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Abstract

The rapid growth of the Ethereum network necessitates advanced anomaly detec-
tion techniques to enhance security, transparency, and resilience against evolving
malicious activities. While there have been significant strides in anomaly detection,
they often fall short in capturing the intricate spatial-temporal patterns inherent
in blockchain transactional data. This study presents a scalable framework that
integrates Graph Convolutional Networks (GCNs) with Temporal Random Walks
(TRW) specifically designed to adapt to the complexities and temporal dynamics
of the Ethereum transaction network. Unlike traditional methods that focus on
detecting specific attack types, such as front-running or flash loan exploits, our
approach targets time-sensitive anomalies more broadly—detecting irregularities
such as rapid transaction bursts, anomalous token swaps, and sudden volume spikes.
This broader focus reduces reliance on pre-defined attack categories, making the
method more adaptable to emerging and evolving malicious strategies. To ground
our contributions, we establish three theoretical results: (1) the effectiveness of
TRW in enhancing GCN-based anomaly detection by capturing temporal depen-
dencies, (2) the identification of weight cancellation conditions in the anomaly
detection process, and (3) the scalability and efficiency improvements of GCNs
achieved through probabilistic sampling. Empirical evaluations demonstrate that
the TRW-GCN framework outperforms state-of-the-art Temporal Graph Attention
Networks (TGAT) in detecting time-sensitive anomalies. Furthermore, as part
of our ablation study, we evaluated various anomaly detection techniques on the
TRW-GCN embeddings and found that our proposed scoring classifier consistently
achieves higher accuracy and precision compared to baseline methods such as
Isolation Forest, One-Class SVM, and DBSCAN, thereby validating the robustness
and adaptability of our framework.

1 Introduction

The Ethereum network is a dynamic and complex ecosystem, characterized by high-frequency
transactions, time-sensitive interactions, and evolving patterns of fraudulent activity. Anomalous
behaviors such as flash loans, front-running attacks, and MEV (Miner Extractable Value) bots pose
significant threats to the security and integrity of the network. These behaviors often unfold over
time, making it essential to account for temporal correlations in transaction patterns for effective
anomaly detection. The dynamic nature of Ethereum presents unique challenges that cannot be fully
addressed using static graph analysis or traditional machine learning approaches.

Graph Convolutional Networks (GCNis) have emerged as a transformative tool in the domain of graph-
structured data representation. Their ability to encapsulate both local and global graph structures has
paved the way for their application in diverse fields. While traditional GCNs have shown remarkable
potential in handling static graph structures, their application to dynamic graphs introduces new
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challenges and opportunities. In order to extend GCNs to dynamic graphs, it is crucial to understand
how learning on dynamic graphs works, which is a relatively recent area of research. There have
been studies which investigate discrete-time graphs represented as a sequence of graph snapshots
@) () (3). Also several continuous-time approaches have been presented (4)) (3) (6) (7) (8), where
continous dynamic graphs means that edges can appear at any time (8) (9)).

Also, the topic of anomaly detection in Blockchain has received considerable attention. For example,
in Ethereum, the unexpected appearance of particular subgraphs has implied new malware (10).
Anomaly detection in blockchain transaction networks is an emerging area of research in the cryp-
tocurrency community (11). Wu et al. (12) investigated phishing detection in blockchain network
using unsupervised learning algorithms. Ofori-Boateng et al. (13 have also discussed topological
anomaly detection in multilayer blockchain networks. Given that the Ethereum network witnesses
dynamically evolving transaction patterns, it becomes imperative to account for the temporal se-
quences and correlations of transactions. Unlike general-purpose graph neural networks, TRW-GCN
is a domain-specific framework tailored to the Ethereum network’s unique dynamics, see Table 1 for
comparison. By leveraging temporal features and dynamic embeddings, our approach enables the
detection of time-sensitive anomalies such as flash loans and MEV bots, with minimal computational
complexity. Our research offers several contributions:

Enhanced Anomaly Detection Effectiveness: Our model leverages TRW in tandem with GCN
to improve anomaly detection effectiveness. This integration improves the detection of anomalies
in the Ethereum transaction network by effectively leveraging temporal information embedded
within transaction patterns. The model’s ability to analyze temporal correlations allows it to identify
anomalies that traditional methods often overlook.

Efficiency in Sampling Representative Nodes: Given the substantial size and continuous growth
of the Ethereum blockchain, efficient sampling methods are essential. Our TRW-GCN provides
a solution that balances accuracy with computational efficiency. Many temporal graph learning
frameworks face performance bottlenecks when applied to densely connected graphs; for instance,
models such as TGAT (4) and AddGraph (14)) incorporate temporal dynamics but often come with
high computational costs and are sensitive to the quality of temporal features, which can limit their
applicability to Ethereum’s specific requirements, whereas TRW-GCN prioritize edges based on
their timestamps, enabling the model to capture time-sensitive relationships without the overhead of
attention mechanisms used in models like TGAT. See Table 1 for comparison.

Detecting Patterns Leading to Sophisticated Attacks: While existing works like "Flash Boys 2.0"
(15) and "Combatting Front-Running in Smart Contracts" (16) which focus on detecting front-running
attacks specifically, our approach targets time-sensitive anomalies more broadly. These anomalies
include behaviors that may precede or indirectly relate to specific exploits, such as Front-Running
Transactions, Flash Loan Exploits, High-Frequency Token Swaps, and Irregular Contract Interactions,
see Table 5 for definitions. By identifying these timing-dependent irregularities, our work addresses a
wider range of anomalous behaviors that are indicative of potential security threats.

Table 1: Comparison of TRW-GCN with Existing Temporal GNNs in Blockchain context

Aspect

TGAT

AddGraph

TRW-GCN

Temporal Modeling

Mecl
Mec

Temporal attention on time-
encoded node embeddings

Time-decay functions over tem-
poral edges

Temporal random walks to construct
time-aware neighborhoods

tion (Ethereum)

Domain Specializa-

General-purpose model with
time-aware positional encod-
ings and attention mechanisms

General-purpose, may under-
perform TGAT, Less inter-
pretable than attention models

Tailored for Ethereum with attention to
domain-specific phenomena (e.g., flash
loans, MEV, wash trading)

tion

Anomaly Type Detec-

Detects broad irregularities,
limited granularity, Heavy
computation due to multi-head

Captures gradual shifts, not
sharp transaction bursts

Detects fine-grained, time-sensitive
anomalies like front-running and high-
frequency exploits

action Bursts

Robustness to Trans-

Limited; signal may be diluted
by attention weights

Time-decay may smooth over
bursts

High; TRW preserves burst patterns in
short temporal windows

bility to Ethereum

Real-World Applica-

Rare in blockchain studies;
lacks deployment cases

Not used in Ethereum networks

Demonstrates  superior results in
transaction-based anomaly detection

2 Model Design

GCNss are a pivotal neural network architecture crafted specifically for graph-structured data. Through
the use of graph convolutional layers, we seamlessly aggregate information from neighboring nodes
and edges to refine node embeddings. In enhancing this mechanism, we incorporate probabilistic
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sampling, which proves particularly adept in analyzing the vast Ethereum network. The incorporation
of TRW adds a rich layer to this framework. TRW captures the temporal sequences in Ethereum
transactions and not only focuses on nodes’ spatial prominence but also considers the transactional
chronology. Here, 'time’ is conceptualized based on the sequence and timestamps of Ethereum
transactions, leading to a dynamically evolving, time-sensitive representation of the network.

Here, graph is represented as G = (V, E), where V is the set of nodes (vertices) and E is the set
of edges connecting the nodes. Each node v; in the graph is associated with a feature vector Fj,
and F' € RIVI** represents a feature matrix of size 4. Aggregation is a process to combine the
feature vectors of neighboring nodes using an adjacency matrix A to capture graph connectivity. To
enable information propagation across multiple layers, the graph convolution operation is performed
iteratively through multiple graph convolutional layers (GCLs). The output of one layer serves as
the input to the next layer, allowing the propagation of information through the network. The node
representations are updated layer by layer, allowing information from neighbors and their neighbors
to be incorporated into the node features. The parameters W! are learned during the training process
to optimize the model’s performance on a specific graph-based task. GCNs often consist of multiple
layers, where each layer iteratively updates the node representations:

hY = Activation (W(”Aggregate (h§l_1)|j €N (i))> M

Here, hgl)is the representation of node i at layer 1, and A Vis the representation of neighboring
node j at the previous layer (I-1). The final layer is usually followed by a global pooling operation to
obtain the graph-level representation. The pooled representation is then used to make predictions.

2.1 Incorporating TRW into GCN

The TRW-enhanced GCN creates a multidimensional representation that captures both the structural
intricacies and time-evolving patterns of transactions. Such an approach requires meticulous math-
ematical modeling to substantiate its efficacy, and exploring the depths of this amalgamation can
reveal further insights into the temporal rhythms of the Ethereum network.

Temporal Random Walk (TRW)

Given a node i, the probability F; of moving to a neighboring node j can be represented as:

P = e
>k Wik
where wj; is the weight of the edge between node i and j, and the denominator is the sum of weights
of all edges from node i. In a TRW, transition probabilities take into account temporal factors. Let’s
define the temporal transition matrix T where each entry Tj; indicates the transition probability from
node i to node j based on temporal factors.

Tij = X Aij + (1 — Oé) X f(tij) 3)

@)

where A;; is the original adjacency matrix’s entry for nodes i and j. o is a weighting parameter. f;;
is a function of the temporal difference between node i and node j. The temporal weighting function
could be defined as an exponentially decaying function:

f(tiz) = exp(—v - tij) “4)

where v > 0 is a decay hyperparameter that controls how sensitive the model is to temporal
differences. f(t;;) € [0, 1], with values closer to 1 for temporally close nodes and closer to 0 for

nodes that are far apart in time. Given this temporal transition matrix T, a normalized form T can be
used for a GCN layer:

T— bo'T ®)

where ET is the diagonal degree matrix of T. To incorporate the TRW’s temporal information into
the GCN, we can modify the original GCN operation using 7" :

~_ 1 ~~ 1
D = 5 (D}éTDT 2h<’>W<l>> (6)
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2.2 Effect on Anomaly Detection

The embeddings from a GCN (post TRW influence) should be more sensitive to recent behaviors
and patterns. When these embeddings are passed to a classifier, clustering and scoring algorithms
like DBSCAN, OCSVM, ISOLATION FOREST, and LOF, anomalies that are based on recent or
time-sensitive behaviors are more likely to stand out. In our work, the term "anomaly" refers to
patterns that are statistically uncommon or divergent from the norm based on the features learned
by our model. These uncommon patterns, while not definitively erroneous, are of interest because
they deviate from typical behavior. In the context of Ethereum transactions, such deviations indicate
suspicious activities, novel transaction patterns, or transaction bursts.

While we here provide insight and mathematical proofs, the true value of TRW in improving GCN
over traditional sampling is empirical. We will compare the performance of GCN with and without
TRW on a temporal dataset to see tangible benefits (see appendix B.5). Here is how temporal weights
are applied:
1. Node Features are weighted by time: When updating the node features through the matrix
multiplication, nodes that are temporally closer influence each other more, allowing recent
patterns to be highlighted.

2. Temporal Relationships are captured: The modified node features inherently capture tempo-
ral relationships because they aggregate features from temporally relevant neighbors.

3. Higher Sensitivity to recent anomalies: With temporal weighting, anomalies that have
occurred recently will be more pronounced in the node feature space.

Theorem 1: Let G = (V, E) be a graph with node features h; € R? fori € V, and let a GCN
generate embeddings through neighbor aggregation. Incorporating TRW, represented by a temporal
weight matrix 7', into the aggregation mechanism enhances the effectiveness of detecting temporally

influenced anomalies. Specifically, if 7" encodes temporal transitions such that T;; # 1 for all 7, j,
(

the feature representation hilH) for an anomalous node n differs significantly from the non-temporal

case:

||h{n - hnHQ > 5a (7)
for some sensitivity threshold 6 > 0, where h,, is the embedding without TRW and A/, is the
embedding with TRW.

Proof.

Anomaly detection is the task of distinguishing outliers from normal data points in a given feature
space. If we have an anomaly score function s : R? — R, we can detect anomalies by: s(v) > §
Where ¢ is a threshold, and v is a vector in the feature space.

A GCN produces node embeddings (or features) by aggregating information from a node’s neighbors
in the graph. Let’s express this aggregation for a single node using a simple form of a GCN layer:

! !
P = o S wal 8)
jeNeighbors(i)
Where h;? is the feature of node i at layer 1, and W is the weight matrix.

Incorporating TRW: With a temporal random walk, the aggregation process is influenced by time,
so the aggregation becomes:

hit) = S mwal! ©)
jeNeighbors(i)
Where Tj; is the temporal transition probability from node j to node i. Let’s assume a node with an
anomaly will have a different feature vector from the nodes without anomalies. For simplicity, let’s
use the Euclidean distance as the anomaly score: s(v) = ||v — u|| where p is the mean vector of all
node features. Given a temporal anomaly (an anomaly that’s influenced by recent events), using TRW
will result in a modified feature vector for the anomalous node. Let’s consider two scenarios:

1. GCN without TRW: For an anomalous node n, its feature vector is: h,, = o (Z j Whj)

4
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2. GCN with TRW: For the same anomalous node n, it becomes: k], = o (Z i Tnj Whj)

If the anomaly is temporally influenced, then %/, should be significantly different from h,, due
to the weights introduced by Ty; (see Theorem 2 for weight cancellation). In the context of our
anomaly score function: s(h.) — s(hy) > & where § is a value indicating the sensitivity of the
temporal context; we will use this later in our scoring method. If the anomaly is truly temporally
influenced, this difference will be significant, and thus, the GCN with TRW will have a higher
likelihood of detecting the anomaly. From the linear algebra perspective, the effect of TRW on a
GCN for anomaly detection is evident in how node features are aggregated. The temporal weights
(from T;;) make the GCN more sensitive to temporal influences, making it more adept at detecting
anomalies. The theoretical result in Theorem 1 holds for any d-dimensional feature vector, including
the 10-dimensional vectors used in the empirical section.

Theorem 2: Let R™ be a vector space, and let h,, € R™ represent a feature vector. Define a
temporal transformation matrix 75,; € R™*"™, where each entry ¢;; encodes the temporal weights.
Let h], = Th;hy, be the transformed feature vector.

If the transformation matrix 7T}, ; exhibits symmetric or complementary weight patterns that cause
significant weight cancellation, the difference between the transformed and original vectors, ||/, —
hn||2, will be insufficient to surpass a given anomaly detection threshold § > 0.

This proof is given in appendix A.

Theorem 3: Let G = (V, E) represent an Ethereum transaction graph with |V| = N nodes
(accounts) and |E| = M edges (transactions). Let X € R™*4 denote the feature matrix for the
nodes, A € RV*¥ the adjacency matrix representing transaction relationships, and Y € {0,1}% the
binary labels indicating specific account behaviors. Probabilistic random walk sampling, defined by a
sampling matrix P, improves the performance of a GCN for the task of predicting node labels Y in
the context of Ethereum networks.

This proof is given in appendix B.

3 Empirical Analysis

In this section, not only we provide details about the empirical analysis and evaluation methods, but
also provide supporting information for readers to follow the experiments.

3.1 Datasets, Materials and Methods

We provide datasets and the code in the github link https://github.com/stefankam/temporal-spacial-
anomaly-detection. We run the code on our department server running Linux equipped with a single
GPU (NVIDIA A100 80GB PCle), and 251Gi RAM.

Creating a complete transaction graph for all Ethereum blocks would be a computationally intensive
task, as it would involve processing and storing a large amount of data. However, in the supplemental
material we provide the code to generate a transaction history graph for a range of 100-1000 blocks.
We further incorporate spatial and temporal node features to capture temporal aspects more explicitly:

incoming_value_variance: Variance of the transaction values received by the node. This metric
quantifies the spread or dispersion of incoming transaction amounts, providing insight into the
consistency or variability of funds received. outgoing_value_variance: Variance of the transaction
values sent by the node. activity_rate: The activity rate of a node represents the total number of
transactions (both incoming and outgoing) divided by the duration (in terms of blocks). It indicates
the frequency of interactions involving the node over a specific period. change_in_activity: The
change in activity refers to the difference in the number of transactions of the current block compared
to the previous block for a given node. This metric captures fluctuations or deviations in transaction
behavior over consecutive blocks. time_since_last: Time since the last transaction involving the node,
measured as the difference between the current block number and the block number of the node’s
most recent transaction. It provides insights into the recency of activity associated with the node.
tx_volume: Total transaction volume associated with the node, calculated as the sum of incoming and
outgoing transaction values. This metric represents the overall magnitude of financial transactions
involving the node. frequent_large_transfers: Indicator variable identifying addresses engaged
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in frequent and large transfers. Nodes meeting specific thresholds for both transaction frequency
and volume are flagged. gas_price: Additional feature relevant for MEV detection, representing the
gas price paid for transactions. Gas price fluctuations can signal potential MEV activities such as
frontrunning or transaction ordering strategies. token_swaps: Another feature for MEV detection,
indicating involvement in token swaps or trades on decentralized exchanges (DEXs). Analysis
of token swap transactions can reveal arbitrage opportunities or manipulative behavior by MEV
bots. smart_contract_interactions: Feature identifying transactions interacting with known DeFi
protocols or smart contracts. MEV bots may exploit vulnerabilities or manipulate protocol behaviors.

3.2 TRW-GCN combined method to detect anomalies

To apply graph convolutional layers to the blockchain data for aggregating information from neigh-
boring nodes and edges, we’ll use the PyTorch Geometric library. This library is specifically designed
for graph-based data and includes various graph neural network layers, including graph convolutional
layers. Note that training and testing a graph neural network on Ethereum dataset would require
significant computational resources, as currently, the Ethereum network possesses about 20 million
blocks, which are connected over the Ethereum network. In this study, we provide the transaction
history within a specified range of 1000 blocks; we believe, adding blocks do not add any advantage.

In Algorithm 1, we intend to compare the anomaly detection of full- and sub-graphs (sampling
using TRW). The graph convolution operation combines the features of neighboring nodes to update
the representation of a given node. As node features, we input the 10 features indicated in 3.1 as
vector representation; considering 20 hidden layers, 100 epochs, 1r=0.01, num_walks=10, and
walk_length=100, the resulting output vector aggregates information from all neighboring nodes.
By using the nodes from TRW for training, the GCN will be more attuned to the time-dependent
behaviors, leading to better detection of sudden spikes in transaction volume or unusual contract
interactions that occur in quick succession. In our experiments, we employ TRW to sample nodes
from the entire graph, ensuring that the graph’s integrity is maintained. Here’s how it can be done:

1. Perform TRWs to Sample Nodes for Training: The TRWs provide sequences of nodes
representing paths through the Ethereum network graph. Nodes appearing frequently in
these walks are often involved in recent temporal interactions.

2. Train the GCN with the Sampled Nodes: Instead of using the entire Ethereum network
graph for training, use nodes sampled from the TRWs. This approach tailors the GCN to
recognize patterns from the most temporally active parts of the Ethereum network.

Using the GCN with TRW combined method, one can achieve 1) Anomalies detected, 2) Training
efficiency, and 3) Quality of embedding. The integration of TRW with GCNs offers a novel approach
for generating embedding that capture both spatial and temporal patterns within the Ethereum network.
These embedding are vital for understanding the underlying transaction dynamics and for effectively
detecting anomalous activities. To evaluate the potential of the TRW-GCN methodology, we employ
four distinct machine learning techniques: DBSCAN, SVM, Isolation Forest (IsoForest), and Local
Outlier Factor (LOF). Wu et al. (12) indicated that they have obtained more than 500 million
Ethereum addresses and 3.8 billion transaction records. However, only 1259 addresses are labeled as
phishing addresses collected from EtherScamDB, which implies an extreme data imbalance as the
biggest obstacle for phishing detection, therefore they used unsupervised learning detection method.
We similarly use unsupervised learning for detection in our TRW-GCN algorithm.

The extensive use of these four diverse methods allows us to validate the efficacy of the TRW-GCN
framework. The high anomaly detection rates in Figure 1 by clustering methods underscores the
importance of algorithm selection. As easily observed, using the embedding generated by TRW-GCN
in SVM method significantly improves anomaly detection, however other methods do not show any
improvement in anomaly detection (averaged over 10 runs); the enhanced detection capabilities in
SVM could be attributed to the TRW’s ability to encapsulate temporal sequences and correlations of
transactions. In Table 2, we compare these methods in terms of their precision, recall and F-score and
compare with the outcome of SVM and IsoForest methods implemented in (12) (note that this paper
focuses on Phishing detection in Ethereum Network, and is different from our dynamic approach in
temporal anomaly detection). Our models are marking many data points as anomalies; precision stays
relatively high, but low F-score. Algorithms like DBSCAN, LOF, Isolation Forest are unsupervised,
so they often overpredict if not-cluster-fit noise is high or parameter tuning is off. DBSCAN is very
sensitive to eps. Isolation Forest depends on contamination, and LOF is sensitive to n_neighbors.
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Algorithm 1: TRW- GCN combined method to detect anoma-
lies

Algorithm 2: A Score-based anomaly detection associated
with time-dependent behaviors

Steps:
1. Load and Preprocess the graph G.
2. For each walk £ = 1 to num_walks:
W = {w_k for k in range(1l, num_walks+1l) for
w_k in temporal_random_walk(k)}
// Aggregate walks in W
End
3. For training step:
F =torch.stack([f(v;) for wv; in V], dim=0)
A =nx.to_numpy_matrix(graph, nodelist=V)
M7 rw , M = GCN(in_channels, hidden_channels,
out_channels)
train(Mrgrw, F, A) if use_TRW else train(M, E A)
// Training using sampled-graphs
End
4. Apply DBSCAN, One-Class SVM, IsoForest, and LOF
on embeddings from the trained GCN model M to obtain
anomalies.

Steps:

1. G’ = G(V, E) where E has node attributes.

2. X =[z1,22,...,2p]forn € V.

3. GCNModel with layers:

in_channels — hidden_channels — out_channels

4. TRW(G', start, length) returns walk W and timestamps

T

5. For each walk ¢ = 1 to num_walks:
All_Walks = ™™ TRW(G’, random_node, walk_length).
// Node Sampling via TRW

End

6. Node Frequency Computation:

. __ occurrences of v in All_Walks

freq(v) = SXoecumencesin AlLWalk forv e V.
7. Anomaly Score Computation:

S(’U) _ (emb(v)g[(eg‘:‘g(;igimb(v))) % freq(v)

where emb is the node embedding, p is the mean, and o is
the standard deviation; anomalies are detected when S(v) >

threshold §.

It is also interesting to find out which node features mainly contribute to anomaly detection; we
show this in Figure 2. As illustrated by different colors, the feature 3-6 namely activity_rate,
change_in_activity, time_since_last (mainly the temporal features) are the drivers of frequent anoma-
lies (with dark blue colors), while tx_volume and frequent_large_transfers (with green colors) also
produce anomalies but less frequently. Although we have obtained good insights into the method
effectiveness to detect time-dependent patterns and features, but we should look for more precise and
less prone to error detection method.

Feature Distribution of Anomalous Nodes

Average Anomaly Detection with and without TRW (over 10 runs)
o775 so780

600 mmm Feature 0
Feature 1
“1“ Feature 2
500 Feature 3
Feature 4
“{“’ “{” 400 Feature 5
g Feature 6
9«»*‘ Q/S Q\@ g 300 Feature 7
& & & g Feature 8
s &S = Feature 9
& &
&5‘ 200
Methods
. . 100
Figure 1: A comparison (mean, std) of 4 detec-

tion models namely dbscan, svm, isoforest and
lof between full-graph and sub-graph with TRW
sampling. Using TRW-GCN clearly improves
SVM in anomaly detection; other methods do
not seem to be improved.

q Us
-10.0 =75 -5.0 =25 0.0 25 5.0 7.5 10.0
Feature Value (normalized)

Figure 2: Feature distribution where Blue and
Green colors: activity_rate, change_in_activity,
and times_since_last show highest frequencies.

Table 2: Comparison of Precision/Recall/F-score of 4 methods with/out-TRW

Method Prec.(w-T) Rec.(w-T) F-S.(w-T) Prec.(o-T) Rec.(0-T) F-S.(o-T) Prec.(12) Rec.(12) F-S.(12)
DBSCAN 0.799 0.485 0.604 0.799 0.485 0.604
SVM 0.799 0.438 0.563 0.796 0.333 0.458 0.927 0.893 0.908
IsoForest 0.795 0.094 0.163 0.796 0.094 0.163 0.821 0.849 0.835
LOF 0.815 0.096 0.167 0.812 0.096 0.167

3.3 Score-based anomaly pattern

While traditional methods compute anomaly scores based on the relative position or density of data
points in the feature space, we need a method to be more focused on temporal dynamics, tracking
the evolution of each node’s embedding over time and weighing it by the node’s frequency in the
graph. To adapt the code to pick up anomalous patterns associated with time-dependent behaviors,
the algorithm should be equipped to recognize such patterns. Hence, we augment the node features
to capture recent activities with time features as explained in 3.1 dataset section, and after obtaining
node embedding from the GCN, compute the anomaly score for each node based on its temporal
behavior. The simplest way to achieve this is by computing the standard deviation of the node’s
feature over time and checking if the latest data point deviates significantly from its mean. This was
initially discussed in Theorem 1, with weight cancellation argument in Theorem 2.
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We explain all the steps in Algorithm 2. Initially, we define the node features to capture recent
activities. After training the GCN and obtaining the embedding, we compute an anomaly score based
on how much the recent transaction volume (the latest day in our case) deviates from the mean. We
then use a visualization function to display nodes with an anomaly score beyond a certain threshold
(in this case, we’ve used a z-score threshold of 2.0 which represents roughly 95% confidence).
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Figure 3: Anomaly detection in (left) 100 blocks with 6 features, (middle) 100 blocks with 10 features,
(right) the anomalous addresses where the time-sensitive associated ones are hashed green.

In Figure 3, black points represent the vast majority of nodes in our specified Ethereum network
dataset; they signify regular non-anomalous Ethereum addresses. Cluster of points inside and
around the blue circle represent groupings of Ethereum addresses or contracts that have had frequent
interactions with each other. The density or proximity of points to each other indicates how closely
those addresses or contracts are related. Red points would represent the nodes that have been flagged
as anomalous based on their recent behavior. The code identifies them by computing an anomaly
score, and those exceeding a threshold are colored red. In the left graph, there are just 20 nodes
detected as anomaly in 100 blocks where we used 6 structural features in our detection algorithm,
while in the middle graph, we used 10 features to detect anomalies in the same 100 blocks, and
12 more suspicious addresses are detected, hashed in green in the right figure. This signifies the
importance of temporal feature selection, as by adding 4 temporal features we would be able to
detect missing anomalies. We checked these addresses in Ether explorer website https://etherscan.io ,
and found the corresponding labels such as MEV Bot, Metamask: Swap, Uniswap, Wrapped Ether,
Rollbit, Blur: Bidding, which are mainly time-sensitive transactions or contracts, see next section
for explanation on what is normal versus anomaly. In Table 3, we explain the types of such detected
anomalies and the associated addresses. This is a proof of cross-checking with the ground-truth .

Table 3: Some types of detected anomalies

Ethereum addresses for anomalies | Ground Truth : cross-check with .

detected from Figure 3 https://etherscan.io/ Table 4: TRW-GCN versus TGAT
Ox6F1cDbBbAd53d226CFABIT7 | MEV Bot; certain activiies may be | for eth_latest_100_block file, and
bF768B94acbAB6168 considered harmful z-score threshold of 2.0.
0x3fC91A3afd70395Cd496C647 Uniswap (users to swap various

d5a6CCID4B2b7FAD ERC-20 tokens) Model Accuracy / # Anomalies detected
0x881D40237659C251811CEC9 Metamask Swap router TRW-GCN 94.5% / 20
¢364ef91dC08D300C TGAT 85.3% /23
0x0000000000A39bb272e79075a Flashloan; Detecting involves trans-

de125fd351887Ac actions with large token volumes

3.4 Normal versus Anomaly, Baseline algorithm, Algorithm complexity, and the Ground
truth

In Ethereum, what may be considered normal or anomalous behavior can vary depending on various
factors such as market conditions, network activity, and the specific use cases of different addresses
or smart contracts. Time-sensitive irregularities in Ethereum transactions refer to anomalies that
occur within specific time frames or exhibit patterns that are indicative of immediate or rapid actions.
These irregularities may include instances of rapid buying or selling of assets, front-running other
traders, MEV activities, flash loan exploits, or token swaps executed within short time intervals.
Identifying these irregularities requires analyzing transactional data in real-time or within narrow
time windows to capture anomalous behaviors as they occur. See Table 5 for a list of time-sensitive
items in Ethereum network including transactions, contracts, and platform activities. Our objective
is to identify such instances; upon identifying suspicious transactions, our approach advocates for
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further investigation. In Table 3, we cross-reference the transaction details with etherscan.io (which
represents a source for ground truth, where one finds more information about an anomaly).

Table 5: some time sensitive items on Ethereum network and their definitions
Time sensitive items Definitions
MEV Bot MEYV refers to the additional profit that miners can extract from the Ethereum network by reordering,
censoring, or including transactions in blocks. The timing of transactions and block mining can affect the
potential profit extracted by MEV bots. MEV can affect fairness and efficiency of the Ethereum network.

Metamask: Swap Uniswap Uniswap is a decentralized exchange (DEX) protocol on Ethereum, and swaps conducted through MetaMask
can be time-sensitive, especially considering the volatility of cryptocurrency prices and liquidity on Uniswap.
Flashloan Flash loans are uncollateralized loans that must be borrowed and repaid within a single transaction block.
These loans are often used for arbitrage, liquidations, or other trading strategies that require rapid execution.
Wrapped Ether (WETH) Wrapped Ether (WETH) is an Ethereum token pegged to the value of Ether (ETH). Transactions involving

WETH can be time-sensitive, especially if they’re related to trading, liquidity provision, or token swaps.
Token Launches and Air- | Token launches and airdrops often have predefined distribution schedules or timeframes during which users
drops can claim or receive tokens.

Smart Contract Exploits Exploiting vulnerabilities in smart contracts often requires precise timing to execute malicious transactions
before vulnerabilities are patched or mitigated.

Similar to the papers by Wu et al. (12), Zhang et al. (16), and Feng et al. (17), as baseline algorithms
for comparison, common unsupervised methods such as Isolation Forest, One-Class SVM, LOF and
DBSCAN are employed. Evaluation metrics, including precision, recall, F1 score in Table 2 are
utilized to assess the performance of the proposed methods. However, clustering methods report
many anomalies; DBSCAN, If eps is too small, leads to many points treated as noise. LOF also
depends heavily on n_neighbors, and Isolation Forest depends on contamination parameter. That is
why the study further introduces a statistically-based scoring method to identify anomalous nodes.
The scoring function employs different z-score thresholds of 1.0, 1.5, and 2.0 (95% confidence level).
Furthermore, we compare the results obtained from our scoring method with the ground truth on
etherscan.io, providing a case-by-case evaluation of detected time-sensitive anomalies in Table 3.

We further compare the TRW-GCN model against the state-of-the-art TGAT method. TGAT is
specifically designed to incorporate temporal information through time-aware positional encodings
and attention mechanisms. However, in practice, our experiments revealed significant computational
and performance challenges when applying TGAT, particularly in complex, high-frequency networks
such as Ethereum. TGAT’s multi-head attention mechanism introduces substantial overhead due to
repeated matrix multiplications and attention score computations. Additionally, its dependency on
fine-grained temporal edge attributes adds complexity to both preprocessing and model execution,
resulting in long training time and memory inefficiency. In contrast, TRW-GCN’s use of temporal
random walks allows it to construct meaningful local temporal subgraphs with controlled depth and
temporal relevance, making it significantly more scalable without sacrificing temporal fidelity. From
a performance standpoint, TGAT achieved an accuracy of 85.3% detecting 23 anomalies, while our
TRW-GCN model — coupled with a scoring classifier — has achieved an average accuracy of 94.5%
detecting 20 anomalies, see Table 4. One likely factor behind this discrepancy is TGAT’s sensitivity
to the temporal quality and distribution of data. In Ethereum, where transactions are bursty and user
behavior is non-uniform, TGAT struggles to generalize effectively. Moreover, TGAT’s reliance on
explicit node identities (e.g., blockchain addresses) complicates indexing and neighborhood retrieval,
especially in networks with millions of ephemeral or sparsely active nodes. TRW-GCN, in contrast,
is more robust in such settings due to its walk-based sampling, which implicitly encodes temporal
structure without depending on densely connected or temporally smooth interactions.

4 Conclusion

The evolution and complexity of the Ethereum network has heightened the urgency for temporal
anomaly detection methods. Through our research, we’ve demonstrated that the combined TRW-GCN
methed offers a solution to this challenge. This fusion has enabled us to delve deeper into the intricate
spatial-temporal patterns of Ethereum transactions, offering a refined lens for anomaly detection.
We have shown the methodology usefulness by expressing and proving three distinct theorems,
full empirical analysis and evaluation. While this approach is used to obtain the embedding, we
have compared different clustering and scoring classification methods to obtain highest precision in
anomaly detection, and verified with the ground truth found on etherscan.io. Furthermore, we have
demonstrated that the TRW-GCN method improves anomaly detection versus the state-of-the-art
TGAT method, also proved how probabilistic sampling improves GCN performance in Appendix B.
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A Significant weight cancellation

Theorem 2: Let R™ be a vector space, and let h,, € R™ represent a feature vector. Define a
temporal transformation matrix 75,; € R™*"™, where each entry ¢;; encodes the temporal weights.
Let h), = T),;h,, be the transformed feature vector.

If the transformation matrix 7T},; exhibits symmetric or complementary weight patterns that cause
significant weight cancellation, the difference between the transformed and original vectors, ||/, —
hn||2, will be insufficient to surpass a given anomaly detection threshold 6 > 0. Specifically, weight
cancellation occurs if:

> tijhng & hniy Vi€ {1,2,...,m}. (10)

j=1

Proof:
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The transformed feature vector h], = T),;h,, can be expressed component-wise as:

Wi =Y tijhnj, Vi€{1,2,...,m}. (11)

j=1

The Euclidean norm of the difference between the transformed and original feature vectors is given
by:

m m

Ry = Bl = DA D tijhng = hni | - (12)

i=1 \j=1

For ||h], — hy||2 > 4, the inequality must hold:
2

i itijhnj — Py > (52. (13)

i=1 \j=1

This implies that, for at least one i, the inner term Z;n:l tijhnj — hy; must be at least §2. Therefore,
T,,; must introduce a significant alteration to the distribution of /,,. Weight cancellation occurs when
T,,; has structural properties that lead to minimal change in h,,. Consider the following cases:

- Symmetry in T, ;: If T, ; is symmetric (t;; = t;;) and h,, has symmetric properties, the transforma-
tion may yield:

Ztijhnj =~ hnv’,a Vi. (14)
j=1

In this scenario, the transformed feature vector h/, closely resembles original vector h,,, leading to

||y, = ]2 = 0. (15)

- Complementary Weights: If T;,; contains complementary weights, such that certain entries ¢;;
and ¢, satisfy t;; 4 i = 0, and if h,,; = Iy, then the contributions from h,,; and h,,, cancel each
other out:

Z tijhn; = 0, for certain i. (16)
j=1

- Spectral Properties of T, ;: If T’,; has eigenvalues close to 1, it behaves similarly to an identity
matrix, resulting in k), ~ h,,. Orthogonality in rows or columns of T,,; may also preserve the
magnitude of h,,, leading to minimal changes in h/,.

In scenarios where weight cancellation occurs, the transformation 75, ; fails to introduce meaningful
changes to the feature vector h,,. Consequently, anomalies influenced by temporal factors may not be
detectable, as the difference ||h], — hy,||2 remains below the threshold 4.

B Improvement of GCN performance with probabilistic sampling

Theorem 3: Improvement of GCN performance with probabilistic sampling in the context of random
walk sampling.

Consider a simplified Ethereum transaction graph with N accounts (nodes), and M transactions (edges)
between them. Prove the performance improvement of a GCN in terms of loss, using probabilistic
sampling for the task of predicting account behaviors, considering the following assumptions:

1. Nodes (accounts) have features represented by vectors in a feature matrix X.

2. The adjacency matrix A represents transaction relationships between accounts.

3. Binary labels Y indicate specific account behaviors.

Proof.

11
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B.1 Traditional GCN performance

Start with the definition of the normalized graph Laplacian L = I — D=2 AD~3, where D is the
diagonal degree matrix and A is the adjacency matrix.

Derive the eigenvalues and eigenvectors of the Laplacian matrix L and show their significance in
capturing graph structure. Derive the performance of a GCN trained on the full graph using these
eigenvalues and eigenvectors:

Step 1: Deriving Eigenvalues and Eigenvectors of the Laplacian matrix L

Given the normalized graph Laplacian matrix L, let A be an eigenvalue of L and v be the corresponding
eigenvector. In the equation Lv = Av, solving for A and v, we get:

D 2AD Zv = (1- Mo (17)
AD 7y = (1—A)D?v (18)

This equation implies that D~ sAD % isa symmetric matrix that is diagonalized by the eigenvectors
v with corresponding eigenvalues 1 — \. The eigenvectors and eigenvalues of L capture the graph’s
structural information. Larger eigenvalues correspond to well-connected clusters of nodes in the
graph, while smaller eigenvalues correspond to isolated groups or individual nodes.

Step 2: Deriving GCN performance using eigenvalues and eigenvectors

Now let’s consider a scenario where we’re using a GCN to predict node labels (such as predicting
high-value transactions) on the full graph. The GCN’s propagation rule can be written as:

D = F(AROWO) (19)
where h(!) is the node embedding matrix at layer [, f is an activation function, and A=D"2AD 3.

is the symmetrically normalized adjacency matrix, and W) is the weight matrix at layer 1. The key
insight is that if we stack multiple GCN layers, the propagation rule becomes:

p) — f(Ah(L—l)W(L—l))

= f(Af(AR DWW E=2y =Dy G0
We can simplify this as:
L—1
hE) = (A(l)h(o)W(O) H W(l)> 1)
1=1

Using the spectral graph theory, we know that AD captures information about the graph’s structure
up to L-length paths. The eigenvalues and eigenvectors of A() indicate the influence of different
sampled-graphs of length L on the node embeddings.

B.2 Probabilistic Sampling Approach

In this step, we’ll introduce a probabilistic sampling strategy to select a subset of nodes and their
associated transactions. This strategy aims to prioritize nodes with certain characteristics or properties,
such as high transaction activity or potential involvement in high-value transactions. Assign a
probability p; to each node i based on certain characteristics. For example, nodes with higher
transaction activity, larger balances, or more connections might be assigned higher probabilities.
For each node i, perform a random sampling with probability p; to determine whether the node is
included in the sampled subset. Consider a graph with N nodes represented as N = {1,2,..., N}.
Each node i has associated characteristics described by a feature vector X; = [X; 1, Xi2,. .., Xi k],
where K is the number of characteristics. Define the probability p; for node ¢ as a function of its
feature vector X;: p; = f(X;). Here, f(-) is a function that captures how the characteristics of node
1 are transformed into a probability. The specific form of f(-) depends on the characteristics and the
desired probabilistic behavior. For example, f(X;) could be defined as a linear combination of the
elements in X;:

K
Di = ZWin,j (22)
J=1

12



486
487
488
489

491
492

494

502

503
504

505

506

507

508

509

510

511
512

Where w; are weights associated with each characteristic. The weights w; can be used to emphasize
or downplay the importance of specific characteristics in determining the probability. After obtaining
p; values for all nodes, normalize them to ensure they sum up to 1. Nodes with higher normalized
probabilities are more likely to be included in the sampled subset.
P
Prormalized = Niz (23)

Zj:l by

B.3 Graph Laplacian for Sampled Graph

Given the sampled adjacency matrix Asammed, we want to derive the graph Laplacian ﬁsampled for the
sampled graph. The graph Laplacian ﬁsampled is given by:

~ A~ 1 ~ A~ 1

. 2 2
L sampled = I D sampledAsamPIEdD sampled (24)

Where ﬁsampled is the diagonal degree matrix of the sampled graph, where each entry d;; corresponds
to the degree of node i in the sampled graph, and flsampled is the sampled adjacency matrix.

Nsampled

u - Z A%ampled 1] (25)

The modified Laplacian captures the structural properties of the sampled graph and is essential for
understanding its graph-based properties. As eigenvalues of the sampled graph, we derive

~ A1 ~ A1
— 7 _ 2 2
L sampled — I D sa.mpledASﬂmPledD sampled (26)

as the normalized graph Laplacian for the sampled graph. Let \; be the i-th eigenvalue of ﬁsampled
and 9; be the corresponding eigenvector. We have

Lsamplea®i = Ai; 27)

The goal is to compare the eigenvalues of L with the eigenvalues of ﬁsampled and show convergence
under certain conditions. As the sample size Ngampled approaches the total number of nodes NV in the

original graph, Lsdmp]ed converges to L. Eigenvalues of Lbdmpled converge to the eigenvalues of L.

B.4 Impact on GCN Performance

To demonstrate that the performance Egmpleq 0f @ GCN on a sampled graph, is greater than or equal
to the performance Eyy; on the full graph, we use two approaches:

1. Reduction of Noise and Retention of Structural Information

The total loss £ of a GCN can be expressed as:
L(h) = Liain(h) + E(h) (28)

where:

* Lirain(h): Loss on the training set.

» £(h): Generalization error (e.g., noise or overfitting effects).
For the sampled graph Gampied, the loss becomes:

»C ( hsamp]ed) - Etrain (hsampled) + 5 ( hsampled) (29)

Probabilistic sampling prioritizes nodes with higher relevance (e.g., higher degree or centrality) by
assigning sampling probabilities p;:

pi:ina Prnormalized = (30)
( ) ormalized ijj

13
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where X; represents node features. By emphasizing relevant nodes, noise is reduced, and:

g(hsampled) < 5(h) (31)

Thus, the total loss on the sampled graph satisfies:
E(hsampled) < E(h) (32)

2. Reduction in Computational Complexity and Faster Convergence

The computational complexity of a GCN is:
O(L- (N + M) -d?*) (33)

where N is the number of nodes, M is the number of edges, L is the number of layers, and d is the
embedding dimension. For the sampled graph Gampled, the complexity reduces to:

O(L . (Nsa.mpled + Msampled) : d2) (34)

Since Ngmpled <K N and Mgamplea < M, the sampled graph enables faster convergence. Let the
convergence rate R be inversely proportional to the size of the graph:

R(Gsampled) > R(G) (35)
Thus, the sampled graph converges faster and reaches a better minimum of the loss function:

L(hsamplea) decreases faster compared to £(h) (36)

Given the reduced noise, retention of structural information, and faster convergence, probabilistic
sampling ensures that:
Esampled > Efull (37)

B.5 How TRW impacts on GCN performance as compared to traditional sampling

Let’s delve into empirical justification on why TRW sampling could enhance the performance of
GCNs, especially in temporal networks like Ethereum. For a detailed mathematical proof on the
probabilistic sampling in GCN, you are invited to read appendix B1-B4. One issue with traditional
random walks is the potential for creating "jumps" between temporally distant nodes, breaking the
temporal consistency. GCNs rely on the local aggregation of information, and since TRW promotes
smoother temporal signals, GCNs can potentially learn better node representations. Temporal
consistency ensures that the sequences are logically and temporally ordered. This can be crucial for
predicting future events or understanding time-evolving patterns, making GCNs more reliable. We
compare different GCN models (including graphSAGE and graph attention network GAT model) for
fullgraph, and sampled-graph with traditional and temporal random walk in Figure 4. Although one
sees little difference between the accuracy of the fullgraph and the sampled-graph in graphSAGE and
GAT models (18)), one can see that traditional random walk and temporal random walk improve GCN
accuracy, where TRW shows even further improvement than the traditional random walk.

Comparison of Model Accuracy Across Datasets

- W Original
mm rw_sampled
mm trw_sampled

0.2

0.0 -

GCN GraphSAGE GAT
Model

Figure 4: Comparison of fullgraph, traditional RW and TRW-based on sampled graph in 100 blocks.
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C Checklist Responses

1.

10.

11.

12.

13.

14.

15.
16.

Claims: Yes. The abstract and introduction reflect the contributions of the paper. TRW-GCN
is proposed as a domain-specific temporal GCN variant tailored to Ethereum transaction
networks. The use of probabilistic temporal walks and their effect on anomaly detection are
experimentally demonstrated. The paper acknowledges that the model is not intended as a
general-purpose method, and the scope is clearly limited to complex blockchain structures.

. Limitations: Yes. Limitations are discussed in the text. Notably, the model is tailored to

Ethereum-like graphs and may not generalize to all temporal graph domains. Limitations
in comparison scope (e.g., AddGraph, TGAT) and reliance on temporal features that may
be noisy are acknowledged. We also observed that TGAT results in higher computational
costs, primarily due to its multi-head attention mechanism, which involves multiple passes
of matrix multiplications and attention score computations. Furthermore, TGAT’s reliance
on temporal edge attributes added another layer of complexity, further increasing the
computational burden.

. Theory, Assumptions and Proofs: Yes. We provided all theoretical claims, stated all

assumptions clearly before theorem statements, and provided formal proofs either in the
main paper or appendix.

. Experimental Result Reproducibility: Yes. Both data and code are attached at submission

which also explains how to obtain the paper results.

. Open Access to Data and Code: Yes. Full Ethereum dataset is publicly avail-

able; nevertheless, we provide our created dataset and the code in the github link
https://github.com/stefankam/temporal-spacial-anomaly-detection, which is anonymized.

. Experimental Setting/Details: Yes. Full training and testing splits, model hyperparameters,

walk lengths, and walk counts are provided in the text. Comparisons with TGAT and other
unsupervised methods (e.g., SVM, ISOForest) are described.

. Experiment Statistical Significance: Yes. The scoring method is based on z-score thresh-

olds (1.0, 1.5, 2.0), corresponding to standard confidence levels (e.g., 95%). The reported
precision/recall/f1 are averaged over multiple thresholds and visualized. Confidence intervals
are also included in Figure 1.

. Experiments Compute Resource: Yes. Experiments were run on our department server

running Linux equipped with a single GPU (NVIDIA A100 80GB PCle), and 251Gi RAM..

. Code of Ethics: Yes. The research conforms to NeurIPS Code of Ethics. No human or

sensitive data was used. All datasets are public and open.

Broader Impacts: Yes. The paper discusses anomaly detection and classification systems.
Limitations of false positives are acknowledged specially in the clustering methods like
dbscan which demonstrate high number of anomalies’ detection. Future work could help
mitigate misclassification risks, and further automation.

Safeguards: N/A. No pretrained models with dual-use risks are released. The framework is
domain-specific and does not apply to general-purpose generative tasks.

Licenses: Yes. Ethereum transaction data is public and under open access. All reused
datasets (e.g., etherscan.io) are cited appropriately. Libraries used include PyTorch Geomet-
ric (MIT License).

Assets: No. While no new datasets are introduced, the model artifacts and scripts will be
documented and released.

Crowdsourcing and Research with Human Subjects: N/A. No human data or crowdsourc-
ing was involved.

IRB Approvals: N/A. Not applicable as no human or user-generated content was analyzed.

Declaration of LLM Usage: Yes. LLMs (e.g., ChatGPT) were used only for editing
and understanding of some technical concepts. They did not influence model design or
methodology.
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