Mamba(Z)
4: Z2 : (B,C,D)← CD-Mamba(Z⋆)⋆,

where Z⋆ = Z[:, :: −1, :]
5: Z : (B,C,D)← (Z1 + Z2) + Z
6: Z : (B,C,D)← LN(MLP(LN(Z)))
7: end for
8: Ŷ : (B,H,C)← Linear(Z)⊤

3) MLP for TD. To capture TD in TS, we apply
MLP to the representation of each channel obtained
from the CD-Mamba block. To enhance training
stability, we apply layer normalization (LN) before
and after the MLP.
4) Prediction head. To predict the future output, we
employ a linear prediction head to the representation
of each channel obtained from the MLP, resulting
in ŷ ∈ RH×C . The procedure of SOR-Mamba is
described in Algorithm 1, where Z⋆ represents Z
with its channel order reversed.

2.2 Regularization with CD-Mamba Block
To mitigate the sequential order bias, SOR-Mamba regularizes the CD-Mamba block by minimizing
the distance between two embedding vectors generated from data with reversed channel orders. The
regularization term is defined as follows:

Lreg(z) = d (z1, z2) , (1)
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where d is an arbitrary distance metric, and z1 and z2 are the embedding vectors obtained from
CD-Mamba block using z with its order reversed, as described in Algorithm 1. The proposed
regularization term is then added to the forecasting loss Lfcst(·) with a contribution of λ, resulting in:

L(x,y) = Lfcst(x,y) + λ ·
m∑
i=1

Lreg(z
(i)), (2)

where z(i) is z at the i-th layer, and m is the total number of encoder layers. By using the above
regularization term with the unidirectional Mamba, we achieve better performance and efficiency
compared to S-Mamba [29] which employs the bidirectional Mamba, as discussed in Table 4.
Additionally, we find that the regularization also benefits the bidirectional Mamba, which already
addresses the sequential order bias, as discussed in Table 5, and that the forecasting performance is
robust to λ and the distance metric d, as discussed in Appendix T and Appendix U, respectively.

2.3 Channel Correlation Modeling
Previous pretraining tasks for TS have primarily focused on TD, such as masked modeling [36] and
reconstruction [15]. However, we argue for the necessity of a new task that emphasizes CD over TD
to align with recent TS models that focus on capturing CD with complex model architectures [19, 29].
To this end, we propose CCM, which aims to preserve the (Pearson) correlation between channels
from the data space to the latent space, as correlation is a simple yet effective way to measure channel
relationships and has been utilized in prior studies to analyze CD [33, 39].
For CCM, we calculate the correlation matrices between the input token on the data space and the
output token after the additional linear projection layer on the latent space, as shown in Figure 2(b).
The loss function for CCM, defined as the distance between these two matrices, can be expressed as:

LCCM(x) = d (Rx,Rz) , (3)

where Rx and Rz are the correlation matrices in the data space and the latent space, respectively. We
find that CCM is more effective than masked modeling and reconstruction across diverse datasets
with varying numbers of channels, as demonstrated in Appendix M. Additionally, its performance
remains robust regardless of the choice of d, as discussed in Appendix U.

3 Experiments
We demonstrate the effectiveness of SOR-Mamba on TS forecasting task with 13 datasets [40, 32, 18]
from various domains in both standard and transfer learning settings. Details of the experimental
settings and dataset statistics are provided in Appendix A.
Time series forecasting. Table 1 shows the results for the multivariate TS forecasting task, showing
the average mean squared error (MSE) and mean absolute error (MAE) across four horizons under
both supervised learning (SL) and self-supervised learning (SSL) settings with fine-tuning (FT). The
results demonstrate that our method outperforms SOTA Transformer-based models and S-Mamba
which uses the bidirectional Mamba, whereas our approach utilizes the unidirectional Mamba,
providing greater efficiency as discussed in Appendix R. Full results are described in Appendix H.

Models

(1) Mamba (2) Transformer (3) Linear/MLP

SOR-Mamba
S-Mamba iTransformer PatchTST Crossformer TimesNet DLinear RLinear

FT SL

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 .433 .436 .442 .438 .457 .452 .454 .449 .469 .454 .529 .522 .458 .450 .456 .452 .446 .434
ETTh2 .376 .405 .382 .407 .383 .408 .384 .407 .387 .407 .942 .684 .414 .427 .559 .515 .374 .398
ETTm1 .391 .400 .396 .401 .398 .407 .408 .412 .387 .400 .513 .496 .400 .406 .403 .407 .414 .407
ETTm2 .281 .327 .284 .329 .290 .333 .293 .337 .281 .326 .757 .610 .291 .333 .350 .401 .286 .327

PEMS03 .121 .227 .137 .242 .133 .240 .142 .248 .180 .291 .169 .281 .147 .248 .278 .375 .495 .472
PEMS04 .099 .203 .107 .212 .096 .205 .121 .232 .195 .307 .209 .314 .129 .241 .295 .388 .526 .491
PEMS07 .088 .186 .091 .191 .090 .191 .102 .205 .211 .303 .235 .315 .124 .225 .329 .395 .504 .478
PEMS08 .142 .232 .162 .247 .157 .242 .254 .306 .280 .321 .268 .307 .193 .271 .379 .416 .529 .487
Exchange .358 .402 .363 .405 .364 .407 .368 .409 .367 .404 .940 .707 .416 .443 .354 .414 .378 .417
Weather .256 .277 .257 .278 .252 .277 .260 .281 .259 .281 .259 .315 .259 .287 .265 .317 .272 .291

Solar .230 .259 .242 .274 .244 .275 .234 .261 .270 .307 .641 .639 .301 .319 .330 .401 .369 .356
ECL .168 .264 .169 .262 .174 .269 .179 .270 .205 .290 .244 .334 .192 .295 .212 .300 .219 .298

Traffic .402 .273 .412 .276 .417 .277 .428 .282 .481 .304 .550 .304 .620 .336 .625 .383 .626 .378

Average .257 .299 .265 .305 .266 .307 .278 .315 .306 .338 .481 .448 .303 .329 .372 .397 .418 .403

1st Count 33 31 7 10 10 7 1 3 8 7 3 0 0 0 2 0 3 9
2nd Count 15 19 18 19 13 13 9 6 1 6 0 0 0 1 2 0 2 2

Table 1: Results of multivariate TS forecasting. We compare our method with SOTA methods
under both SL and SSL settings. The best results are in bold and the second best are underlined.
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Source Target
S-Mamba SOR-Mamba

SL LP FT SL LP FT

In-
domain

ETTh2 ETTh1 .457 .450 .464 .442 .452 .433
ETTm2 ETTm1 .398 .398 .400 .396 .401 .390

Cross-
domain

ETTm2 ETTh1 .457 .450 .455 .442 .448 .433
ETTh2 ETTm1 .398 .401 .402 .396 .399 .391
ETTm1 ETTh1 .457 .450 .468 .442 .449 .434
ETTh1 ETTm1 .398 .403 .399 .396 .404 .391
Weather ETTh1 .457 .546 .552 .442 .545 .542
Weather ETTm1 .398 .460 .501 .396 .457 .458

Table 2: Results of transfer learning.

Dataset SL
SSL

Rec. MM CCM
ETT (4) .376 .371 .374 .370

PEMS (4) .124 .117 .113 .112
Exchange .363 .361 .361 .358
Weather .257 .256 .256 .256

Solar .242 .232 .231 .230
ECL .169 .172 .169 .168

Traffic .412 .410 .410 .402

Table 3: Comparison of SSL.

Average MSE across four H ETTh1 ETTh2 ETTm1 ETTm2 Avg. Impr. # Params. Impr.

S-Mamba .457 .383 .398 .290 .382 - 9.29M -
+ Regularization .452 .382 .394 .286 .378 1.0% 9.29M -
+ Bi → Unidirectional .449 .382 .396 .285 .378 0.1% 5.81M 37.5%
+ Remove 1D-conv .442 .382 .396 .284 .376 0.5% 5.80M 0.1%
+ CCM .433 .376 .391 .281 .370 1.5% 5.80M -

Table 4: Ablation study of Regularization , Model architecture and Pretraining task .

Mamba ETT PEMS
Exchange Weather Solar ECL Traffic

# Reg. h1 h2 m1 m2 03 04 07 08

Bi ✗ .457 .383 .398 .290 .133 .096 .090 .157 .364 .252 .244 .174 .417
✓ .452 .382 .394 .286 .131 .096 .092 .155 .361 .252 .245 .170 .411

Uni ✗ .455 .383 .403 .289 .140 .102 .094 .161 .364 .255 .244 .175 .416
✓ .449 .382 .396 .285 .135 .101 .091 .158 .361 .255 .244 .171 .416

Table 5: Effect of regularization. Regularization enhances both the unidirectional and the bidirec-
tional Mamba. Note that we do not remove the 1D-conv to isolate the effect of regularization.

Mamba ETT PEMS
Exchange Weather Solar ECL Traffic

# 1D-conv h1 h2 m1 m2 03 04 07 08

Bi ✓ .457 .383 .398 .290 .133 .096 .090 .157 .364 .252 .244 .174 .417
Bi ✗ .441 .383 .396 .285 .137 .102 .089 .148 .364 .255 .242 .167 .414

Uni ✓ .449 .382 .396 .285 .135 .101 .091 .158 .361 .255 .244 .171 .416
Uni ✗ .442 .382 .396 .284 .137 .107 .091 .162 .363 .257 .242 .169 .412

Table 6: Effect of 1D-convolution. Removing the 1D-convolution improves performance on general
TS datasets, as they lack inherent sequential order in channels.

Transfer learning. In in-domain transfer, we conduct experiments using datasets with the same
frequency for both the source and target datasets, while in cross-domain transfer, we use datasets
with different frequencies for the source and target datasets. Table 2 shows the average MSE across
four horizons, under both FT and linear probing (LP) settings, demonstrating that SOR-Mamba
consistently outperforms S-Mamba, achieving nearly a 5% performance gain with FT.
Ablation study. To demonstrate the effectiveness of our method, we perform an ablation study using
four ETT datasets to evaluate the impact of the following components: 1) adding the regularization
term, 2) using the unidirectional Mamba 3) removing the 1D-conv, and 4) pretraining with CCM.
Table 4 shows the results, indicating that using all components yields the best performance and that
adding the regularization term provides a performance gain even with the bidirectional Mamba.
Effect of CCM. To demonstrate the impact of CCM, we compare it with two other widely used
pretraining tasks: masked modeling (MM)[36] with a masking ratio of 50%, and reconstruction
(Rec.)[15]. Table 3 shows the results, indicating that CCM consistently outperforms the other tasks.
Further analysis and application to S-Mamba are discussed in Appendix M.
Effect of regularization. To validate the effect of the regularization term, we apply it to both the
unidirectional and the bidirectional Mamba without removing the 1D-conv to isolate the effect of the
regularization. The results are shown in Table 5, indicating that regularizing the model also benefits
the bidirectional Mamba, making regularization complementary to bidirectional scanning.
Effect of 1D-conv. Table 6 shows the effect of removing the 1D-conv for both the unidirectional and
the bidirectional Mamba. The results demonstrate that its removal may negatively impact datasets
with ordered channels, such as Weather [32] and the PEMS datasets [18] with traffic sensor data,
whereas it improves performance on general TS datasets whose channels lack sequential order.
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A Experimental Settings

A.1 Tasks and Evaluation Metrics
We demonstrate the effectiveness of SOR-Mamba on TS forecasting tasks with 13 datasets under
standard and transfer learning settings. For evaluation, we primarily follow the standard self-
supervised learning (SSL) framework, which involves pretraining and fine-tuning (FT) or linear
probing (LP) on the same dataset. Additionally, we consider in-domain and cross-domain transfer
learning settings, with dataset domains defined based on previous work [8]. The evaluation metrics
used are mean squared error (MSE) and mean absolute error (MAE).

A.2 Datasets
For forecasting tasks, we use 13 datasets, including four ETT datasets (ETTh1, ETTh2, ETTm1,
ETTm2) [40], four PEMS datasets (PEMS03, PEMS04, PEMS07, PEMS08) [5], Exchange, Weather,
Traffic, Electricity (ECL) [32], and Solar-Energy (Solar) [14]. Details of the dataset statistics are
discussed in Appendix B.

A.3 Experimental Setups
We follow the experimental setups from iTransformer and S-Mamba. Note that we do not tune any
hyperparameters except for λ, which is related to the proposed regularization, while adhering to
the values used in S-Mamba for all other hyperparameters concerning the model architecture and
optimization. For dataset splitting, we adhere to the standard protocol of dividing all datasets into
training, validation, and test sets in chronological order. Details of the experimental setups, including
the size of the input window and the forecast horizon, are discussed in Appendix B.

A.4 Baseline Methods
We follow the baseline results and methods from S-Mamba [29]. For the baseline methods, we
consider Transformer-based models, including iTransformer [19], PatchTST [23], and Crossformer
[38], linear/MLP models, including RLinear [16], DLinear [34] and TimesNet [31], and S-Mamba, a
Mamba-based TS forecasting model. Details of the baseline methods are discussed in Appendix C.
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B Dataset Statistics
We assess the performance of SOR-Mamba across 13 datasets, with the dataset statistics detailed in
Table B.1, where C and T denotes the number of channels and timesteps.
We follow the same data processing steps and train-validation-test split protocol as used in S-
Mamba [29], maintaining a chronological order in the separation of training, validation, and test sets,
using a 6:2:2 ratio for the Solar-Energy, ETT, and PEMS datasets, and a 7:1:2 ratio for the other
datasets. The results are shown in Table B.1, where N ,L, and H represent the dataset size, size of
lookback window, and size of output horizon, respectively. For all datasets and all models, the L is
uniformly set to 96.

Dataset
Statistics Experimental Setups

C T (Ntrain, Nval, Ntest) L H

ETTh1 [40]

7

17420 (8545, 2881, 2881)

96

{96, 192, 336, 720}

ETTh2 [40] 17420 (8545, 2881, 2881)
ETTm1 [40] 69680 (34465, 11521, 11521)
ETTm2 [40] 69680 (34465, 11521, 11521)

Exchange [32] 8 7588 (5120, 665, 1422)
Weather [32] 21 52696 (36792, 5271, 10540)
ECL [32] 321 26304 (18317, 2633, 5261)
Traffic [32] 862 17544 (12185, 1757, 3509)
Solar-Energy [14] 137 52560 (36601, 5161, 10417)

PEMS03 [18] 358 26209 (15617, 5135, 5135)

{12, 24, 48, 96}PEMS04 [18] 307 15992 (10172, 3375, 3375)
PEMS07 [18] 883 28224 (16911, 5622, 5622)
PEMS08 [18] 170 17856 (10690, 3548, 3548)

Table B.1: Datasets for TS forecasting.

C Baseline Methods
• S-Mamba [29]: S-Mamba utilizes bidirectional Mamba to capture channel dependencies in TS

by scanning the channels from both directions.

• PatchTST [23]: PatchTST segments TS into patches and feeds them into a Transformer in a
channel independent manner.

• iTransformer [19]: iTransformer reverses the conventional role of the Transformer in TS
domain by treating each channel rather than patches as a token, thereby emphasizing channel
dependencies over temporal dependencies.

• Crossformer [38]: Crossformer employs a cross-attention mechanism to capture both temporal
and channel dependencies in TS.

• TimesNet [31]: TimesNet captures both intraperiod and interperiod variations in 2D space using
a parameter-efficient inception block.

• RLinear [16]: RLinear is a simple linear model that integrates reversible normalization and
channel independence.

• DLinear [34]: DLinear is a simple linear model with channel independent architecture, that
employs TS decomposition.
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D Related Works

D.1 TS Forecasting with Transformer
Transformers [28] are commonly employed for long-term TS forecasting (LTSF) tasks due to their
ability to handle long-range dependencies through attention mechanisms. However, their quadratic
complexity has led to the development of various methods aimed at improving efficiency, such
as modifying the Transformer architecture [38, 42], patchifying the TS [23] or using MLP-based
models [6, 34]. While MLP-based models offer simpler structures and reduced complexity compared
to Transformers, they tend to be less effective at capturing global dependencies [29]. Recently,
iTransformer [19] inverts the conventional Transformer framework in TS domain by treating each
channel as a token rather than each patch, shifting the focus from capturing TD to CD. This framework
has led to significant performance improvements and has become widely adopted as the backbone for
TS models [20, 7].

D.2 State-Space Models
To overcome the limitations of Transformer-based models, state-space models have been integrated
with deep learning to tackle the challenge of long-range dependencies [25, 37, 41]. However, these
methods are unable to adapt their internal parameters to varying inputs, which limits their performance.
Recently, Mamba [10] introduces a selective scan mechanism that efficiently filters specific inputs
and captures long-range context by incorporating time-varying parameters into the SSM. Due to its
linear-time efficiency for modeling long sequences, it has been widely adopted in various domains,
including computer vision [21, 13, 43] and natural language processing [24, 2, 12].

D.3 TS Forecasting with Mamba
Due to its balance between performance and computational efficiency, Mamba has also been applied
in the TS domain to address TS forecasting tasks. TimeMachine [1] utilizes multi-scale quadruple-
Mamba to capture either TD alone or both CD and TD, with its architecture relying on the statistics of
the dataset. S-Mamba [29], MambaMixer [3], and SAMBA [30] employ bidirectional scanning with
bidirectional Mamba to overcome the sequential order bias when capturing CD, but they are limited
by the need for two Mamba models. MambaTS [4] introduces variable permutation training, which
shuffles the channel order during the training stage to address the sequential order bias by enhancing
robustness to the order. However, it is limited by the need for an additional procedure to determine
the optimal scan order for the inference stage. C-Mamba [35] introduces channel attention enhanced
patch-wise Mamba encoder to capture both TD and CD, and FMamba [22] integrates fast-attention
with Mamba to better capture CD.
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E Preliminaries

E.1 Problem Definition
This paper addresses the multivariate TS forecasting task, where the model uses a lookback window
x = (x1,x2, · · · ,xL) to predict future values y = (xL+1, · · · ,xL+H) with xi ∈ RC representing
the values at each time step. Here, L, H , and C denote the size of the lookback window, the forecast
horizon, and the number of channels, respectively.

E.2 State-Space Models
SSM transforms the continuous input signals x(t) into corresponding outputs y(t) via a state repre-
sentation h(t). This state-space represents how the state evolves over time, which can be expressed
using ordinary differential equations as follows:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t) +Dx(t),
(E.1)

where h′(t) = dh(t)
dt , and A,B,C, and D are learnable parameters of the SSMs.

Due to the continuous nature of SSMs, discretization is commonly used to approximate continuous-
time representations into discrete-time representations by sampling input signals at fixed intervals.
This results in the discrete-time SSMs being represented as:

hk = Ahk−1 +Bxk,

yk = Chk +Dxk,
(E.2)

where hk and xk represent the state vector and input vector at time k, respectively, and A = exp(∆A)
and B = (∆A)−1(exp(∆A)−I) ·∆B are the discrete-time matrices obtained from the continuous-
time matrices A and B.
Recently, Mamba introduces selective SSMs, a data-dependent selection mechanism that enables
the model to capture contextual information in long sequences using time-varying parameters. Its
near-linear complexity makes it an efficient alternative to the quadratic complexity of the attention
mechanism in Transformers across various tasks.
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F S-Mamba vs. SOR-Mamba
Figure F.1 visualizes the comparison between S-Mamba [29], which employs bidirectional Mamba
to capture CD, and our method, SOR-Mamba, which uses a single unidirectional Mamba with
regularization to capture CD.

SOR-Mamba

C1 C2 C3 C4 C5

Regularization R

R

R : Reverse

Shared

C1 C2 C3 C4 C5

R

R

Mamba
block 1

Mamba
block 2

S-Mamba

Bidirectional Mamba block Unidirectional CD-Mamba block

+ Regularization

R : Reverse

CD-Mamba
block

CD-Mamba
block

Figure F.1: Comparison of S-Mamba and SOR-Mamba.

G Removal of 1D-Convolution
The original Mamba block [10] integrates the H3 block [9] with a gated MLP, where the H3 block
uses a 1D-conv before the SSM layer to capture local information within nearby tokens, as illustrated
in Figure G.1. However, since channels in TS do not have an inherent sequential order, we eliminate
the 1D-conv from the Mamba block, resulting in the proposed CD-Mamba block. Figure G.2 shows
the overall architecture of the proposed CD-Mamba block, where the 1D-conv before the selective
SSM is removed from the original Mamba block [10].

H3 block

Linear

Linear Linear

1D-conv

Selective
SSM

Linear

1D-conv

SSM

Linear LinearLinear

Gated MLP Mamba block

Linear

Linear Linear

Figure G.1: Architecture of the original Mamba block. The original Mamba block contains
1D-conv before the SSM layer to capture local information within nearby tokens.1
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CD-Mamba block

Linear

Linear Linear

1D-conv

Selective
SSM

Remove 1D-conv

C1 C2 C3 C4 C5

1D-conv

1D-conv

1D-conv

Linear

Channels w/o order

Figure G.2: Architecture of the CD-Mamba block. 1D-conv before the selective SSM is removed
from the original Mamba block, as the channels do not have a sequential order.

H Full Results of Time Series Forecasting
Table H.1 shows the full results of TS forecasting tasks across four different horizons, highlighting
the effectiveness of our method.
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Models
SOR-Mamba

S-Mamba iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear
FT SL

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

h1
96 .377 .398 .385 .398 .385 .404 .387 .405 .386 .395 .414 .419 .423 .448 .479 .464 .384 .402 .386 .400

192 .428 .429 .435 .428 .445 .441 .441 .436 .437 .424 .460 .445 .471 .474 .525 .492 .436 .429 .437 .432
336 .464 .448 .474 .448 .491 .462 .487 .458 .479 .446 .501 .466 .570 .546 .565 .515 .491 .469 .481 .459
720 .464 .469 .478 .471 .506 .497 .509 .494 .481 .470 .500 .488 .653 .621 .594 .558 .521 .500 .519 .516

Avg. .433 .436 .442 .438 .457 .452 .457 .449 .446 .434 .469 .454 .529 .522 .541 .507 .458 .450 .456 .452

E
T

T
h2

96 .292 .348 .299 .348 .297 .349 .301 .350 .288 .338 .302 .348 .745 .584 .400 .440 .340 .374 .333 .387
192 .372 .397 .375 .399 .378 .399 .381 .399 .374 .390 .388 .400 .877 .656 .528 .509 .402 .414 .477 .476
336 .415 .431 .423 .435 .425 .435 .427 .434 .415 .426 .426 .433 1.043 .731 .643 .571 .452 .452 .594 .541
720 .423 .445 .431 .446 .432 .448 .430 .446 .420 .440 .431 .446 1.104 .763 .874 .679 .462 .468 .831 .657

Avg. .376 .405 .382 .407 .383 .408 .384 .407 .374 .398 .387 .407 .942 .684 .611 .550 .414 .427 .559 .515

E
T

T
m

1

96 .324 .362 .326 .367 .326 .368 .342 .377 .355 .376 .329 .367 .404 .426 .364 .387 .338 .375 .345 .372
192 .369 .385 .375 .387 .378 .393 .383 .396 .391 .392 .367 .385 .450 .451 .398 .404 .374 .387 .380 .389
336 .402 .408 .408 .408 .410 .414 .418 .418 .424 .415 .399 .410 .532 .515 .428 .425 .410 .411 .413 .413
720 .467 .444 .472 .444 .474 .451 .487 .456 .487 .450 .454 .439 .666 .589 .487 .461 .478 .450 .474 .453

Avg. .391 .400 .396 .401 .398 .407 .408 .412 .414 .407 .387 .400 .513 .496 .419 .419 .400 .406 .403 .407

E
T

T
m

2

96 .179 .261 .181 .265 .182 .266 .186 .272 .182 .265 .175 .259 .287 .366 .207 .305 .187 .267 .193 .292
192 .241 .304 .246 .307 .252 .313 .254 .314 .246 .304 .241 .302 .414 .492 .290 .364 .249 .309 .284 .362
336 .302 .342 .306 .345 .313 .349 .317 .353 .307 .342 .305 .343 .597 .542 .377 .422 .321 .351 .369 .427
720 .401 .400 .403 .401 .416 .409 .412 .407 .407 .398 .402 .400 1.730 1.042 .558 .524 .408 .403 .554 .522

Avg. .281 .327 .284 .329 .290 .333 .293 .337 .286 .327 .281 .326 .757 .610 .358 .404 .291 .333 .350 .401

PE
M

S0
3

12 .066 .170 .066 .170 .066 .171 .071 .174 .126 .236 .099 .216 .090 .203 .178 .305 .085 .192 .122 .243
24 .088 .197 .090 .200 .088 .197 .097 .208 .246 .334 .142 .259 .121 .240 .257 .371 .118 .223 .201 .317
48 .134 .245 .167 .280 .165 .277 .161 .272 .551 .529 .211 .319 .202 .317 .379 .463 .155 .260 .333 .425
96 .193 .297 .225 .318 .213 .313 .240 .338 1.057 .787 .269 .370 .262 .367 .490 .539 .228 .317 .457 .515

Avg. .121 .227 .137 .242 .133 .240 .142 .248 .495 .472 .180 .291 .169 .281 .326 .419 .147 .248 .278 .375

PE
M

S0
4

12 .074 .175 .077 .180 .073 .177 .081 .188 .138 .252 .105 .224 .098 .218 .219 .340 .087 .195 .148 .272
24 .086 .192 .091 .197 .084 .192 .099 .211 .258 .348 .153 .275 .131 .256 .292 .398 .103 .215 .224 .340
48 .106 .214 .115 .221 .101 .213 .133 .246 .572 .544 .229 .339 .205 .326 .409 .478 .136 .250 .355 .437
96 .129 .233 .143 .248 .125 .236 .172 .283 1.137 .820 .291 .389 .402 .457 .492 .532 .190 .303 .452 .504

Avg. .099 .203 .107 .212 .096 .205 .121 .232 .526 .491 .195 .307 .209 .314 .353 .437 .129 .241 .295 .388

PE
M

S0
7

12 .059 .155 .060 .156 .060 .157 .067 .165 .118 .235 .095 .207 .094 .200 .173 .304 .082 .181 .115 .242
24 .076 .174 .082 .182 .082 .184 .088 .190 .242 .341 .150 .262 .139 .247 .271 .383 .101 .204 .210 .329
48 .098 .199 .107 .209 .100 .204 .113 .218 .562 .541 .253 .340 .311 .369 .446 .495 .134 .238 .398 .458
96 .117 .218 .117 .218 .117 .218 .172 .283 1.096 .795 .346 .404 .396 .442 .628 .577 .181 .279 .594 .553

Avg. .088 .186 .091 .191 .090 .191 .102 .205 .504 .478 .211 .303 .235 .315 .380 .440 .124 .225 .329 .395

PE
M

S0
8

12 .078 .178 .076 .176 .076 .178 .088 .193 .133 .247 .168 .232 .165 .214 .227 .343 .112 .212 .154 .276
24 .103 .205 .109 .212 .110 .216 .138 .243 .249 .343 .224 .281 .215 .260 .318 .409 .141 .238 .248 .353
48 .159 .250 .172 .264 .173 .254 .334 .353 .569 .544 .321 .354 .315 .355 .497 .510 .198 .283 .440 .470
96 .229 .295 .290 .334 .271 .321 .458 .436 1.166 .814 .408 .417 .377 .397 .721 .592 .320 .351 .674 .565

Avg. .142 .232 .162 .247 .157 .242 .254 .306 .529 .487 .280 .321 .268 .307 .441 .464 .193 .271 .379 .416

E
xc

ha
ng

e 96 .085 .204 .085 .205 .086 .206 .086 .206 .093 .217 .088 .205 .256 .367 .094 .218 .107 .234 .088 .218
192 .179 .301 .179 .301 .181 .303 .177 .299 .184 .307 .176 .299 .470 .509 .184 .307 .226 .344 .176 .315
336 .329 .415 .331 .417 .331 .417 .338 .422 .351 .432 .301 .397 1.268 .883 .349 .431 .367 .448 .313 .427
720 .838 .690 .860 .698 .858 .599 .847 .691 .886 .714 .901 .714 1.767 1.068 .852 .698 .964 .746 .839 .695

Avg. .358 .402 .363 .405 .364 .407 .368 .409 .378 .417 .367 .404 .940 .707 .370 .413 .416 .443 .354 .414

W
ea

th
er

96 .174 .212 .175 .215 .165 .209 .174 .215 .192 .232 .177 .218 .158 .230 .202 .261 .172 .220 .196 .255
192 .221 .255 .221 .255 .215 .255 .224 .258 .240 .271 .225 .259 .206 .277 .242 .298 .219 .261 .237 .296
336 .277 .295 .277 .296 .273 .296 .281 .298 .292 .307 .278 .297 .273 .335 .287 .335 .280 .306 .283 .335
720 .353 .348 .355 .348 .353 .349 .359 .351 .364 .353 .354 .348 .398 .418 .351 .386 .365 .359 .345 .381

Avg. .256 .277 .257 .278 .252 .277 .260 .281 .272 .291 .259 .281 .259 .315 .271 .320 .259 .287 .265 .317

So
la

r

96 .194 .229 .207 .246 .207 .246 .201 .234 .322 .339 .234 .286 .310 .331 .312 .399 .250 .292 .290 .378
192 .228 .256 .239 .270 .240 .272 .238 .261 .359 .356 .267 .310 .734 .725 .339 .416 .296 .318 .320 .398
336 .247 .276 .260 .287 .262 .290 .248 .273 .397 .369 .290 .315 .750 .735 .368 .430 .319 .330 .353 .415
720 .251 .275 .264 .291 .267 .293 .249 .275 .397 .356 .289 .317 .769 .765 .370 .425 .338 .337 .356 .413

Avg. .230 .259 .242 .274 .244 .275 .234 .261 .369 .356 .270 .307 .641 .639 .347 .417 .301 .319 .330 .401

E
C

L

96 .139 .235 .139 .233 .139 .237 .148 .240 .201 .281 .181 .270 .219 .314 .237 .329 .168 .272 .197 .282
192 .160 .254 .158 .249 .165 .261 .167 .258 .201 .283 .188 .274 .231 .322 .236 .330 .184 .289 .196 .285
336 .176 .271 .177 .271 .177 .274 .179 .272 .215 .298 .204 .293 .246 .337 .249 .344 .198 .300 .209 .301
720 .198 .292 .201 .293 .214 .304 .220 .310 .257 .331 .246 .324 .280 .363 .284 .373 .220 .320 .245 .333

Avg. .168 .264 .169 .262 .174 .269 .179 .270 .219 .298 .205 .290 .244 .334 .251 .344 .192 .295 .212 .300

Tr
af

fic

96 .378 .261 .378 .259 .379 .260 .395 .268 .649 .389 .462 .295 .522 .290 .805 .493 .593 .321 .650 .396
192 .393 .269 .399 .270 .409 .272 .417 .277 .601 .366 .466 .296 .530 .293 .756 .474 .617 .336 .598 .370
336 .399 .272 .416 .279 .418 .277 .433 .283 .609 .369 .482 .304 .558 .305 .762 .477 .629 .336 .605 .373
720 .437 .290 .456 .297 .461 .297 .467 .300 .647 .387 .514 .322 .589 .328 .719 .449 .640 .350 .645 .394

Avg. .402 .273 .412 .276 .417 .277 .428 .282 .626 .378 .481 .304 .550 .304 .760 .473 .620 .336 .625 .383

1st Count 33 31 7 10 10 7 1 3 3 9 8 7 3 0 0 0 0 0 2 0
2nd Count 15 19 18 19 13 13 9 6 2 2 1 6 0 0 0 0 0 1 2 0

Table H.1: Full results of TS forecasting tasks.
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Figure I.1: Corr. vs. Bias.

The degree of sequential order bias may vary depending
on the characteristics of the datasets. We argue that two
factors affect this degree: 1) the correlation between the
channels and 2) the number of channels in the dataset. To
validate our argument, we quantify the degree of sequential
order bias for each dataset by measuring the difference in
performance (average MSE across four horizons) when the
channel order is reversed, using unidirectional Mamba with-
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out regularization. Figure I.1 shows the results, where the
x-axis represents the correlation between the channels for
each dataset, measured by the average of the off-diagonal
elements in the correlation matrix (i.e., excluding autocor-
relation), and the y-axis represents the degree of sequential
order bias, with both axes shown on a log scale, and the point size representing the number of
channels. The figure implies that the bias increases 1) as the channels become more correlated and 2)
as the number of channels increases. For example, four ETT datasets containing seven channels with
low correlation show low bias, whereas four PEMS datasets containing over 100 channels with high
correlation exhibit high bias.

J Limitation of Bidirectional Mamba
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Figure J.1: Sequential order bias.

Applying Mamba to capture CD is challenging due to the
sequential order bias, where channels in TS do not have a
sequential order, whereas Mamba is originally designed for
sequential inputs. To address this issue, previous works have
employed bidirectional Mamba to capture CD [29, 3, 30],
where two unidirectional Mambas with different parameters
capture CD from a certain channel order and its reversed
order, as shown in Figure F.1. However, these methods
are inefficient due to the need for two models. Another
approach involves permuting the channel order during train-
ing [4] to enhance robustness to the order, but this requires
an additional procedure to determine the optimal order for
inference.
Furthermore, Figure J.1 suggests that bidirectional Mamba [29] may not be effective in handling the
sequential order bias. The figure illustrates the relative Impr. in a TS forecasting task when using
unidirectional Mamba compared to using bidirectional Mamba on the ECL dataset [32], indicating
that 1) bidirectional Mamba do not always achieve better performance than unidirectional Mamba,
and 2) the performance of unidirectional Mamba varies depending on the channel order.
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K Ablation Study
To demonstrate the effectiveness of our method, we conduct an ablation study using four ETT
datasets [40] to assess the impact of the following components, where the results are shown in
Table K.1. The result indicates that incorporating all components yields the best performance, and
adding the regularization term enhances performance even with bidirectional Mamba.

Method
Mamba

Reg. CCM ETTh1 ETTh2 ETTm1 ETTm2 Avg.
# w/o conv.

S-Mamba Bi - - - .457 .383 .398 .290 .382
- Bi ✓ - - .441 .383 .396 .285 .376
- Bi - ✓ .452 .382 .394 .286 .378
- Bi ✓ ✓ .443 .381 .393 .285 .376
- Bi ✓ ✓ ✓ .435 .376 .390 .281 .370
- Uni - - - .455 .383 .403 .289 .383
- Uni ✓ - - .442 .382 .400 .285 .377
- Uni - ✓ - .449 .382 .396 .285 .378
- Uni ✓ ✓ - .442 .382 .396 .284 .376

SOR-Mamba Uni ✓ ✓ ✓ .433 .376 .391 .281 .370

Table K.1: Ablation studies with four ETT datasets.
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L Various Architectures for Temporal Dependencies
Following recent studies [19, 29] that suggest employing simple models (e.g., MLPs) to capture
TD in TS, we utilize MLP to capture TD. To examine the impact of different design choices of
architecture for capturing TD, we consider two alternatives: 1) without employing any encoder for
TD, and 2) using Mamba, following the experimental protocols of the previous work [29]. Table L.1
shows the result, demonstrating that our method is robust to the choice of TD encoder, achieving the
best performance with MLP.

Architecture
for TD

ETT PEMS
Exchange Weather Solar ECL Traffic Avg.

h1 h2 m1 m2 03 04 07 08

- .446 .386 .397 .286 .139 .109 .096 .164 .363 .258 .244 .170 .433 .268
Mamba .447 .386 .398 .285 .140 .109 .097 .165 .363 .259 .245 .171 .437 .269
MLP .442 .382 .396 .284 .137 .107 .091 .162 .363 .257 .242 .169 .412 .265

Table L.1: Various architectures for capturing TD.

M Effect of CCM
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Figure M.1: Comparison of SSL.

To demonstrate the impact of CCM, we compare it with two other
widely used pretraining tasks: masked modeling (MM)[36] with
a masking ratio of 50%, and reconstruction (Rec.)[15], along
with the supervised setting (SL). Table N.1 shows the results
using two backbones, S-Mamba and SOR-Mamba, showing that
CCM consistently outperforms the other tasks.
Furthermore, Figure M.1 shows the average performance Impr.
from fine-tuning with three pretraining tasks compared to SL
based on the number of channels in the datasets, with six datasets
having fewer than 100 channels and seven datasets having 100 or more channels. The results indicate
that reconstruction is advantageous for fewer channels, masked modeling for more channels, while
CCM consistently outperforms in both cases.

N Correlation for CCM
To assess the impact of using different correlations for CCM, we consider two candidates: local
correlation which refers to the correlation between the channels of the input TS, and global correlation
which refers to the correlation between the channels of the entire TS. Table N.2 shows that using local
correlations yields better performance compared to global correlations, although both approaches
still outperform the SL baseline.
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Dataset

S-Mamba SOR-Mamba

SL
SSL

SL
SSL

Rec. MM CCM Rec. MM CCM
ETTh1 .457 .448 .457 .457 .442 .434 .435 .433
ETTh2 .383 .381 .383 .380 .382 .378 .381 .376
ETTm1 .398 .400 .397 .396 .396 .390 .396 .391
ETTm2 .290 .283 .288 .286 .284 .279 .284 .281

PEMS03 .133 .120 .130 .119 .137 .126 .121 .121
PEMS04 .096 .092 .103 .093 .107 .111 .095 .099
PEMS07 .090 .086 .089 .085 .091 .091 .090 .088
PEMS08 .157 .136 .157 .138 .162 .139 .144 .142
Exchange .364 .363 .378 .361 .363 .361 .361 .358
Weather .252 .249 .251 .250 .257 .256 .256 .256

Solar .244 .230 .239 .233 .242 .231 .231 .230
ECL .174 .175 .174 .170 .169 .172 .169 .168

Traffic .417 .450 .415 .414 .412 .410 .410 .402
Average .266 .263 .266 .260 .265 .260 .259 .257

Table N.1: Comparison of various SSL pretraining tasks.

Dataset SL
SSL (CCM)

Global Local
ETTh1 .442 .445 .433
ETTh2 .382 .380 .376
ETTm1 .396 .393 .391
ETTm2 .284 .283 .281

PEMS03 .137 .125 .121
PEMS04 .107 .101 .099
PEMS07 .091 .088 .088
PEMS08 .162 .146 .142
Exchange .363 .361 .358
Weather .257 .258 .256

Solar .242 .228 .230
ECL .169 .170 .168

Traffic .412 .410 .402
Average .265 .260 .257

Table N.2: Global vs. Local corr.

O Robustness to Channel Order
To demonstrate that the proposed method effectively addresses the sequential order bias, we conduct
two analyses showing the robustness to the channel order. First, we evaluate performance variations
with five random permutations of channel order using ETTh1, as shown in Table O.1, indicating
a smaller standard deviation compared to S-Mamba. Additional results with different datasets
are described in Table O.2. Second, we visualize channel representations using t-SNE [27] with
Exchange, as shown in Figure O.1. The figure indicates that while the representations of the same
channel with reversed orders are inconsistent without regularization, they remain consistent with
regularization. Results of performance variations by permuting the channel order with other four
datasets [40, 32] are described in Table O.2, which indicate a small standard deviation across all
horizons.

H S-Mamba SOR-Mamba

96 .386±.0010 .378±.0003
192 .440±.0033 .428±.0002
336 .484±.0046 .464±.0002
720 .502±.0057 .464±.0004

Table O.1: Robustness to order.

SOR-Mamba
(Uni + Reg)

S-Mamba
(Bi)(Bi + Reg)

(Mamba + Regularization)

Figure O.1: t-SNE of channels with reversed orders.

H ETTh1 ETTh2 ETTm1 ETTm2 Exchange

96 .377±.0003 .292±.0011 .324±.0005 .179±.0003 .085±.0001
192 .428±.0002 .372±.0000 .369±.0005 .241±.0002 .179±.0001
336 .464±.0002 .415±.0002 .402±.0003 .302±.0001 .329±.0002
720 .464±.0004 .423±.0001 .467±.0009 .401±.0001 .838±.0014

Avg. .434±.0002 .423±.0003 .391±.0001 .281±.0001 .358±.0003

Table O.2: Robustness to channel order.

P Correlation in the Data Space and the Latent Space
To demonstrate that the relationships between channels are well preserved from the data space to
the latent space, we visualize the correlation matrices in both spaces using the Weather dataset. The
results, shown in Figure P.1a, indicate that the relationships are effectively preserved. Additionally,
we compute the root MSE between the matrices of both spaces to compare models pretrained with and
without CCM. Figure P.1b shows that the model pretrained with CCM exhibits a smaller difference
between the matrices.
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(a) Visualization of Rx and Rz.

ETTh1 ETTm1 Exchange Solar0.00
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w/o CCM
w/ CCM

(b) Comparison of D(Rx,Rz).

Figure P.1: Correlation matrices in the data space and the latent space.
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Q Channel Order for Two Views

F : Fixed , R: Random , X⋆: Reverse of X
Impr.

(Robust.)Order z1 F F R1 R

z2 F ⋆ R R2 R⋆

Dataset C (a) (b) (c) (d) (d) → (a)

C
<

10
0

ETTh1 7 .442 .443 .446 .443 0.2%
ETTh2 7 .382 .382 .382 .382 0.0%
ETTm1 7 .396 .396 .396 .396 0.0%
ETTm2 7 .284 .285 .285 .285 0.4%

Exchange 8 .363 .364 .365 .364 0.3%
Weather 21 .257 .258 .260 .260 1.2%

Average .354 .355 .356 .355 0.3%

C
≥

10
0

Solar 137 .242 .245 .245 .246 1.6%
PEMS03 358 .137 .144 .150 .151 9.3%
PEMS04 307 .107 .112 .116 .117 8.5%
PEMS07 883 .091 .096 .097 .096 5.2%
PEMS08 170 .162 .163 .169 .172 5.8%

ECL 321 .169 .174 .181 .183 7.7%
Traffic 862 .412 .422 .423 .423 2.6%

Average .189 .194 .197 .198 4.9%

Table Q.1: Channel order for z.

To generate two embedding vectors for regularization,
we explore four candidates based on whether the chan-
nel order is fixed or randomly permuted in each iter-
ation. Table Q.1 shows the results with average MSE
across four horizons, indicating that fixing the order
during training yields the best performance, which
degrades with random order, especially with many
channels, but remains robust with fewer channels.
We argue that a fixed order is beneficial due to stable
training, which becomes unstable with randomness
when the number of channels is large, as shown in
Figure Q.1. The figure displays the training loss for
two datasets [40, 18] with varying number of chan-
nels. The figure indicates that random order causes
instability, particularly with the regularization loss.
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)
PE

M
S0

8
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70

)

Fixed

Reverse(Fixed)

Fixed

Random

Random 1

Random 2

Random

Reverse(Random)

Unstable training!

Figure Q.1: Fixed vs. random order for generating two views, z1 and z2.
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R Efficiency Analysis
To demonstrate the efficiency of SOR-Mamba, we compare it with iTransformer and S-Mamba in
terms of the number of parameters, memory usage, and computational time. Table R.1 shows the
results, indicating that SOR-Mamba outperforms these baselines in all three aspects, particularly
reducing the number of parameters by up to 38.1% compared to S-Mamba. Note that the training
time is measured per epoch, while the inference time is measured per data instance.

Dataset: Traffic (a) (b) (c) (b) → (c)
(L = 96, H = 96) iTrans. S-Mamba SOR-Mamba Impr.

# Parameters
In projector 0.05M 0.05M 0.05M 0.0 %
Encoder-TD 2.11M 2.11M 2.11M 0.0%
Encoder-CD 4.20M 6.97M 3.48M 50.1%
Out projector 0.05M 0.05M 0.05M 0.0 %

Total 6.52M 9.29M 5.80M 38.1%
Memory

Complexity O
(
C2

)
O (C) O (C) -

GPU memory (GB) 1.36 0.33 0.32 4.2%
Computational time
Train (sec/epoch) 115.5 108.3 102.1 5.7%
Inference (ms) 14.6 9.9 8.7 +11.3%
Avg. MSE (four H) 0.428 0.417 0.402 3.6%

Table R.1: Efficiency analysis.

S Robustness to Missingness

0 25 50 75
Missing ratio (%)

0.275
0.300
0.325
0.350
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0.400
0.425
0.450

Dataset
ETTh1
ETTh2

ETTm1
ETTm2

Model
SOR-Mamba
S-Mamba

Model
SOR-Mamba
S-Mamba

Figure S.1: Missingness in TS.

To demonstrate our method’s effectiveness with missing data,
we analyze scenarios where 25%, 50%, and 75% of values are
missing and interpolated using adjacent values. Figure S.1 shows
the average MSE across four horizons with four ETT datasets,
indicating that our method remains robust even with significant
missing data. Furthermore, even with missing values, our method
outperforms S-Mamba trained without any missing data.

T Robustness to Hyperparameter λ

Table T.1 shows the average MSE across four different horizons for the four ETT datasets [40], using
various values of λ that control the contribution of the regularization term. The results demonstrate
the effectiveness of the regularization and its robustness to λ.

Dataset

SOR-Mamba

S-Mambaw/o Reg. w/ Reg.

0 0.001 0.01 0.1 0.2

ETTh1 .439 .433 .433 .433 .433 .457
ETTh2 .382 .376 .376 .376 .376 .383
ETTm1 .403 .391 .391 .391 .391 .398
ETTm2 .285 .281 .281 .281 .281 .290

Table T.1: Robustness to choice of λ for regularization.
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U Robustness to Distance Metric
To assess whether SOR-Mamba is sensitive to the choice of distance metric d for the regularization
term and CCM when comparing the two matrices, we compare various metrics, including (negative)
cosine similarity, ℓ1 loss, and ℓ2 loss. Tables U.1 and U.2 show the average MSE across four different
horizons for the distance metric used in the regularization term and CCM, respectively, demonstrating
that the performance is robust to the choice of distance metric, where we choose ℓ2 loss throughout
the experiment for both metrics.

Dataset
SOR-Mamba-SL

S-Mamba
Cosine ℓ1 Loss ℓ2 Loss

ETTh1 .442 .442 .442 .457
ETTh2 .382 .382 .382 .383
ETTm1 .396 .396 .396 .398
ETTm2 .284 .284 .284 .290

PEMS03 .145 .147 .137 .133
PEMS04 .105 .105 .107 .096
PEMS07 .091 .091 .091 .090
PEMS08 .162 .159 .162 .157
Exchange .365 .365 .363 .364
Weather .256 .257 .257 .252

Solar .242 .242 .242 .244
ECL .167 .168 .169 .174

Traffic .414 .414 .412 .417

Average .265 .265 .265 .266

Table U.1: Robustness to d for regularization.

Dataset
SOR-Mamba-SSL

S-Mamba
ℓ1 Loss ℓ2 Loss

ETTh1 .434 .433 .457
ETTh2 .379 .376 .383
ETTm1 .391 .391 .398
ETTm2 .281 .281 .290

PEMS03 .121 .121 .133
PEMS04 .099 .099 .096
PEMS07 .089 .088 .090
PEMS08 .140 .142 .157
Exchange .358 .358 .364
Weather .256 .256 .252

Solar .232 .230 .244
ECL .167 .168 174

Traffic .402 .402 .417

Average .258 .257 .266

Table U.2: Robustness to d for CCM.

V Comparison of GPU Memory Usage
Figure V.1 visualizes GPU memory usage by dataset and method, demonstrating that our method is
more efficient than both S-Mamba [29] and iTransformer [19]. Specifically, Mamba-based methods
are more efficient than Transformer-based methods when C is large, as Mamba has nearly-linear
complexity, whereas Transformers have quadratic complexity.
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Figure V.1: Comparison of GPU memory usage.
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W Statistics of Results over Multiple Runs
To assess the consistency of SOR-Mamba’s performance, we present the statistics from results
using five different random seeds. We calculate the mean and standard deviation for both MSE and
MAE, detailed in Tables W.1, W.2, and W.3. which reveals that our method maintains consistent
performance in both self-supervised and supervised settings.

Models
Ours

FT SL

Metric MSE MAE MSE MAE
E

T
T

h1

96 .377±.001 .398±.001 .385±.000 .398±.000

192 .428±.001 .429±.000 .432±.001 .428±.000

336 .464±.001 .448±.001 .476±.000 .448±.000

720 .464±.001 .469±.006 .476±.003 .476±.002

Avg. .433±.000 .436±.002 .442±.001 .438±.000

E
T

T
h2

96 .292±.004 .348±.003 .299±.001 .348±.001

192 .372±.001 .397±.001 .375±.001 .399±.001

336 .415±.001 .431±.000 .423±.000 .435±.000

720 .423±.001 .445±.001 .431±.002 .446±.001

Avg. .376±.001 .405±.001 .382±.001 .407±.000

E
T

T
m

1

96 .324±.002 .362±.002 .324±.004 .367±.003

192 .369±.002 .385±.001 .375±.002 .387±.001

336 .402±.002 .408±.001 .408±.000 .408±.000

720 .467±.002 .444±.001 .472±.001 .444±.001

Avg. .391±.001 .400±.001 .396±.001 .401±.001

E
T

T
m

2

96 .179±.001 .261±.001 .181±.000 .265±.000

192 .241±.000 .304±.000 .246±.001 .307±.001

336 .302±.002 .342±.002 .306±.001 .345±.000

720 .401±.002 .400±.002 .403±.002 .401±.001

Avg. .281±.001 .327±.000 .284±.001 .329±.000

Table W.1: Results of TS forecasting over five runs - 1) ETT datasets.
+
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Models
Ours

FT SL

Metric MSE MAE MSE MAE

PE
M

S0
3

12 .066±.001 .170±.001 .066±.001 .170±.001

24 .088±.001 .197±.001 .090±.001 .200±.001

48 .134±.002 .245±.003 .167±.001 .280±.001

96 .193±.005 .297±.006 .225±.003 .318±.002

Avg. .121±.002 .227±.002 .137±.001 .242±.001

PE
M

S0
4

12 .074±.002 .175±.003 .077±.000 .180±.000

24 .086±.003 .192±.005 .091±.001 .197±.001

48 .106±.001 .214±.005 .115±.002 .221±.003

96 .129±.003 .233±.004 .143±.002 .248±.002

Avg. .099±.001 .203±.002 .107±.001 .212±.001

PE
M

S0
7

12 .059±.001 .155±.001 .060±.000 .156±.000

24 .076±.005 .174±.004 .082±.000 .182±.000

48 .098±.001 .199±.001 .107±.001 .209±.000

96 .117±.003 .218±.003 .117±.001 .218±.001

Avg. .088±.001 .186±.001 .091±.000 .191±.000

PE
M

S0
8

12 .078±.000 .178±.000 .076±.001 .176±.000

24 .103±.001 .205±.002 .109±.001 .212±.001

48 .159±.001 .250±.001 .172±.003 .264±.003

96 .229±.001 .295±.002 .290±.002 .334±.002

Avg. .142±.000 .232±.001 .162±.001 .247±.001

Table W.2: Results of TS forecasting over five runs - 2) PEMS datasets.
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Models
Ours

FT SL

Metric MSE MAE MSE MAE

E
xc

ha
ng

e 96 .085±.001 .204±.002 .085±.001 .205±.001

192 .179±.000 .301±.000 .179±.002 .301±.001

336 .329±.001 .415±.001 .331±.000 .417±.000

720 .838±.005 .690±.002 .860±.001 .698±.001

Avg. .358±.001 .402±.001 .363±.001 .405±.001

W
ea

th
er

96 .174±.000 .212±.000 .175±.001 .215±.000

192 .221±.000 .255±.000 .221±.000 .255±.000

336 .277±.000 .295±.001 .277±.001 .296±.001

720 .353±.001 .348±.001 .355±.000 .348±.000

Avg. .256±.000 .277±.000 .257±.000 .278±.000

So
la

r

96 .194±.005 .229±.004 .207±.000 .246±.001

192 .228±.002 .256±.003 .239±.001 .270±.001

336 .247±.006 .276±.005 .260±.001 .287±.001

720 .251±.003 .275±.003 .264±.001 .291±.001

Avg. .230±.002 .259±.002 .242±.000 .274±.000

E
C

L

96 .139±.001 .235±.002 .139±.001 .233±.001

192 .160±.002 .254±.002 .158±.001 .249±.001

336 .176±.003 .271±.003 .177±.001 .271±.001

720 .198±.003 .292±.006 .201±.003 .293±.002

Avg. .168±.001 .264±.001 .169±.001 .262±.001

Tr
af

fic

96 .378±.000 .258±.000 .378±.000 .259±.000

192 .393±.001 .267±.001 .399±.000 .270±.000

336 .399±.001 .276±.002 .416±.001 .279±.000

720 .437±.001 .289±.002 .456±.001 .297±.001

Avg. .402±.000 .273±.001 .412±.000 .276±.000

Table W.3: Results of TS forecasting over five runs - 3) Other datasets.
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