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Abstract

Systems neuroscience aims to understand how networks of neurons distributed
throughout the brain mediate computational tasks. One popular approach to identify
those networks is to first calculate measures of neural activity (e.g. power spectra)
from multiple brain regions, and then apply a linear factor model to those measures.
Critically, despite the established role of directed communication between brain
regions in neural computation, measures of directed communication have been
rarely utilized in network estimation because they are incompatible with the implicit
assumptions of the linear factor model approach. Here, we develop a novel spectral
measure of directed communication called the Directed Spectrum (DS). We prove
that it is compatible with the implicit assumptions of linear factor models, and
we provide a method to estimate the DS. We demonstrate that latent linear factor
models of DS measures better capture underlying brain networks in both simulated
and real neural recording data compared to available alternatives. Thus, linear
factor models of the Directed Spectrum offer neuroscientists a simple and effective
way to explicitly model directed communication in networks of neural populations.

1 Introduction

A major goal in neuroscience is to characterize how populations of neurons work together to carry
out computational tasks [1]. A well-known example is the biological neural network that identifies
low-level visual features such as edges. That network sends signals from the retina to the lateral
geniculate nucleus, then from there to the primary visual cortex, then finally to higher cortical visual
processing regions [2, 3]. While some biological neural networks are well known, we expect that
the vast majority remain undiscovered due to the enormous variety of tasks the brain performs.
Many methods have been developed to help discover latent networks of neural populations (i.e.
brain networks) [4–6]. A key aspect of such methods is that they should be interpretable, meaning
that a neuroscientist must be able to use the model to draw conclusions about brain function [7].
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Unfortunately, many types of common models in the machine learning literature do not offer this
type of interpretability [8].

One class of widely-used models that is considered interpretable for modeling brain networks is
Linear Factor Models (LFMs) [9, 10]. This family includes popular methods like principal component
analysis (PCA) and independent component analysis (ICA), and are used across almost all modalities
in neuroscience to model brain networks. For example, ICA is regularly used in functional magnetic
resonance imaging (fMRI) applications to identify latent brain networks such as the default mode
network [11, 12]. A common approach in neuroscience is to apply an LFM to some measure
or extracted feature from the recorded signal, rather than to the recorded signals themselves, in
order to get a model of brain networks that are characterized in the desired measure. For example,
power spectra are often calculated from raw electroencephalogram (EEG) recordings before an
LFM is applied, yielding brain networks defined by power spectra [13, 14]. In multi-site local field
potential (LFP) data, LFMs have been applied to identify latent brain networks that are defined by a
cross-spectral covariance matrix [15].

One kind of measure that could be especially informative for defining latent brain networks is
directed communication between brain regions. However, LFMs that directly incorporate measures
of directed communication are lacking. We believe that this is because existing measures of directed
communication, such as Granger causality [16], are incompatible with the implicit assumptions of
using LFMs to identify brain networks. This incompatibility between standard measures of directed
communication and LFMs is discussed further in Sections 2 and 4. In a previous attempt to capture
directed communication within an interpretable brain network model, Gallagher et al. [15] modeled
networks in terms of phase shifts in spectral content between neural populations, but it is unclear if
such phase shifts are an appropriate proxy for directed transmission of signals, and those models are
bottlenecked by significant computational time.

In response to this methodological gap, we introduce a novel measure of directed communication
that we will refer to as the Directed Spectrum (DS). The Directed Spectrum estimates directed
communication between time series in the frequency domain. We prove that these measures are a
linear function of latent brain networks under reasonable assumptions, making them compatible with
LFMs in this application. We then demonstrate that an LFM of DS measures recovers latent networks
in a simulated dataset where the ground truth networks are known. We compare the performance to
several competing directed communication measures, including Spectral Granger Causality [17], and
show that using the Directed Spectrum results in significantly higher quality reconstruction of the
true brain networks. Finally, we show that latent brain networks identified from real neural data via
the Directed Spectrum can decode behaviorally relevant information with much higher fidelity.

2 Linear factor models (LFMs) for identifying brain networks

The term linear factor model [18] describes any model that seeks to approximate a data vector xn as,

xn =
∑J
j=1 Z

(j)
n x(j) + εn. (1)

The vectors x(1), . . . ,x(J) are the J different latent factor loadings, εn is the additive noise term, and
Z

(j)
n is the activation score of the jth factor in the nth sample. xn represents a single sample from a

larger dataset, [x1, . . . ,xN ]. Many well-known models, such as PCA [19], ICA [20], and nonnegative
matrix factorizaton [21], are LFMs. LFMs are frequently used for modeling and discovering brain
networks [10]. In that context, it is straightforward to interpret the scores, Z(j)

n , as the activation
levels for a set of brain networks. Likewise, we can interpret the factor loading x(j) as the observable
signature of the jth brain network. LFMs are quite flexible; a wide variety of assumptions can be
made regarding the structure of the factors, the scores, and the noise distribution [6, 9, 22]. The fact
that LFMs are interpretable and adaptable to most data types has made them a standard model class
for studying latent brain networks.

Note: For simplicity, the subscript n will be dropped from all variables for the remainder of this
document. In cases where a variable is constant over all samples, such as the factor loadings x(j), it
will be explicitly stated.
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2.1 Compatibility between linear factor models and measures of neural activity

It is common to model measures of neural activity recordings rather than modeling the raw recording
time-series directly. In this work, we assume that the vector x contains measures calculated from
multi-channel time-series, V = [v1, . . . ,vK ]ᵀ, where K is the number of channels and vc ∈ RT
is the row of V corresponding to a recording from a single channel c. The frequency domain
representations of these quantities will be marked by a tilde (e.g. ṽc(ω) is the frequency domain
representation of vc). A typical choice for x is to convert the observed data into a set of power spectra
(Scc) for each channel [13, 23],

Scc(ω) ≡ E[|ṽc(ω)|2]. (2)

Modeling these measures in an LFM leads to the latent factor loadings x(j) being described in terms
of power spectra associated with each channel. The chosen measures dictate the representation of the
discovered networks, so we want to use relevant and easy-to-interpret measures.

When an LFM is used to model latent brain networks, there is an implicit assumption that the
measures contained in x are linear functions of the latent brain networks. This is seen in (1) where
the observed measure is a linear function of the latent factor score Z(j) within some noise tolerance.
We let X (·) represent a function, such as (2), that produces the set of measures from our observed
neural data V .
Definition 1. We call X (·) a linear function of latent brain networks if

X (V ) = X (
∑J
j=1 Z

(j)Ω(j)) =
∑J
j=1 Z

(j)X (Ω(j)), (3)

where Ω(j) represents the component of the neural data (V ) that is due to the jth network, normalized
to represent a score of 1. In this way, X (Ω(j)) represents the expected value of the measure if the jth
network was active with a score of 1 in isolation.

It can be shown that power spectra are theoretically consistent with this requirement (see Supplemental
Section A), but there are many measures that cannot obey this assumption. For example, the Pearson
correlation coefficient and Granger causality are two measures that cannot obey this assumption (see
Section 4). Including such measures in LFMs will lead to suboptimal representations of latent brain
networks.

3 Modeling directed communication in brain networks with LFMs

Measures capturing directed communication between neural populations are rarely included in LFMs
despite their frequent use in neuroscience [24–26]. We believe this is because standard measures
of directed communication, including Granger causality [16, 17], are not linear functions of brain
networks and therefore are poorly modeled by LFMs (see Section 4). Nonetheless, measures of
directed communication such as Granger causality are vital for the study of brain networks [27, 28].

Below, we introduce a novel measure of directed communication, which we refer to as the Directed
Spectrum (DS). In order to derive the Directed Spectrum, we first build a general time-series model
of latent brain networks in Section 3.1, and then define how latent networks in the model combine to
produce the observed signal in Section 3.2. The Directed Spectrum is formally defined in Section 3.3.
It captures communication in a similar manner to Granger causality while also being compatible with
a linear model of brain networks.

3.1 Modeling brain networks as independent VAR processes

We outline a model where the output for each latent network is defined by a vector autoregressive
(VAR) process. For additional background on VAR models, see Supplemental Section B. The model
outlined below represents a general framework for understanding what the DS measures capture,
even though inferring it directly would be quite challenging. We begin by assuming that we have J
latent brain networks that each generate vector timeseries outputs. Rather than slicing by channel as
in Section 2, we define the output series as V (j) = [v

(j)
1 , . . . ,v

(j)
T ], where v(j)

t ∈ RK is the column
of V (j) representing signal for all channels at time t. The output series is associated with a VAR
process,

v
(j)
t =

∑pj
τ=1A

(j)
τ v

(j)
(t−τ) + σ

(j)
t , σ

(j)
t ∼ N (0, Z(j)Σ(j)). (4)
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We refer to σ(j)
t as the innovations in the jth network at time t, and assume that they are drawn

iid from a zero mean Gaussian distribution. Each network has a single covariance structure over
all samples (Σ(j)) that is scaled by an activation score (Z(j)) to define the innovation distribution
of the current sample. The set of autocovariance matrices for the jth network {A(j)

1 , . . . , A
(j)
pj } are

also assumed to be constant over all samples. The innovation terms represent new signal introduced
into the network that cannot be explained by the past network outputs {v(j)

(t−1), . . . ,v
(j)
(t−pj)}. We can

represent this network in the frequency domain given standard assumptions regarding the stability of
the VAR model [29],

ṽ(j)(ω) = H(j)(ω)σ̃(j)(ω), H(j)(ω) ≡
(
I −

∑pj
τ=1A

(j)
τ e−iτω

)−1

, 0 ≤ ω ≤ 2π, (5)

where ṽ(j)(ω) ∈ RK and σ̃(j)(ω) ∈ RK are the frequency domain representations of the series
v

(j)
1 , . . . ,v

(j)
T and σ(j)

1 , . . . ,σ
(j)
T , respectively. The network transfer matrix (H(j)(ω)) is assumed to

be constant over all samples.

3.2 Modeling observed signal as a superposition of latent transmitted signals

In order to complete our model of latent brain networks, we must relate it to the observed signal. We
model each observed sample by a VAR in the frequency domain, analogous to the way we modeled
latent network outputs,

ṽ(ω) = H(ω)σ̃(ω). (6)

We assume that the K channels in our data are partitioned into a set of non-overlapping groups,
G = {b, c,d, . . . }. For example, each group can be a single channel to model all inter-channel
relationships, or could be all channels within a given brain region. We partition the observed data and
the transfer matrix H(ω) and innovations σ̃(ω) into these groups,

ṽ(ω) =


ṽb(ω)
ṽc(ω)
ṽd(ω)

...

 , H(ω) =


Hbb(ω) Hbc(ω) Hbd(ω)
Hcb(ω) Hcc(ω) Hcd(ω) · · ·
Hdb(ω) Hdc(ω) Hdd(ω)

...

 ,

σ̃(ω) =


σ̃b(ω)
σ̃c(ω)
σ̃d(ω)

...

 , Σ =


Σbb Σbc Σbd

Σcb Σcc Σcd · · ·
Σdb Σdc Σdd

...

 .
(7)

We assume that the networks outputs and corresponding VAR parameters are partitioned in the same
way. The ordering of these groups is arbitrary. Without loss of generality, we will focus on modeling
communication between groups b and c.

We examine how our VAR models represent communication between groups by noting that

ṽc(ω) =
∑

g∈G Hcg(ω)σ̃g(ω). (8)

This shows that ṽc(ω) is a sum of contributions from each group g, including the self-contribution
from c. If the innovations in b and c are independent, then Hcb(ω)σ̃b(ω) would unambiguously
represent the signal in c that can be attributed to innovations b. If the innovations in b and c are not
independent, then there is ambiguity regarding how to assign ’responsibility’ for the observed signal
in c. Specifically, the component of the innovations in b that is correlated with innovations in c is not
necessary to explain the observed signal in c in expectation, since the innovations in c are sufficient
to explain this part of the observed signal. We will assume that only the uncorrelated component of
the innovations in b contribute to the observed signal in c.

Definition 2. The transmitted signal represents the contribution of the innovations in b to the ob-
served signal in c

T Sb→c(ω) =

{
Hcb(ω)

(
σ̃b(ω)− ΣbcΣ−1

cc σ̃c(ω)
)
, b 6= c∑

g∈G Hcg(ω)ΣgcΣ−1
cc σ̃c(ω), b = c.

(9)
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By restricting T Sb→c(ω) to only convey uncorrelated innovations, we construct a more conservative
estimate of the effect of b on c. This is not the only choice that could be made; for example, we could
use the full innovations, but we believe that using the uncorrelated innovations provides the cleanest
interpretation.

We complete our model of the observed signal ṽ(ω) with the following two assumptions:
Assumption 1. The innovations associated with any network are independent of the innovations in
all other networks.
Assumption 2. The transmitted signals of the observed data are the sum of the corresponding
transmitted signals for the latent networks,

T Sb→c(ω) =
∑J
j=1 T S

(j)
b→c(ω), (10)

where the transmitted signal is defined for the latent networks as

T S(j)
b→c(ω) =

H
(j)
cb (ω)

(
σ̃

(j)
b (ω)− Σ

(j)
bc Σ

(j)
cc

−1
σ̃

(j)
c,n(ω)

)
, b 6= c∑

g∈G H
(j)
cg (ω)Σ

(j)
gc Σ

(j)
cc

−1
σ̃

(j)
c (ω), b = c

. (11)

Assumption 1 can be thought of as enforcing the independence of inputs to each network. Assumption
2 is equivalent to the following two statements: 1) the propagation of signal within each network is
independent of propagation in each other network, and 2) the observed outputs occur in some medium
where simultaneously occurring phenomena obey the laws of superposition, which is a property of
many neural activity measurement modalities (e.g., electrical potentials, fluorescence). By combining
these two assumptions with (8), we get the result that the observed data are a superposition of the
network outputs,

ṽc(ω) =
∑

g∈G Hcg(ω)σ̃g(ω) =
∑

g∈G T Sg→c(ω) (12)

=
∑

g∈G
∑J
j=1 T S

(j)
g→c(ω) =

∑
g∈G

∑J
j=1H

(j)
cg (ω)σ̃

(j)
g (ω) =

∑J
j=1 ṽ

(j)
c (ω). (13)

Note in (12) and (13), summing the transmitted signals to c over all source groups, including c,
causes the conditioning terms in our definitions of the transmitted signal to cancel out. Because the
relationship above does not contain a noise term, non-physiological sources of signal would simply
be represented as additional networks in the model. This completes our model of the relationship
between latent brain networks and observed signals.

3.3 The Directed Spectrum

The model defined above provides a framework for determining whether a measure of neural
recordings can be considered a linear function of latent brain networks.
Definition 3. We define our measure, the Directed Spectrum (DS), as the second moment of the
transmitted signal,

DSb→c(ω) ≡ E
[
T̃ Sb→c(ω)T̃ S

∗
b→c(ω)

]
= Hcb(ω)Σb|cH

∗
cb(ω), (14)

Σb|c = Σbb − ΣbcΣ−1
cc Σ∗bc,

where Σb|c represents the innovation variance for b conditioned on the innovations in c.

The Directed Spectrum corresponds to the portion of the power spectrum for c that is explained by
signal that originated in b (see Supplemental Section C for more details). It is a linear function of the
latent networks when data is appropriately modeled as described above (for proof, see Supplemental
Section D).

The Directed Spectrum can be estimated efficiently by fitting a VAR model to the observed data
or via factorization of the cross-spectral matrix associated with the observed data [24, 30, 31].
Additional algorithmic details can be found in Supplemental Section F.1. These DS measures can
be calculated according to (14) for data partitioned into any number of groups greater than one.
In some situations, it is desirable to calculate the DS values separately for each pair of groups,
by estimating H(ω) and Σ using reduced models that contains only two groups per model. We
refer to this method as the Pairwise Directed Spectrum (PDS). One benefit of the PDS is that it
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simplifies the handling of missing channels from the data, since the PDS for the non-missing groups
of channels can still be calculated without any adjustments. Code for calculating the Directed
Spectrum and Pairwise Directed Spectrum is provided in the supplemental material (MATLAB) and
at https://github.com/neil-gallagher/directed-spectrum (Python).

4 Related measures of directed communication

The Directed Spectrum is a necessary development because similar measures typically used in
neuroscience are not linear functions of latent brain networks. We first examine Granger causality,
which measures the degree to which one signal or group of signals helps predict future values of
another signal or group [16]. Spectral Granger causality is a modification that separates Granger
causality into components associated with individual frequencies [17]. It is a leading spectral measure
of directed communication in neuroscience [24, 25], and we view it as conceptually the closest
measure to the Directed Spectrum. The (unconditional) spectral Granger causality from b to c can be
defined in terms of the Directed Spectrum,

fb→c(ω) = ln
(

|Scc(ω)|
|Scc(ω)−DSb→c(ω)|

)
. (15)

It is also possible to calculate a conditional spectral Granger causality that accounts for all other
groups in the recording before assigning influence from b to c [32]. Neither form of spectral Granger
causality is a linear function of the network models described in Section 3. To see this, consider the
case where only the jth network is present without any other signals being added to it. Note that
changing Z(j) would then have no impact on fb→c(ω) because both the numerator and denominator
in (15) would scale equally with Z(j). Standard (non-spectral) Granger causality is equivalent to a
scaled integral over all frequencies of the spectral Granger causality [17], meaning that it also would
remain constant as Z(j) changes.

There are several other spectral measures of directed communication used in neuroscience, including
phase slope index [33], partial directed coherence [34], and the directed transfer function [35]. Each
of these can not be a linear function of latent brain networks under reasonable assumptions. We offer
the following brief explanations here, with more details in Supplemental Section E. The phase slope
index cannot capture bidirectional transmission of signal (all signal is considered unidirectional) [36].
Partial directed coherence and the directed transfer function are both based in VAR models like
the Directed Spectrum, but they rely solely on the transfer matrix properties and do not use the
innovations. As such, they are scale-invariant and are not linear functions of the brain networks.

There are a number of other non-spectral measures of directed communication used in neuro-
science [25, 26]. The cross-correlation function between activity in different neural populations
has been used to identify directed communication between neuronal populations [37]. In these
applications it has been used to identify the lag associated with unidirectional transmission between
populations, and is considered unreliable in situations involving bidirectional communication [25].
Transfer entropy provides an information theoretic measure of directed communication. In our
application transfer entropy suffers from the same problem as Granger causality, where scaling the
activation of a single network results in the same value [38, 39]. We discuss methods for measuring
directed communication between neural populations further in Supplemental Section E.

One final method worth mentioning here is dynamic causal modeling (DCM) [40]. DCM produces a
generative model to explain observed neural activity based on latent connectivity. Directed connectiv-
ity is represented by parameters of the model, which contrasts with our application where measures
of directed connectivity are calculated first before being used as features in an LFM. DCM has
even been extended in order to represent spectral content in neural signals [41, 42]. One substantial
difference between DCM and the approach we suggest here is that DCM is not designed to segregate
the directed connectivity out into subnetworks in an unsupervised manner. Instead, DCM is typically
used to identify differences in connectivity between two known conditions [43].

5 Directed Spectrum improves identification of latent networks

To test the effectiveness of the Directed Spectrum and LFMs, we generated a dataset of simulated
latent networks. The dataset contains 10,000 independent recordings, each containing 5 channels

6

https://github.com/neil-gallagher/directed-spectrum


A DB EC Network 1 - 5 Hz

Network 3 - 5 Hz
Network 2 - 30 Hz

Figure 1: Graphical representation of the simulated latent networks. The five channels are represented
by the letters A, B, C, D, and E. A box around a channel indicates the corresponding network induces
oscillations in that channel. Arrows indicate propagation of signal at some delay. Networks 1 and 3
have a predominant frequency of 5 Hz (both in purple), and Network 2 has a predominant frequency
of 30 Hz (in blue).

0.0 0.2 0.4 0.6 0.8 1.0

Network 1

0.0 0.2 0.4 0.6 0.8 1.0

Network 2

0.0 0.2 0.4 0.6 0.8 1.0

Network 3

0.0 0.2 0.4 0.6 0.8 1.0

Simulation

A

D

B

C

E

  =   +  +

Time (s)

Figure 2: Simulated recordings are a sum of latent network contributions. The “observed” recording
(left) is a sum of signals generated by each of the three networks. Each panel contains 5 signals
associated with the 5 regions over the same one second period. Black scale bars indicate the period
for oscillations associated with each network, and are placed to show that the distance between peaks
in the signal is approximately one period.

sampled for five seconds at 500 Hz. The “observed” recordings were generated as a sum of contribu-
tions from three independent networks. Each network was associated with a vector autoregressive
(VAR) model that generated network contributions as a different random draw for each recording with
parameters that were fixed over all recordings. Each VAR model was designed to generate a particular
pattern of oscillations and delayed directional transmission of signals. See Figure 1 for the network
properties and Figure 2 for a visualization of the superposition. See Supplemental Section F.2 for
additional details on the design of those VAR models.

We generated a model of the latent networks in the simulated dataset by applying an LFM to DS
measures. We calculated the Directed Spectrum for frequencies between 1 Hz and 50 Hz at 1 Hz
intervals, between all directed pairs of channels. A non-negative matrix factorization model (i.e.
LFM) was trained using the Itakura-Saito (IS) divergence loss, with an L1 penalty on the factor
loadings and scores, and multiplicative update steps for optimization [22]. The IS divergence loss
was chosen because it is related to the gamma distribution and is a more appropriate loss for power
than mean squared error loss. After training, the non-negative matrix factorization (NMF) factors
were re-ordered to correspond to the matching network in the simulation, based on maximizing
the average Spearman’s correlation between the estimated and true network activation scores. For
comparison, we repeated this process with the Pairwise Directed Spectrum (PDS), unconditional
spectral Granger causality (GC) [17], conditional spectral Granger causality (cGC) [32], phase-slope
index (PSI) [33], directed transfer function (DTF) [35], and partial directed coherence (PDC) [34]
features substituted for the DS features. We also use the difference between (unconditional) Granger
causality values in either direction as suggested by Roebroeck et al. [44] as an additional comparison
method. Because both this difference and PSI represent the direction of shared information with sign
(i.e. positive/negative), we set negative values to zero and leave the opposite direction as positive
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Table 1: Spearman’s correlation between latent network activation estimates and true activation
scores. GC: unconditional Granger causality; cGC: conditional Granger Causality; GCdiff: difference
between Granger causality directions; PSI: phase slope index; DTF: directed transfer function; PDC:
partial directed coherence; DS: Directed Spectrum; PDS: Pairwise Directed Spectrum. Values in
[brackets] represent the 95% confidence interval [45].

Measure Network 1 Network 2 Network 3

GC 0.485 [0.468, 0.502] 0.442 [0.424, 0.459] 0.281 [0.261, 0.300]
cGC 0.475 [0.458, 0.491] 0.293 [0.274, 0.312] 0.127 [0.108, 0.147]
GCdiff 0.554 [0.539, 0.569] 0.501 [0.484, 0.517] 0.444 [0.427, 0.462]
PSI 0.387 [0.368, 0.405] 0.135 [0.115, 0.155] 0.248 [0.229, 0.268]
DTF 0.426 [0.408, 0.443] 0.131 [0.111, 0.151] 0.542 [0.526, 0.557]
PDC 0.560 [0.545, 0.575] 0.154 [0.134, 0.174] 0.445 [0.427, 0.462]
DS 0.920 [0.916, 0.923] 0.905 [0.901, 0.909] 0.927 [0.924, 0.930]
PDS 0.908 [0.904, 0.912] 0.917 [0.913, 0.920] 0.916 [0.913, 0.920]
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Figure 3: True vs. estimated network scores. The estimated scores for the model trained using
DS features are plotted in blue, the estimated scores for a model trained on unconditional Granger
causality features are plotted in red. In all plots, a scaling factor was applied to the estimated scores
to minimize the mean squared error. The line in black demonstrates the expected trend for a model
that perfectly recovers the latent network scores.

for both of those comparison methods; this allowed us to continue to use NMF to identify latent
networks.

We evaluated how well each model recovered the underlying network activation scores using Spear-
man’s correlation. The model of DS features performed significantly better in this regard than the
“non-linear” features (see Table 1). The PDS model also performed significantly better than the
“non-linear” models, and gave comparable results to the DS model. We have visualized the estimated
scores along with the true scores for each window for the DS features and unconditional Granger
causality features in Figure 3. We see that the score estimates of the DS model are much more tightly
spread around the true score values, with the relationship between true scores and estimated scores
being very weak in the model of GC features.

We also tested how robust these results were to violations of the model assumptions described in
Section 3 and to variations in recording window length. Violations of the model assumptions did
reduce model performance somewhat, but the DS features still performed better than the comparison
methods. Shorter window lengths reduced performance in all models, but again the DS models
performed better at all window lengths. Full details and results for these claims are in Supplemental
Sections G and H.

Finally, we tested whether the models produced accurate and interpretable representations of the
true latent networks from the dataset. The model of DS features successfully recovers all directional
influences of each network in the corresponding factors (see Figures 4, S1). Spurious detection of
network components was limited to connections between true nodes in the network at the frequency
associated with the network, and these spurious influences were small relative to the true detected
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Figure 4: Estimated directional influences in Network 2 for a model of DS features (blue) and
unconditional Granger causality features (red). Within each grid, a plot corresponds to signal that is
being transmitted from the channel listed on the left to the channel listed above.

influences. While the model of GC features did also recover all directional influences of the networks
underlying the simulated data, it incorrectly spread the directional influences associated with each
network out over multiple estimated networks. This resulted in the GC model identifying more
spurious influences with greater relative amplitudes.

6 Directed Spectrum improves brain state decoding of neural recordings

We next tested how effectively networks identified by the Directed Spectrum decode behaviorally
relevant variables from a dataset of neural recordings, as a proxy for determining whether they reflect
“real” networks. The dataset consists of local field potentials simultaneously recorded from 11 brain
regions in 26 mice (originally published in [27]). In each recording session local field potentials were
recorded from a mouse while it was exposed to three different behavioral contexts of successively
increasing stress levels: resting in the home cage, exploring an open field, and a tail suspension test.
The tail suspension test is commonly used to investigate learned helplessness [46].

In order to train networks that could be used to decode behavioral context, we first divided the
dataset into time windows with a duration of 1 second. For each time window, we calculated the
Directed Spectrum for all directed pairs of brain regions, for frequencies from 1 to 56 Hz at 1 Hz
intervals. A nonnegative matrix factorization model with L1 regularization was trained using the
IS divergence objective [47] in order to identify latent brain networks from the DS measures. A
multinomial logistic regression classifier with L1 regularization was then applied to the latent factor
scores for decoding the behavioral context. In order to obtain estimates of the spread of the decoding
performance and choose optimal hyperparameter values, a 5-fold nested cross-validation procedure
was used, where each mouse was associated with only one split. The average one-vs-all area under
the reciever operating characteristic curve (AUC) across all three behavioral contexts was used
as the evaluation metric. The hyperparameters tuned during cross-validation were the number of
NMF factors (20, 40, 80), NMF regularization strength (1000, 100, 10, 0), and logistic regression
regularization strength (10, 1). Similar to the experiment described in Section 5, the procedure was
repeated using the Pairwise Directed Spectrum (PDS) and the comparison measures listed in that
section. The one comparison method that was not used here is conditional Granger causality; in our
tests, obtaining stable conditional spectral Granger causality estimates on our rodent LFP data via the
methods outlined by Barnett and Seth [24] requires too much computation time to be practical for
this application.

Our training procedure resulted in a one-vs-all AUC for each of the behavioral contexts, for each of
the 5 splits, for each of the measure types (see Table 2). We performed a 2-factor repeated measures
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ANOVA and determined that there was a significant difference associated with the measure types
(F = 92.9, p < .001). A Tukey’s HSD post-hoc test revealed that there was not a significant
difference between models of the pairwise and non-pairwise versions of DS (p = .90), but that both
performed significantly better than models of the other measures (p ≤ .001 for all).

Table 2: Behavioral Context Decoding Performance. The columns ‘HC AUC’, ‘OF AUC’, and ‘TS
AUC’ report the mean and standard error of the one-vs-all AUC across 5 splits for the homecage,
open field, and tail suspension behavioral contexts, respectively. The ‘Mean AUC’ column reports
the average across the mean AUCs reported for each behavioral context.

Measure Mean AUC HC AUC OF AUC TS AUC

GC 0.828 0.825± 0.019 0.824± 0.022 0.835± 0.010
GCdiff 0.795 0.795± 0.013 0.798± 0.023 0.791± 0.007
PSI 0.674 0.676± 0.014 0.684± 0.015 0.661± 0.016
DTF 0.755 0.774± 0.017 0.774± 0.015 0.717± 0.022
PDC 0.717 0.733± 0.021 0.778± 0.014 0.639± 0.008
DS 0.908 0.894± 0.016 0.916± 0.012 0.915± 0.007
PDS 0.919 0.909± 0.014 0.915± 0.014 0.932± 0.005

7 Discussion

We have shown that our novel measure of directed communication, the Directed Spectrum (DS), is
a linear function of latent brain networks under reasonable assumptions, and so is compatible with
LFMs for characterizing latent brain networks. We saw drastically improved recovery of networks in
simulated data with a known ground truth. In real neural recordings, the Directed Spectrum improved
decoding of neurally relevant environmental variables. These results demonstrate that the Directed
Spectrum allows for more accurate and interpretable models of latent networks defined by directed
communication.

A limitation that could be explored in future work is that the Directed Spectrum assumes that the
network states are stationary over a single time window (see Supplemental Section B). This limitation
is common to almost all methods that assess spectral content of neural activity. Because of this, the
Directed Spectrum is only theoretically grounded when applied to time windows that are shorter than
the time expected for substantial change to be occur in the latent brain state. In practice, time window
lengths of one to five seconds have been considered a relatively stable period in studies of emotional
processing [48, 49].

We have only explored LFMs here, but a variety of nonlinear latent factor models exist for modeling
latent brain networks [5, 50]. Nonlinear models are especially useful in applications where predictive
performance is the only priority, such as brain-computer interfaces. When the primary goal is to drive
scientific understanding of the brain, nonlinear models are less desirable because it is challenging to
relate the parameters of such models to relevant conclusions about brain function [8]. We believe that
LFMs and the Directed Spectrum are an appropriate, efficient, and reproducible baseline approach in
both scientific and prediction-based applications, while noting that other more expressive models
may lead to even better predictive performance at the cost of interpretability.

The development of the Directed Spectrum provides a straightforward way to generate linear models of
latent brain networks defined by directed communication. We view this as an important advancement
because directed communication between neural populations is a critical component of the way
neuroscientists understand brain networks. Furthermore, the Directed Spectrum is likely useful
for studying latent networks in many other fields as well (e.g. latent networks of directed internet
traffic). We view the major strength of the Directed Spectrum is that it enhances the expressiveness
of LFMs by allowing them to accurately model directed communication within networks. Thus, we
have expanded the capabilities of LFMs while retaining the level of interpretability that make them
attractive models in practice.
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