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Abstract
This paper introduces a family of learning-
augmented algorithms for online knapsack prob-
lems that achieve near Pareto-optimal consistency-
robustness trade-offs through a simple combina-
tion of trusted learning-augmented and worst-case
algorithms. Our approach relies on succinct, prac-
tical predictions—single values or intervals es-
timating the minimum value of any item in an
offline solution. Additionally, we propose a novel
fractional-to-integral conversion procedure, offer-
ing new insights for online algorithm design.

1. Introduction
Learning-augmented design (Lykouris & Vassilvtiskii, 2018;
Purohit et al., 2018) is a successful framework whose goal
is to systematically go beyond competitive analysis in on-
line problems by leveraging ML predictions to improve
algorithm performance without sacrificing worst-case guar-
antees. In this framework, online algorithms are evaluated
using the concepts of consistency and robustness, which
characterize the competitive ratio (see § 2.1) when the pre-
diction is accurate or arbitrarily wrong, respectively. An
overarching design goal is to achieve a Pareto-optimal result
that captures the best achievable trade-off between consis-
tency and robustness. Toward this goal, algorithms have
been proposed that achieve optimal consistency-robustness
trade-offs for several problems such as ski rental (Bamas
et al., 2020; Wei & Zhang, 2020), online search (Sun et al.,
2021a), and bin packing (Angelopoulos et al., 2024). How-
ever, Pareto-optimal results remain open for several other
online problems, including the online knapsack problem.
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In the online knapsack problem (OKP), the goal is to pack a
finite number of sequentially arriving items with different
values and weights into a knapsack with limited capacity,
so that the total value of admitted items is maximized. In
the online setting, the decision maker must immediately and
irrevocably admit or reject an item upon its arrival without
knowing future items. OKP captures a broad range of re-
source allocation problems with applications to online adver-
tising (Zhou et al., 2008), resource allocation (Zhang et al.,
2017; Buchbinder & Naor, 2009), dynamic pricing (Bo-
standoost et al., 2023), supply chain (Ma et al., 2019), and
beyond. Historically, work on OKP variants has focused
on developing algorithms under the framework of compet-
itive analysis (Borodin et al., 1992). It is well known that
no online algorithm can achieve bounded competitive ra-
tio for the basic version of OKP (Marchetti-Spaccamela &
Vercellis, 1995; Böckenhauer et al., 2014b) without mak-
ing additional assumptions on the input, e.g., assuming that
value-to-weight ratios are bounded (Zhou et al., 2008; Sun
et al., 2021a; Yang et al., 2021). In this work, we go be-
yond competitive analysis, to study OKP through the lens of
learning-augmented design.

Prior results. There has been substantial work on learning-
augmented algorithms for OKP. We classify them into three
categories: (i) OKP with frequency predictions (Im et al.,
2021), (ii) advice complexity of OKP (Böckenhauer et al.,
2014b), and (iii) Pareto-optimal algorithms for simplified
OKP variants (Sun et al., 2021a; Lee et al., 2022; Balseiro
et al., 2023). See § A.1 for a complete literature review. In
the following, we focus on closely related prior work.

In the first category, Im et al. (2021) study learning-
augmented OKP using frequency predictions, i.e., predic-
tions of the total weights of items for each possible unit
value in an instance. The authors provide upper bounds on
the consistency and robustness of their SENTINEL algorithm,
but do not provide a lower bound on the best achievable
consistency-robustness trade-off under the frequency predic-
tion model, leaving the question of optimality open. Further,
the frequency prediction model requires the algorithm to
be given a large number of predictions (one for each possi-
ble unit value). Due to this complexity, accurate frequency
predictions may be difficult to obtain in practice.
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Table 1. Summary of contributions.
Prediction Model Algorithm Upper Bound Lower Bound
Point Prediction PP-b, PP-a 2, 1 + min{1, ω̂} (Theorems 3.2, 3.3) 1 + min{1, ω̂} (Theorem 3.1)

Interval Prediction IPA 2 + ln(u/ℓ) (Theorem 3.4) 2 + ln(u/ℓ) (Theorem 3.6)
Consistency- MIX 2/λ-consistent (λ ∈ (0, 1)) 2/λ-consistent (λ ∈ (0, 1))

robustness ln(U/L)+1
(1−λ)

-robust (Theorem 4.1)∗ Ω
(

ln(U/L)+1
(1−λ)

)
-robust (Theorem 4.2)∗

▶ We present our results in the context of online fractional knapsack (OFKP); in Theorem 5.2, we give a generic conversion to the integral case, showing that
the results extend with small loss to this setting under standard assumptions. Our lower bounds in the fractional case also hold in the integral case by nature
of the relaxation; see § 5. ▶ ω̂ is the total weight of items with critical value v̂ (see Def 2.2). ▶ ℓ and u are lower and upper bound predictions on
the critical value v̂ (see Def. 2.3). ▶ λ ∈ (0, 1) is a trust hyperparameter passed to a learning-augmented algorithm that leverages untrusted predictions.
▶ ∗ indicates that we consider the setting where item values are bounded in [L,U ].

In the second category, Böckenhauer et al. (2014b) study
the advice complexity of OKP, giving an online algorithm
with competitive ratio 1 + ϵ for any constant ϵ > 0 using
O(log n) bits of advice (Böckenhauer et al., 2014b, The-
orems 13 and 17), where n is the number of items. To
achieve this result, their algorithm requires strong advice
about the offline optimal solution (including the number
of items, multiple critical item values, and the indices of
certain admitted items). With such strong advice, the algo-
rithm itself is simple: it reserves the capacity for items from
advice and greedily admits other items. However, acquiring
the required advice from an ML model in practice is likely
difficult, e.g., admitted item index advice becomes invalid if
instances are shuffled. Further, Böckenhauer et al. (2014b)
focus only on the setting where the advice is assumed to be
accurate. It is unclear how to extend their analysis to give
consistency-robustness trade-offs.

In the third category, prior works have developed algorithms
with Pareto-optimal consistency-robustness trade-offs for
various simplified versions of OKP. For example, using sim-
ilar frequency predictions to (Im et al., 2021), Balseiro et al.
(2023) develop Pareto-optimal algorithms for the single-leg
revenue management problem, which can be interpreted as
an OKP variant with unit weight items that take values from
a discrete and finite set. However, the algorithms and their
Pareto-optimality guarantees do not extend to the case of
continuous-valued items. Pareto-optimal algorithms using
succinct single-valued predictions have also been given for
online conversion problems (Sun et al., 2021a; Lee et al.,
2022). These problems can be seen as fractional variants of
OKP with item weights equal to the capacity, where the opti-
mal offline solution simply fills the knapsack with the single
most valuable item. The consistency-robustness trade-offs
derived in these settings do not extend to general OKP– in
online conversion and search, an accurate prediction of the
highest item value is sufficient to obtain a 1-competitive
algorithm. This is not the case for OKP, since the most valu-
able items may be small, forcing the offline optimal solution
to admit less valuable items to fill the knapsack capacity.

In summary, prior work on learning-augmented algorithms
for OKP fails to achieve Pareto-optimal trade-offs in all but a
few significantly simplified variants of the problem. Further,
existing algorithms often leverage complex and potentially

impractical predictions. Motivated by these limitations, the
main goal of this paper is to answer the following question:
Can we design near Pareto-optimal learning-augmented al-
gorithms for OKP using practical & succinct predictions?

Contributions. We present OKP algorithms that achieve
near Pareto-optimal trade-offs between consistency and ro-
bustness, using succinct predictions of a critical value v̂, i.e.,
the minimum value of any item admitted by an offline opti-
mal solution (see Table 1). Our work introduces novel algo-
rithmic frameworks, and technical contributions to knapsack
problems under both trusted and untrusted predictions.
▶ For trusted point predictions of the critical value v̂, we
prove the optimal competitive ratio is 1+min{1, ω̂}, where
ω̂ is the total weight of items with value v̂ (Theorem 3.1).
Our algorithm PP-a achieves this bound using a novel
reserve-while-greedy approach (Theorem 3.3). Existing
OKP algorithms are mainly based on a threshold-based al-
gorithm, which is a reserve-then-greedy strategy that pre-
allocates capacity for high-value items and greedily admits
others (Lee et al., 2022; Sun et al., 2022). Instead of relying
on fixed reservation, PP-a dynamically adjusts its reserved
capacity based on observations of high-value items, improv-
ing the competitive ratio from 2 (achieved by a reserve-then-
greedy algorithm PP-b) to 1 + min{1, ω̂}.
▶ For trusted interval predictions ℓ ≤ v̂ ≤ u, our IPA algo-
rithm achieves a competitive ratio of 2 + ln(u/ℓ), matching
a derived lower bound (Theorem 3.4, 3.6). Interval pre-
dictions also model point predictions with bounded error,
enabling robust solutions under uncertainty.
▶ For untrusted predictions, we propose an algorithm, MIX
that combines trusted algorithms with a robust baseline. As-
suming unit values lie within [L,U ], we show MIX achieves
c/λ-consistency and ln(U/L)+1

1−λ -robustness (Theorem 4.1),
where c is the competitive ratio of the trusted prediction
algorithm. This trade-off is near-optimal (Theorem 4.2).
▶ We then introduce a fractional-to-integral conversion algo-
rithm that adapts any OFKP solution for use in OIKP under
small item weights (Zhou et al., 2008; Im et al., 2021). This
conversion facilitates near-optimal consistency-robustness
trade-offs for integral settings (Theorem 5.2).
▶ Finally, in § 6, we evaluate our algorithms on synthetic
and real data from Bitcoin and Google workload traces.
Our algorithms significantly outperform baselines without
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predictions, even with noisy inputs. Compared to algorithms
relying on complex frequency predictions (Im et al., 2021),
our succinct prediction-based approaches exhibit superior
performance and degrade gracefully with prediction errors.

2. Problem Formulation and Preliminaries
In this section, we define the online knapsack problem
(OKP), introduce the prediction models used, and review
existing algorithms and results.

Throughout the paper, we occasionally use the term value to
refer to the unit value (i.e., value-to-weight ratio) of an item,
especially in early sections for simplicity. This shorthand
is common in the literature on learning-augmented knap-
sack (Im et al., 2021; Sun et al., 2022), and we clarify the
meaning when ambiguity might arise.

Online knapsack problem. Consider a knapsack with
capacity 1 (w.l.o.g.). Items arrive online, each with a unit
value vi and weight wi. Upon arrival, an algorithm decides
xi ∈ Xi, the acceptance of item i, without future knowledge.
Here Xi denotes feasible decisions for item i. Each deci-
sion xi yields profit xivi, aiming to maximize total profit
under capacity constraints. When Xi = {0, wi}, the algo-
rithm decides to pack or reject the entire item (OIKP). For
Xi = [0, wi], fractional packing is allowed (OFKP). We use
OKP for both problems unless otherwise specified. An OKP
instance I = {(vi, wi)}i∈[n] has the offline formulation:

max
{xi}i∈[n]

∑n

i=1
xivi, s.t.

∑n

i=1
xi ≤ 1, xi ∈ Xi : ∀i ∈ [n]. (1)

The offline solution for OFKP sorts items by unit value
and fills the knapsack in that order. The critical value is
the smallest value of items (possibly fractionally) packed.
Items with higher values are all packed. This algorithm also
applies approximately to OIKP when wi ≪ 1,∀i ∈ [n].
In the online setting, OFKP and OIKP with small weights
can both be solved optimally on worst-case instances via a
threshold-based algorithm (see § 2.1).

Assumptions. We adopt the standard small weight assump-
tion for OIKP, where wi ≪ 1,∀i ∈ [n] (Zhou et al., 2008).
This assumption is essential to achieve a meaningful com-
petitive ratio in worst-case instances of OIKP (Marchetti-
Spaccamela & Vercellis, 1995; Zhou et al., 2008). In Theo-
rem A.1, we show that it remains necessary for OIKP even
with a trusted prediction of the critical value. Notably, our
OFKP algorithms do not rely on this assumption.

Prior work on OKP and related problems, such as one-way
trading and online search (El-Yaniv et al., 2001), often as-
sumes bounded support for unit values, i.e., vi ∈ [L,U ],
where L and U are known. This assumption is also
critical for a bounded competitive ratio in worst-case in-
stances (Marchetti-Spaccamela & Vercellis, 1995; Zhou
et al., 2008). Notably, our learning-augmented algorithms

for OFKP with trusted predictions (§ 3) do not require the
bounded value assumption. However, in the untrusted pre-
diction setting (§ 4), this assumption ensures bounded ro-
bustness by using the worst-case optimal algorithm (Zhou
et al., 2008) as a subroutine. The conversion algorithm link-
ing OFKP and OIKP (§ 5) also leverages this assumption.
Additionally, Theorem A.2 shows that the bounded value
assumption is necessary to achieve a bounded competitive
ratio, even with a trusted prediction.

Adversary model. Throughout this work, we adopt
the standard adaptive adversary model for online algo-
rithms (Borodin & El-Yaniv, 1998). In this model, the
adversary can generate the input sequence adaptively and
change it based on the algorithm’s past decisions. This
setting captures worst-case scenarios where item arrivals
are influenced by the algorithm’s behavior, and it is widely
used in the analysis of online problems, including online
knapsack (Zhou et al., 2008; Sun et al., 2022). All our lower
bounds and robustness results assume the adaptive adversary
model.

2.1. Preliminaries

Competitive ratio. OKP has been historically studied using
competitive analysis, where the goal is to design an online
algorithm that achieves a large fraction of the offline opti-
mum profit on all inputs (Borodin et al., 1992). We denote
by OPT(I) the offline optimum for input I , and by ALG(I)
the profit obtained by an online algorithm. The competitive
ratio is then defined as c := maxI∈Ω

OPT(I)/ALG(I), where Ω
denotes the set of all possible inputs, and ALG is said to be
c-competitive. If ALG is randomized, we analogously define
the competitive ratio as c := maxI∈Ω

OPT(I)/E[ALG(I)].

Consistency and robustness. In the literature on learning-
augmented algorithms, competitive analysis is interpreted
using the notions of consistency and robustness, introduced
by Lykouris & Vassilvtiskii (2018); Purohit et al. (2018). An
online algorithm with predictions is said to be b-consistent
if it is b-competitive when given a correct prediction, and
r-robust if it is r-competitive when given any prediction,
regardless of its correctness. The goal is to design an al-
gorithm that achieves the best robustness for any chosen
consistency – i.e., achieving a Pareto-optimal trade-off be-
tween consistency and robustness.

Prior results: competitive algorithms without prediction.
Both OIKP with small weights and OFKP have received
significant attention. Under the assumption of bounded unit
values (i.e., vi ∈ [L,U ],∀i ∈ [n]), prior works (Zhou et al.,
2008; Sun et al., 2021b) have shown an optimal determin-
istic threshold-based algorithm (ZCL) for OIKP and OFKP.
We present pseudocode for ZCL in the Appendix, in Alg.
4. Note that ZCL requires prior knowledge about the maxi-
mum unit value U and minimum unit value L for an instance,
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achieving the optimal competitive ratio ln(U/L)+1 for both
OFKP and OIKP. In § 3, we show that this competitive ratio
can be improved to a constant with no assumptions on L
and U by leveraging trusted (i.e., accurate) predictions. To
achieve a Pareto-optimal consistency-robustness trade-off
in the untrusted prediction setting, our MIX algorithm uses
the worst-case optimal ZCL algorithm as a subroutine.

2.2. Succinct Prediction Model

Throughout the paper we consider succinct predictions de-
rived from the critical value of the offline optimal fractional
OFKP solution, defined formally below.

Definition 2.1 (Critical valued items (v̂, ω̂)). Given an in-
stance of OKP, v̂ is a critical value denoting the minimum
unit value of any item (fractionally) admitted by the offline
optimal solution. Let ω̂ be the total weight of the items with
value v̂. Note that v̂ = min{vi :

∑
j:vj>vi

wj < 1}.

Below, we introduce two prediction models of the critical
value v̂ of an instance. We note that our algorithms do not
receive a prediction of the corresponding capacity ω̂.

Definition 2.2 (Prediction Model I: Point Prediction). A
single value prediction of the critical value v̂, as defined in
Def. 2.1, is given to a learning-augmented online algorithm.

The point prediction is simple; however, we note that even
when an algorithm is given an accurate point prediction of v̂,
it cannot necessarily reconstruct the optimal solution online.
In particular, the offline optimal solution fully accepts any
item with a unit value strictly greater than v̂. However, it
may only partially admit item(s) with value v̂. Hence, even
with a perfect prediction of the exact value v̂, the online
decision-maker cannot optimally solve the problem since
the optimal admittance policy for items with exact value
v̂ is unclear. In practice, one may argue that obtaining a
point prediction of the exact value v̂ is almost impossible,
motivating a more coarse-grained interval prediction.

Definition 2.3 (Prediction Model II: Interval Prediction).
A lower bound ℓ and upper bound u on the actual value
of v̂ (Def 2.1) are given to the learning-augmented online
algorithm, satisfying the condition ℓ ≤ v̂ ≤ u.

In this prediction model, the quality of the prediction de-
grades as the ratio u/ℓ increases. In an extreme case of u = ℓ,
the interval prediction degenerates to the aforementioned
point prediction. On the other hand, with u = U and ℓ = L,
the problem degenerates to a classic OKP problem (i.e., with-
out predictions but with bounded value assumptions) when
only prior knowledge of the unit value bounds is available.

Comparisons to related prediction models. The notion of
predicting the critical value has been explored in a special
case of OFKP known as the online search problem (Sun
et al., 2021a; Lee et al., 2024). In this problem, all item

weights are set to 1, making the critical value equivalent
to the maximum value, i.e., the offline optimal solution
only admits one item with the maximum value. Accurate
prediction of the critical value enables the recovery of the
optimal solution in this special case. However, in OFKPwith
arbitrary item sizes, leveraging such predictions becomes
notably more challenging. One main contribution of this
study is the design of an optimal competitive algorithm
using an accurate prediction of the critical value in OFKP.

The integral OKP has primarily been explored using other
prediction models. Im et al. (2021) propose a frequency
(interval) prediction model, predicting the total weights of
items for each possible unit value in an instance. On the
other hand, Balseiro et al. (2023) introduce a model that fo-
cuses on a frequency prediction over the possible unit values
admitted by the offline optimal algorithms. However, any
frequency prediction model demands a large number of pre-
dictions, significantly increasing the complexity of obtaining
predictions with high accuracy. In contrast, our succinct
prediction models only require a point or interval predic-
tion, and can achieve comparable empirical performance to
algorithms that employ more complicated predictions.

Our succinct prediction is strictly weaker than the frequency
prediction model. Formally, let {(f ℓ(v), fu(v))}v∈[L,U ]

denote the frequency prediction (as given by Im et al.
(2021)), where f ℓ(v) and fu(v) denote the lower and up-
per bounds of the frequency density, respectively. Given
such a frequency prediction, we can directly obtain an
interval prediction over the critical value by calculating
ℓ := min{v ∈ [L,U ] :

∫ U

v
f ℓ(v)dv ≤ 1} and u :=

min{v ∈ [L,U ] :
∫ U

v
fu(v)dv ≤ 1}. Last, we note that de-

veloping an ML model to generate predictions is beyond the
scope of this paper, as our focus is on leveraging predictions
to design and analyze learning-augmented algorithms.

3. Algorithms with Trusted Predictions
We first present lower bound results for OKP algorithms
with trusted point predictions. Then, we design OFKP algo-
rithms for trusted point and interval predictions that achieve
optimal competitive ratios (i.e., matching a lower bound).

3.1. Lower Bound for Trusted Point Predictions

In what follows, we show that even with an exact point
prediction of the critical value v̂, no deterministic or ran-
domized learning-augmented online algorithm can achieve
1-competitiveness (i.e., no algorithm can match the offline
optimal solution on all instances).

Theorem 3.1. Given an exact prediction on the critical
value v̂, no (deterministic or randomized) online algorithm
for OFKP can achieve a competitive ratio smaller than 1 +
min{1, ω̂}.
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Recall that ω̂ is the total weight of items with the critical
value v̂. This result implies a 2-competitive lower bound
when ω̂ ≥ 1, even with an accurate point prediction of v̂.
To understand the intuition, consider a special case when
ω̂ = 1. If an algorithm is presented with the first item (v̂, 1),
it cannot admit the entire item, as the next item could be
(∞, 1− ϵ) (with ϵ→ 0); on the other hand, it must admit a
portion of this item since there may be no following item.
The optimal balance is to admit 1/2 of the first item, giving a
2-competitive lower bound. A refined bound can be attained
for instances with smaller values of ω̂. The full proof is
given in Appendix A.6.1. By nature of the OFKP relaxation,
Theorem 3.1 also lower bounds the harder case of OIKP.

3.2. OFKP Algorithms with Trusted Point Predictions

We first present PP-b, a trusted-prediction algorithm for
OFKP that is 2-competitive when given the exact pre-
diction v̂. Then, we present PP-a, a refined algorithm
that improves the instance-dependent competitive ratio to
1 + min{1, ω̂}, matching the lower bound. Recall that ω̂ is
unknown and not provided by a prediction (see Def. 2.1).
We note that a naı̈ve trusted-prediction algorithm that ac-
cepts all items with values ≥ v̂ results in an arbitrarily large
worst-case competitive ratio (see Appendix A.5 and A.6.4).

PP-b: A basic trusted point-prediction 2-competitive al-
gorithm. We present an algorithm (pseudocode in Alg. 5)
that, given the exact value of v̂, is 2-competitive for OFKP.
The idea is to set aside half of the capacity for high-value
items (> v̂) and allocate the other half for minimum ac-
ceptable items with value v̂. By doing so, PP-b obtains
at least half of either part from OPT’s knapsack. Note that
achieving a competitive ratio of 2 matches the lower bound
in Theorem 3.1 for general ω̂ (i.e., across all instances).

Theorem 3.2. Given a point prediction, PP-b is 2-
competitive for OFKP.

Proof Sketch. PP-b selects min{1/2, ω̂/2} at v̂, which is at
least half of the profit that OPT obtains from items with
value v̂. Let z ≤ 1 be the total weight of items with value >
v̂. PP-b accepts half of these items above the critical value,
again obtaining at least half of OPT’s profit. Moreover, we
can show that PP-b does not violate the knapsack constraint.
The full proof is in Appendix A.6.5.

We next show how to modify PP-b to achieve the instance-
specific lower bound of 1 + min{1, ω̂} from Theorem 3.1.

PP-a: An improved 1 +min{1, ω̂}-competitive algorithm.
PP-a leverages the observation that it can accept more than
half of items with value > v̂ when ω̂ is low. However, since
ω̂ is unknown, it exploits a “prebuying” strategy, initially
selecting entire items with values > v̂ before adjusting its
selections upon observing items with value v̂. This adaptive

Algorithm 1 PP-a: An improved (1 + min{1, ω̂})-
competitive algorithm with point prediction

Input: prediction v̂
Output: {xi}i∈[n]

Initialization: ω̂0 = 0, s0 = 0
for each item i (with unit value vi and weight wi) do

if vi < v̂ then
ω̂i = ω̂i−1

xi = 0 ▷ item is rejected
else if vi > v̂ then
ω̂i = ω̂i−1

xi = wi/(1 + ω̂i−1) ▷ item is partially accepted
else if vi = v̂ then
ω̂i = ω̂i−1 +min{wi, 1− ω̂i−1}
xi =

min{wi,1−ω̂i−1}
1+ω̂i

− si−1 · min{wi,1−ω̂i−1}
1+ω̂i

▷
item is partially accepted

Update si = si−1 + xi

approach ensures that PP-a selects an appropriate portion
on either side of the prediction to achieve the desired bound.

Theorem 3.3. Given a point prediction, PP-a is (1 +
min{1, ω̂})-competitive for OFKP.
Without prior knowledge of ω̂, PP-a employs a “prebuying”
strategy for items with values > v̂. The extra capacity
allocated to these items always has a higher unit value than v̂,
allowing PP-a to reduce acceptances from v̂ based on how
much extra capacity it has allocated in previous items. PP-a
maintains a lower bound on ω̂ that increments each time
an item with value v̂ arrives. This lower bound determines
PP-a’s strategy for values > v̂. The remaining challenge
is to ensure that PP-a does not overfill the knapsack, and
attains at least 1/(1 + min{1, ω̂}) of the profit obtained by
OPT. We give the full proof in Appendix A.6.6.

Intuition behind prebuying.The key idea of prebuying
is that PP-a proactively reserves capacity for items with
values strictly greater than the predicted critical value v̂,
even before observing all such items. This is done to better
utilize the knapsack when ω̂, the total weight of items at v̂,
is small. If the algorithm later encounters many items at v̂,
it dynamically reduces the amount allocated to higher-value
items. This contrasts with reserve-then-greedy strategies,
where reservations are fixed in advance.

3.3. Trusted Interval Predictions

In this section, we present an algorithm that uses interval
predictions [ℓ, u], where v̂ ∈ [ℓ, u] – this is motivated by e.g.,
uncertainty quantification schemes that provide a bound on
the prediction error ∆, such that upper and lower bounds
can be modeled as a confidence interval ℓ = ṽ−∆ ≤ v̂ and
u = ṽ +∆ ≥ v̂, where ṽ is the predicted critical value.

IPA: An interval prediction-based algorithm. IPA builds
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Algorithm 2 IPA: An Interval-Prediction-Based Algorithm
for OFKP

Input: interval prediction ℓ, u, robust algorithm A with
competitive ratio α
Output: online decisions xis
Initialize A
for each item i (with unit value vi and weight wi) do

if vi < ℓ then
xi = 0 ▷ item is rejected

else if vi > u then
xi =

1
α+1 × wi ▷ item is partially accepted

else if vi ∈ [ℓ, u] then
Pass item i to algorithm A
xi =

α
α+1 × xA

i ▷ item is partially accepted

on PP-b and is devised to solve OFKP when given interval
predictions. It allocates a dedicated portion of the capacity
for values higher than u, rejects all items with values lower
than ℓ, and employs a sub-algorithm (e.g., ZCL) to solve
OFKP within the interval [ℓ, u]. The results are then com-
bined to yield a competitive result with a competitive ratio
of α + 1, where α represents the competitive ratio of the
sub-algorithm. We summarize pseudocode for IPA in Alg.
2, and give the competitive result for IPA below:

Theorem 3.4. Given an interval prediction [ℓ, u] and an
algorithm for OFKP with a worst-case competitive ratio of
α, IPA is (α+ 1)-competitive for OFKP.

Proof Sketch. For unit values higher than u, IPA allocates
1/α+1 of knapsack capacity. Within the range [ℓ, u], it em-
ploys a robust sub-algorithm, denoted as A, which is α-
competitive – it is allocated α/α+1 fraction of the knapsack’s
capacity. Within the interval [ℓ, u], obtaining a α/α+1 frac-
tion ofA’s solution intuitively yields an (α+1)-competitive
solution against OPT. The remaining challenge is to demon-
strate that the bound holds across both parts (i.e., beyond
the interval [ℓ, u]). The full proof is in Appendix A.6.7.

Corollary 3.5. Given an interval prediction [ℓ, u], IPA is
(2 + ln(u/ℓ))-competitive for OFKP when the sub-algorithm
is given by Alg. 4 (ZCL).
Theorem 3.4 and Corollary 3.5 show that IPA is (2 +
ln(u/ℓ))-competitive when using an optimal OKP method
as the sub-algorithm (e.g., ZCL). A natural question to ask
is whether this competitive ratio for trusted interval predic-
tions can be improved upon by any other algorithm – in the
following, we answer this in the negative.

Theorem 3.6. Given an interval prediction [ℓ, u], no (de-
terministic or randomized) online algorithm for OFKP can
achieve a competitive ratio better than (2 + ln(u/ℓ)).
The result in Theorem 3.6 (full proof in Appendix A.6.2)
implies that IPA achieves the optimal competitive ratio for
any OKP algorithm using trusted interval predictions.

4. Leveraging Untrusted Predictions
In this section, we extend our results to the case of imperfect
or untrusted predictions. We present MIX, an algorithm that
mixes the decisions of a prediction-based algorithm with a
robust baseline, and prove its consistency and robustness.
Furthermore, we give a corresponding lower bound on the
best achievable consistency and robustness using a point
prediction – this shows that MIX achieves a nearly-optimal
consistency-robustness trade-off. Although the technique of
combining algorithms is common in the literature (Im et al.,
2021; Christianson et al., 2022; Lechowicz et al., 2024), it
is not often the case that such a technique approaches the
optimal trade-off, making our result particularly noteworthy.

MIX: A robust and consistent algorithm. MIX combines
ZCL, the optimal (ln(U/L) + 1)-competitive OFKP algo-
rithm, with one of the trusted OFKP prediction algorithms
presented so far (e.g., PP-a in Alg. 1, IPA in § 3.3). If the
prediction is correct, we say that the “inner prediction algo-
rithm” ALG is c-competitive, where c is the corresponding
bound proved in the previous section.

For robustness, we follow prior work (Sun et al., 2021b;
Zhou et al., 2008; El-Yaniv et al., 2001) and assume unit val-
ues are bounded, i.e., vi ∈ [L,U ],∀i ∈ [n]. Note that L and
U are not related to the predicted interval [ℓ, u]. MIX bal-
ances between the inner algorithms (worst-case optimized
ZCL and prediction-based ALG) by setting a trust parame-
ter λ ∈ [0, 1]. Both algorithms run in parallel – when an
item arrives, MIX receives an item with unit value vi and
weight wi as input. MIX first “offers” this item to the inner
prediction-based ALG, receives its decision x̂i, and then “of-
fers” this item to the inner robust ZCL, receiving a decision
x̃i. Then MIX accepts xi = λx̂i + (1− λ)x̃i fraction of the
item. Note that when λ = 1, MIX makes the same decisions
as the inner prediction ALG, and when λ = 0, MIX makes
the same decisions as the inner robust ZCL. The inner ALG
is chosen based on the type of prediction received, e.g., a
point or interval prediction. Theorem 4.1 gives bounds on
the consistency and robustness of MIX, which gives corre-
sponding consistency-robustness results for the algorithms
in the previous section (i.e., for point and interval prediction
models, see Theorem 3.3 and Theorem 3.4, respectively).

Theorem 4.1. MIX is ln(U/L)+1
(1−λ) -robust and c

λ -consistent for
OFKP for any λ ∈ (0, 1), where c is the competitive ratio of
the inner prediction ALG with an accurate prediction.

Proof. MIX’s profit is described by MIX[λ](I) =
λALG(I) + (1 − λ)ZCL(I). For consistency, the predic-
tion is correct and ALG is c-competitive. Thus, we ob-
tain that MIX[λ](I) ≥ λALG(I), and MIX is c

λ -consistent.
For robustness, consider the case where the prediction is
wrong. If ALG obtains no profit, we have MIX[λ](I) ≥
(1− λ)ZCL(I), and MIX is ln(U/L)+1

(1−λ) -robust.
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Figure 1. The consistency-robustness upper bound of MIX using
a prediction of the critical value v̂ (Theorem 4.1) and the lower
bounds ((2) and (3)), with U/L = 1000.

We use an example to further clarify the robustness of MIX.
Set λ = 1

2 . Assume that the prediction-based algorithm
ALG obtains no profit. The ZCL algorithm is c-competitive.
Then, we have

MIX[λ](I) = 1

2
· 0 + 1

2
· ZCL(I) = 1

2
· OPT

c
,

which shows MIX is 2c-competitive. Thus, for a given non-
zero λ, MIX maintains a finite competitive ratio even in
worst-case prediction scenarios, highlighting the role of the
robust subroutine in guaranteeing performance.

4.1. Optimal Consistency-Robustness Trade-Offs

We ask whether any considerable improvement can be made
in the consistency-robustness trade-off, i.e., whether an al-
gorithm using succinct predictions can achieve better consis-
tency for a given robustness (or vice versa). In what follows,
we show that MIX nearly matches the best consistency-
robustness trade-off for a critical value prediction v̂.
Theorem 4.2. Given an untrusted prediction of the critical
value, any deterministic γ-robust algorithm for OKP (where
γ ∈ [ln(U/L) + 1,∞) is at least η-consistent for

η ≥ max

{
2− L

U
,

1

1− 1
γ
ln (U/L)

}
. (2)

Furthermore, in the limit as U/L→∞, any 2/λ-consistent
(for some λ ∈ (0, 1)) algorithm is at least β-robust, for

β =
1 + ln(U/L)

1− λ
− o(1) = Ω

(
1 + ln (U/L)

1− λ

)
. (3)

This result (full proof in Appendix A.6.3) implies that MIX
achieves the nearly optimal trade-off between consistency
and robustness. In Fig. 1, we plot the consistency-robustness
upper bound from Theorem 4.1, along with the lower bounds
given by (2) and (3). All three bounds behave similarly,
exhibiting a convex trade-off. The gap between the upper
and lower bound is due to constants in the proof of (3).
We disregard consistency > ln(U/L) + 1 since algorithms
without predictions (e.g., ZCL) give better guarantees.

5. Connecting OIKP with OFKP
In this section, we present a general result that connects
the fractional case (OFKP) with the integral case (OIKP),

Algorithm 3 The Fr2Int algorithm
Input: OFKP algorithm ALG, error parameter δ, preci-
sion parameter ϵ, bounds U , L
Output: Online decisions {xi}i∈[n]

Initialization: Arrays A[0, . . . , ⌈log1+δ(U/L)⌉] ← 0,
R[0, . . . , ⌈log1+δ(U/L)⌉]← 0
for each item i (with unit value vi and weight wi) do

Send item i to ALG and obtain OFKP decision x̃i

j ← ⌈log1+δ(vi/L)⌉
R[j]← R[j] + x̃i · vi
if A[j] < R[j] · 1−ϵ(⌈log1+δ(U/L)⌉+1)

1+δ then
xi ← wi ▷ item is fully accepted
A[j]← A[j] + xi · vi

else
xi ← 0 ▷ item is rejected

assuming items have small individual weights and bounded
unit values. It is worth mentioning that without any of these
two assumptions, there exists no algorithm with meaningful
competitive ratio (see Theorem A.1, A.2). In the exist-
ing OKP literature without predictions, prior work notes
that OIKP can be solved using discretized variants of the
threshold-based algorithms for OFKP (Zhou et al., 2008;
Sun et al., 2021b). However, because the algorithms that we
present in § 3 do not use the paradigm of threshold-based
design, this straightforward connection is not applicable. In-
stead, we propose a novel partitioning technique that divides
the possible unit values into discrete intervals, allowing a
conversion algorithm (Fr2Int, see Algorithm 3) to use
any OFKP algorithm as a subroutine and achieve the same
competitive ratio for OIKP. We start by formalizing the
value partitioning component of the algorithm below.

Definition 5.1 (Value Partitioning). Recall that for OIKP,
all item unit values lie in the interval [L,U ]. We divide this
interval into K sub-intervals G1, G2, . . . , GK as follows.
Let δ > 0 be small and let U = L(1+ δ)K for some integer
K. Then, for any k ∈ [K], let Gk = [L(1 + δ)k−1, L(1 +
δ)k). Note that by definition, Gk cannot contain values that
differ by more than a multiplicative factor of (1 + δ).

We now describe the “conversion” algorithm Fr2Int (see
Algorithm 3) that connects OFKP with OIKP. Given any
OFKP algorithm denoted by ALG, Fr2Int uses the value
partitioning in Definition 5.1 to solve OIKP by simulating
the fractional actions of ALG. When an item arrives for
OIKP with a value in interval Gk, the item is accepted if
the sum of values of previously accepted Gk items in the
integral knapsack is less than the sum of values from interval
Gk in the simulated fractional one. With small item weights,
this ensures that the total value in the actual knapsack is
close to the simulated one, thus inheriting the competitive
bound of OFKP. For an OFKP algorithm ALG, we denote its
corresponding OIKP variant as Fr2Int-ALG.
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(a) (b) (c)
Figure 2. (a) The CDF plot of the empirical competitive ratio of different algorithms; (b) The performance of PP-b, PP-a and IPA
versus ZCL as U/L varies; and (c) The performance of PP-b, PP-a, and PP-n against ZCL when ω̂ varies.

Theorem 5.2. Given a γ-competitive online algorithm
ALG for OFKP and fixed parameter δ > 0, if the max-
imum item weight of OIKP is upper bounded by ϵ <
1/⌈log(1+δ)

U/L⌉+1, then the algorithm Fr2Int-ALG is γ ·
1+δ/1−ϵ(⌈log(1+δ)

U/L⌉+1) competitive for OIKP.

Fr2Int extends all our results presented in the con-
text of OFKP thus far (e.g., PP-a in Theorem 3.3, IPA
in Theorem 3.4, MIX in Theorem 4.1) to the case of
OIKP with minimal competitive loss. Note that when
set δ → 0 and the maximum item weight ϵ is small
(i.e., ϵ < δ/⌈log(1+δ)

U/L⌉+1), Fr2Int becomes limδ→0 γ ·
1+δ/1−δ approaching γ-competitive. The loss factor
1+δ/1−ϵ(⌈log(1+δ)

U/L⌉+1) results from the discretization of
the value range and the discrete nature of the item sizes,
and it is designed to ensure the feasibility of the integral
algorithm after converting from a fractional algorithm.

Proof Sketch. Fr2Int keeps track of the items accepted
in ALG’s simulated fractional knapsack with a list R (line
7, Algorithm 3). In lines 8-12, Fr2Int checks how the
items it has accepted so far (saved in list A) compare against
the simulated knapsack – this compels Fr2Int to accept
items that approximate those chosen by ALG. The remaining
challenge is to show that Fr2Int does not overfill the
knapsack. For this, the partitioning method allows us to
bound the value of a range to its weight. We can show
w(A[j]) · L · (1 + δ)j ≤ A[j] < w(A[j]) · L · (1 + δ)j+1,
which helps us bound the weight using the partitioning idea.
The full proof is in Appendix A.6.10.

We note that by nature of the OFKP relaxation, the lower
bounds for OFKP (namely, Theorem 3.1 and Theorem 4.2)
extend to OIKP. This follows by observing that on the in-
stances constructed in these proofs, the optimal fractional
solution obtains the same value as the optimal integral so-
lution when each fractional item can be subdivided into
many small OIKP items with the same value density. Since
an arbitrary online algorithm can only do worse when it is
restricted to accepting entire items, the bounds follow.

6. Numerical Experiments
In this section, we present a case study of our proposed algo-
rithms. We compare against baselines that do not use predic-
tions (i.e., ZCL (Zhou et al., 2008)), and the existing SEN-
TINEL learning-augmented algorithm from prior work (Im
et al., 2021), using both synthetic and real datasets.1 We
defer additional experiments and details to Appendix A.7.

Experimental setup and comparison algorithms. To val-
idate the performance of our algorithms, we conduct four
sets of experiments. In the first set, we use synthetically
generated data, where the value and weight of items are
randomly drawn from a power-law distribution. Unless oth-
erwise specified, the lowest unit value is L = 1, and the
highest unit value is U = 1000. Weights are drawn from
a power law and normalized to the range [0, 1]. We report
the cumulative density functions (CDFs) of the empirical
competitive ratios, which illustrate both the average and
worst-case performance of the tested algorithms.

To report the empirical competitive ratio of different algo-
rithms, we solve for the offline optimal solution as described
in Appendix A.2. We compare the results of the following
algorithms under several experimental settings: (1) ZCL:
the existing optimal algorithm without predictions (Alg. 4);
(2) PP-n: a naı̈ve point-prediction-based algorithm that
accepts any item at or above the predicted critical value
v̂; (3) PP-b: 2-competitive algorithm for trusted predic-
tions (Alg. 5); (4) PP-a: (1 + min{1, ω̂})-competitive
algorithm (Alg. 1); (5) IPA: trusted interval-prediction-
based algorithm (Alg. 2); (6) MIX: learning-augmented
algorithm (§ 4); (7) Fr2Int- PP-a: converted OIKP ver-
sion of PP-a; and (8) SENTINEL algorithm using frequency
predictions (Im et al., 2021). For IPA, we report the interval
prediction range u− ℓ as a percentage of [L,U ] and set it to
15%, 25%, and 40%. The notation MIXλ denotes instances
of MIX under different values of trust parameter λ, which
we set according to λ ∈ {0.3, 0.5, 0.9}.

1Our code is available at https://github.com/
moreda-a/OKP.
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Experimental results. Fig. 2(a) reports the cumulative
distribution function (CDF) of empirical competitive ra-
tios for six tested algorithms on 2,000 synthetic instances
of OFKP. Amongst the prediction-based algorithms, PP-a
achieves the best performance in average and worst-case,
verifying the results of Theorem 3.3. While PP-n outper-
forms most others on average (except PP-a), its worst-case
performance is worse than ZCL (the optimal algorithm with-
out predictions); this observation verifies bad edge cases
for PP-n identified in Theorem A.4. Finally, even with a
relatively wide interval prediction, IPA outperforms ZCL
in both average and worst-case. We also report the impact
of parameters on the performance of the tested algorithms.
Given a trusted (i.e., correct) succinct prediction, our theo-
retical results show that our algorithms (PP-b, PP-a, IPA)
can obtain competitive ratios independent of the ratio U/L,
in contrast to classic online algorithms such as ZCL. In
Fig. 2(b), we verify this by varying U/L. These results show
that the empirical competitive ratio of ZCL increases along
with U/L, while prediction-based algorithms are robust to
these variations. In Fig. 2(c), we vary the value of ω̂ using
four values of 0.29, 0.45, 0.63, and 0.78. Due to its design
(Theorem 3.3), PP-a’s performance is better with smaller
values of ω̂, while other algorithms see less benefit.

7. Conclusion
In this paper, we propose near-optimal learning-augmented
algorithms for both fractional and integral knapsack prob-
lems using succinct and practical predictions. A number of
questions remain for future work. Although the assumption
of small item weights is standard in the (integral) OKP liter-
ature (Zhou et al., 2008; Sun et al., 2021b; Im et al., 2021),
questions remain about an algorithm that uses untrusted
predictions without such an assumption. It would be inter-
esting to further explore fundamental trade-offs between
consistency and robustness in the case of interval predic-
tions – there is growing literature on uncertainty quantifica-
tion (Sun et al., 2024) in online algorithms that could inform
e.g., fine-grained consistency-robustness trade-off bounds
based on the error of a given predictor.
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Cygan, M., Jeż, Ł., and Sgall, J. Online knapsack revisited.
Theory of Computing Systems, 58:153–190, 2016.

El-Yaniv, R., Fiat, A., Karp, R. M., and Turpin, G. Op-
timal Search and One-Way Trading Online Algorithms.
Algorithmica, 30(1):101–139, May 2001. doi: 10.1007/
s00453-001-0003-0.

Giliberti, J. and Karrenbauer, A. Improved Online Al-
gorithm for Fractional Knapsack in the Random Order
Model. In Approximation and Online Algorithms, pp.
188–205. Springer International Publishing, 2021. doi:
10.1007/978-3-030-92702-8 12.

Im, S., Kumar, R., Montazer Qaem, M., and Purohit, M. On-
line Knapsack with Frequency Predictions. In Advances
in Neural Information Processing Systems (NeurIPS), vol-
ume 34, pp. 2733–2743, 2021.

Jiang, Z., Lu, P., Tang, Z. G., and Zhang, Y. Online Selec-
tion Problems against Constrained Adversary. In Meila,
M. and Zhang, T. (eds.), Proceedings of the 38th Inter-
national Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pp. 5002–
5012. PMLR, 18–24 Jul 2021.

10

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2022.20
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2022.20


Near-Optimal Consistency-Robustness Trade-Offs for Learning-Augmented Online Knapsack Problems
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A. Appendix
A.1. Related Work

We make contributions to two lines of work: (i) work on online knapsack, one-way trading, and related problems, e.g.,
k-search, single-leg revenue management, and; (ii) work on online algorithms with advice and learning-augmentation. We
describe the relationship to each below.

Online Knapsack and Online Search. Our work contributes to the literature on the classic (integral) online knapsack
problem first studied in (Marchetti-Spaccamela & Vercellis, 1995), with foundational results given by Zhou et al. (2008). In
the past few years, many works have considered variants of this problem, such as removable items (Cygan et al., 2016),
item departures (Sun et al., 2022), and generalizations to multidimensional settings (Yang et al., 2021). Closer to this work,
several studies have considered the online knapsack problem with additional information or in a learning-augmented setting,
including frequency predictions (Im et al., 2021), online learning (Zeynali et al., 2021), advice complexity (Böckenhauer
et al., 2014b), and stochastic knapsack (Vondrák & Zenklusen, 2011). Most works in this literature focus on the more
difficult case of integral item acceptance; thus, connections between this case and the fractional relaxation in the online
setting have been relatively understudied in the literature thus far. A few studies have considered online knapsack with
fractional item acceptance under slightly different assumptions, including “online partially fractional knapsack”, where items
are removable (Noga & Sarbua, 2005), or online fractional knapsack in a random order model (Giliberti & Karrenbauer,
2021), where the arrival order of items is a random permutation (i.e. not adversarial). Sun et al. (2021b) motivate the
observation that online fractional knapsack is equivalent to the one-way trading problem with a rate constraint for each
online price.

The connection between online fractional knapsack (OFKP) and one-way trading (with a rate constraint) motivates a
further connection to another track of literature on problems broadly classified as online search, including problems such
as 1-max /min search and one-way trading, both first studied by El-Yaniv et al. (2001), k-max /min search (Lorenz
et al., 2008), and single-leg revenue management (Ball & Queyranne, 2009). In general, OFKP can be understood as a
“bridge” between work on online search and online knapsack. Follow-up works have since considered applications of online
search problems and additional variants, including cloud pricing (Zhang et al., 2017), electric vehicle charging (Sun et al.,
2021b), switching cost of changing decisions (Lechowicz et al., 2023), and learning-augmented versions of both one-way
trading (Sun et al., 2021a) and k-search (Lee et al., 2022). However, to the best of our knowledge, none of these works
consider the impact of rate constraints.

Learning-Augmented Algorithms. Learning-augmented algorithm design is an emerging field that incorporates machine-
learned predictions about future inputs in algorithm designs, with the goal of matching the good average-case performance
of the predictor while maintaining worst-case competitive guarantees. The concepts of consistency and robustness (Lykouris
& Vassilvtiskii, 2018; Purohit et al., 2018) give a formal mechanism to quantify the trade-off between following machine-
learned predictions and hedging against adversarial inputs, particularly with respect to predictions that are very incorrect.
This framework has been applied to a number of online problems, including caching (Lykouris & Vassilvtiskii, 2018),
ski-rental (Purohit et al., 2018; Wei & Zhang, 2020; Antoniadis et al., 2021), set cover (Bamas et al., 2020), online
selection (Jiang et al., 2021), online matching (Antoniadis et al., 2020b), convex body chasing (Christianson et al., 2022),
and metrical task systems (Antoniadis et al., 2020a; Christianson et al., 2023), just to name a few. Most relevant to our
setting, it has been explored in the context of online knapsack (Im et al., 2021; Zeynali et al., 2021), unit-profit online
knapsack (Boyar et al., 2022), one-way trading (Sun et al., 2021a), and single-leg revenue management (Balseiro et al.,
2023).

An overarching goal in this framework is to quantify and match or nearly match an optimal consistency-robustness trade-
off (Wei & Zhang, 2020). Since gains in consistency generally result in worsened robustness guarantees, it is natural
to consider a notion of Pareto-optimality between the two, and ideally to design algorithms that can achieve this best
trade-off for any desired robustness or consistency target. Several works have studied optimal trade-offs for different
online problems – the closest results to our setting are for one-way trading (Sun et al., 2021a) and single-leg revenue
management (Balseiro et al., 2023). However, optimal robustness-consistency trade-offs have not yet been considered in the
context of online knapsack – differences in the problem settings of one-way trading and single-leg revenue management
result in the substantially different results that we obtain in this work. We also note that the notion of online algorithms with
practical and succinct predictions has recently been explored in the context of similar problems such as paging (Antoniadis
et al., 2023) and non-clairvoyant job scheduling (Benomar & Perchet, 2024).
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Learning-augmented algorithms are also closely related to the field of advice complexity, which considers how the
performance of an online algorithm can be improved with a specific amount of advice about the input, where the advice
is assumed to be correct and is provided by an oracle. This field was first established for paging by (Böckenhauer et al.,
2009), with results following for many other online problems (Boyar et al., 2015; Böckenhauer et al., 2014a; Böckenhauer
et al., 2011; Komm et al., 2012). Of particular interest to our setting, Böckenhauer et al. (2014b) explore the online
knapsack problem with advice, showing that single bit of advice gives a 2-competitive algorithm, but Ω(log n) advice bits
are necessary to further improve the competitive ratio. They give an online algorithm with competitive ratio 1 + ϵ for any
constant ϵ > 0 that uses O(log n) bits of advice (Böckenhauer et al., 2014b, Theorem 13), where n is the number of items.
A similar result was also recently shown for the k-search problem by ((Clemente et al., 2022)). To the best of our knowledge,
there is no existing work considering the online fractional knapsack problem with advice.

A.2. Offline Optimal Solution

The offline optimal solution to Equation (1) in the fractional OFKP setting is straightforward to compute. The optimal
solution starts by selecting the item with the maximum unit value amongst all vi’s and adds the maximum amount allowed
(wi) to the knapsack. If there is any remaining capacity to fill, the optimal solution then picks the item with the next highest
unit value and adds the maximum amount allowed while respecting the capacity constraint. This process is repeated until
the knapsack is completely filled.

For ease of analysis, we let (v′i, w
′
i) denote the values and weights of the items sorted in descending order. That is,

v′1 ≥ v′2 ≥ . . . ≥ v′n.We let x′
i denote the portion of item (v′i, w

′
i) which is added to the knapsack by some algorithm.

With this notation, the offline optimal solution to (1) can be written as:

x⋆ def
= (x⋆

1, . . . , x
⋆
n) =

(
w′

1, w
′
2, . . . , w

′
r−1, 1−

r−1∑
i=1

w′
i, 0, 0, . . .

)
. (4)

As seen in (4), the optimal solution selects all the weight of the most valuable items until the knapsack capacity is filled. For
lower values, it doesn’t acceptance anything. We refer to the last item with a strictly positive acceptance as the pth item,
which is the maximum value of j ∈ [1, n] such that

∑j−1
i=1 w′

i < 1.

This optimal solution yields total profit:

OPT(I) =
p−1∑
i=1

w′
iv

′
i +

(
1−

p−1∑
i=1

w′
i

)
v′p. (5)

Both (4) and (5) hold if the sum of all wi is greater than or equal to 1, which constitutes the majority of interesting OFKP
instances.

In cases where the sum of wi is less than 1, the optimal solution selects all items, which cannot be described by the above
equations. To address this scenario, we introduce an auxiliary item denoted as vn+1 with a corresponding weight wn+1,
where vn+1 = 0 and wn+1 = 1. It’s important to note that this additional item doesn’t affect the profit of any algorithm;
rather, it simplifies and maintains consistency in mathematical modeling. In the problematic case, where the sum of wi

is less than 1, p would be equal to n+ 1, and both (4) and (5) would still remain valid. We note that this case (where the
knapsack can accept all items) is somewhat trivial, as the optimal policy simply accepts all items. In the majority of the
paper, we implicitly assume that the sum of all wis is greater than 1.

A.3. Lower bounds for integral

Theorem A.1. There is no deterministic algorithm for the online integral knapsack problem (OIKP) that has a meaningful
competitive ratio with or without a critical value prediction when only the bounded unit value assumption holds.

Proof. Consider the following two input instances, each with a critical value v̂ = 1 and a total critical weight of 2κ at the
critical value:

I1 : number of items n = 1, (v1, w1) = (1, 2κ).

I2 : number of items n = 2, (v1, w1) = (1, 2κ), (v2, w2) = (U, 1− κ).
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where κ → 0. The integral offline optimal solutions for the two instances are OPT(I1) = 2κ and OPT(I2) = (1 − κ)U ,
respectively.

Since both instances have the same critical value and are thus given the same prediction, and since they share the same
first item, any online algorithm (whether it uses a prediction or not) will make the same decision regarding the first item,
regardless of which instance is presented.

Since this problem is integral, the algorithm must either accept or reject the first item. If it accepts the first item, there is not
enough capacity for the second item. In this case, the competitive ratio for I2 is c(I2) = U(1−κ)

2κ , which tends to infinity as
κ approaches 0.

In the alternative case, if the algorithm rejects the first item, then in I1, the value obtained is 0, meaning that the competitive
ratio for I1 is also undefined. Thus, in both cases, the competitive ratio of the algorithm is not meaningful.

Theorem A.2. There is no deterministic algorithm for the online integral knapsack problem (OIKP) that has a meaningful
competitive ratio with or without a critical value prediction when only the small weights assumption holds.

Proof. Consider the following set of input instances, each with a critical value v̂ and a total weight of 1 at the critical value,
where κ > 0 is the (small) weight of each item:

I1 : number of items n = 1/κ, each item value and weight: (vi, wi) = (v̂, κ).

For this first instance, any c-competitive algorithm ALG must accept at least 1/c of the items. Other instances have the first
instance as the prefix, with the second part defined as follows:

∀i ∈ [1, 1/κ− 1], Ii : total no. of items n = 1/κ + i− 1, (vj+1/κ, wj+1/κ) =

(
c(c+ 1)i−2

κ
v̂, κ

)
: i > 1/κ.

Since the critical value is the same across all instances {Ii}, and instance Ii is a prefix of all instances Ij : j > i, we can
say that any decision made by a deterministic algorithm on the shorter instance must be repeated in the larger instance as the
early part of the input arrives.

Note that the total value of all items in each instance i is (c+ 1)i−1v̂. Ignoring the knapsack’s capacity limit, ALG can at
most accept this amount. However, in instance i+1, the last item’s actual value is c(c+1)i−1 · 1κ ×κ = c(c+1)i−1, which
is c times higher than the sum of all previous values. This implies that, in order for the algorithm to be competitive, it must
pick the last item of instance i+ 1. The same argument can be made for all i, meaning that the algorithm must accept all
items; otherwise, ALG will not be c-competitive for at least one instance Ii.

However, if ALG was to accept all of the items that are necessary for c-competitiveness on all instances {Ii} simultaneously,
it would require a capacity of 1/c+(1/κ−1)κ, which simplifies to 1/c+1−κ. As κ→ 0, this is greater than 1. Therefore,
there is no fixed c such that an arbitrary ALG can be c-competitive.

A.4. Deferred Pseudocode for Existing Optimal Online Algorithm (ZCL)

Pseudocode for ZCL. Here we give the pseudocode for the baseline algorithm ZCL– this is the known optimal deterministic
algorithm for OKP (i.e., both the fractional (OFKP) and integral (OIKP) cases) without predictions. ZCL takes a threshold
function ϕ(z) : [0, 1] → [L,U ] as input (note that the maximum and minimum unit values U and L are assumed to be
known). ϕ(z) is understood as the pseudo price of packing a small amount of item when the knapsack’s current utilization
(i.e. the fraction of total capacity filled with previously accepted items) is z. The algorithm determines the decision xi

by solving an optimization problem xi = argmaxxi∈Xi∩[0,1−z] xivi −
∫ z+xi

z
ϕ(u)du, where recall that Xi is the feasible

decision set defined in § 2. For OIKP, the algorithm will admit the item if vi ≥ ϕ(z) and there is sufficient remaining
capacity wi ≤ 1− z; for OFKP, the algorithm will continuously admit the item until one of the following occurs: (i) the
utilization reaches ϕ−1(vi); (ii) the entire item is admitted; or (iii) the knapsack capacity is used up. Notice the threshold
function ϕ is the only design space for Algorithm 4. (Sun et al., 2021b) shows that the optimal competitive ratio can be
attained when ϕ is carefully designed as follows.

Lemma A.3 (Theorem 3.5 in (Sun et al., 2021b), Theorem 2.1 in (Zhou et al., 2008)). When the unit value of items is
bounded within [L,U ], Algorithm 4 is (1 + ln(U/L))-competitive for OFKP and OIKP (integral with small item weights)
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Algorithm 4 ZCL: An Online Threshold-Based Algorithm for OKP Without Prediction
Input: threshold function ϕ(z)
Output: online decisions {xi}i∈[n]

Initialization: knapsack utilization z(0) ← 0
for each item i (with unit value vi and weight wi) do
Xi ← {0, wi} or [0, wi] {feasible set: discrete for OIKP, continuous for OFKP }
if vi < ϕ(z(i−1)) then
xi ← 0

else
xi ← argmaxxi∈Xi∩[0,1−z(i−1)]

(
xivi −

∫ z(i−1)+xi

z(i−1) ϕ(u) du
)

Update z(i) ← z(i−1) + xi

Algorithm 5 PP-a: A Basic 2-Competitive Algorithm for OFKP with Trusted Prediction
Input: prediction v̂
Output: online decisions {xi}
for each item i (with unit value vi and weight wi) do

if vi < v̂ then
xi ← 0 {item is rejected}

else if vi > v̂ then
xi ← wi

2 {item is partially accepted}
else if vi = v̂ then

temp← min(wi, 1− ω̂)
ω̂ ← ω̂ + temp
xi ← temp

2 {item is partially accepted}

when the threshold is given by

ϕ(z) =

{
L z ∈

[
0, 1

1+ln(U/L)

)
L exp

(
(1 + ln(U/L))z − 1

)
z ∈

[
1

1+ln(U/L) , 1
] . (7)

Further, no online algorithm can achieve a competitive ratio smaller than 1 + ln(U/L).

A.5. Deferred Pseudocode for § 3 (Trusted Predictions)

PP-n: A naı̈ve trusted-prediction algorithm: We consider a naı̈ve “greedy” algorithm that takes a prediction on v̂ as input.
The first algorithm rejects any items with unit value < v̂ and fully accepts any item with unit value ≥ v̂ until the capacity
limit. In Theorem A.4, we show that PP-n fails to achieve a meaningful improvement in the worst-case competitive ratio
(i.e., consistency since we assume the prediction is correct). We prove the following result in § A.6.4. The second way of
defining is to reject items with value ≤ v̂ and accept items with value > v̂. This algorithm is not competitive too since there
could be no item with greater value than v̂ which means you won’t accept anything.

Theorem A.4. PP-n that fully trusts the prediction is U/L-competitive in the worst case.

It is worth mentioning that this algorithm’s experimental results show the benefits of using critical value prediction even
without improvements, as seen in Figure A6. However, it falls short of providing meaningful theoretical results in special
cases.

Pseudocode for PP-a. Here we give the pseudocode for the PP-a algorithm (Algorithm 5) discussed in § 3.2 and
Theorem 3.2.
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A.6. Proofs

A.6.1. PROOF OF THEOREM 3.1

Proof. Consider the following two input instances, each with critical value v̂ = 1 and total weight ω̂ on the critical value:

I1 : n = 1, (v1, w1) = (1, ω̂),

I2 : n = 2, (v1, w1) = (1, ω̂), (v2, w2) = (U, 1− ϵ).

where U → +∞ and ϵ → 0. The offline optimal solutions for the two instances are OPT(I1) = min{1, ω̂} and
OPT(I2) = (1− ϵ)U + ϵ, respectively.

Since both instances have the same critical value and thus are given the same prediction, and since they have the same first
item, any online algorithm will make the same decision for the first item regardless of which instance is presented. Let
X ∈ [0,min{1, ω̂}] denote the decision for the first item from a randomized algorithm, where X is a random variable with
probability density function f(x). The expected returns of the randomized algorithm over the two instances can be derived
as

E[ALG(I1)] =
∫ min{1,ω̂}

0

f(x)xdx = E[X],

E[ALG(I2)] ≤
∫ min{1,ω̂}

0

f(x)[x+ (1− x)U ]dx = E[X] + (1− E[X])U.

where E[X] ∈ [0,min{1, ω̂}]. As U → +∞ and ϵ→ 0, the competitive ratio of the algorithm is thus

max

{
OPT(I1)

E[ALG(I1)]
,
OPT(I2)

E[ALG(I2)]

}
≥ max

{
min{1, ω̂}

E[X]
,

1

1− E[X]

}
≥ 1 + min{1, ω̂}.

where the final bound follows by observing that the competitive ratio is minimized when min{1,ω̂}
E[X] = 1

1−E[X] , which occurs

when E[X] = min{1,ω̂}
1+min{1,ω̂} Thus, the competitive ratio of any online randomized algorithm is at least 1 + min{1, ω̂}. This

completes the proof.

A.6.2. PROOF OF THEOREM 3.6

Proof. Based on the matching lower bound from the ZCL paper (Zhou et al., 2008), for any (possibly randomized) algorithm
with known lower and upper bounds ℓ and u on value densities, there exists an input sequence, denoted by I, such that the
expected total value of the algorithm is at most Z

1+ln(u/ℓ) , where Z = OPT(I) is the offline optimal value under the instance
I. Note that in this instance, the last item is with the maximum value density within [ℓ, u] and with weight 1.

Let J denote a new instance by appending one item with value U and weight 1 − ε (where ε > 0 and ε → 0) to
the instance I. Note that the instance J has the same prediction interval as the instance I. The offline optimal value
OPT(J ) ≥ (1− ε)U → U . For an online algorithmA given an interval prediction [ℓ, u], let M ∈ [0, 1] denote total amount
of admitted items under the instance I and let f(m) denote the probability distribution of the random variable M . The total
value obtained by the online algorithm can be calculated as follows.

E[A(I)] ≤
∫ 1

0

f(m)m ·
(

Z

1 + ln(u/ℓ)

)
dm,

= E[M ] · Z

1 + ln(u/ℓ)
.

E[A(J )] ≤
∫ 1

0

f(m)

[
m · Z

1 + ln(u/ℓ)
+ (1−m)U

]
dm,

= E[M ] · Z

1 + ln(u/ℓ)
+ (1− E[M ])U.
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where E[M ] ∈ [0, 1]. As U →∞, the competitive ratio of the algorithm is lower bounded by

max

{
OPT(I)
E[A(I)]

,
OPT(J )
E[A(J )]

}
≥ max

{
Z

E[M ] · Z
1+ln(u/ℓ)

,
1

1− E[M ]

}
≥ 2 + ln(u/ℓ).

A.6.3. PROOF OF THEOREM 4.2

We divide the proof into the proofs of the following two lemmas, provide the detailed proof of the asymptotic lower bound
in Lemma A.6, and postpone the proof of the lower bound in Lemma A.5 to § A.6.8.

Lemma A.5. Given an untrusted prediction of the critical value, any deterministic γ-robust learning-augmented algorithm
for OKP (where γ ∈ [ln(U/L) + 1,∞) is at least η-consistent, where η is defined in (2).

Lemma A.6. In an asymptotic regime for OKP where U/L→∞, any deterministic algorithm given an untrusted prediction

of the critical value that is 2x-consistent (x ∈ (1,∞)) is at least Ω
(

1+ln(U/L)

1− 1
x

)
-robust.

Proof of Lemma A.6. Suppose an algorithm for OKP is β-consistent and α-robust, where β = 2x (noting that 2-consistency
is a firm lower bound by Lemma A.5). Consider the following instance:

• The first batch of items to arrive have value L. There are 1/ϵ of these, each with weight ϵ.

• The second batch of items has value AL, where A ≥ 1. There are 1/ϵ− 1 many of these items, each with weight ϵ.

• The third batch of items has value BL, where B > A ≥ 1. There are many of these items, and each has weight epsilon.

First, we consider consistency on the first two batches of items, letting v̂ = L. Note that OPT→ AL as ϵ→ 0, and observe
that ALG must satisfy the following:

ALG(first two batches) =
1

2x
L+

(
1

2x
− 1

2Ax

)
AL.

It follows that ALG must use
(
1
x −

1
2Ax

)
of its knapsack capacity during these first two batches of items in order to stay

2x-consistent. Also note when AL≫ L,
(
1
x −

1
2Ax

)
→ 1/x.

Next, we consider robustness on all three batches of items. As previously, ALG uses
(
1
x −

1
2Ax

)
of its knapsack capacity

during the first two batches of items, leaving
(
1− 1

x + 1
2Ax

)
capacity remaining for robustness. We will assume that

BL≫ AL, implying that the optimal strategy is to run an existing optimal OKP algorithm (i.e., ZCL) with the remaining
capacity. Let ln(U/BL) + 1 be the competitive ratio of this “inner” ZCL algorithm, and note that the algorithm must accept
(within the available capacity) a 1

1+ln(U/BL) fraction of the items with value BL. This gives us the following for ALG on all
three batches:

ALG(all three batches) =
1

2x
L+

(
1

2x
− 1

2Ax

)
AL+

(
1− 1

x
+

1

2Ax

)
·
(

BL

1 + ln(U/BL)

)
.
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Note that OPT→ BL on the sequence that includes the third batch. Then we have the following for the robustness ratio β:

β =
BL

1
2x

L+
(

1
2x

− 1
2Ax

)
AL+

(
1− 1

x
+ 1

2Ax

)
·
(

BL
1+ln(U/BL)

) ,
=

1 + ln(U/L)

1− 1/x
,

×

(
1−

A(ln(U/L) + 1) + 2B − 2Bx+ 2x
(
1− 1

x
+ 1

2Ax

) (B(ln(U/L)+1)
1+ln(U/BL)

)
A(ln(U/L) + 1) + 2x

(
1− 1

x
+ 1

2Ax

) (B(ln(U/L)+1)
1+ln(U/BL)

) )
,

=
1 + ln(U/L)

1− 1/x
,

−

(
1− 2Bx− 2B

A(ln(U/L) + 1) +
(
2Bx− 2B + B

A

)
·
(

ln(U/L)+1
1+ln(U/BL)

)).

Let x be a constant (i.e., independent of A and B), let F (A,B,U, L, x) = 1 − 2Bx−2B

A(ln(U/L)+1)+(2Bx−2B+B
A )

(
ln(U/L)+1

1+ln(U/BL)

) ,

and consider the limit as A→∞, B →∞, B/A→∞, and U/L→∞. Noting that ln(U/BL) ≈ ln(U/L) as U →∞, we
have that F (A,B,U, L, x)→ o(1) under the above conditions. Thus, we have the following, completing the lemma:

β → 1 + ln(U/L)

1− 1/x
− o(1) → Ω

(
1 + ln(U/L)

1− 1/x

)
= Ω

(
1 + ln(U/L)

1− λ

)
.

where λ = 1/x ∈ (0, 1).

The statement of Theorem 4.2 follows by combining the results of Lemma A.5 and Lemma A.6.

A.6.4. PROOF OF THEOREM A.4

Proof. Denote the prediction received by the algorithm as v̂, for any valid OFKP instance I.

Consider the following special instance in Ω.

I : n = 2, (v1, w1) = (L, 1), (v2, w2) = (U, 1− ϵ). (10a)

where U → +∞ and ϵ→ 0. Note that the offline optimal return of this instance is OPT(I) = U(1− ϵ) + L(ϵ), and v̂ = L.

Observe that the naı̈ve algorithm will receive the exact value of v̂ and greedily accept any items with unit value at or above v̂.
Then the first item with (v1, w1) = (L, 1) will fill the online algorithm’s knapsack, and the competitive ratio can be derived
as

OPT(I)
ALG(I)

=
U(1− ϵ) + L(ϵ)

v̂
=

U(1− ϵ) + L(ϵ)

L
.

As ϵ → 0, the right-hand side implies that the competitive ratio is bounded by U/L. Since an accurate prediction has
v̂ ∈ [L,U ] by definition, this special instance also gives the worst-case competitive ratio over all instances.

A.6.5. PROOF OF THEOREM 3.2

Proof. Before starting the proof, we define a new notation for the optimal offline solution. Let’s assume that there are q − 1
items with strictly greater values v′i > v̂ and items q to p− 1 are items with unit value v̂ (q can equal p− 1, implying there
are zero such items) . We can rewrite (5) as follows:

OPT(I) =
q−1∑
i=1

w′
iv

′
i +

p−1∑
i=q

w′
iv̂ +

(
1−

p−1∑
i=1

w′
i

)
v̂. (11)
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using the above notation we define ω̂ as:

ω̂ :=

r∑
i=q

w′
i. (12)

where r is largest number which v′i = v̂ and is greater or equal to p. Recall that v̂ := v′p.

With this notation in place, we can proceed with the proof.

As described in Algorithm 5, each item i with a value less than the prediction v̂ is ignored. If the value is greater than the
prediction, half of its weight is selected. If the prediction is equal to the value, we will select half of it and ensure that the
sum of all selections with a value equal to the prediction doesn’t exceed 1/2. We first show that Algorithm 5 outputs a
feasible solution, i.e., that

∑n
i=1 xi ≤ 1. We derive the following equation:

n∑
i=1

xi =

(∑
vi<v̂

xi

)
+

(∑
vi=v̂

xi

)
+

(∑
v̂<vi

xi

)
. (13)

The first sum is equal to zero, since the algorithm doesn’t select any items with vi < v̂. The second sum considers vi = v̂,
and the algorithm selects half of every weight wi unless ω̂ is greater than 1/2. The algorithm ensures it doesn’t select more
than 1/2 by definition in line 9, which checks whether to take half of an item and not exceed the remaining amount from
1/2. For v′i ≥ v′p, Algorithm 5 sets xi to wi/2.

n∑
i=1

xi = 0 +min

(
ω̂

2
,
1

2

)
+

(∑
v̂<vi

wi

2

)
. (14)

The last sum is 1/2 times the of the sum of wis for any items with a value greater than v̂. If we look at (11), all of these wi

are completely selected in the optimal offline solution (in the first part of the equation). Thus, their sum is less than or equal
to 1, since the optimal solution is feasible:

∑
v̂<vi

wi =
∑q−1

i=1 w′
i ≤ 1.

n∑
i=1

xi ≤
1

2
+

1

2
·

(∑
v̂<vi

wi

)
≤ 1

2
+

1

2
= 1. (15)

Equation 15 proves that the solution from Algorithm 5 is feasible. We next calculate the profit obtained by Algorithm 5 and
bound its competitive ratio. The profit can be calculated using (1) as:

ALG(I) = min

(
ω̂

2
,
1

2

)
· v̂ +

(∑
v̂<vi

wi

2
· vi

)
. (16)

Looking at (11), we claim that the second part of (16) is 1
2 ·
∑q−1

i=1 w′
iv

′
i.

To calculate the competitive ratio, we give a bound on OPT(I)/ALG(I) by substituting (11) and (16) into the definition of
CR (i.e. OPT/ALG), obtaining the following:

CR = max
I∈Ω

∑q−1
i=1 w′

iv
′
i +
∑p−1

i=q w′
iv̂ +

(
1−

∑p−1
i=1 w′

i

)
v̂∑q−1

i=1
w′

i

2 v′i +min
(
ω̂
2 ,

1
2

)
· v̂

. (17)

CR = max
I∈Ω

2 ·

∑q−1
i=1 w′

iv
′
i +
∑p−1

i=q w′
iv̂ +

(
1−

∑p−1
i=1 w′

i

)
v̂∑q−1

i=1 w′
iv

′
i +min (ω̂, 1) · v̂

 . (18)

Here we prove that the numerator is less than or equal to the denominator, which will give us (19).

CR = max
I∈Ω

2 ·

∑q−1
i=1 w′

iv
′
i +
∑p−1

i=q w′
iv̂ +

(
1−

∑p−1
i=1 w′

i

)
v̂∑q−1

i=1 w′
iv

′
i +min (ω̂, 1) · v̂

 ≤ 2. (19)

20



Near-Optimal Consistency-Robustness Trade-Offs for Learning-Augmented Online Knapsack Problems

We argue two cases: first, if ω̂ < 1, then Algorithm 5 will always select half of every item with value v̂. Then, by rewriting
the value of ω̂ we have:

q−1∑
i=1

w′
iv

′
i +min (ω̂, 1) · v̂ =

q−1∑
i=1

w′
iv

′
i +

 u∑
i=q

w′
i

 v̂ =

q−1∑
i=1

w′
iv

′
i +

p−1∑
i=q

w′
iv̂ + w′

pv̂ +

u∑
i=p+1

w′
iv̂. (20)

Using the fact that the definition of x⋆
p in (4) and LP constraint (1), we claim 1−

∑p−1
i=1 w′

i = x∗
p ≤ wp. Thus, (20) is greater

than the numerator in (19).

In the second case, if ω̂ ≥ 1, then the algorithm will stop selecting items with a value of v̂ after it reaches a capacity of
1/2 for those items. The optimal offline solution is feasible, so

∑p−1
i=1 w′

i + 1 − (
∑p−1

i=1 w′
i) ≤ 1, which implies that the

following is also true:
∑p−1

i=q w′
i + 1− (

∑p−1
i=1 w′

i) ≤ 1. Using this, we can rewrite the numerator:

q−1∑
i=1

w′
iv

′
i +

p−1∑
i=q

w′
iv̂ +

(
1−

p−1∑
i=1

w′
i

)
v̂ ≤

q−1∑
i=1

w′
iv

′
i + 1 · v̂. (21)

Which subsequently implies that the numerator is less than or equal to the denominator.

Both cases have been proven, completing the proof of (19) – PP-a is 2-competitive.

A.6.6. PROOF OF THEOREM 3.3

Let I := {(wi, vi)}i∈[n] denote an instance for OFKP, where the value density vi ≥ v̂,∀i ∈ [n]. It is without loss of
generality to focus on I since both offline algorithm and PP-a ignore items with value density smaller than v̂. To distinguish
the items with critical value density v̂ and those with value density greater than v̂. Define N c

i := {j ∈ [i] : vj = v̂} and
N o

i := {j ∈ [i] : vj > v̂} as the sets of items (up to the i-th item) whose value densities are equal to and greater than v̂,
respectively. Then the offline optimal value under instance I can be shown as

OPT(I) =
∑

i∈No
n

viwi + v̂(1−
∑

i∈No
n

wi). (22)

where the first part is total value of items with value densities greater than v̂, and the second part is the value of items with
density v̂, filling the remaining knapsack capacity.

Let xi denote the online admission solution of item i. We first show that the online solution by PP-a is feasible.

Lemma A.7. The online solution of PP-a is feasible for OFKP.

Proof of Lemma A.7. We use si =
∑

j∈[i] xj to denote the cumulative amount of admitted items by PP-a, up to item i.
The goal is to prove sn ≤ 1. We claim that the cumulative amount of admitted items by PP-a is

si =
ω̂i + ω̃i

1 + ω̂i
,∀i ∈ [n]. (23)

where ω̂i = min{
∑

j∈N c
i
wj , 1} denotes the cumulative amount of item weights with critical value density v̂, upper

bounded by 1, and ω̃i =
∑

j∈No
i
wj denotes the cumulative amount of item weights with critical value density greater than

v̂. Note that ω̃n ≤ 1 by definition of the critical value. Thus, if (23) holds, the online solution of PP-a is feasible since
sn = ω̂n+ω̃n

1+ω̂n
≤ 1.

In the following, we prove (23) by induction.

Base Case: i = 1. Initially, ω̂0 = 0 and s0 = 0. If item 1 is not with critical value, i.e., 1 ∈ N o
n , then by PP-a, we have

ω̂1 = ω̂0 = 0 and s1 = x1 = w1 = ω̃1, which satisfies (23). If item 1 is with critical value, i.e., 1 ∈ N c
n, then ω̂1 = w1,

ω̃1 = 0, and s1 = x1 = ω̂1

1+ω̂1
, which satisfies (23).

Induction Step: i ≥ 2. Suppose si−1 = ω̂i−1+ω̃i−1

1+ω̂i−1
, we next show that si = ω̂i+ω̃i

1+ω̂i
. Consider the following two cases.
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Case (i): If item i ∈ N o
n , we have ω̂i = ω̂i−1 and xi =

wi

1+ω̂i−1
by PP-a. This gives

si = si−1 + xi =
ω̂i−1 + ω̃i−1

1 + ω̂i−1
+

wi

1 + ω̂i−1
=

ω̂i + ω̃i

1 + ω̂i
. (24)

Case (ii): If item i ∈ N c
n, then we have ω̃i = ω̃i−1 and ω̂i = min{ω̂i−1 + wi, 1}. In addition, xi =

min{wi,1−ω̂i−1}
1+ω̂i

−
si−1 · min{wi,1−ω̂i−1}

1+ω̂i
. Then we have

si = si−1 + xi

=
ω̂i−1 + ω̃i

1 + ω̂i−1
+

min{wi, 1− ω̂i−1}
1 + ω̂i

− ω̂i−1 + ω̃i

1 + ω̂i−1
· min{wi, 1− ω̂i−1}

1 + ω̂i

=
min{wi, 1− ω̂i−1}

1 + ω̂i
+

ω̂i−1 + ω̃i

1 + ω̂i−1
· 1 + ω̂i −min{wi, 1− ω̂i−1}

1 + ω̂i

=
min{wi, 1− ω̂i−1}

1 + ω̂i
+

ω̂i−1 + ω̃i−1

1 + ω̂i

=
ω̂i + ω̃i

1 + ω̂i
.

where the last equality holds because from PP-a we have

1 + ω̂i −min{wi, 1− ω̂i−1} = 1 + ω̂i−1. (25)

This completes the proof.

Next, we prove that PP-a achieves at least 1/(1 + ω̂n) of the offline optimal value OPT(I), where ω̂n = min{ω̂, 1} by
definition.

Lemma A.8. The total value of admitted items by PP-a is lower bounded

ALG(I) ≥ ω̂nv̂

1 + ω̂n
+

∑
i∈No

n
wivi

1 + ω̂n
. (26)

Based on (22) and (26), we can show PP-a is (1 + ω̂n)-competitive, i.e.,

OPT(I)
ALG(I)

≤ (1 + ω̂n) ·

∑
i∈No

n
viwi + v̂

(
1−

∑
i∈No

n
wi

)
∑

i∈No
n
wivi + ω̂nv̂

,

≤ 1 + ω̂n. (27)

where the last inequality holds since ω̂n ≥ 1−
∑

i∈No
n
wi by definition of the critical value density. We complete the proof

of Theorem 3.3 by proving Lemma A.8.

Proof of Lemma A.8. Let ALGi(I) denote the total value of PP-a after processing the i-th item. We show the lower bound
of the online algorithm by showing the following inequality holds.

ALGi(I) ≥
ω̂iv̂

1 + ω̂i
+

∑
j∈No

i
wjvj

1 + ω̂i
,∀i ∈ [n]. (28)

Base Case: i = 1. If item 1 ∈ N o
n , then ω̂1 = ω̂0 = 0 and x1 = w1, and thus ALG1(I) = v1x1, which satisfies (28). If

item 1 ∈ N c
n, then ω̂1 = w1 and x1 = ω̂1

1+ω̂1
. Then we have ALG1(I) = v̂x1 = v̂ω̂1

1+ω̂1
, which satisfies (28).

Induction Step: i ≥ 2. Suppose (28) holds for i− 1, we aim to show the inequality for i.
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Case (i): If item i ∈ N o
i , we have ω̂i = ω̂i−1 and xi =

wi

1+ω̂i
,

ALGi(I) = ALGi−1(I) + vixi,

≥ ω̂iv̂

1 + ω̂i
+

∑
j∈No

i−1
wjvj

1 + ω̂i
+

wivi
1 + ω̂i

,

=
ω̂iv̂

1 + ω̂i
+

∑
j∈No

i
wjvj

1 + ω̂i
.

Case (ii): If item i ∈ N c
i , we have ω̂i = min{ω̂i−1 + wi, 1}, then

ALGi(I) = ALGi−1(I) + v̂xi,

≥ ω̂i−1v̂

1 + ω̂i−1
+

∑
j∈No

i−1
wjvj

1 + ω̂i−1
+

v̂min{wi, 1− ω̂i−1}
1 + ω̂i

− si−1 ·
v̂min{wi, 1− ω̂i−1}

1 + ω̂i
,

=
ω̂i−1v̂

1 + ω̂i−1
· 1 + ω̂i −min{wi, 1− ω̂i−1}

1 + ω̂i
+

∑
j∈No

i−1
wjvj

1 + ω̂i−1
− v̂ω̃i−1

1 + ω̂i−1
· min{wi, 1− ω̂i−1}

1 + ω̂i
+ v̂ · min{wi, 1− ω̂i−1}

1 + ω̂i
,

≥ ω̂i−1v̂

1 + ω̂i
+

∑
j∈No

i−1
wjvj

1 + ω̂i
+

v̂min{wi, 1− ω̂i−1}
1 + ω̂i

,

=
ω̂iv̂

1 + ω̂i
+

∑
j∈No

i
wjvj

1 + ω̂i
.

where the first inequality is obtained by using the induction hypothesis and substituting xi = min{wi,1−ω̂i−1}
1+ω̂i

−
si−1

min{wi,1−ω̂i−1}
1+ω̂i

, the second equality is obtained by substituting si−1 = ω̂i−1+ω̃i−1

1+ω̂i−1
from (23), and the last inequality

holds because
∑

j∈No
i−1

wjvj ≥ v̂ω̂i−1 and 1 + ω̂i −min{wi, 1− ω̂i−1} = 1 + ω̂i−1.

A.6.7. PROOF OF THEOREM 3.4

Proof. First, we analyze the feasibility of the solution – we show that
∑n

i=1 xi ≤ 1.

n∑
i=1

xi =

(∑
vi<ℓ

xi

)
+

 ∑
vi∈[ℓ,u]

xi

+

(∑
vi>u

xi

)
. (29)

By substituting sub-algorithm selections, we have the following:

n∑
i=1

xi = 0 +

 ∑
vi∈[ℓ,u]

α

α+ 1
· xA

i

+

(∑
vi>u

1

α+ 1
· wi

)
. (30)

Using the fact that the sub-algorithm is also a feasible algorithm, we can say that: ∑
vi∈[ℓ,u]

α

α+ 1
· xA

i

 =
α

α+ 1
·

 ∑
vi∈[ℓ,u]

xA
i

 ≤ α

α+ 1
· 1. (31)

Also, from (4), we know that the optimal solution will select every wi with vi > v̂, since v̂ ∈ [ℓ, u]. We can say that wi for
which vi > u implies vi > v̂. Moreover, (5) is a feasible result, we know that

∑
v̂<vi

wi ≤ 1. So, we claim that:(∑
vi>u

1

α+ 1
· wi

)
=

1

α+ 1
·

(∑
vi>u

wi

)
≤ 1

α+ 1
·

(∑
v̂<vi

wi

)
≤ 1

α+ 1
· 1. (32)
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Substituting (32) and (31) into (30), we obtain:

n∑
i=1

xi = 0 +

 ∑
vi∈[ℓ,u]

α

α+ 1
· xA

i

+

(∑
vi>u

1

α+ 1
· wi

)
≤ α

α+ 1
+

1

α+ 1
= 1. (33)

which completes the proof that the solutions are feasible.

We proceed to prove that the algorithm achieves a competitive ratio of α + 1 (given sub-algorithm ZCL, which has a
competitive ratio α). The profit can be calculated based on xi decisions, using (30):

ALG(I) =

 ∑
vi∈[ℓ,u]

α

α+ 1
· xA

i · vi

+

(∑
vi>u

1

α+ 1
· wi · vi

)
. (34)

For the first sum, we know that Algorithm ZCL guarantees α-competitiveness, which we show as follows: ∑
vi∈[ℓ,u]

xA
i · vi

× α ≥ OPT(I0). (35)

where I0 is all items in I such that vi ∈ [ℓ, u]. Also, we claim that:

OPT(I0) =
∑

u>v′
i>ℓ,i<p′

w′
i · v′i +

1−
∑

u>v′
i>ℓ,i<p′

w′
i

 · vI0p . (36)

Where vI0p represents the critical value for I0. We argue that vI0p ≤ v̂. If we denote v̂ as the pth item in the sorted list, as
defined in (5), and vI0p as the p′th item in the sorted list of the instance I, we assert that p ≤ p′. The rationale behind this
assertion is rooted in the definitions. Specifically, p is defined as the largest number for which

∑p−1
i=1 w′

i < 1. Now, let us
assume k is the first item with a value less than or equal to u. By definition, p′ represents the largest number for which∑p′−1

i=k w′
i < 1. If we were to assume that p > p′, this would contradict the definition of p′ as the largest number, because

changing p′ to p would yield a sum less than one, but we increased from the p′ to another larger number. Consequently, it is
not valid to claim that p > p′; instead, we conclude that p ≤ p′. This implies vI0p ≤ v̂.

Using this observation, we can now compare OPT(I) and OPT(I0):

OPT(I) =
p−1∑
i=1

w′
iv

′
i +

(
1−

p−1∑
i=1

w′
i

)
v̂,

=
∑
vi>u

w′
iv

′
i +

p−1∑
i=k

w′
iv

′
i +

(
1−

p−1∑
i=1

w′
i

)
v̂,

≤
∑
vi>u

w′
iv

′
i +

p−1∑
i=k

w′
iv

′
i +

p′−1∑
i=p

w′
iv

′
i +

1−
p′−1∑
i=k

w′
i

 vI0p ,

=
∑
vi>u

wivi + OPT(I0).

(37)

where (37) holds because if p = p′, then we have v̂ = vI0p , implying that the last sum of OPT(I) (which is
(
1−

∑p−1
i=1 w′

i

)
v̂),

is equal to (
∑p′−1

i=k w′
i)v

I0
p .

On the other hand, if p < p′, the last part of OPT(I) can be bounded by w′
pv

′
p, which is subsumed within

∑p′−1
i=p w′

iv
′
i. This

follows from the fact that 1−
∑p−1

i=1 w′
i < w′

p due to the definition of a feasible answer.
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Using (35) and (37), we claim that:  ∑
vi∈[ℓ,u]

xA
i · vi

 ≥ 1

α
· (OPT(I)−

∑
vi>u

wivi). (38)

Now, let us combine this with other parts in (34):

ALG(I) =

 ∑
vi∈[ℓ,u]

α

α+ 1
· xA

i · vi

+

(∑
vi>u

1

α+ 1
· wi · vi

)
,

≥

(
α

α+ 1
· 1
α

(
OPT(I)−

∑
vi>u

wivi

))
+

(
1

α+ 1
·
∑
vi>u

wi · vi

)
,

=
1

α+ 1
OPT(I).

(39)

Thus, we conclude that IPA using ZCL as the robust sub-algorithm is α+ 1 competitive.

A.6.8. PROOF OF LEMMA A.5

To show this lower bound, we first construct a family of special instances and then show that the achievable consistency-
robustness when given a prediction of the critical value is lower bounded under the constructed special instances. Assume
that item weights are infinitesimally small. It is known that difficult instances for OKP occur when items arrive at the
algorithm in a non-decreasing order of value density (Zhou et al., 2008; Sun et al., 2021b). We now formalize such a family
of instances {Ix}x∈[L,U ], where Ix is called an x-continuously non-decreasing instance.
Definition A.9. Let N,m ∈ N be sufficiently large, and δ := (U − L)/N . For x ∈ [L,U ], an instance Ix ∈ Ω is
x-continuously non-decreasing if it consists of Nx := ⌈(x − L)/δ⌉ + 1 batches of items and the i-th batch (i ∈ [Nx])
contains m items with value density L+ (i− 1)δ and weight 1/m.

Note that IL is simply a stream of m items, each with weight 1/m and value density L. See Fig. A1 for an illustration of an
x-continuously non-decreasing instance.

v=L/m
w=1/m, . . . ,

v=L/m
w=1/m︸ ︷︷ ︸

Batch 0 with m items

,
v=(L+δ)/m
w=1/m , . . . ,

v=(L+δ)/m
w=1/m︸ ︷︷ ︸

Batch 1 with m items

, . . . ,
v=x/m
w=1/m, . . . ,

v=x/m
w=1/m︸ ︷︷ ︸

Batch Nx with m items

Figure A1. Ix consists of Nx batches of items, arriving in increasing order of value density.
We will operate with two types of x-increasing instances as follows. Let Ix,x = Ix as defined in Def. A.6.8. Furthermore,
let Ix,U denote a sequence defined as Ix,U = Ix; {U × (1/ϵ− 1)}. In other words, we append (1/ϵ− 1) items with value
density U to the end of the sequence Ix. (this is the worst-case for consistency, observing that v̂ = x)

Suppose a learning-augmented algorithm ALG is γ-robust and η-consistent. Let g(x) : [L,U ]→ [0, 1] denote an arbitrary
acceptance function, which fully parameterizes the decisions made by ALG under the special instances. g(x) gives the
final knapsack utilization (total weight of accepted items) under the instance Ix. Note that for small δ, processing Ix+δ is
equivalent to first processing Ix, and then processing m identical items, each with weight 1

m and value density x+ δ. Since
this function g(·) is unidirectional (item acceptances are irrevocable) and deterministic, we must have g(x+ δ) ≥ g(x), i.e.
g(x) is non-decreasing in [L,U ]. Once a batch of items with maximum value density U arrives, the rest of the capacity
should be used, i.e., g(U) = 1. ALG is γ-robust. Observe that in order to be γ-competitive under the instance IL, we must
have that g(L) ≥ 1

γ .

Furthermore, under the instance Ix, the online algorithm with acceptance function g obtains a value of ALG(Ix) =
g(L)L+

∫ x

L
udg(u), where udg(u) is the value obtained by accepting items with value density u and weight dg(u). Under

the instance Ix, the offline optimal solution obtains a total value of OPT(Ix) = x. Therefore, any γ-robust online algorithm
must satisfy:

ALG(Ix) = g(L)L+

∫ x

L

udg(u) ≥ x

γ
, ∀x ∈ [L,U ].
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By integral by parts and Grönwall’s Inequality (Theorem 1, p. 356, in (Mitrinovic et al., 1991)), a necessary condition for
the competitive constraint above to hold is the following:

g(x) ≥ 1

γ
+

1

x

∫ x

L

g(u)du ≥ 1

γ

[
1 + ln

( x
L

)]
. (40)

Assume that a learning-augmented algorithm ALG receives a prediction v̂. If the prediction is correct, we know that the
items with value densities strictly greater than v̂ have total weight less than 1. If the actual best value density is U , ALG
must satisfy ALG(Iv̂,U ) ≥ OPT(Iv̂,U )/η. Note that g(U) = 1 by the structure of the problem. This gives

g(U)U −
∫ U

L

g(u)du ≥ U

η
. (41)

Furthermore, for ALG to be η-consistent on an instance where v̂ = x, recall that Ix,x denotes an instance where prices
continually increase up to x, and g(x) denotes the fraction of knapsack capacity filled with items of value density ≤ x. By
the definition of consistency, it follows that g(x) must satisfy g(x) ≥ 1

η . Combining the above condition with the robustness
condition on g(x), an η-consistent and γ-robust algorithm must have g(x) ≥ max{ 1γ [1 + ln

(
x
L

)
], 1/η}. Thus, we have the

following:

max

{∫ U

L

1

η
dx,

1

γ

∫ U

L

[
1 + ln

( x
L

)]}
dx ≤

∫ U

L

g(u)du ≤ U − U

η
. (42)

where the last inequality is based on (41).

Then the optimal η is obtained when the inequality is binding, which gives:

1

γ

∫ U

L

[
1 + ln

( x
L

)]
dx = U − U

η
,

1− 1

γ
ln

(
U

L

)
=

1

η
,

1

1− 1
γ ln

(
U
L

) ≤ η.

∫ U

L

1

η
dx = U − U

η
,

U − L

η
= U − U

η
,

2− L

U
≤ η.

Combining the above two cases completes the lemma.

A.6.9. PROOF OF COROLLARY 3.5

Recall that ZCL is (ln(U/L) + 1)-competitive. Letting U = u and L = ℓ, we have that (α+ 1) = 2 + ln(u/ℓ). As ℓ and u
approach each other, ln(u/ℓ) approaches 0 – in the case of ℓ = u, this recovers the 2-competitive result of PP-b (Algorithm
5).

A.6.10. PROOF OF THEOREM 5.2

We first prove that given the algorithm Fr2Int is feasible, it is γ · 1+δ/1−ϵ(⌈log(1+δ)
U/L⌉+1) competitive, and then prove its

feasibility. Let Ai[j] and Ri[j] denote the cumulative total value of items in range j (where j = 0, . . . , ⌈log(1+δ)
U/L⌉) after

processing item i. We claim the following inequality holds for all i = 0, . . . , n and j = 0, . . . , ⌈log(1+δ)
U/L⌉:

Ai[j] ≥ Ri[j] ·
1− ϵ(⌈log(1+δ)

U/L⌉+ 1)

1 + δ
. (43)

We prove this inequality by induction. Initially, A0[j] = R0[j] = 0, and thus the (43) holds. Suppose (43) holds for i− 1,
we show that it also holds for i in the following two cases.

Case (i): if Ai−1[j] ≥ Ri[j] ·
1−ϵ(⌈log(1+δ)

U/L⌉+1)

1+δ , where Ri[j] = Ri−1[j] + viwix̃i, then we have

Ai[j] = Ai−1[j] ≥ Ri[j] ·
1− ϵ(⌈log(1+δ)

U/L⌉+ 1)

1 + δ
.
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Case (ii): if Ai−1[j] < Ri[j] ·
1−ϵ(⌈log(1+δ)

U/L⌉+1)

1+δ , then

Ai[j] = Ai−1[j] + wivi ≥ Ai−1[j] + wivix̃i,

≥ Ri−1[j] ·
1− ϵ(⌈log(1+δ)

U/L⌉+ 1)

1 + δ
+ wivix̃i,

≥ Ri[j] ·
1− ϵ(⌈log(1+δ)

U/L⌉+ 1)

1 + δ
.

where the first inequality is using the induction hypothesis and the second inequality is because the factor
1−ϵ(⌈log(1+δ)

U/L⌉+1)

1+δ ≤ 1.

With (43), we further have

∑
j

An[j] ≥
∑
j

Rn[j] ·
1− ϵ(⌈log(1+δ)

U/L⌉+ 1)

1 + δ
≥ OPT

γ
·
1− ϵ(⌈log(1+δ)

U/L⌉+ 1)

1 + δ
. (44)

where the last inequality holds since the fractional algorithm is γ-competitive and the offline optimum of the fractional
problem is no smaller than that of the integral problem.

In the following, we prove that the online solution of Fr2Int is feasible. Define w(An[j]) and w(Rn[j]) as the weight of
all items in range j of Fr2Int and ALG after processing the last item n, respectively. Based on the value partitioning in
definition 5.1, the value density of items in range j is lower bounded by L · (1 + δ)j and upper bounded by L · (1 + δ)j+1.
Thus, we have:

w(An[j]) · L · (1 + δ)j ≤ An[j], and, Rn[j] ≤ w(Rn[j]) · L · (1 + δ)j+1.

Let ij denote the last item admitted by Fr2Int in the range j. Then we have

Aij−1[j] < Rij [j] ·
(1− ϵ(⌈log(1+δ)

U/L⌉+ 1))

(1 + δ)
,

≤ w(Rij [j]) · L · (1 + δ)j+1 ·
(1− ϵ(⌈log(1+δ)

U/L⌉+ 1))

(1 + δ)
.

Since Aij−1[j] ≥ w(Aij−1[j]) · L · (1 + δ)j , combining with above equation gives

w(Aij−1[j]) ≤ w(Rij [j]) · (1− ϵ(⌈log(1+δ)
U/L⌉+ 1)). (45)

Then we further have

w(Aij [j]) ≤ ϵ+ w(Aij−1[j]) ≤ ϵ+ w(Rij [j]) · (1− ϵ(⌈log(1+δ)
U/L⌉+ 1)). (46)

Summing the weights over all ranges gives∑
j

w(Aij [j]) ≤ ϵ · (⌈log(1+δ)
U/L⌉+ 1) +

∑
j

w(Rij [j]) · (1− ϵ(⌈log(1+δ)
U/L⌉+ 1)) ≤ 1. (47)

where the last inequality holds since
∑

j w(Rij [j]) ≤ 1. Thus, the solution of Fr2Int is feasible.

A.7. Additional Numerical Experiments

In this section, we discuss other sets of experiments and report additional experimental results of the proposed algorithms’
performance.

A.7.1. OTHER EXPERIMENTAL RESULTS SETUP

We talked about part of the first set of experiments in 6.We should add that an MIX instance is created with uniformly
random prediction intervals, where each instance makes a correct prediction with a fixed probability of 1− δ and chooses a
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wrong prediction otherwise. For IPA, we used a uniformly random interval around the correct critical value since it is a
trusted prediction.

The second set of experiments compares against the existing learning-augmented OKP algorithm that uses frequency
predictions (SENTINEL) (Im et al., 2021) using the synthetic data set from the original paper. This data set constructs a
sequence of items with a small weight of 0.0001 and values between 1 to 100, where each value appears (on average)
100(1 + δ/2) times in sequence. It has a lower bound and an upper bound with a fixed ratio up/low = (1 + δ), where δ is also
a parameter showing the amount of prediction error as used in (Im et al., 2021).

In the third set of experiments, we use a historical data set of Bitcoin prices (Kottarathil, 2018) in 2017-2019 to evaluate
algorithms under realistic data. Each instance is constructed by randomly sampling 10,000 prices from one month of the
data, setting all item sizes equal to 0.001. We used the same notation of δ from (Im et al., 2021) to show the the accuracy of
this experiment.

Finally, in the fourth set of experiments we follow related work (Sun et al., 2022) and construct instances based on Google
cluster traces (Reiss et al., 2012). This data set records information about compute jobs on a cluster, with many short jobs
and few long jobs. To construct values based on these job durations, we first scale each duration by a random number
between 1 and 250, followed by a resource scale factor randomly chosen from the set {0.01, 0.03, 0.05}. Each instance
includes 10,000 items generated as above, each with size 0.001.

A.7.2. EXPERIMENT RESULTS

To convey the benefits of succinct predictions, Fig. A2 presents results on the synthetic data set and prediction method used in
the original paper presenting the SENTINEL algorithm that uses frequency predictions. We compare PP-a, Fr2Int-PP-a,
and ZCL against SENTINEL. As δ(error parameter introduced by (Im et al., 2021)) grows, the number of items increases,
and the prediction becomes worse. Here, it is worth mentioning that due to the way that they made their dataset, δ is also a
parameter for a range of values. which make ZCL to act worse as δ grows because it grows up/low = (1 + δ). For PP-a, we
use the average of the upper and lower bounds in the frequency prediction to derive a single number indicating the average
critical value v̂ And we use this number as the prediction to PP-a. As shown in Fig. A2, a single prediction, in practice,
outperforms complex predictions.

In Fig. A3, we use a real data set of Bitcoin prices for 2017-19. Each month consists of 10,000 prices. To derive frequency
predictions for SENTINEL, we generate two random numbers, a and b, between 1 and 1 + δ . Each upper bound is set to
a× s, where s is the true frequency of a given price, and the lower bounds are set to s/b. As in the previous experiment, our
critical value prediction is derived from this frequency prediction. While PP-a, Fr2Int-PP-a, and SENTINEL all perform
well, achieving competitive ratios close to 1, our algorithms outperform SENTINEL on average.

Fig. A4 plots a similar comparison for the same algorithms on the real data set of Google cluster traces. Frequency
predictions for SENTINEL are generated using the same technique described above. In this experiment, we find that PP-a
and Fr2Int-PP-a significantly outperform SENTINEL – this is likely the case due to the underlying distribution of values
(i.e., job duration) in the cluster traces, which make the frequencies (and hence the predictions) of values less robust to error.

It is worth mentioning that for evaluating MIX performance we presented probabilistic input that has the probability of
1 − δ for the correctness of the prediction and the probability of δ for prediction being wrong. In Figure A5(a), we
evaluate the performance of IPA for different interval prediction widths, given as a percentage (higher is worse). As
shown in Theorem 3.4, we find that tighter prediction intervals yield better empirical performance. Furthermore, all IPA
algorithms outperform the baseline robust ZCL algorithm. In Figure A5(b), we evaluate the performance of MIX for
untrusted predictions. We test regimes where 1−δ (probability of correct prediction) is 10%, 20%, and 50%; we fix λ = 0.9,
and the interval is 20% of [L,U ]. We find that the performance of MIX smoothly degrades, and even bad predictions result
in an algorithm that outperforms the robust baseline ZCL. Finally, in Figure A5(c), we show a similar result for MIX– we
fix δ = 50% and vary the trust parameter λ ∈ {0.3, 0.5, 0.9}, showing that when predictions are sufficiently good, MIX
performs better when the predictions are trusted more (i.e., increasing λ).

In Figure A6(a), we evaluate the performance of MIX for different values of 1 − δ. This plot is a CDF plot version of
Figure A5(b), which illustrates how increasing the probability of correct predictions (corresponding to empirically more
accurate machine-learned predictions), we consistently achieve a better competitive ratio, both on average and in the worst
case.
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Figure A2. Empirical competitive ratios of
PP-a, Fr2Int-PP-a, SENTINEL, and
ZCL on synthetic data from original SEN-
TINEL paper (Im et al., 2021).

Figure A3. Empirical competitive ratios of
PP-a, Fr2Int-PP-a, and SENTINEL in
experiments on real Bitcoin data (Kot-
tarathil, 2018).

Figure A4. Empirical competitive ratios of
PP-a, Fr2Int-PP-a, and SENTINEL in
experiments on Google-Traces data.

(a) (b) (c)
Figure A5. Interval-prediction-based algorithms with different interval sizes, probabilities δ, and trust parameters λ: (a) Competitive
ratios of three interval widths in IPA against baseline ZCL; (b) Competitive ratio of three probability δ values in MIX against baseline
ZCL. λ = 0.9 and interval 20%; and (c) Competitive ratio of three λ values in MIX against ZCL. δ = 50% and interval 20%.

In Figure A6(b), we examine the trust parameter λ with values 0.3, 0.5, 0.9 for MIX. This figure represents a CDF plot of
Figure A5(c) and shows that as the algorithm increases its trust in predictions (i.e. by increasing λ), the average competitive
ratio improves. However, the worst-case competitive ratio (represented in this plot by the tail of the CDF) will deteriorate
faster when placing more trust in predictions.

Similarly, Figure A6(c) demonstrates that the width of the prediction interval (tested as 10%, 30%, and 50% of the “width”
of the interval [L,U ]) also has an slight effect on the average and worst-case competitive ratio for MIX– namely, tighter
prediction intervals yield better empirical performance, which aligns with our expectations.

In Figure A7, which is a CDF plot of Figure A5(a), we evaluate the empirical competitive ratio of IPA for various interval
widths, represented as a percentage (where higher values indicate worse performance). We test intervals that are 15%, 25%,
and 40% as “wide” as [L,U ]. Intuitively, reducing the interval size results in a better competitive ratio, because the bounds
on the value of v̂ are tighter.

Figure A8 is a box plot version of Figure A5(c), illustrating that MIX’s average-case performance is not significantly
impacted by the width of the predicted interval, although tighter intervals are still intuitively better.

Finally, in Figure A13, we vary the value of ω̂ in four CDF plots, one for each tested value. In contrast to PP-n, PP-b,
and ZCL, these results show that the performance of PP-a substantially improves with smaller values of ω̂, confirming the
results in Theorem 3.3, which establish that PP-a’s competitive ratio depends on ω̂. These figures correspond to the CDF
plot of Figure 2(c). Another interesting observation is that as ω̂ decreases, PP-a’s empirical performance worsens, but for
high ω̂ values, it improves. This occurs because PP-a is designed to target 2-competitiveness, but performs well when
selecting more items in v̂ than the optimal solution. This occurs when ω̂ is high.
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(a) interval: 20%;
λ: 0.9.

(b) 1-δ: 50%;
interval: 20%.

(c) 1-δ: 50%;
λ: 0.9.

Figure A6. Performance of the meta-algorithm (MIX) when provided with interval predictions, with varying parameters (probability of
correct prediction (1− δ), trust parameter λ, and interval size) against the robust threshold-based algorithm (ZCL).

Figure A7. The performance of interval-prediction-based al-
gorithm (IPA) with three intervals against online threshold-
based algorithm (ZCL).

Figure A8. Performance of meta-algorithm (MIX) when pro-
vided with interval predictions versus threshold-based algo-
rithm (ZCL). δ = 50%, λ = 0.9

30



Near-Optimal Consistency-Robustness Trade-Offs for Learning-Augmented Online Knapsack Problems

Figure A9. *
ω̂ = 0.29.

Figure A10. *
ω̂ = 0.45.

Figure A11. *
ω̂ = 0.63.

Figure A12. *
ω̂ = 0.78.

Figure A13. Performance comparison of naı̈ve greedy algorithm (PP-n), basic 2-competitive algorithm (PP-b), and improved 1 +
min{1, ω̂}-competitive algorithm (PP-a) against threshold-based algorithm (ZCL) with varying ω̂.
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