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Abstract

Mamba has recently emerged as a promising alternative to Transformers, offering
near-linear complexity in processing sequential data. However, while channels in
time series (TS) data have no specific order in general, recent studies have adopted
Mambea to capture channel dependencies (CD) in TS, introducing sequential order
bias. To address this issue, we propose SOR-Mamba, a TS forecasting method
that 1) incorporates a regularization strategy to minimize the discrepancy between
two embedding vectors generated from data with reversed channel orders, thereby
enhancing robustness to channel order, and 2) eliminates the 1D-convolution
originally designed to capture local information in sequential data. Furthermore,
we introduce channel correlation modeling (CCM), a pretraining task designed
to preserve correlations between channels from the data space to the latent space,
thereby improving the ability to capture CD. Extensive experiments demonstrate the
efficacy of the proposed method across standard and transfer learning scenarios.

1 Introduction

Temporal (T) dim. Channel (C) dim.

Transformer [28] has been widely used for TS forecasting
task [38}, 142 due to its ability to capture long-term dependen-
cies, but its quadratic complexity limits its practicality. Recently,
Mamba [10] enhanced state-space models (SSMs) [L1, 26] by
incorporating a selective mechanism that mimics the attention

mechanism with near-linear complexity. Due to its strong com- 0 M R
putational efficiency, Mamba has been applied in the TS domain Figure 1: Mamba for TS.

to capture temporal dependencies (TD) by treating input in a

time order [177]], channel dependencies (CD) by treating input in a channel order [29]], or both [4].

In this paper, we focus on utilizing Mamba for capturing CD, in line with recent work [19] using
attention mechanisms for CD while using simple multi-layer perceptrons (MLPs) for TD. However,
applying Mamba to capture CD is challenging due to the sequential order bias, as the channels lack
an inherent sequential order, whereas Mamba is designed for sequential inputs, as shown in Figure|T]
To this end, we introduce Sequential Order-Robust Mamba for TS Forecasting (SOR-Mamba), a TS
forecasting method that handles the sequential order bias by 1) incorporating a regularization strategy
to minimize the distance between two embedding vectors generated with reversed channel orders to
enhance robustness to the order, and 2) removing the 1D-convolution (1D-conv) originally designed
to capture local information in sequential input. Additionally, we propose Channel Correlation
Modeling (CCM), a pretraining task that aims to maintain the correlation between channels from the
data space to the latent space. The main contributions are summarized as follows:
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* We propose SOR-Mamba, a TS forecasting method that handles the sequential order bias by 1) reg-
ularizing Mamba to minimize the distance between two embedding vectors generated from data
with reversed channel orders for robustness to channel order and 2) removing the 1D-convolution
from the original Mamba block, as channels lack an inherent sequential order.

*Equal contribution.
TEqual advising.
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Figure 2: Overall framework of SOR-Mamba and CCM. (a) shows the architecture of SOR-
Mamba, where CD-Mamba block is regularized to minimize the distance between two vectors derived
from reversed channel orders. CD-Mamba block is the proposed architecture of Mamba block with
the 1D-conv removed, as channels do not have an inherent sequential order. (b) illustrates CCM,
which aims to preserve the correlation between channels from the data space to the latent space.

* We introduce CCM, a novel pretraining task that preserves the correlation between channels from
the data space to the latent space, thereby enhancing the model’s ability to capture CD.

* We provide extensive experiments on various datasets, demonstrating that our proposed method
improves state-of-the-art (SOTA) performance in both standard and transfer learning settings.

2 Methodology

In this paper, we introduce SOR-Mamba, a TS forecasting method designed to alleviate the sequential
order bias by regularizing Mamba to minimize the distance between two embedding vectors generated
from data with reversed channel orders and removing the 1D-conv from the original Mamba block.
The overall framework of SOR-Mamba is shown in Figure [2(a), consisting of four components:
1) embedding layer, 2) Mamba for capturing CD, 3) MLP for capturing TD, and 4) prediction head.
Furthermore, we introduce a novel pretraining task, CCM, which preserves the correlation between
channels from the data space to the latent space to align with recent emphasis on using attention
mechanisms to capture CD over TD. The overall framework of CCM is illustrated in Figure [2(b).

2.1 Architecture of SOR-Mamba

1) Embedding layer. To tokenize the TS in a channel-wise manner, we use an embedding layer that
treats each channel as a token, following the approach used in iTransformer [19]. Specifically, we
transform x € REX“ into z € RE*P using a single linear layer.

2) Mamba for CD. The original Mamba combines the H3 block [9] with a gated MLP, where the
H3 block includes the 1D-conv before the SSM layer to capture local information within previous
steps. However, since channels in TS do not have any sequential order, we find this convolution
unnecessary for capturing CD. Accordingly, we remove the 1D-conv from the original Mamba block,
resulting in the proposed CD-Mamba block. With the proposed CD-Mamba block, we obtain two
hidden representations with reversed channel orders, which are then element-wise added via a residual
connection and used for regularization to mitigate the sequential order bias.

3) MLP for TD. To capture TD in TS, we apply Ajgorithm 1 The procedure of SOR-Mamba
MLP to the representation of each channel obtained Input: X — [X1.....X.] : (B.L.C)

from the CD-Mamba block. To enhance training . A

stability, we apply layer normalization (LN) before Output: Y = [X141,..., Xp4n]: (B, H,C)
and after the MLP. : Z: (B, C, D) + Linear(X")

4) Predictﬁon head. ‘To. predict the future output, we : fOI‘z?’ZL ln(g?/g? [()i()) « CD-Mamba(Z)
employ a linear prediction head to the representation Z» : (B, C, D) + CD-Mamba(Z*)*,
of each channel obtained from the MLP, resulting " Where Z* = Z[, = ~1,]
iny € REXC, The procedure of SOR-Mamba is Z:(B,C,D) < (Z1 +Z2) + Z
described in Algorithm [T} where Z* represents Z Z: (B,C, D) < LN(MLP(LN(Z)))
with its channel order reversed. end for

SN : T
2.2 Regularization with CD-Mamba Block 1 Y i (B, H,C) « Linear(Z)

To mitigate the sequential order bias, SOR-Mamba regularizes the CD-Mamba block by minimizing
the distance between two embedding vectors generated from data with reversed channel orders. The
regularization term is defined as follows:

SN

A

Lreg(z) =d (Zla ZQ) ) (1)



where d is an arbitrary distance metric, and z; and z, are the embedding vectors obtained from
CD-Mamba block using z with its order reversed, as described in Algorithm [} The proposed
regularization term is then added to the forecasting loss Ly (-) with a contribution of ), resulting in:

L(X,y) = Liea(%,¥) + A+ > Leeg(29), )
=1

where z(%) is z at the i-th layer, and m is the total number of encoder layers. By using the above
regularization term with the unidirectional Mamba, we achieve better performance and efficiency
compared to S-Mamba [29] which employs the bidirectional Mamba, as discussed in Table []
Additionally, we find that the regularization also benefits the bidirectional Mamba, which already
addresses the sequential order bias, as discussed in Table[5] and that the forecasting performance is
robust to A and the distance metric d, as discussed in Appendix [I|and Appendix [U] respectively.

2.3 Channel Correlation Modeling

Previous pretraining tasks for TS have primarily focused on TD, such as masked modeling [36] and
reconstruction [15]]. However, we argue for the necessity of a new task that emphasizes CD over TD
to align with recent TS models that focus on capturing CD with complex model architectures [19}29].
To this end, we propose CCM, which aims to preserve the (Pearson) correlation between channels
from the data space to the latent space, as correlation is a simple yet effective way to measure channel
relationships and has been utilized in prior studies to analyze CD [33[39].

For CCM, we calculate the correlation matrices between the input token on the data space and the
output token after the additional linear projection layer on the latent space, as shown in Figure [2|b).
The loss function for CCM, defined as the distance between these two matrices, can be expressed as:

Leem(x) = d (R, Ry), (€)

where Ry and R, are the correlation matrices in the data space and the latent space, respectively. We
find that CCM is more effective than masked modeling and reconstruction across diverse datasets
with varying numbers of channels, as demonstrated in Appendix [M] Additionally, its performance
remains robust regardless of the choice of d, as discussed in Appendix [U}

3 Experiments

We demonstrate the effectiveness of SOR-Mamba on TS forecasting task with 13 datasets [40, 32, 18]
from various domains in both standard and transfer learning settings. Details of the experimental
settings and dataset statistics are provided in Appendix [A]

Time series forecasting. Table [1|shows the results for the multivariate TS forecasting task, showing
the average mean squared error (MSE) and mean absolute error (MAE) across four horizons under
both supervised learning (SL) and self-supervised learning (SSL) settings with fine-tuning (FT). The
results demonstrate that our method outperforms SOTA Transformer-based models and S-Mamba
which uses the bidirectional Mamba, whereas our approach utilizes the unidirectional Mamba,
providing greater efficiency as discussed in Appendix [R] Full results are described in Appendix [H]

(1) Mamba (2) Transformer (3) Linear/MLP

Models SOR-Mamba
FT SL

S-Mamba iTransformer PatchTST Crossformer TimesNet DLinear RLinear

Metric MSE MAE MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

ETThl 433 436 442 438 | 457 452 | 454 449 | 469 454 | 529 522 | 458 450 | 456 452 | 446 434
ETTh2 376 405 382 407 | 383 408 | 384 407 | 387 407 | 942 684 | 414 427 | 559 515 | 374 398
ETTml 391 400 396 401 | 398 407 | 408 412 | 387 400 | 513 496 | 400 406 | 403 407 | 414 407
ETTm2 281 327 284 329 | 290 333 | 293 337 | .281 .326 | .757 610 | 291 333 | 350 401 | .286 .327
PEMSO03 | .121 .227 137 242 | 133 240 | .142 248 | .180 291 | .169 281 | .147 248 | 278 375 | 495 472
PEMSO04 | .099 .203 .107 212 | .096 .205 | .121 .232 | .195 .307 | 209 314 | .129 241 | 295 388 | .526 491

PEMS07 | .088 .186 .091  .191 | .090 .191 | .102 205 | .211 .303 | .235 315 | .124 225 | .329 .395 | .504 478
PEMSO08 | .142 .232 162 247 | .157 242 | 254 306 | .280 .321 | .268 .307 | .193 271 | 379 416 | 529 487
Exchange | .358 402 363 405 | .364 407 | 368 409 | 367 404 | 940 707 | 416 443 | 354 414 | 378 417
Weather | 256 .277 257 278 | .252 277 | 260 281 | .259 281 | 259 315 | 259 287 | 265 317 | 272 291

Solar 230 259 242 274 | 244 275 | 234 261 | 270 307 | .641  .639 | .301 319 | .330 401 | .369 .356

ECL Jd68 264 169 262 | 174 269 | .179 270 | 205 290 | 244 334 | .192 295 | 212 300 | .219 .298
Traffic 402 273 412 276 | 417 277 | 428 282 | 481 304 | 550 304 | .620 336 | .625 383 | .626 378

Average | .257 299 265 305 | .266 .307 | .278 315 | 306 338 | 481 448 | 303 329 | 372 397 | 418 403

1% Count 33 31 7 10 10 7 1 3 8 7 3 0 0 0 2 3 9
2" Count | 15 19 18 19 13 13 9 6 1 6 0 0 0 1 2 2 2

0
0

Table 1: Results of multivariate TS forecasting. We compare our method with SOTA methods
under both SL and SSL settings. The best results are in bold and the second best are underlined.



S-Mamba SOR-Mamba SSL

S T. o>k
ource gt | TP BT | SL P FT Dataset | SL o T oM
In- | ETTh2 ETThl | 457 450 464 | 442 452 433
. ETT 4) 376 371 374 370
d S
omain | ETTm2 ETTml | 398 398 .400 | .396 401 .390 PEMS 4) | 124 17 113 112
ETTm2 ETThl | 457 450 455 | 442 448 .433 Exchange | .363 .361 .361 .358
ETTh2 ETTml | 398 401 402 | 396 399 .391 Weather | 257 256 256 256

Cross- | ETTm1  ETThl | 457 450 468 | .442 449 434

domain | ETThl ETTml | .398 .403 399 | 396 .404 .391 Solar 242232231230

Weather ETThl | 457 546 552 | .442 545 542 ECL 169 172 169 .168

Weather ETTml | .398 460 .501 | .396 457 458 Traffic 412 410 410 402
Table 2: Results of transfer learning. Table 3: Comparison of SSL.

Average MSE across four H | ETThl ETTh2 ETTml ETTm2 | Avg. Impr. | # Params. Impr.
S-Mamba 457 383 .398 .290 382 - 9.29M -
+ Regularization 452 .382 394 286 378 1.0% 9.29M -

+ Bi — Unidirectional 449 382 .396 285 378 0.1% 5.81M 37.5%

+ Remove 1D-conv 442 382 .396 284 376 0.5% 5.80M 0.1%
+ CCM 433 376 391 281 370 1.5% 5.80M -

Table 4: Ablation study of Regularization , Model architecture and Pretraining task .

Mamba ETT PEMS
Exchange Weather Solar ECL Traffic
# Reg. | hl h2 ml m2 03 04 07
Bi X 457 383 398 290 .133 .096 .090 .157 364 252 244 174 417
! v | 452 382 394 286 .131 .096 .092 .155 361 252 245 170 411
Uni X 455 383 403 289 .140 .102 .094 .16l 364 255 244 175 416
Moyl 449 382 396 285 135 101 .091 .158 361 P55 244 171 416

Table 5: Effect of regularization. Regularization enhances both the unidirectional and the bidirec-
tional Mamba. Note that we do not remove the 1D-conv to isolate the effect of regularization.

Mamba ETT PEMS
Exchange Weather Solar ECL Traffic
# 1D-conv | hl h2 ml m2 03 04 07
Bi v 457 383 398 290 133 .096 .090 .157 364 252 244 174 417
Bi X 441 383 396 .285 .137 .102 .089 .148 364 255 242 167 414
Uni v 449 382 396 285 .135 .101 .091 .158 .361 255 244 171 416
Uni X 442 382 396 .284 .137 .107 .091 .162 .363 257 242 169 412

Table 6: Effect of 1D-convolution. Removing the 1D-convolution improves performance on general
TS datasets, as they lack inherent sequential order in channels.

Transfer learning. In in-domain transfer, we conduct experiments using datasets with the same
frequency for both the source and target datasets, while in cross-domain transfer, we use datasets
with different frequencies for the source and target datasets. Table[2]shows the average MSE across
four horizons, under both FT and linear probing (LP) settings, demonstrating that SOR-Mamba
consistently outperforms S-Mamba, achieving nearly a 5% performance gain with FT.

Ablation study. To demonstrate the effectiveness of our method, we perform an ablation study using
four ETT datasets to evaluate the impact of the following components: 1) adding the regularization
term, 2) using the unidirectional Mamba 3) removing the 1D-conv, and 4) pretraining with CCM.
Table [ shows the results, indicating that using all components yields the best performance and that
adding the regularization term provides a performance gain even with the bidirectional Mamba.
Effect of CCM. To demonstrate the impact of CCM, we compare it with two other widely used
pretraining tasks: masked modeling (MM)[36] with a masking ratio of 50%, and reconstruction
(Rec.)[15]. Table[3|shows the results, indicating that CCM consistently outperforms the other tasks.
Further analysis and application to S-Mamba are discussed in Appendix [M]

Effect of regularization. To validate the effect of the regularization term, we apply it to both the
unidirectional and the bidirectional Mamba without removing the 1D-conv to isolate the effect of the
regularization. The results are shown in Table[5] indicating that regularizing the model also benefits
the bidirectional Mamba, making regularization complementary to bidirectional scanning.

Effect of 1D-conv. Table 6] shows the effect of removing the 1D-conv for both the unidirectional and
the bidirectional Mamba. The results demonstrate that its removal may negatively impact datasets
with ordered channels, such as Weather [32] and the PEMS datasets [[18]] with traffic sensor data,
whereas it improves performance on general TS datasets whose channels lack sequential order.
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A Experimental Settings

A.1 Tasks and Evaluation Metrics

We demonstrate the effectiveness of SOR-Mamba on TS forecasting tasks with 13 datasets under
standard and transfer learning settings. For evaluation, we primarily follow the standard self-
supervised learning (SSL) framework, which involves pretraining and fine-tuning (FT) or linear
probing (LP) on the same dataset. Additionally, we consider in-domain and cross-domain transfer
learning settings, with dataset domains defined based on previous work [8]. The evaluation metrics
used are mean squared error (MSE) and mean absolute error (MAE).

A.2 Datasets

For forecasting tasks, we use 13 datasets, including four ETT datasets (ETTh1, ETTh2, ETTml,
ETTm?2) [40], four PEMS datasets (PEMS03, PEMS04, PEMSO07, PEMSO08) [5]], Exchange, Weather,
Traffic, Electricity (ECL) [32]], and Solar-Energy (Solar) [14]. Details of the dataset statistics are
discussed in Appendix B}

A.3 Experimental Setups

We follow the experimental setups from iTransformer and S-Mamba. Note that we do not tune any
hyperparameters except for A, which is related to the proposed regularization, while adhering to
the values used in S-Mamba for all other hyperparameters concerning the model architecture and
optimization. For dataset splitting, we adhere to the standard protocol of dividing all datasets into
training, validation, and test sets in chronological order. Details of the experimental setups, including
the size of the input window and the forecast horizon, are discussed in Appendix

A.4 Baseline Methods

We follow the baseline results and methods from S-Mamba [29]. For the baseline methods, we
consider Transformer-based models, including iTransformer [19]], PatchTST [23]], and Crossformer
[38]], linear/MLP models, including RLinear [[16]], DLinear [34] and TimesNet [31]], and S-Mamba, a
Mamba-based TS forecasting model. Details of the baseline methods are discussed in Appendix [C]



B Dataset Statistics

We assess the performance of SOR-Mamba across 13 datasets, with the dataset statistics detailed in
Table where C' and T" denotes the number of channels and timesteps.

We follow the same data processing steps and train-validation-test split protocol as used in S-
Mamba [29], maintaining a chronological order in the separation of training, validation, and test sets,
using a 6:2:2 ratio for the Solar-Energy, ETT, and PEMS datasets, and a 7:1:2 ratio for the other
datasets. The results are shown in Table where N,L, and H represent the dataset size, size of
lookback window, and size of output horizon, respectively. For all datasets and all models, the L is
uniformly set to 96.

Statistics Experimental Setups

Dataset

C T (Nlraim Nval; Ntest) L H
ETTh1 [40] 17420 (8545, 2881, 2881)
ETTh2 [40] 7 17420 (8545, 2881, 2881)
ETTm1 [40] 69680 | (34465, 11521, 11521)
ETTm2 [40] 69680 | (34465, 11521, 11521)
Exchange [32] 8 | 7588 | (5120, 665, 1422) {96, 192, 336, 720}
Weather [32]] 21 | 52696 | (36792, 5271, 10540) 96
ECL [32] 321 | 26304 | (18317,2633, 5261)
Traffic [32]] 862 | 17544 | (12185, 1757,3509)
Solar-Energy [14] | 137 | 52560 | (36601, 5161, 10417)
PEMSO03 [[18]] 358 | 26209 (15617, 5135, 5135)
PEMSO04 [[18]] 307 | 15992 (10172, 3375, 3375) {12, 24, 48,96}
PEMSO7 [18]] 883 | 28224 | (16911, 5622, 5622) PET T
PEMSO08 [[18]] 170 | 17856 (10690, 3548, 3548)

Table B.1: Datasets for TS forecasting.

C Baseline Methods

S-Mamba [29]: S-Mamba utilizes bidirectional Mamba to capture channel dependencies in TS
by scanning the channels from both directions.

PatchTST [23]: PatchTST segments TS into patches and feeds them into a Transformer in a
channel independent manner.

iTransformer [[19]]: iTransformer reverses the conventional role of the Transformer in TS
domain by treating each channel rather than patches as a token, thereby emphasizing channel
dependencies over temporal dependencies.

Crossformer [38]]: Crossformer employs a cross-attention mechanism to capture both temporal
and channel dependencies in TS.

TimesNet [31]: TimesNet captures both intraperiod and interperiod variations in 2D space using
a parameter-efficient inception block.

RLinear [[16]: RLinear is a simple linear model that integrates reversible normalization and
channel independence.

DLinear [34]: DLinear is a simple linear model with channel independent architecture, that
employs TS decomposition.



D Related Works

D.1 TS Forecasting with Transformer

Transformers [28]] are commonly employed for long-term TS forecasting (LTSF) tasks due to their
ability to handle long-range dependencies through attention mechanisms. However, their quadratic
complexity has led to the development of various methods aimed at improving efficiency, such
as modifying the Transformer architecture [38), |42]], patchifying the TS [23] or using MLP-based
models [6}134]. While MLP-based models offer simpler structures and reduced complexity compared
to Transformers, they tend to be less effective at capturing global dependencies [29]]. Recently,
iTransformer [19] inverts the conventional Transformer framework in TS domain by treating each
channel as a token rather than each patch, shifting the focus from capturing TD to CD. This framework
has led to significant performance improvements and has become widely adopted as the backbone for
TS models [20, [7]].

D.2 State-Space Models

To overcome the limitations of Transformer-based models, state-space models have been integrated
with deep learning to tackle the challenge of long-range dependencies [25. 37, 41]. However, these
methods are unable to adapt their internal parameters to varying inputs, which limits their performance.
Recently, Mamba [10] introduces a selective scan mechanism that efficiently filters specific inputs
and captures long-range context by incorporating time-varying parameters into the SSM. Due to its
linear-time efficiency for modeling long sequences, it has been widely adopted in various domains,
including computer vision [21} [13] 143] and natural language processing [24} 2| [12]].

D.3 TS Forecasting with Mamba

Due to its balance between performance and computational efficiency, Mamba has also been applied
in the TS domain to address TS forecasting tasks. TimeMachine [[1] utilizes multi-scale quadruple-
Mamba to capture either TD alone or both CD and TD, with its architecture relying on the statistics of
the dataset. S-Mamba [29], MambaMixer [3], and SAMBA [30] employ bidirectional scanning with
bidirectional Mamba to overcome the sequential order bias when capturing CD, but they are limited
by the need for two Mamba models. MambaTS [4]] introduces variable permutation training, which
shuffles the channel order during the training stage to address the sequential order bias by enhancing
robustness to the order. However, it is limited by the need for an additional procedure to determine
the optimal scan order for the inference stage. C-Mamba [35]] introduces channel attention enhanced
patch-wise Mamba encoder to capture both TD and CD, and FMamba [22]] integrates fast-attention
with Mamba to better capture CD.
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E Preliminaries

E.1 Problem Definition

This paper addresses the multivariate TS forecasting task, where the model uses a lookback window
X = (X1,Xa, -+ ,Xr) to predict future values y = (xz41,--- ,Xr+g) with x; € R representing
the values at each time step. Here, L, H, and C denote the size of the lookback window, the forecast
horizon, and the number of channels, respectively.

E.2 State-Space Models

SSM transforms the continuous input signals z() into corresponding outputs y(¢) via a state repre-
sentation h(t). This state-space represents how the state evolves over time, which can be expressed
using ordinary differential equations as follows:

h'(t) = Ah(t) + Bx(t), ED)

y(t) = Ch(t) + Dx(t), '
where h/(t) = dzgt), and A, B, C, and D are learnable parameters of the SSMs.
Due to the continuous nature of SSMs, discretization is commonly used to approximate continuous-
time representations into discrete-time representations by sampling input signals at fixed intervals.
This results in the discrete-time SSMs being represented as:

hy = Ahj_1 + Buay,

_ _ (E.2)
yr = Chy, + Dxy,

where hy, and z;, represent the state vector and input vector at time k, respectively, and A = exp(AA)
and B = (AA) !(exp(AA) —I)- AB are the discrete-time matrices obtained from the continuous-
time matrices A and B.

Recently, Mamba introduces selective SSMs, a data-dependent selection mechanism that enables
the model to capture contextual information in long sequences using time-varying parameters. Its
near-linear complexity makes it an efficient alternative to the quadratic complexity of the attention
mechanism in Transformers across various tasks.

11



F S-Mamba vs. SOR-Mamba

Figure [F.1] visualizes the comparison between S-Mamba [29]], which employs bidirectional Mamba
to capture CD, and our method, SOR-Mamba, which uses a single unidirectional Mamba with
regularization to capture CD.

S-Mamba SOR-Mamba
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Figure F.1: Comparison of S-Mamba and SOR-Mamba.

G Removal of 1D-Convolution

The original Mamba block [[10] integrates the H3 block [9]] with a gated MLP, where the H3 block
uses a 1D-conv before the SSM layer to capture local information within nearby tokens, as illustrated
in Figure@ However, since channels in TS do not have an inherent sequential order, we eliminate
the 1D-conv from the Mamba block, resulting in the proposed CD-Mamba block. Figure[G.2]shows
the overall architecture of the proposed CD-Mamba block, where the 1D-conv before the selective
SSM is removed from the original Mamba block [[10]].

H3 block & Gated MLP — Mamba block

A A
4 N\ M N\ [ M N\
0 0
Selective
SSM

) @ )
| 1D-conv |

| Linear || Linear || Linear| Linear/ \Linear Linear/ \Linear
- L—— ) 1 ) U — )

Figure G.1: Architecture of the original Mamba block. The original Mamba block contains
1D-conv before the SSM layer to capture local information within nearby tokens.1

12



CD-Mamba block

* G R N
- N -
@ .,
’
L7
X .

Selective

Channels w/o order
|

Linear

Remove 1D-conv

Figure G.2: Architecture of the CD-Mamba block. 1D-conv before the selective SSM is removed
from the original Mamba block, as the channels do not have a sequential order.

H Full Results of Time Series Forecasting

Table [H.I|shows the full results of TS forecasting tasks across four different horizons, highlighting
the effectiveness of our method.
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SOR-Mamba
Models — T s S-Mamba iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear

Metric MSE MAE MAE | MSE MAE | MSE MAE

MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 377 398 2398 | 385 404 | 387 405
192 | 428 429 A28 | 445 441 | 441 436

395 | 414 419 | 423 448 | 479 464 | 384 402 | 386 400
424 | 460 445 471 474 | 525 492 | 436 429 | 437 432

E 336 | 464 448 448 | 491 :462 487 458 446 | 501 466 | 570 546 | 565 515 | 491 469 | 481 459
m | 720 | 464 469 A71 | 506 497 | 509 494 470 | 500 488 | .653  .621 | .594 558 | .521  .500 | .519 516
Avg. | 433 436 438 | 457 452 | 457 449 434 | 469 454 | 529 522 | 541 507 | 458 450 | 456 452

96 | .292 348 2348 | 297 349 | 301 350 338 | 302 348 | 745 584 | 400 440 | 340 374 | 333 387

o 192 | 372 397 399 | 378 399 | 381 .399 390 | 388 400 | 877  .656 | .528 509 | 402 414 | 477 476
[; 336 | 415 4 435 | 425 435 | 427 434 426 | 426 433 | 1.043 731 | .643 571 | 452 452 | 594 541
m | 720 | 423 445 446 | 432 448 | 430 446 440 | 431 446 | 1.104 763 | 874 679 | 462 468 | 831  .657
Avg. | 376  .405 407 | 383 408 | 384 407 398 | 387 407 | 942 684 | .611 550 | 414 427 | 559 515

96 324 362 2367 | 326 368 | 342 377 376 | 329 367 | 404 426 | 364 387 | 338 375 | 345 372

= | 192 ] 369 385 2387 | 378 393 | 383 396 392 | 367 385 | 450 451 | 398 404 | 374 387 | 380 389
= | 336 | 402 408 408 .408 | 410 414 | 418 418 415 | 399 410 | 532 515 | 428 425 | 410 411 413 413
E 720 | 467 444 472 444 | 474 451 | 487 456 450 | 454 439 | 666 589 | 487 461 | 478 450 | 474 453
Avg. | 391 400 396 401 | .398 407 | 408 412 407 | 387 400 | 513 496 | 419 419 | 400 406 | 403 407

9 | .179 261 .181 265 | .182 .266 | .186  .272 265 | 75 259 | 287 366 | 207 305 | .187  .267 | .193 292

(\E‘ 192 | 241 304 246 307 | 252 313 | 254 314 304 | 241 302 | 414 492 | 290 364 | 249 309 | 284 362
e | 336 | 302 342 306 345 | 313 349 | 317 353 342 | 305 343 | 597 542 | 377 422 | 321 351 | 369 427
E 720 | 401 400 403 401 | 416 409 | 412 407 398 | 402 400 | 1.730 1.042 | .558  .524 | 408 403 | .554 522
Avg. | 281 327 284 329 | 290 .333 | 293 337 2327 | 281 .326 | 757  .610 | .358 404 | 291 333 | 350 401

12 066 170 .066  .170 | .066 171 | .071 .174 | .126 236 | .099 216 | .090 .203 | .178 305 | .085 .192 | .122 243

S| 24 088 197 .090 200 | .088  .197 | .097 208 | 246 334 | .142 259 | .121 240 | 257 371 | 118  .223 | 201 317
E 48 134 245 167 280 | .165 277 | .61 272 | .551 529 | 201 319 | 202 317 | 379 463 | 155 260 | .333 425
o 96 93297 225 318 | 213 313 | 240 338 | 1.057 787 | 269 370 | .262 367 | 490 .539 | 228 317 | 457 515
Avg. | 121 227 137 242 | .133 240 | .142 248 | 495 472 | .180 291 169 281 | 326 419 | .147 248 | 278 375

12 | 074 175 077 .180 | .073  .177 | .081 .188 | .138 252 | .105 224 | .098 218 | .219 .340 | .087 .195 | .148 272

I | 24 | 08 192 091 .197 | .084 192 | .099 211 258 348 | 153 275 | .131 256 | 292 398 | .103 215 | 224 340
E 48 .106 214 115 221 | 101 213 | 133 246 | 572 544 | 229 339 | 205 326 | 409 478 | .136 250 | .355 437
& 96 | .129 233 143 248 | .125 236 | .172 283 | 1.137 .820 | .291  .389 | 402 457 | 492 532 | .190 303 | 452 504

Avg. | 099 203 107 212 | .096 205 | .121 232 526 491 | 195 307 | 209 314 | 353 437 | 129 241 295 388

12 | .059 155 .060 156 | .060 .157 | .067 .165 | .118 235 | .095 207 | .094 200 | .173 304 | .082 .I81 | .115 .242
24 | 076 174 082 .182 | .082 .184 | .088 .190 | 242 341 | .150 262 | .139 247 | 271 383 | .101  .204 | 210 .329

107 209 | 100 204 | .113 218 562 541 253 340 | 311 369 | 446 495 | .134 238 | 398 458
96 A17 0218 117 218 | 117 218 | 172 283 | 1.096 .795 | .346 404 | 396 442 | 628 577 | .181 279 | 594 553

Avg. | .088 .186 .091 .191 | .090 .191 | .102 .205 504 478 | 211 303 | 235 315 | 380 440 | .124 225 | 329 395

PEMS07
=~
&
g
®
)
b=

12 .078 178 076 .176 | .076 .178 | .088  .193 | .133 247 | .168 232 | .165 214 | 227 343 | 112 212 | .154 276
24 | 103 205 109 212 | .110 216 | .138 243 | 249 343 | 224 281 | 215 260 | 318 409 | .141 238 | 248 353
250 172 264 | 173 254 | 334 353 | .569  .544 | 321 354 | 315 355 | 497 510 | 198 283 | 440 470
96 | 229 295 290 334 | 271 321 | 458 436 | 1.166 814 | 408 417 | 377 397 | .721 592 | 320 351 | .674 565

Avg. | 142 232 162 247 | 157 242 | 254 306 | .529 487 | 280 .321 | 268 307 | 441 464 | 193 271 | 379 416

PEMS08
IS
&
a
b=

o 96 | .085 085 205 | .086 .206 | .086 .206 | .093 217 | .08 205 | .256 367 | .094 218 | .107 234 | 088 218
s | 192 179 179 301 | 181 303 | .177  .299 | .184 307 | 176 299 | 470 509 | .184 307 | 226 344 | .176 315
£ | 336 | .329 331 417 | 331 417 | 338 422 | 351 432 | 301 397 | 1.268 .883 | .349 431 | 367 448 | 313 427
3 720 | .838 860 698 | .858 .599 | .847  .691 .886 714 | 901 714 | 1.767 1.068 | .852  .698 | 964 746 | .839  .695

Avg. | 358 402 363 405 | 364 407 | 368 409 | 378 417 | 367 404 | 940 707 | .370 413 | 416 443 | 354 414

96 174 212 175 215 | 165 209 | .174 215 192 232 | 177 218 A58 230 | 202 261 1720220 | 196 255

5| 192 | 221 255 221 255 | 215 255 | 224 258 | 240 271 | 225 259 | 206 277 | 242 298 | 219 261 | 237 29
S| 336 | 277 295 277 29 | 273 296 | 281 298 | 292 307 | 278 297 | 273 335 | 287 335 | 280 306 | 283 335
2| 720 | 353 355 348 | 353 349 | 359 351 | 364 353 | 354 348 | 398 418 | 351 386 | .365 359 | .345 .38
Avg. | 256 257 278 | 252 277 | 260 281 | 272 291 | 259 281 | 259 315 | 271 320 | 259 287 | 265 317

96 | .194 207 246 | 207 246 | 201 234 | 322 339 | 234 286 | 310 331 | 312 399 | 250 292 | 290 378

| o192 | 228 239 270 | 240 272 261 | 359 356 | 267 310 | 734 725 | 339 416 | 296 318 | 320 398
2| 336 | 247 260 287 | 262 290 273 | 397 369 | 290 315 | 750 735 | 368 430 | 319 330 | 353 4I5
@ | 720 | 251 264 291 | 267 293 | 249 275 | 397 356 | 289 317 | 7769 765 | 370 425 | 338 337 | 356 4I3
Avg. | 230 242 274 | 244 275 | 234 261 | 369 356 | 270 307 | 641 639 | 347 417 | 301 319 | 330 401

96 | .139 439 233 | 139 237 | .48 240 | 201 281 | 81 270 | 219 314 | 237 329 | 168 272 | 197 .282

192 | 160 A58 249 | 165 261 | 167 258 | 201 283 | 188 274 | 231 322 | 236 330 | .84 289 | .196 285
91336 | 176 271 477 271 | 177 274 | 179 272 | 215 298 | 204 293 | 246 337 | 249 344 | 198 300 | 209 301
D720 | 198 292 201 293 | 2014 304 | 220 310 | 257 331 | 246 324 | 280 363 | 284 373 | 220 320 | 245 333
Avg. | 168 264 262 | 174 269 | 179 270 | 219 298 | 205 290 | 244 334 | 251 344 | 192 295 | 212 300

9% | 378 261 259 | 379 260 | 395 268 | 649 389 | 462 295 | 522 290 | 805 493 | 593 321 | 650 396

o | 192 | 393 269 270 | 409 272 | 417 277 | 601 366 | 466 296 | 530 293 | 756 474 | 617 336 | 598 370
£33 | 399 272 279 | 418 277 | 433 283 | 609 369 | 482 304 | .558 305 | 762 477 | 629 336 | .605 373
S| 720 | 437 290 297 | 461 297 | 467 300 | 647 387 | 514 322 | 589 328 | 719 449 | 640 350 | 645 394

Avg. | 402 273 276 | 417 277 | 428 282 | .626 378 | 481 304 | 550 304 | 760 473 | 620 .336 | .625 383

1% Count 33 31
2" Count 15 19

10 10 7 1 3 0
19 13 13 9 6 2 2 1 6 0 0

w
w
)
%
-
=3

(SR}

Table H.1: Full results of TS forecasting tasks.
I Sequential Order Bias

The degree of s§qt}entlal order bias may vary depending Y 5[ (Log scale) .
on the characteristics of the datasets. We argue that two -5 ly= 276x+1.76
factors affect this degree: 1) the correlation between the 5
channels and 2) the number of channels in the dataset. To T : °®
validate our argument, we quantify the degree of sequential ©
order bias for each dataset by measuring the difference in .2 e o :f_grress"’"
performance (average MSE across four horizons) when the & - © Weather
channel order is reversed, using unidirectional Mamba with- > _ ® PEMS
c— 2
() ° ® Others
SR —1is 0.5 00

Cigorrelation?
14

Figure I.1: Corr. vs. Bias.



out regularization. Figure [[.T|shows the results, where the

x-axis represents the correlation between the channels for

each dataset, measured by the average of the off-diagonal

elements in the correlation matrix (i.e., excluding autocor-

relation), and the y-axis represents the degree of sequential

order bias, with both axes shown on a log scale, and the point size representing the number of
channels. The figure implies that the bias increases 1) as the channels become more correlated and 2)
as the number of channels increases. For example, four ETT datasets containing seven channels with
low correlation show low bias, whereas four PEMS datasets containing over 100 channels with high
correlation exhibit high bias.

J Limitation of Bidirectional Mamba

Applying Mamba to capture CD is challenging due to the
sequential order bias, where channels in TS do not have a
sequential order, whereas Mamba is originally designed for
sequential inputs. To address this issue, previous works have
employed bidirectional Mamba to capture CD [29] (3} 30],
where two unidirectional Mambas with different parameters
capture CD from a certain channel order and its reversed
order, as shown in Figure However, these methods
are inefficient due to the need for two models. Another = Uni: (1-C)
approach involves permuting the channel order during train- mm Uni: (C—1)
ing [4]] to enhance robustness to the order, but this requires
an additional procedure to determine the optimal order for
inference. Figure J.1: Sequential order bias.
Furthermore, Figure[J.T|suggests that bidirectional Mamba [29]] may not be effective in handling the
sequential order bias. The figure illustrates the relative Impr. in a TS forecasting task when using
unidirectional Mamba compared to using bidirectional Mamba on the ECL dataset [32], indicating
that 1) bidirectional Mamba do not always achieve better performance than unidirectional Mamba,
and 2) the performance of unidirectional Mamba varies depending on the channel order.

— Bi: (1-C) + (C—>1)

Relative Gain(%)

96 192 336 720
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K Ablation Study

To demonstrate the effectiveness of our method, we conduct an ablation study using four ETT
datasets [40] to assess the impact of the following components, where the results are shown in
Table[KZ1] The result indicates that incorporating all components yields the best performance, and
adding the regularization term enhances performance even with bidirectional Mamba.

Mamba
Method ————— Reg. CCM | ETThl ETTh2 ETTml ETTm2 | Avg.
# w/0 conv.
S-Mamba Bi - - - 457 .383 .398 .290 382
- Bi v - - 441 383 .396 285 .376
- Bi - v 452 382 .394 .286 378
- Bi v v 443 381 393 285 .376
- Bi v v v 435 376 390 281 370
- Uni - - - 455 383 403 .289 383
- Uni v - - 442 382 .400 285 377
- Uni - v - .449 382 .396 285 378
- Uni Ve v - 442 382 .396 284 376
SOR-Mamba | Uni v v v 433 376 391 281 370

Table K.1: Ablation studies with four ETT datasets.
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L Various Architectures for Temporal Dependencies

Following recent studies [19} [29] that suggest employing simple models (e.g., MLPs) to capture
TD in TS, we utilize MLP to capture TD. To examine the impact of different design choices of
architecture for capturing TD, we consider two alternatives: 1) without employing any encoder for
TD, and 2) using Mamba, following the experimental protocols of the previous work [29]. Table
shows the result, demonstrating that our method is robust to the choice of TD encoder, achieving the
best performance with MLP.

Architecture ETT PEMS
Exchange Weather Solar ECL Traffic | Avg.
forT™ | b1 h2 ml m2 03 04 07 08 £ £
- 446 386 .397 286 .139 .109 .096 .164 363 .258 244 170 433 .268
Mamba 447 386 398 285 .140 .109 .097 .165 363 259 245 171 437 269
MLP 442 382 396 .284 .137 .107 .091 .162 363 257 242 169 412 265

Table L.1: Various architectures for capturing TD.

M Effect of CCM

To demonstrate the impact of CCM, we compare it with two other Relative gain (SL - SSL) o
widely used pretraining tasks: masked modeling (MM)[36] with -
a masking ratio of 50%, and reconstruction (Rec.)[[15]], along
with the supervised setting (SL). Table [N.1] shows the results
using two backbones, S-Mamba and SOR-Mamba, showing that
CCM consistently outperforms the other tasks.

Furthermore, Figure shows the average performance Impr. 0"~ MM CCM

from fine-tuning with three pretraining tasks compared to SL Fijgure M.1: Comparison of SSL.
based on the number of channels in the datasets, with six datasets

having fewer than 100 channels and seven datasets having 100 or more channels. The results indicate
that reconstruction is advantageous for fewer channels, masked modeling for more channels, while
CCM consistently outperforms in both cases.

N Correlation for CCM

To assess the impact of using different correlations for CCM, we consider two candidates: local
correlation which refers to the correlation between the channels of the input TS, and global correlation
which refers to the correlation between the channels of the entire TS. Table[N.2|shows that using local
correlations yields better performance compared to global correlations, although both approaches
still outperform the SL baseline.
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S-Mamba SOR-Mamba SSL (CCM)

Datset | o SSL o SSL Dataset | SL o Tocal
Rec. MM CCM Rec. MM CCM ETThl | .442 445 433
ETThl | 457 .448 457 457 | 442 434 435 433 ETTh2 | .382  .380 .376
ETTh2 383 381 383  .380 | .382 .378 .381 .376 ETTml .396 .393 391
ETTml1 398 400 397 396 | 396 390 396 391 ETTm2 284 283 281
ETTm2 | 290 .283 288 286 | 284 .279 284 281 PEMSO03 | .137 125  .121
PEMSO03 | .133 .120 .130 .119 | .137 .126 .121 .121 PEMSO4 | 107 101 099
PEMSO04 | 096 .092 .103 .093 |.107 .111 .095 .099 PEMSO7 | 091 088  .088
PEMS07 | .090 .086 .089 .085 | .091 .091 .090 .088 PEMSO8 | 162  .146  .142

PEMSO08 | .157 .136 .157 .138 | .162 .139 .144 .142
Exchange | .364 .363 .378 .361 | .363 361 .361 .358
Weather | 252 .249 251 250 | .257 .256 .256 .256

Exchange | .363 .361 358
Weather | .257 258 256

Solar | .244 230 239 233 | 242 231 231 .230 Solar | .242 228 230

ECL |.174 175 .74 170 | .69 .172 .169 .168 ECL 169 170 .168
Traffic | 417 450 415 .414 | 412 410 410 .402 Traffic | 412 410  .402
Average | 266 263 266 260 | 265 260 259 .257 Average | 265 260  .257
Table N.1: Comparison of various SSL pretraining tasks. Table N.2: Global vs. Local corr.

O Robustness to Channel Order

To demonstrate that the proposed method effectively addresses the sequential order bias, we conduct
two analyses showing the robustness to the channel order. First, we evaluate performance variations
with five random permutations of channel order using ETTh1, as shown in Table [O.1] indicating
a smaller standard deviation compared to S-Mamba. Additional results with different datasets
are described in Table [0.2] Second, we visualize channel representations using t-SNE [27] with
Exchange, as shown in Figure[0.1] The figure indicates that while the representations of the same
channel with reversed orders are inconsistent without regularization, they remain consistent with
regularization. Results of performance variations by permuting the channel order with other four
datasets [40} [32] are described in Table [0.2] which indicate a small standard deviation across all
horizons.

SOR-Mamba < (Mamba + Regularization) S-Mamba

H | S-Mamba SOR-Mamba (Uni + Reg) (Bi + Reg) (Bi)
Exchange (C=8) é . ® <@
96 | .386+.0010 37840003 flasmes) , @ L2
192 | 4404 ¢033 A28 0002 1o ® ® > © . | O '( .
336 | 48419046 46440002 N é o - @ o
720 | .5024 0057 464+ 0004 le | T o 3
Table O.1: Robustness to order. Figure O.1: t-SNE of channels with reversed orders.

H ETThl ETTh2 ETTml ETTm2  Exchange

96 | 37740003 29240011 32410005 17940003 -0854 0001
192 | 42840002 37240000 36940005 24140002 179+ .0001
336 | 46440002 41540002 40240003 30240001  -329+.0002
720 | 46440004 42310001 46710000 40140001 -838+.0014

Avg. | 43440002 42310003 391410001 28140001 -358+.0003

Table O.2: Robustness to channel order.

P Correlation in the Data Space and the Latent Space

To demonstrate that the relationships between channels are well preserved from the data space to
the latent space, we visualize the correlation matrices in both spaces using the Weather dataset. The
results, shown in Figure indicate that the relationships are effectively preserved. Additionally,
we compute the root MSE between the matrices of both spaces to compare models pretrained with and
without CCM. Figure shows that the model pretrained with CCM exhibits a smaller difference
between the matrices.
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Ry = Corr(x) R, = Corr(z)

B w/o CCM
mm w/ CCM

0.071
0.06
1 0051
£ 0.041
0,031
0.021
0.011
0.004

ETThl ETTm1l Exchange Solar

(a) Visualization of Rx and R. (b) Comparison of D(Rx, Rz).

Figure P.1: Correlation matrices in the data space and the latent space.
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Q Channel Order for Two Views

To generate two embf:ddlng vectors for regularization, F: Fixed . R: Random . X*: Roverse of X
we explore four candidates based on whether the chan- P — L
. . . z
nel order is fixed or randomly permuted in each iter- Oder e m B wm | &
. . 2 2
ation. Table @ shows the results with average MSE i ¢l @ & © © @o5®
across four horizons, indicating that fixing the order Bl 7 | 42 a3 a6 a3 | 0w
during training yields the best performance, which _ | erm2 7 | 382 382 382 382 | 00%
; ; ; S| ETTml 7 |.396 396 396 396 | 0.0%
degrades with random order, 'espec1ally with many 7| Com 2| S0 D83 o83 285 | 04%
channels, but remains robust with fewer channels. O | Exchange 8 | .363 364 365 .364 | 0.3%
. . Weather 21 | 257 258 260 260 | 1.2%
We argue that a fixed order is beneficial due to stable s = .
.. . . Average 354 355 356 .355 0.3%
training, which becomes unstable with randomness
hen th ber of ch Is is 1 h . Solar 137 | 242 245 245 246 | 16%
when the number of channels 1s arge, as snown n PEMS03 358 | .137 .144 .150 .151 9.3%
Figure [Q.1] The figure displays the training loss for S | PEMS04 307 | .107 .112 116 117 | 8.5%
d 181 with . ber of ch " | PEMSO7 883 | .01 096 097 .09 | 52%
two datasets [40] with varying number of chan- | ppmsos 170 | 162 163 169 172 | 58%
nels. The figure indicates that random order causes ECL 321 .169 .l174 .18l .18 | 77%
. - . . L Traffic 862 | 412 422 423 423 | 2.6%
instability, particularly with the regularization loss.
Average 189 194 197  .198 4.9%
Table O.1: Channel order for z.
VA Fixed Fixed Random 1 Random
Z9 Reverse(Fixed) Random Random 2 Reverse(Random)
;creclaslmg LcsLs i: ::: j’: R :: Forec‘aslmg Loss fooms - Forecasting Loss 0025 Forecasting Loss | *%%%°
—— Regularization Loss g 9 —— Regularization Loss g w — Regularization Loss | —— Regularization Loss m,mg
S ot B |
EQ e . E
m 00010 - - B 03 | HOS ¢
T W R T o EE N
25|, e iy | ol s 115 %t Reosmmanioss [ g — rensantpton s
0 H e
¢ wg | E 8 S 5
oA — |e g 202 02 & £ o2l 02 d
50w o w0 79m o0 G sio g 0 20 20 0 T o o0, 10 70w 500 £ T 0 o i 200 00 o

Figure Q.1: Fixed vs

Unstable training!

. random order for generating two views, z; and zo.
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R Efficiency Analysis

To demonstrate the efficiency of SOR-Mamba, we compare it with iTransformer and S-Mamba in
terms of the number of parameters, memory usage, and computational time. Table [R-T|shows the
results, indicating that SOR-Mamba outperforms these baselines in all three aspects, particularly
reducing the number of parameters by up to 38.1% compared to S-Mamba. Note that the training
time is measured per epoch, while the inference time is measured per data instance.

Dataset: Traffic (a) (b) (©) (b) = (¢)

(L =96, H = 96) iTrans. S-Mamba SOR-Mamba Impr.
# Parameters
In projector 0.05M 0.05M 0.05M 0.0 %
Encoder-TD 2.11M 2.11M 2.11M 0.0%
Encoder-CD 4.20M 6.97M 3.48M 50.1%
Out projector 0.05M 0.05M 0.05M 0.0 %
Total 6.52M 9.29M 5.80M 38.1%
Memory
Complexity o(ec?*) o0 o(C) -
GPU memory (GB) 1.36 0.33 0.32 4.2%
Computational time
Train (sec/epoch) 115.5 108.3 102.1 5.7%
Inference (ms) 14.6 9.9 8.7 +11.3%
Avg. MSE (four H) 0.428 0.417 0.402 3.6%

Table R.1: Efficiency analysis.

S Robustness to Missingness

To demonstrate our method’s effectiveness with missing data,
we analyze scenarios where 25%, 50%, and 75% of values are
missing and interpolated using adjacent values. Figure[S.T|shows
the average MSE across four horizons with four ETT datasets,
indicating that our method remains robust even with significant
missing data. Furthermore, even with missing values, our method
outperforms S-Mamba trained without any missing data.

T Robustness to Hyperparameter A

.450
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0.275

o— @ & @
Dataset Model
ETTh1 —— ETTml —e— SOR-Mamba
—— ETTh2 —— ETTm2 =---: S-Mamba

¢ ——0

0 25 50 75
Missing ratio (%)

Figure S.1: Missingness in TS.

Table[T-I| shows the average MSE across four different horizons for the four ETT datasets [40], using
various values of A that control the contribution of the regularization term. The results demonstrate

the effectiveness of the regularization and its robustness to \.

SOR-Mamba
Dataset | w/o Reg. w/ Reg. S-Mamba
0 0.001 0.01 0.1 0.2
ETThl 439 433 433 433 433 457
ETTh2 382 376 376 376 .376 .383
ETTml 403 391 391 391 391 .398
ETTm2 285 281 .281 .281 .281 .290

Table T.1: Robustness to choice of A for regularization.
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U Robustness to Distance Metric

To assess whether SOR-Mamba is sensitive to the choice of distance metric d for the regularization
term and CCM when comparing the two matrices, we compare various metrics, including (negative)
cosine similarity, 1 loss, and /5 loss. Tables and[U.2]show the average MSE across four different
horizons for the distance metric used in the regularization term and CCM, respectively, demonstrating
that the performance is robust to the choice of distance metric, where we choose {5 loss throughout

the experiment for both metrics.

SOR-Mamba-SL SOR-Mamba-SSL
Dataset S-Mamba Dataset | ——— | S-Mamba
Cosine /¢ Loss /5 Loss l1 Loss {5 Loss
ETThl 442 442 442 457 ETThl 434 433 457
ETTh2 382 382 382 .383 ETTh2 379 376 .383
ETTml 396 396 396 398 ETTml 391 391 .398
ETTm2 284 284 284 290 ETTm2 281 281 .290
PEMSO03 145 147 137 133 PEMSO03 J21 J21 .133
PEMS04 .105 .105 107 .096 PEMS04 .099 .099 .096
PEMSO07 091 .091 .091 090 PEMSO07 .089 .088 .090
PEMS08 162 159 162 157 PEMS08 .140 142 157
Exchange .365 .365 363 364 Exchange 358 358 .364
Weather 256 257 257 252 Weather 256 256 252
Solar 242 242 242 244 Solar 232 230 244
ECL 167 .168 .169 174 ECL 167 .168 174
Traffic 414 414 412 417 Traffic 402 402 417
Average .265 .265 265 .266 Average 258 257 .266
Table U.1: Robustness to d for regularization. Table U.2: Robustness to d for CCM.

V  Comparison of GPU Memory Usage

Figure [V visualizes GPU memory usage by dataset and method, demonstrating that our method is
more efficient than both S-Mamba [29] and iTransformer [19]]. Specifically, Mamba-based methods
are more efficient than Transformer-based methods when C' is large, as Mamba has nearly-linear

complexity, whereas Transformers have quadratic complexity.

—

GPU Memory Usage (MB
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GPU memory usage (by dataset(C) and method)

—— {Transformer 1356.63 140285

—— S-Mamba gig'ii 315.84

—e— SOR-Mamba

Dataset

Figure V.1: Comparison of GPU memory usage.

22



W Statistics of Results over Multiple Runs

To assess the consistency of SOR-Mamba’s performance, we present the statistics from results
using five different random seeds. We calculate the mean and standard deviation for both MSE and
MAE, detailed in Tables [W.1] [W.2] and[W.3] which reveals that our method maintains consistent
performance in both self-supervised and supervised settings.

Ours
Models T SL
Metric MSE MAE MSE MAE

96 | 37741001 3981001 -385+.000 -398+.000

= 192 A284 001 4294 000 4324001 4284000
= 336 | 4644 001 4481001 4761000 4484+ 000
m | 720 | 4644 001 4694 006 4764003 4764 002
Avg. | 4331000 4364002 4424001 4384000

96 | 2924 004 3481003 2994001 3484001

& 192 | 3724001 3974001 -375+.001 -399+ 001
= 336 | 4154001 431100 4231000 -435+.000
| 720 | 4234001 4454001 4314002 4464 001
AVg. .376:‘:‘001 .405:‘:.001 .382:‘:.001 .407:|:,000

96 | 3244002 .362+002 3241004 3674003

= 192 | .369+.002 3854001 -375+.002 -387+.001
= | 336 | 4024 002 40841001 408+ 000 4084 000
5| 720 | 4674002 4441001 AT24001 4444001
AVg. -391i.001 ~400j:.001 .396i.001 -401i.001

96 A794 001 2614001 1814000 2654000

2 192 | .2414 000 30441000 2464001 .307+.001
5| 720 | 4014002 4004002 4031002 4014 001
Avg. | 2814 001 3274000 2844001 -329+.000

Table W.1: Results of TS forecasting over five runs - 1) ETT datasets.
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Ours
Models
FT SL
Metric MSE MAE MSE MAE

12| .066+.001 1704001 0664 001 1704001

§ 24 | .088+.001 1974001 0901001 2004 001
s | 48 | 1341002 2454003 1671001 280+ 001
E 96 1934+ 005 2974 006 2254 003 3184 002
Avg. | 1214002 2271002 1371001 2424 001

12 | .0744.002 1754003 0774000 -180+.000

§) 24 | .086+.003 1924005 -091+001 -197+.001
s | 48 | 1061001 2141005 1154002 2214 003
= 96 | 1294003 2334004 1431002 2484 002
AVg. -Oggi.OOI ,2031'002 -107i.001 -212i.001

é 24 | .076x.005 1741004 -082+000 1821000
= 48 | 0984001 -199+.001 1074001  -209+ 000
= 96 | 1171003 2184003 -117+.001 -2184 001
Avg. | 0884 001 1864001 -091+000 191+ 000

12| .07841.000 1781000 -076+.001 1764+ 000

§ 24 | 1031001 2054002 1091001 2124 001
= 96 | 2291001 2954002 2901002 -334+.002
Avg. | 1424 900 2324001 1624001 247+ 001

Table W.2: Results of TS forecasting over five runs - 2) PEMS datasets.
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Ours
Models
FT SL
Metric MSE MAE MSE MAE

o | 26 | 085:001 2041002 -085:001 2054+ 001
g0 | 192 | 1794000 3014000 1794002 3014001
S| 336 | 3291001 4154001 3311000 4174000
5 720 | .838+.005 6901002 8601001 -698+.001
Avg. | 3584 001 4024 001 3631001 4054001

96 | 1741000 2124000 -175+.001 -215+.000

E 192 | 2214000 -255+.000 2214000 -255+.000
5 336 | 2771000 2954001 2774001 2964001
= | 720 | 3531001 3481001 -355+.000 -348+.000
AVg. .256i.000 .2771.000 .257i,000 .278i,000

96 | 1941005 2294004 2071000 2464+ 001

o | 192 | 2284 002 2564003 -239+.001 -270+.001
% 336 | 24741006 -2764+.005 2604001 287+ 001
© | 720 | 2514003 2754003 2641001 2914 001
Avg. | 2304002 2594002 2424000 -274+.000

96 | 13941001 2351002 -139+.001 -233+.001

B 192 | 1604002 2544002 -158+1.001 -249+ 001
O | 336 | 1761003 2714003 1771001 2714001
= 720 | 1984 003 2924 006 2014003 2934002
Avg. | 1684001 2641001 .169+001 262+ 001

96 BT84 000 2584000 -378+.000 259+ .000

) 192 | 3934001 2674001 -399+.000 -270+.000
Kl 336 | 3991001 -276+.002 4161001 -279+.000
E | 720 | 4374001 2894002 4564001 297+ 001
Avg. | 40241000 2734001 4121000 -276+.000

Table W.3: Results of TS forecasting over five runs - 3) Other datasets.
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