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ABSTRACT

We introduce (U)NFV, a modular neural network architecture that general-
izes classical finite volume (FV) methods for solving hyperbolic conservation
laws. Hyperbolic partial differential equations (PDEs) are challenging to solve,
particularly conservation laws whose physically relevant solutions contain shocks
and discontinuities. FV methods are widely used for their mathematical properties:
convergence to entropy solutions, flow conservation, or total variation diminishing,
but often lack accuracy and flexibility in complex settings. Neural Finite Volume
addresses these limitations by learning update rules over extended spatial and tem-
poral stencils while preserving conservation structure. It supports both supervised
training on solution data (NFV) and unsupervised training via weak-form residual
loss (UNFV). Applied to first-order conservation laws, (U)NFV achieves up to
10x lower error than Godunov’s method, outperforms ENO/WENO, and rivals
discontinuous Galerkin solvers with lower implementation burden. On traffic mod-
eling problems, both from PDEs and from experimental highway data, (U)NFV
captures nonlinear wave dynamics with significantly higher fidelity and scalability
than traditional FV approaches. Code, dataset, trained models, and videos can be
found at gregarious-dusk-f2b3d2.netlify.app (anonymized link).
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Figure 1: Prediction of entropy solutions of hyperbolic PDEs. Top: NFV5
5 prediction vs. the Godunov scheme

for Burgers’ equation at a fixed time. LWR predictions follow a similar trend. Mid: Entropic solution u(t, x)
for Burgers’ equation over domain (t, x) ∈ [0, 1]2. Bottom: Corresponding initial condition u(0, ·).

1 INTRODUCTION

Hyperbolic partial differential equations (PDEs) are fundamental tools to model propagation and
transport phenomena with nonlinear or discontinuous behavior, appearing in areas like fluid dynamics
and traffic flow. In this work, we focus on an essential subclass: conservation laws, which encode the
principle that certain physical quantities, such as mass, momentum, or energy, must be preserved
over time. A general one-dimensional scalar conservation law takes the form:

∂tu(x, t) + ∂xf(u(x, t)) = 0, (1)

where u is the conserved quantity and f is the flux function.
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The solutions of hyperbolic PDEs are difficult to approximate due to discontinuities such as shocks,
even when starting from smooth initial conditions (Evans, 2022). Consequently, classical (smooth)
solutions typically cease to exist after finite time, and one must instead rely on weak solutions.
Closed-form solutions exist only in rare cases, such as on simple Riemann problems LeVeque (2002)
or through the Lax-Hopf formula (Lax, 1957; Claudel and Bayen, 2010a;b) in specific concave or
convex settings. As a result, practical applications almost always rely on numerical methods for
approximating the PDE solution, with finite volume (FV) methods (LeVeque, 2002) being a popular
choice due to their ability to track conserved quantities across discontinuities and capture shock
dynamics relatively accurately.

Classical FV methods involve important trade-offs between accuracy near discontinuities, compu-
tational cost, stencil size, and implementation complexity. In recent years, neural networks have
been explored as flexible and powerful alternatives solvers, showing promise in learning complex
dynamics from data or residuals. Yet, many such methods are designed for non-specific models, often
at the expense of losing physical structure, including conservation laws and entropy behaviors.

We introduce the Neural Finite Volume (NFV) method, a modular architecture tailored to conservation
laws, that blends the structure-preserving benefits of FV schemes with the expressiveness of neural
networks. Conservation is built into the NFV model, using extended spatial and temporal stencils. We
develop both a supervised version, trained on solution data from simple cases, and an unsupervised
variant (UNFV), which learns directly from the PDE via a weak-form residual loss. This flexibility
allows (U)NFV to adapt to the availability of data, leveraging accurate synthetic or field data when
present, or solving directly from the equation when solutions are inaccurate or expensive to obtain.
We focus on one-dimensional scalar conservation laws, which are widely used in applications such as
traffic flow, pipeline and channel models, and form a standard, well-understood testbed.

Contributions. Our main contributions are as follows:
• We propose (U)NFV, a neural architecture that generalizes the structure of finite volume methods

and thus preserves conservation properties by construction.
• We introduce two variants: a supervised learning one (NFV) and an unsupervised learning one

(UNFV), depending on data availability, using either solution data or a weak-form residual loss.
• We demonstrate strong numerical results on several conservation laws, achieving up to 10x

lower error than classical FV solvers, as shown in Figure 1. Additionally, (U)NFV matches the
accuracy of discontinuous Galerkin methods, without their mathematical complexity.

• We show that NFV can be trained on field data that does not strictly satisfy the conservation law,
and still predicts accurate solutions with more generalizability than classical solvers.

The remainder of the article is organized as follows: Section 2 provides a detailed overview of the
related work, Section 3 recalls the FV and introduces necessary notation, Section 4 describes the
proposed (U)NFV method in detail, Section 5 presents the experiments and results on hyperbolic
PDEs, Section 6 extends the NFV to experimental field highway data, and Section 7 concludes
the article. Then, Appendix A provides details about FV schemes, Appendix B illustrates six PDE
variants considered in this work, Appendix C expands on the experimental data handling and results
from Section 6, and Appendix D details the model architecture, dataset, and hyperparameter choices.

2 RELATED WORK

Numerical methods. Classical numerical methods for hyperbolic PDEs, such as FV and discon-
tinuous Galerkin (DG) (Hu and Shu, 1999) methods, are widely used due to their capabilities in
capturing shocks and discontinuities. First-order schemes such as the Lax-Friedrichs (Lax, 1954)
and Godunov (Godunov, 1959b) methods provide robustness but suffer from excessive numerical
diffusion, leading to smeared solutions. To address this, higher-order methods like Essentially
Non-Oscillatory (ENO) (Shu, 1999), Weighted ENO (WENO) (Liu et al., 1994), and DG have been
introduced, offering improved accuracy in smooth regions while preserving stability near shocks. DG
as a Finite Element method, further improves accuracy through local polynomial approximations but
incurs high computational costs (Cockburn and Shu, 1998). In practice, DG and higher-order FV
schemes like WENO also demand intricate flux constructions, quadrature rules, and stabilization
choices, whereas (U)NFV retains FV-like implementation complexity. Despite their accuracy, these
methods often require extensive manual effort and careful stabilization, motivating the development
of flexible, data-driven alternatives.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

NN approaches for PDEs. Deep learning has become a powerful alternative for approximating
PDE solutions. In the supervised learning case, neural operators such as Fourier Neural Operator
(FNO) (Li et al., 2020) and Deep Operator Networks (DeepONet) (Lu et al., 2021) efficiently
approximate solution mappings from parametric inputs, without requiring explicit mesh discretization
in the case of FNO. While successful for general PDEs, these operators have mainly been validated
on elliptic or parabolic PDEs, typically characterized by smooth solutions. Conventional neural
architectures, such as CNNs (LeCun et al., 1995) for structured domains and GNNs (Bronstein et al.,
2017) for irregular geometries, have also been adopted as supervised surrogates. However, supervised
models rely heavily on large, high-quality labeled datasets, and often lack intrinsic enforcement of
physical constraints, leading to limited generalization and poor accuracy on PDEs involving sharp
gradients or shocks (Krishnapriyan et al., 2021).

To reduce data reliance, unsupervised approaches like Physics-Informed Neural Networks (PINNs)
incorporate PDE residuals directly into training losses (Raissi et al., 2017), proving effective for
elliptic and parabolic equations (Raissi et al., 2019; Jagtap et al., 2020). However, PINNs encounter
significant difficulties with hyperbolic PDEs, especially in capturing discontinuities and shock
dynamics, resulting in unstable optimization, convergence failures, and inaccurate solutions (Wang
and Liu, 2021; Fuks and Tchelepi, 2020). Recent variants, such as Weak PINNs (wPINNs) (De Ryck
et al., 2024), Parareal PINNs (PPINNs) (Meng et al., 2020), and Extended PINNs (XPINNs) (Jagtap
and Karniadakis, 2020), aim to overcome these issues through weak formulations or specialized
training strategies. Nonetheless, these adaptations often introduce considerable complexity and
require extensive hyperparameter tuning, highlighting a persistent need for methods inherently suited
to hyperbolic PDE challenges.

NNs for hyperbolic PDEs and conservation laws. Neural approaches tailored to hyperbolic PDEs
have introduced innovations to handle shocks. Weak PINNs (wPINNs) (De Ryck et al., 2024)
integrate weak-form residuals or integral constraints to mitigate issues with discontinuities. Others
employ neural networks directly within classical FV schemes to learn improved flux reconstruc-
tions (Kossaczká et al., 2021; Tong et al., 2024). However, these enhancements typically reintroduce
complexity, such as extensive manual parameterization or problem-specific adaptivity, diluting the
key advantage of neural flexibility and generality.

Motivated by these limitations, our proposed NFV approach learns local update rules directly from
data or PDE residuals. By preserving the fundamental conservation-law structure of traditional FV
methods while flexibly leveraging neural networks, NFV achieves significantly higher accuracy,
robustness, and scalability with minimal manual intervention.

3 PREREQUISITES AND NOTATIONS: FINITE VOLUME METHODS

Standard FV methods, such as those presented in LeVeque (2002), solve the integral form of the
conservation law (1) on a mesh of uniform cells Ii = [xi−1/2, xi+1/2], i = 1, · · · , Imax, with cell
length ∆x. The average of u over cell Ii at time tn = n∆t, for n = 1, · · · , N and time discretization
∆t, and the numerical flux through the interface xi+1/2 over the time step, are given respectively by

un
i =

1

∆x

∫
Ii

u(tn, x) dx and Fn
i+1/2 =

∫ tn+1

tn

f(u(t, xi+1/2)) dt. (2)
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Figure 2: Example stencil for FV2
5, taking in a

stencil of 2 time steps times 5 space cells.

A first-order method F approximates the numerical
flux as F̂n

i+1/2 = F(un
i , u

n
i+1), while higher-order

methods leverage additional cell averages. Let us
generalize this framework by including cell averages
from previous time steps in order to construct even
better approximations. Let FVb

a be the class of meth-
ods that use a rectangular stencil of a neighboring
spatial cells times b past time steps to estimate numer-
ical fluxes. Specifically, let un

i±1/2(a − 1, b) be the
left and right (a− 1)× b sub-stencils, as illustrated
in blue and green in Figure 2.
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Then, an FVb
a method F estimates numerical fluxes as F̂n

i±1/2 = F(un
i±1/2(a − 1, b)). Classical

first-order methods, such as Godunov, fall under class FV1
3; more details about their computation

are provided in Appendix A. To our knowledge, the vast majority of FV methods in the literature
use a single time step (i.e., b = 1) and a small number of spatial cells. Indeed, designing analytical
schemes with larger temporal or spatial stencils becomes exponentially more complex. Finally, the
update rule is given by the exact relation

un+1
i = un

i − ∆t

∆x

(
Fn
i+1/2 − Fn

i−1/2

)
, (3)

which in practice is approximated using the numerical fluxes F̂n
i±1/2, leading to an approximation ûn

i

of un
i . Note that the influx of one cell is the outflux of another, which ensures conservation.

4 OUR METHOD: NEURAL FINITE VOLUME (NFV)

Our method builds upon the FV framework by using neural networks to approximate the numerical
flux. Specifically, we define NFVb

a as a generalization of FVb
a, where the numerical flux F̂n

i±1/2 is
predicted by a neural network N based on a local a× b spatiotemporal stencil:

F̂n
i±1/2 = N (un

i±1/2(a− 1, b))

The prediction of the solution is then updated using the classical FV update rule (3), ensuring mass
conservation. We explore NFV models ranging from NFV1

3 (matching Godunov’s stencil) to NFV11
11,

using 11 spatial cells and 11 past time steps – configurations that would be exceedingly complex
to design manually due to the high-dimensional stencil involved. This extension enables accurate
learning even from noisy field data. In practice, we implement NFV as a CNN (LeCun et al., 1995),
which allows efficient computation across stencils due to the vectorized nature of CNNs. Since
(U)NFV retains the standard finite volume update, boundary conditions such as Dirichlet, Neumann,
or open boundaries can be imposed via ghost cells or prescribed interface fluxes exactly as in classical
FV schemes, without modifying the neural architecture.

In all experiments we instantiate NFVb
a as a lightweight two-dimensional CNN applied locally on each

cell interface: the first layer uses a kernel of size a−1 over the spatial dimension with b input channels
(one per time slice), followed by five 1× 1 convolutional layers with 15 channels and either ELU or
ReLU activations depending on the flux family. This architecture yields 1105 + 16 · ((a− 1) · b+ 1)
trainable parameters for NFVb

a, so even our largest models contain only a few thousand parameters
while retaining the exact FV update rule.

We propose two variants of NFV that share the same architecture but differ in their training objectives:
the supervised NFVb

a, trained on reference solutions, and the unsupervised UNFVb
a, trained directly

from the PDE via a weak-form residual loss. The supervised setting applies when solution data is
available, while the unsupervised variant enables training when such data is absent, relying instead
on the governing conservation laws. Moreover, supervised NFV can also be applied in cases where
the PDE is unknown but observational data is accessible, allowing solvers to be deployed directly
on field data with only basic physical constraints, such as mass conservation, imposed, and without
extensive hyperparameter tuning (see Section 6).

In all our experiments, we therefore train one (U)NFV model per conservation law, and once trained
the same network can be applied to many different initial conditions for that equation, so the one-
time training cost is largely amortized and in practice remains very short. At inference time, no
optimization is solved: each time step is advanced by a single application of the finite volume update
rule (3) with numerical fluxes Fn

i±1/2 given by a forward pass of the neural network, so the overall
cost of solving an equation scales linearly with the number of time steps.

4.1 SUPERVISED LEARNING

Supervised learning offers a straightforward framework for training models when reference solutions
are available. In this study, we employ supervised learning not only to approximate the solution
of known equations but also to predict field data with unknown governing equations. Although
solutions to hyperbolic PDEs are typically defined in the L1 space, we consider their restrictions to

4
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compact subsets where the functions are bounded, thereby allowing treatment within the L2 space.
Accordingly, the loss function is defined as the standard mean square error:

Ls = E
u0∼R

||u− û||22

where u is the true solution, û is the predicted solution, and R is a distribution over initial conditions.

4.2 UNSUPERVISED LEARNING

Unsupervised learning for hyperbolic PDEs is particularly challenging because their solutions often
lack closed-form expressions and classical (strong) solutions may not exist. Instead, these equations
are typically defined through weak formulations. Although weak solutions are not unique: multiple
functions can satisfy the PDE, but only one corresponds to the physically relevant entropy solution,
which enforces admissibility conditions across shocks and discontinuities.

The unsupervised loss function is defined to minimize the residuals of the weak formulation, in order
to approximate the entropy solution. While imposing this loss does not guarantee convergence to the
entropy solution, empirical results indicate that our method successfully converges to the entropy
solution across various equations and numerous trials. To enhance learning efficiency, we optimize
the weak formulation independently at each time step by minimizing the squared residuals. The
collection of test functions Φ consists of 250 randomly sampled, compactly supported polynomials
of degree 50 over the spatial domain. The unsupervised loss reads:

Lw = E
φ∈Φ
u0∼R

 N∑
n=1

(
Imax∑
i=1

(
(∆t)−1(ûn

i − ûn−1
i )

∫
Ii

φ+ f(ûn
i )[φ]

xi+1/2
xi−1/2

))2


where ûn
i denotes the predicted solution at spatial index i and time step n, and R is a distribution

over initial conditions. Note that for the scalar conservation laws considered here, integration by
parts removes spatial derivatives from the weak-form loss, and time derivatives are handled via finite
differences in the FV update, so no explicit spatial derivatives of the primal variables are required
during training.

5 EXPERIMENTS

Experiments have been designed to answer four main questions:
• Is (U)NFV a compelling alternative to classical finite volume methods?
• Does UNFV converge to an entropy solution despite being trained on the weak formulation?
• How does (U)NFV compare to much more complicated finite element methods?
• Can NFV perform well on field data that contains noise and may not be conservative?

5.1 BASELINES

Selecting appropriate baselines for PDE solvers poses challenges due to the diversity in computational
frameworks: methods vary by mesh dependency (mesh-free versus mesh-based), solution generation
(autoregressive versus single-pass), and generalizability (operator-based versus retrained per initial
condition). Therefore, we adopt classical numerical schemes, the foundation of our NFV method,
as baselines, ensuring a fair comparison. Given the fact that NFV is developed based on traditional
first-order FV methods, the present work provides a compelling case for replacing standard FV
solvers with the simpler yet effective NFV method whenever FV methods are typically employed.
We consider all the numerical schemes introduced in Section 2 as baselines: first-order FV methods
(Godunov, Lax-Friedrichs, and Engquist-Osher), higher-order ones (ENO, WENO), and DG, a finite-
element method that is well-known for superior accuracy but suffers from computational burden.
More details can be found in Appendix A.

5.2 EQUATIONS

The Lighthill-Whitham-Richards model (Lighthill and Whitham, 1955; Richards, 1956), known as
LWR, is a first-order hyperbolic conservation law used to model traffic flow. It is expressed as

∂tρ+ ∂x(ρv(ρ)) = 0 (4)

5
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Table 1: Performance comparison between neural network models and classical numerical schemes. Results
are computed over the evaluation set of 1000 piecewise constant initial conditions. For each method, we report
mean and standard deviation in L2 norm (mean((u− û)2)).

1st order FV Higher order FV FEM
NFV1

3 UNFV1
3 GD LF EO ENO WENO DG

G.shields 1.3e−4±4e−5 2.0e−4±6e−5 4.5e−4±2e−4 1.3e−2±4e−3 4.5e−4±2e−4 6.4e−4±4e−4 6.4e−4±4e−4 3.1e−5±1e−5

Tri. 1 1.4e−3±6e−4 1.9e−3±9e−4 2.3e−3±1e−3 9.6e−3±4e−3 2.3e−3±1e−3 2.0e−3±2e−3 1.9e−3±2e−3 2.6e−4±1e−4

Tri. 2 2.4e−3±1e−3 3.1e−3±2e−3 3.8e−3±2e−3 1.4e−2±8e−3 3.8e−3±2e−3 5.8e−3±4e−3 5.8e−3±4e−3 4.1e−4±2e−4

Trapez. 1.1e−3±4e−4 1.6e−3±7e−4 2.1e−3±8e−4 2.5e−2±1e−2 2.1e−3±8e−4 6.2e−4±2e−4 5.3e−4±2e−4 2.9e−4±1e−4

G.berg 1.4e−4±9e−5 3.8e−4±2e−4 4.9e−4±2e−4 5.3e−3±2e−3 4.9e−4±2e−4 1.1e−3±6e−4 1.2e−3±9e−4 3.4e−4±2e−3

U.wood 3.8e−4±1e−4 6.9e−4±2e−4 9.2e−4±3e−4 2.7e−2±1e−2 9.2e−4±3e−4 1.1e−4±3e−5 9.8e−5±2e−5 5.9e−5±2e−5

Burgers 8.5e−4±3e−4 1.3e−3±6e−4 1.9e−3±7e−4 2.6e−3±1e−3 2.7e−3±1e−3 2.8e−3±1e−3 1.0e−4±4e−5

where ρ is the density of the traffic, f : ρ 7→ ρv(ρ) is the flux function and v is the velocity. The
flux function is typically modeled as a concave function of the density. Variations in the underlying
velocity function give rise to different traffic flow models. In this work, six different models have
been considered: Greenshields’ (Greenshields et al., 1935), Triangular (Geroliminis and Daganzo,
2008), Triangular skewed (Geroliminis and Daganzo, 2008), Trapezoidal (Geroliminis and Sun,
2011), Greenberg (Greenberg, 1959) and Underwood (Underwood, 1961). These models behave very
differently and should be considered as different equations, as shown in Figure 1. Formulations and
illustrations of those six models are given in Appendix B.

The inviscid Burgers’ equation is a well-known hyperbolic conservation law used in various
domains such as fluid mechanics (Burgers, 1939), non-linear acoustics (Lombard et al., 2013), gas
dynamics (Panayotounakos and Drikakis, 1995), and traffic flow (Musha and Higuchi, 1978). We
refer the reader to Cameron (2011) for a thorough introduction. It is expressed as

∂tu+
1

2
∂xu

2 = 0. (5)

This equation can be written in the classical form of a conservation law using the flux function
f : u 7→ 1/2 · u2. Exact solutions to Riemann initial conditions are also known for this problem.
Visualization of some solutions, including videos, are available on our webpage and in Figure 1.

Our experiments focus on one-dimensional conservation laws in this work. Demonstrating that NFV
can consistently outperform classical schemes in 1D establishes a strong foundation before tackling
more complex systems. NFV architecture is, in principle, extendable to higher dimensions, since
neural networks naturally scale to higher-dimensional inputs. Extending NFV to multi-dimensional
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Figure 3: Comparison of numerical schemes across flow functions. Each cell shows the proportion of the
evaluation set on which the row scheme outperforms the column scheme. DG, the only FEM tested, is rarely
beaten. NFV1

3 and UNFV1
3 outperform other first-order schemes and rival higher-order ones, making them strong

choices depending on the equation.
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Figure 4: Comparison of the final density of the Burgers’ equation (left) and LWR triangular equation (right)
for NFV5

5 and the Godunov Scheme. The proposed method displays an excellent approximation of the exact
solution, capturing sharp features such as discontinuities and points of non-differentiability. It contains some
minor oscillations in the solution, which are not present in the Godunov scheme. The latter, however, fails to
capture the discontinuities and points of non-differentiability, offering a very smoothed solution.

Table 2: Evaluation of NFV5
5 using piecewise constant initial conditions. Error is reported in L2 norm. NFV5

5

achieve outstanding performance, gaining up to an order of magnitude improvement compared to Godunov and
WENO. Its performance is close to DG, while keeping the implementation simplicity of a finite volume method
and the computational complexity of NVF.

Godunov WENO NFV1
3 NFV5

5 DG

Burgers’ 1.8e−3
±6e−4 2.6e−3

±1e−3 8.3e−4
±3e−4 2.2e−4

±1e−4 1.0e−4
±4e−5

Greenshields 4.1e−4
±1e−4 6.9e−4

±4e−4 1.2e−4
±4e−5 4.6e−5

±3e−5 4.2e−5
±2e−5

Triangular 2.2e−3
±1e−3 2.0e−3

±2e−3 1.3e−3
±6e−4 2.9e−4

±2e−4 2.7e−4
±1e−4

will introduce additional challenges (e.g., numerical stability, computational complexity, and coupled
variables), which we identify as important avenues for future work.

5.3 DATASETS

Training is performed using solutions derived from Riemann problems, which are initial value prob-
lems characterized by piecewise constant initial conditions with a single discontinuity (see Figure 8
for examples). These problems are fundamental in the study of hyperbolic PDEs and serve as
essential test cases for numerical methods. For the scenarios considered in this work, analytical
solutions to Riemann problems are available, making supervised learning possible. Evaluation is
performed on a more complicated set of several hundred complex initial conditions to assess the
model’s generalization capabilities. These conditions consist of piecewise constant functions with
ten discontinuities, giving rise to entropy solutions with multiple interacting shocks and rarefactions.
Exact solutions for these test cases are computed using the Lax-Hopf algorithm (Lax, 1957; Claudel
and Bayen, 2010a;b) on a finer grid (see Appendix D).

For the LWR benchmarks we train NFV autoregressively on 2048 randomly sampled Riemann
problems with a single discontinuity, using discretization parameters ∆t = 5 · 10−3, ∆x = 10−2,
100 spatial cells, and prediction horizons that are progressively increased from 10 to 250 steps under
a robust CFL ratio of 0.5. Evaluation uses several hundred more complex piecewise-constant initial
conditions whose exact solutions are computed on a finer grid with ∆t = 10−4, ∆x = 10−3, 200
cells, and 1000 time steps via the Lax–Hopf algorithm. Unsupervised UNFV models minimize a
weak-form residual loss using 250 compactly supported polynomials of degree 50 as test functions
over the spatial domain. Note that we use uniform space–time grids for simplicity and fair comparison
to FV baselines, but the (U)NFV update depends only on cell volumes and interface fluxes and is
therefore compatible with non-uniform or adaptive discretizations.

5.4 RESULTS AND DISCUSSION

Table 1 reports L2 error for NFV1
3, UNFV1

3, and baseline methods across the seven benchmark
equations. Our models consistently outperform all first-order FV methods, and surpass ENO/WENO
schemes on about half of the equations. As expected, the higher-order DG method achieves signif-
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3 Godunov

Figure 5: Convergence plots on Greenshields’ flux. The L2 error is computed against the exact solution on
the evaluation set for different mesh discretizations. We report both error average and standard deviation, on a
log-log scale. The dashed vertical line illustrates the discretization on which NFV1

3 and UNFV1
3 were trained; the

models generalize to smaller discretizations. The ratio ∆t/∆x = 0.1 remains constant as the mesh is refined.

icantly lower errors. Table 2 shows that NFV5
5, while as simple to implement as standard NFV1

3,
achieves up to 10x better accuracy, approaching the performance of DG. In this sense, (U)NFV
offers DG-level accuracy but with much smaller FV-like implementation complexity, substantially
faster inference, and training that typically completes within fifteen minutes, while using memory
comparable to Godunov and significantly lower than DG, since only the numerical flux is learned
while the rest of the finite volume solver remains unchanged.

Figure 3 shows the fraction of test cases each method wins. NFV1
3 and UNFV1

3 consistently surpass
first-order FV methods. Against ENO/WENO, performance varies: our models outperform on some
equations, match on others, and underperform in a few, highlighting the complexity of benchmarking
across diverse problem settings. Still, the fact that NFV1

3 and UNFV1
3 consistently do better than

first-order methods is seen as a sign that the approach appears to converge well. Specifically, NFV1
3

and UNFV1
3 consistently produce errors bounded by those of Godunov, emphasizing their robustness.

Since all methods use autoregressive prediction, evaluating performance at the final time step provides
a good proxy for cumulative error. Figure 4 shows that the prediction of NFV5

5 closely aligns with
the exact solution, with only minor oscillations observed. Notably, NFV5

5 effectively captures sharp
discontinuities with high accuracy without relying on smoothing techniques, which are commonly
employed in traditional FV methods to mitigate numerical artifacts. Qualitatively, across the large
set of complex test initial conditions that span weak to strong shocks and rarefaction patterns, NFV
predictions remain visibly less diffusive than the others FV schemes, with sharp features dissipating
more slowly while preserving stability.

Ablation on discretization size: Classical numerical schemes are known to converge as the grid is
refined. Figure 5 shows that NFV1

3 and UNFV1
3 consistently achieve lower error than Godunov, a

scheme proven to converge, across discretizations, suggesting that (U)NFV also converges to the
entropy solution; the approximately linear trend in the log–log plot further indicates a polynomial
convergence rate.

Ablation on CFL ratio: To further assess stability under different time step choices, we vary
the CFL ratio while keeping the spatial grid fixed on Greenshields’ LWR and report the resulting
errors in Table 3. Across this range of CFL values, NFV1

3 consistently attains lower mean error and
substantially reduced variance compared to first-order FV baselines, and remains competitive with
higher-order ENO and WENO schemes. The only exception is DG at very small CFL, which achieves
the lowest error but becomes unstable and fails to run at higher CFL ratios, whereas NFV1

3 remains
robust.

Overall, the results support our hypothesis that training on simple Riemann problems is sufficient
to generalize to complex piecewise-constant initial conditions. In particular, the ability of (U)NFV
trained only on these analytically tractable Riemann building blocks to generalize reliably to much
richer piecewise-constant and real-world configurations turns this seemingly strong assumption into
a practical strength rather than a limitation. Additional dataset and training details, along with
the heuristic exploration and hyperparameter tuning that led the method to work, are provided in
Appendix D. In the next section, we show that NFV also generalizes to experimental highway data,
where conservation is often violated and traditional methods typically fail.
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Table 3: Mean and standard deviation of final-time L2 error on the standard LWR benchmark with Greenshields’
flux for different CFL ratios, comparing NFV1

3 with classical finite volume baselines and DG.

CFL NFV1
3 GD LF EO ENO WENO DG

0.2 1.6e−4±3e−5 3.8e−4±1e−4 7.6e−3±2e−3 3.8e−4±1e−4 6.0e−4±4e−4 6.2e−4±4e−4 3.0e−5±1e−5

0.4 1.3e−4±2e−5 3.3e−4±1e−4 4.1e−3±1e−3 3.3e−4±1e−4 6.0e−4±4e−4 6.4e−4±4e−4 fail
0.6 1.2e−4±5e−5 2.1e−4±2e−4 1.3e−3±4e−4 2.2e−4±2e−4 1.5e−2±1e−2 1.5e−3±1e−3 fail
0.8 1.0e−4±2e−5 2.2e−4±7e−5 2.0e−3±6e−4 2.3e−4±7e−5 1.6e−3±2e−3 7.2e−4±4e−4 fail
1.0 9.1e−5±2e−5 1.7e−4±5e−5 1.5e−3±5e−4 1.8e−4±5e−5 5.6e−3±6e−3 9.6e−4±7e−4 fail
1.2 1.2e−4±5e−5 2.1e−4±2e−4 1.3e−3±4e−4 2.2e−4±2e−4 1.5e−2±1e−2 1.5e−3±1e−3 fail

Table 4: Improvements of NFV at different scales against numerical methods with fitted flow functions on
field data. The reported metrics include L1 error (mean(|u− û|)), L2 error (mean((u− û)2)), and relative
error (mean(|u − û|/|max{ε, u}|)). The larger the input size of NFV, the better the performance. NFV1

3

outperforms all calibrated Godunov fits, despite having the same input size and underlying structure.

Calibrated numerical schemes (Godunov) NFV (Ours)
Greenshields Triangular Trapezoidal Greenberg Underwood NFV1

3 NFV5
5 NFV11

11

L1 6.05e−2 2.77e−2 2.73e−2 2.79e−2 4.98e−2 2.37e−2 2.31e−2 2.02e−2

L2 1.93e−1 1.31e−1 1.30e−1 1.33e−1 1.81e−1 1.23e−1 1.21e−1 1.09e−1

Rel. 5.04e−1 3.83e−1 3.74e−1 3.75e−1 5.45e−1 3.57e−1 3.51e−1 2.83e−1

6 MODELING LARGE-SCALE EXPERIMENTAL FIELD DATA USING NFV

We apply the proposed NFV method to large-scale traffic field data collected on Interstate 24 (I-24)
in Tennessee, USA, using the I-24 MOTION infrastructure (Gloudemans et al., 2023a;b), which
enables high-resolution vehicle trajectory collection and constitutes the most extensive publicly
available traffic dataset to date. Rather than predicting traffic speed, we focus on modeling traffic
density, which is more directly tied to conservation laws and often exhibits sharp transitions that are
challenging to capture. Although conservation of mass is not strictly satisfied in highway traffic data
due to merges, exits, and incidents, it serves as a strong inductive bias. We show that NFV achieves
superior predictive accuracy compared to classical numerical schemes. Moreover, incorporating the
PDE structure leads to substantially more stable training, particularly in data-scarce regimes. These
findings suggest that our approach can enhance the accuracy and efficiency of traffic simulations,
thereby contributing to better-informed decision-making in urban planning and traffic management.

6.1 DATASET AND TRAINING

We evaluate our method on the I-24 MOTION dataset (Gloudemans et al., 2023a), which provides
high-resolution vehicle trajectories collected on a four-mile stretch of Interstate 24 (mile markers
58.7 to 62.7) near Nashville, Tennessee. The data is captured by a network of high-definition cameras
mounted along the highway as part of the I-24 MOTION infrastructure, leading to intricate trajectory
data as illustrated in Figure 9. Vehicle trajectories are reconstructed using a computer vision and data
association pipeline (Wang et al., 2022), resulting in high-fidelity, though inherently noisy, field data.

The dataset consists of 10 days of vehicle trajectory data, collected during the morning rush hour
(6:00 AM to 10:00 AM) over the 4-mile segment. From the raw trajectory data, we construct
spatiotemporal vehicle density fields by aggregating vehicle counts over fixed spatial cells. Details of
the data cleaning, processing, and preparation are provided in Appendix C.1. Visualization of the
resulting density fields is shown in Figure 10. Further training details are available in Appendix D.

Concretely, all NFV models and tuned finite-volume baselines are trained on the first hour of data
from November 29, 2022 using a single boundary cell on each side; the autoregressive prediction
horizon is increased from 10 to 100 steps during training, while the learning rate decays from 10−3

to 10−4 over roughly 3000–5000 epochs, leading to convergence within 15–30 minutes on a single
NVIDIA RTX A5000 GPU.

9
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Figure 6: Autoregressive prediction of NFV11
11 (right) compared to the ground truth (left). Full results are

shown in Figure 13. See Appendix C.3 for how to read the heatmaps.

Table 5: Generalization of NFV against Godunov on 7 days of I-24 data never seen during training. As in
Table 4, we report mean and standard deviation of L1, L2 and relative errors.

L1 error L2 error Relative error

Godunov 1.56e−1 ± 2.02e−2 3.74e−2 ± 8.25e−3 6.26e−1 ± 2.58e−1

NFV11
11 1.12e−1 ± 7.39e−3 2.20e−2 ± 2.59e−3 3.59e−1 ± 7.58e−2

6.2 RESULTS AND DISCUSSION

We compare NFV to numerical schemes using the flux functions from Appendix B. These functions,
each defined by a few parameters, were calibrated via optimization to minimize the Godunov scheme’s
prediction error on the training set. The search ranges were intentionally broad, prioritizing predictive
performance over physical plausibility to ensure a fair comparison. We chose the Godunov scheme as
the representative baseline to compare with since we observed only a marginal performance difference
(up to 5%) between Godunov and other FV schemes on this dataset, and the Godunov scheme is
known to converge to the entropy solution. We evaluate three NFV variants of increasing capacity:
NFV1

3, NFV5
5, and NFV11

11 (training details can be found in Appendix D), to assess how well they
generalize and capture complex field dynamics.

Table 4 shows that all NFV models outperform the five tuned Godunov schemes, with performance
improving as input size increases. This trend matches what was seen on synthetic data (Section 5).
Despite training on just one hour of data, NFV predicts nearly four hours of traffic evolution
autoregressively (Figure 6). While performance degrades in out-of-distribution zones (e.g., dark
green regions unseen during training), the models still capture key wave patterns with high fidelity.
Larger stencils help smooth out noise and improve accuracy, as seen in Figure 13.

We further evaluate generalization on 7 other days. As shown in Figure 14 and Table 5, NFV11
11

consistently outperforms the best Godunov scheme on the evaluation set, even though both perform
similarly on the training day. Indeed, although far from perfect, it is able to capture the evolution of
free-flow traffic (dark green) with much greater accuracy, allowing it to successfully capture the end
of congestion waves (red). NFV scales naturally with capacity: NFV11

11 adds only 1728 parameters
over NFV1

3 but achieves significantly better accuracy with similar runtime and memory usage, unlike
hand-crafted schemes, which significantly grow in complexity (see for example Appendix A).

7 CONCLUSION

We introduced (U)NFV, a neural network–based framework that extends finite volume methods for
hyperbolic conservation laws by learning numerical fluxes over extended spatio-temporal stencils
while preserving conservation. (U)NFV achieves high accuracy and efficiency, capturing complex
wave dynamics with high fidelity, outperforming classical baselines on standard PDE benchmarks and
large-scale field traffic data. Its modular design scales to large spatial and temporal stencils, matching
the accuracy of state-of-the-art methods such as DG with much lower implementation complexity
and significantly faster inference. In parallel work we have established convergence guarantees by
controlling error propagation and deriving bounds on network size and training set requirements.
These theoretical results will appear in a forthcoming journal publication. Future directions include
applying (U)NFV to velocity-based formulations to learn speed-flux relationships, which aligns
with GPS observations and avoids the need for a closed-form velocity PDE. Architecturally, NFV is
dimension agnostic, but a systematic multi-dimensional empirical study remains for future work.
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REPRODUCIBILITY STATEMENT

To support reproducibility, we provide detailed descriptions of the NFV and UNFV architectures
and training objectives in Sections 3 and 4, along with experimental setups in Sections 5 and 6.
The formulations of all classical numerical baselines are presented in A, while benchmark equa-
tions are introduced in Section 5 and expanded in Appendix B. Additional implementation details,
including model architecture, training procedures, hyperparameters, and dataset processing, are
provided in Appendix D. Finally, code, datasets, benchmarks, and trained models are released at
gregarious-dusk-f2b3d2.netlify.app.
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A FINITE VOLUME METHODS

Several finite volume-based numerical schemes are studied in this work. They include the following
common classical first-order schemes:

The Godunov method (Godunov, 1959a):

∀i, n F̂n
i−1/2 =


min

[un
i−1,u

n
i ]
f if un

i−1 ≤ un
i

max
[un

i ,u
n
i−1]

f if un
i−1 > un

i

The Lax-Friedrichs method (Lax, 1954):

∀i, n F̂n
i−1/2 =

1

2

(
f(un

i ) + f(un
i−1)

)
− 1

2

∆x

∆t
× |un

i − un
i−1|.

The Engquist-Osher method (Engquist and Osher, 1981):

∀i, n F̂n
i−1/2(u

n
i−1, u

n
i ) =

1

2

(
f(un

i ) + f(un
i−1)

)
− 1

2

∫ un
i

un
i−1

|f ′| .

Additionally, higher-order schemes such as the Essentially Non-Oscillatory (ENO) method (Shu,
1999) and the Weighted Essentially Non-Oscillatory (WENO) method (Liu et al., 1994) are
considered. The main idea in these methods is that by considering more stencils, one can expect to
increase the accuracy of approximation of the solution.

For the ENO scheme, we consider the semi-discrete form of

∂tui = − 1

∆x

(
F̂i+1/2 − F̂i−1/2

)
. (6)

Using the Lax-Friedrichs Splitting technique, we have

f(u) = f+(u) + f−(u), f±(u) =
1

2
(f(u)± αu), (7)

where α = max|f ′(u)| is the maximum wave speed. The key point in the ENO scheme is the
high-order upwind interpolation of f+ and f− based on the smoothest stencils. For instance, for the
2-stencil ENO scheme, the procedure is as follows:

1. Evaluate the smoothness indicators:

δ− = |f+
i − f+

i−1|, δ+ = |f+
i+1 − f+

i |

2. Select the stencil that minimizes the smoothness indicator:
• If δ+ < δ−, choose the stencil {f+

i , f+
i+1}.

• Otherwise, choose the stencil {f+
i−1, f

+
i }.

3. Perform linear interpolation to compute the numerical flux:

f̂+
i+ 1

2

= f+
i +

1

2
δ+

where δ+ is the difference between the selected stencil elements.

A similar approach is applied to compute f̂−
i+ 1

2

using the right-biased stencil.

The final numerical flux at the interface is obtained by combining the positive and negative parts:

f̂i+ 1
2
= f̂+

i+ 1
2

+ f̂−
i+ 1

2

In this work, we have used a 3-stencil scheme for ENO.

The WENO scheme follows the same idea as ENO by using specific weights in defining f̂+
i+1/2,

rather than explicit conditions. In this work, we use the 5-stencil WENO scheme.
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B VARIANTS OF LWR

We consider six different LWR PDEs variants, each consisting of a different fundamental diagram,
illustrated in Figure 7. All of the considered flows are concave continuous mappings from [0, ρmax]
to R+, where ρmax is the maximum density, with the exception of the Greenberg flow whose
domain is (0, ρmax]. The critical density ρc denotes the density at which the flow is maximized, i.e.
ρc = argmaxρ∈[0,ρmax] f(ρ). The following introduces the six flow models we consider in this work,
each time detailing the flow’s parameters, the parameter values we use in Section 5 (in parentheses),
and the flow’s definition. Note that we consider normalized parameter values lying between 0 and 1
for the most part.

Greenshields Parameters: free-flow speed vmax (1 m/s), maximum density ρmax (1 veh/m).

f(ρ) = vmaxρ

(
1− ρ

ρmax

)
Triangular 1 (symmetrical) Parameters: free-flow speed vmax (1 m/s), critical density ρc (0.5
veh/m), maximum density ρmax (1 veh/m), wave propagation speed (−1 m/s).

f(ρ) =

{
vmaxρ if ρ < ρc
w(ρ− ρmax) if ρ ≥ ρc

Triangular 2 (skewed) A non-symmetric variant of the Triangular flow, with parameters vmax = 2
m/s, ρc = 1/3 veh/m, and w = −1 m/s.

Trapezoidal Parameters: free-flow speed vmax (1 m/s), first density cusp ρ1 (0.2 veh/m), second
density cusp ρ2 (0.8 veh/m), maximum density ρmax (1 veh/m), wave propagation speed (−1.5 m/s).

f(ρ) =


vmaxρ if ρ < ρ1

(w(ρ2 − ρmax)− vmaxρ1)
ρ− ρ1
ρ2 − ρ1

+ vmaxρ1 if ρ1 ≤ ρ ≤ ρ2

w(ρ− ρmax) if ρ > ρ2

Greenberg Parameters: maximum density ρmax (1 veh/m), coefficient c0 (2).

f(ρ) = c0ρ log (ρmax/ρ)

Underwood Parameters: maximum density ρmax (1 veh/m), coefficients c1 (0.25) and c2 (1).

f(ρ) = c1ρ exp (1− c2ρ)

Example solutions of the Greenshields LWR are shown on various initial conditions in Figure 8.

C I-24 EXPERIMENTAL DATASET: DENSITY EXTRACTION, TRAINING, AND
EVALUATION

C.1 DENSITY FIELDS EXTRACTION FROM I-24 MOTION DATASET

I-24 MOTION is a large-scale traffic monitoring system installed along a section of Interstate 24
near Nashville, Tennessee. It uses a dense network of high-resolution cameras and computer vision
algorithms to capture detailed, real-time vehicle trajectories across multiple lanes and miles of
highway. The data collection network and resulting trajectory data are illustrated in Figure 9.

For our experiments, we use the INCEPTION dataset1 (Gloudemans et al., 2023a) from I-24 MOTION,
consisting of ten days of data, each covering the morning rush hour (6:00 AM to 10:00 AM). The
dataset for each day comprises 15-20 GB stored as a single JSON file. We first split each file into

1Available at i24motion.org as part of the INCEPTION data release.
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Figure 7: Flow models for LWR. We consider six different variants of the LWR PDE with the flows illustrated
here, each mapping road density (veh/m) to traffic flow (veh/s).

manageable 1 GB chunks and parse them efficiently using simdjson (Langdale and Lemire, 2019),
which enables extraction of density fields in approximately 3-5 minutes per 20 GB file.

To construct the density fields, we discretize the spatiotemporal domain into cells of size 0.02 miles
(≈32 meters) in space and 0.1 seconds in time, aggregating data across all four lanes. Vehicle counts
in each cell are normalized to obtain densities in vehicles per kilometer per lane. To reduce noise,
we average over 100 consecutive time steps (i.e., 10 seconds) and over 2 adjacent spatial cells (i.e.,
0.04 miles or ≈64 meters). This results in a grid of 100 spatial cells (4 miles / 0.04 miles) and
approximately 1440 time steps (4 hours / 10 seconds). We clip the first and last segments of each day
to exclude low-density, free-flow regimes with incomplete data, retaining 1300 time steps per day
depending on data quality. To avoid extreme outliers, we cap densities at 140 vehicles/km/lane. For
all training and evaluation purposes, we then normalize densities so that the maximum density is 1.

Due to occasional sensor failures, such as malfunctioning camera poles or occlusions by bridges,
there are seven spatial locations with missing data. We fill these gaps by linear interpolation between
the adjacent upstream and downstream cells.

x
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1
x 7→ u(t = 0, x)

(a) A Shock wave.
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(b) Rarefaction wave.
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(c) Eval IC.
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0

1

Figure 8: Exact solution for two Riemann problems (left, middle) and one piecewise-constant initial condition
(right) from the evaluation set.
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Figure 9: I-24 MOTION illustration. High-definition camera poles are mounted along a portion of I-24 at
regular intervals. This generates massive amounts of video data, which is processed through a software stack.
The resulting data for a single day is shown in the time-space diagram, displaying thousands of individual vehicle
trajectories color-coded by speed (red for low speeds, green for high speeds), illustrating the complexity of the
dataset.

Figure 10 shows the density fields we extracted from I-24 MOTION data. Higher densities (in
red) correspond to stop-and-go waves and congestion, while lower densities (green) correspond to
free-flow traffic. The processing code and resulting data are available in our codebase.

We exclude data from November 24 and 25, 2022, from our analysis, as both days correspond to
holiday periods with purely free-flow, low-traffic conditions and no observable stop-and-go waves.
These days are therefore not relevant to our study, which focuses on modeling traffic dynamics in the
presence of congestion. The remaining days still include sufficient free-flow segments to evaluate
model robustness in those regimes. Nevertheless, we include the excluded days in the released dataset
for completeness.

C.2 BOUNDARY CONDITIONS

For both training and evaluation of NFV on the I-24 dataset, we initialize the model using a single time
step of real data and provide one boundary cell at each end of the road, using the corresponding real
values. While it is possible to use additional ground truth data to improve accuracy, we deliberately
restrict ourselves for two main reasons: (1) to allow fair comparison with the Godunov scheme, which
uses a single boundary cell per side, and (2) to reflect realistic deployment scenarios, where boundary
densities might only be measured at a few fixed points (e.g., at the road extremities), or predicted
using a separate model.

For models that require a wider input stencil (e.g., those larger than NFV1
3), we pad the boundaries

by duplicating the available single-cell values. This ensures that all models, no matter their size:
Godunov, NFV1

3, or NFV11
11, receive the same amount of boundary information. Figure 11 illustrates

the boundary setup in both cases, showing which values are provided as input and which are left to
be predicted.

Finally, we emphasize that initial and boundary conditions are not included when computing metrics,
whether in the training loss or at evaluation.
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C.3 READING THE HEATMAPS

This section provides a brief explanation and intuition for interpreting the heatmaps displaying I-24
MOTION data. The horizontal axis represents time, increasing from left to right, while the vertical
axis represents space along the road, increasing from bottom to top. The color encodes traffic density,
normalized between 0 and 1, according to the colormap shown in Figure 12, where green indicates
low density traffic (free flow) and red indicates high density traffic (congestion). Unless otherwise
specified, only the model predictions are shown, while initial and boundary conditions are omitted
for clarity. Stop-and-go waves appear as high-density (red) bands that propagate upstream, i.e., move
backward through traffic.

C.4 PREDICTIONS

Predictions on the training day from Section 6.2 are displayed in Figure 13. Predictions on evaluation
days are displayed in Figure 14.

D EXPERIMENT DETAILS

D.1 MODEL ARCHITECTURE

The model is applied locally on each cell to estimate the corresponding numerical flux. It is
implemented as a two-dimensional CNN. The first layer uses a kernel of size a− 1, followed by five
convolutional layers with 15 channels and kernel size 1. Using a CNN enables efficient vectorized
computation over all stencils, which is equivalent to sliding a fully connected network along the input
but significantly faster. Each time step is represented as a separate input channel, for a total of b input
channels. Note that when b = 1, a one-dimensional CNN can be used. The output is a single channel
providing the estimated flux. Each NFV model consists of 6 hidden layers of width 15, totaling
1105 + 16 · ((a − 1) · b + 1) parameters for NFVb

a. This remains quite small, with around 1200
trainable parameters for the smallest variant, which is intentionally chosen as the smallest architecture
that achieves competitive performance while consistently outperforming first-order FV baselines
across our benchmarks.

We also found that activation functions have a modest effect: ELU activations perform slightly better
on smooth flow functions (Greenshields, Greenberg, Underwood), while ReLU is preferable for
piecewise-linear flows (Triangular, Trapezoidal). However, the difference in performance is minor.

D.2 TRAINING ON SYNTHETIC DATA

For the LWR model, training is performed autoregressively: the model predicts future time steps by
feeding its own outputs as inputs. We use 2048 randomly sampled Riemann problems (ρ1, ρ2) for
training, which proved more effective than uniformly spaced samples. To encourage generalization,
small perturbations are added to the discontinuity location. Empirically, increasing the number of
training Riemann problems beyond this scale did not yield noticeable accuracy gains and mainly
increased training time, indicating that performance in this regime is not limited by data size.

The discretization parameters are ∆t = 5 · 10−3, ∆x = 10−2, 100 space cells, and up to 250 time
steps. Evaluation is done on 100 test cases generated with a finer grid and the Lax–Hopf algorithm:
∆t = 10−4, ∆x = 10−3, with 200 cells and 1000 time steps. A CFL ratio of 0.5 (e.g. dx = 10−3

and dt = 5 · 10−4) was robust across different flow functions. Higher CFLs sometimes work but
were less reliable. For instance, a CFL of 1.0 (e.g. dx = dt) is effective for the Greenshield flux but
leads to poor performance on the Triangular flux.

The prediction horizon is progressively increased from 10 to 250 steps during training. Most progress
occurs at short horizons (10 steps already outperform Godunov on average), while longer horizons
provide additional fine-tuning and stability. The learning schedule that proved robust is summarized
below:

For unsupervised experiments, we compute the weak loss function using test functions consisting
of 250 randomly sampled compactly supported polynomials of degree 50. This proved to work
well across PDEs, and details on test function generation are provided in the released codebase.
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Empirically, we observed that performance is largely insensitive to the specific random draws, number,
degree, or family of test functions once these values are moderately large, and that similar results
are obtained with trigonometric test functions; degradation only appears for very small numbers or
degrees (around 1-2), where the weak loss becomes poorly conditioned, so we found that the chosen
setting offers a stable yet memory-efficient default.

Stage Training steps Learning rate nx nt

1 10,000 1 · 10−4 10 10
2 20,000 1 · 10−5 50 50
3 20,000 5 · 10−6 100 100
4 20,000 1 · 10−6 200 200

Here, (nx, nt) denotes the size of the space–time window predicted autoregressively. Most learning
occurs during the first stage, with the later stages serving as progressive fine-tuning. Training uses
the Adam optimizer with a decaying learning rate, from 10−4 to 10−6, and the largest batch size that
fits in memory (ideally the entire dataset). Training on an RTX A5000 GPU takes about 30 minutes.

D.3 TRAINING ON EXPERIMENTAL DATA

All models and fitted finite volume schemes are trained on the first hour of data from November 29,
2022, and evaluated on the full morning period (nearly four hours) and the remaining days of data.
To ensure fairness and reflect practical deployment constraints, each model only receives a single
boundary cell on each side, as described in Appendix C.2, even though larger models could benefit
from additional context.

Each NFV model consists of 6 hidden layers of width 15, totaling 1105 + 16 · ((a − 1) · b + 1)
parameters for NFVb

a. Training takes 15–30 minutes on an RTX A5000 GPU. The prediction horizon
increases from 10 to 100 steps during training, while the learning rate decays from 10−3 to 10−4

over 3000–5000 epochs depending on model size, until convergence.

D.4 HARDWARE AND RUNTIME

All experiments were run on a single NVIDIA A5000 GPU with 24GB of VRAM. The codebase
(including (U)NFV and baselines) is fully vectorized so that all solutions are computed in parallel.
Among classical schemes, Lax–Friedrichs is fastest due to its simplicity. Godunov, Engquist–Osher,
and (U)NFV are 2–3× slower, ENO and WENO are 6× slower, and DG is up to 20× slower, with
significantly larger memory requirements. Equivalently, NFV runs within a small constant factor of
Godunov, is roughly twice as fast as ENO and WENO, and more than an order of magnitude faster
than DG in our benchmarks, while still benefiting from GPU batching across hundreds of solutions
where DG must be evaluated in smaller batches. These relative runtimes are hardware dependent but
give a representative picture.

Training is also relatively fast on GPU. The model generally surpasses the Godunov baseline after
only a few minutes and reaches most of its final performance within 15 minutes. In most runs
we extended training to one hour or more, though the remaining time typically yields only minor
fine-tuning. Figure 15 illustrates a typical training curve. To quantify progress, we also compute a
winrate metric, defined as the percentage of evaluation initial conditions on which the model achieves
lower L2 error than a baseline such as Godunov. Under this metric, the model usually remains at
0% for the first few minutes, then rapidly increases to above 95%, and often reaches 100% winrate
against Godunov within the first 15 minutes of training. A typical winrate curve is also depicted in
Figure 15.
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(a) Nov 21, 2022 (b) Nov 22, 2022

(c) Nov 23, 2022 (d) Nov 28, 2022

(e) Nov 29, 2022 (f) Nov 30, 2022

(g) Dec 01, 2022 (h) Dec 02, 2022

Figure 10: Time-space diagrams of car trajectories extracted from the video, colour-coded by density, for
different dates. See Appendix C.3 for how to read the heatmaps.

(a) Nov 29, 2022 boundary conditions for NFV1
3 (b) Nov 29, 2022 boundary conditions for NFV11

11

Figure 11: Boundary conditions used by NFV during training and evaluation on the I-24 dataset. The
figures show the input provided to the model: the initial condition at t = 0 on the left, and boundary conditions
at x = 0 (bottom) and x = xmax (top). The model must then predict the interior (i.e., the region shown in
Figure 10) autoregressively: it uses its own output at time t to predict the state at time t+ dt, without receiving
any additional data beyond the fixed boundaries. Note that both figures use the same underlying data; for NFV11

11,
the boundary values are duplicated to provide the required input padding.

Density0 1

Figure 12: Colorbar showing density scale for all I-24 data heatmaps.
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(a) FV fit: Greenshields (b) FV fit: Triangular

(c) FV fit: Trapezoidal (d) FV fit: Greenberg

(e) FV fit: Underwood (f) FV fit: NFV1
3

(g) FV fit: NFV5
5 (h) FV fit: NFV11

11

(i) Ground truth

Figure 13: Predictions of FV methods and trained NFV. Corresponding metrics are reported in Table 4.
Among the FV methods, only the Triangular, Trapezoidal, and Greenberg flows provide a reasonable fit to the
I-24 MOTION data. In contrast, NFV models show increasing predictive accuracy with model complexity.
For example, NFV11

11 captures significantly more stop-and-go waves (in red) than NFV5
5 or NFV1

3, as well as
fast low-density waves (in green), enabling it to correctly predict the early dissipation of the final two waves.
However, it exhibits oscillations toward the end of the prediction window, likely due to limited generalization
caused by the scarcity of low-density (dark green) patterns in the training data; nevertheless, the primary objective
when modeling experimental data is to accurately capture the evolution of congestion waves, whereas free-flow
traffic is of lesser interest. All models were trained on only the first 25% of the ground truth sequence, and the
predictions are generated fully autoregressively. See Appendix C.3 for how to read the heatmaps.
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Prediction on training day

(a) Ground truth (Nov 29, 2022) (b) NFV11
11 prediction (c) Godunov prediction

Generalization on unseen days

(d) Ground truth (Nov 21, 2022) (e) NFV11
11 prediction (f) Godunov prediction

(g) Ground truth (Nov 22, 2022) (h) NFV11
11 prediction (i) Godunov prediction

(j) Ground truth (Nov 23, 2022) (k) NFV11
11 prediction (l) Godunov prediction

(m) Ground truth (Nov 28, 2022) (n) NFV11
11 prediction (o) Godunov prediction

(p) Ground truth (Nov 30, 2022) (q) NFV11
11 prediction (r) Godunov prediction

(s) Ground truth (Dec 01, 2022) (t) NFV11
11 prediction (u) Godunov prediction

(v) Ground truth (Dec 02, 2022) (w) NFV11
11 prediction (x) Godunov prediction

Figure 14: Predictions of best FV fit and trained NFV11
11. Godunov is derived by fitting a flow function on

the prediction and comparing it against the ground truth; we keep the fitted Trapezoidal flow as it performed
best (see Figure 13 and Table 4). Both the Godunov fit and the NFV11

11 training are realized using the same data,
namely the first 1 hour of Nov 29, 2022 data (i.e., the first 25% of subfigure (a)). This means that the remainder
of the data on that day (row 1), as well as the prediction on all subsequent days (rows 2-8) are generalization on
data that was never seen before by either models. See Appendix C.3 for how to read the heatmaps.
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Figure 15: Training dynamics. Left: Average L2 error of the model and of a Godunov baseline. Right: Winrate
of the model against the Godunov baseline. All the metrics are computed periodically on an evaluation dataset
of 100 random complex initial conditions, with prediction over 1000 timesteps.

23


	Introduction
	Related work
	Prerequisites and Notations: Finite Volume Methods
	Our method: Neural Finite Volume (NFV)
	Supervised Learning
	Unsupervised Learning

	Experiments
	Baselines
	Equations
	Datasets
	Results and discussion

	Modeling Large-Scale Experimental Field Data using NFV
	Dataset and Training
	Results and Discussion

	Conclusion
	Finite Volume Methods
	Variants of LWR
	I-24 Experimental Dataset: Density Extraction, Training, and Evaluation
	Density Fields Extraction From I-24 MOTION Dataset
	Boundary Conditions
	Reading the Heatmaps
	Predictions

	Experiment Details
	Model Architecture
	Training on Synthetic Data
	Training on Experimental Data
	Hardware and Runtime


