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Abstract

The rapid growth of the Ethereum network necessitates advanced anomaly detec-1

tion techniques to enhance security, transparency, and resilience against evolving2

malicious activities. While there have been significant strides in anomaly detection,3

they often fall short in capturing the intricate spatial-temporal patterns inherent4

in blockchain transactional data. This study presents a scalable framework that5

integrates Graph Convolutional Networks (GCNs) with Temporal Random Walks6

(TRW) specifically designed to adapt to the complexities and temporal dynamics7

of the Ethereum transaction network. Unlike traditional methods that focus on8

detecting specific attack types, such as front-running or flash loan exploits, our9

approach targets time-sensitive anomalies more broadly—detecting irregularities10

such as rapid transaction bursts, anomalous token swaps, and sudden volume spikes.11

This broader focus reduces reliance on pre-defined attack categories, making the12

method more adaptable to emerging and evolving malicious strategies. To ground13

our contributions, we establish three theoretical results: (1) the effectiveness of14

TRW in enhancing GCN-based anomaly detection by capturing temporal depen-15

dencies, (2) the identification of weight cancellation conditions in the anomaly16

detection process, and (3) the scalability and efficiency improvements of GCNs17

achieved through probabilistic sampling. Empirical evaluations demonstrate that18

the TRW-GCN framework outperforms state-of-the-art Temporal Graph Attention19

Networks (TGAT) in detecting time-sensitive anomalies. Furthermore, as part20

of our ablation study, we evaluated various anomaly detection techniques on the21

TRW-GCN embeddings and found that our proposed scoring classifier consistently22

achieves higher accuracy and precision compared to baseline methods such as23

Isolation Forest, One-Class SVM, and DBSCAN, thereby validating the robustness24

and adaptability of our framework.25

1 Introduction26

The Ethereum network is a dynamic and complex ecosystem, characterized by high-frequency27

transactions, time-sensitive interactions, and evolving patterns of fraudulent activity. Anomalous28

behaviors such as flash loans, front-running attacks, and MEV (Miner Extractable Value) bots pose29

significant threats to the security and integrity of the network. These behaviors often unfold over30

time, making it essential to account for temporal correlations in transaction patterns for effective31

anomaly detection. The dynamic nature of Ethereum presents unique challenges that cannot be fully32

addressed using static graph analysis or traditional machine learning approaches.33

Graph Convolutional Networks (GCNs) have emerged as a transformative tool in the domain of graph-34

structured data representation. Their ability to encapsulate both local and global graph structures has35

paved the way for their application in diverse fields. While traditional GCNs have shown remarkable36

potential in handling static graph structures, their application to dynamic graphs introduces new37
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challenges and opportunities. In order to extend GCNs to dynamic graphs, it is crucial to understand38

how learning on dynamic graphs works, which is a relatively recent area of research. There have39

been studies which investigate discrete-time graphs represented as a sequence of graph snapshots40

(1) (2) (3). Also several continuous-time approaches have been presented (4) (5) (6) (7) (8), where41

continous dynamic graphs means that edges can appear at any time (8) (9).42

Also, the topic of anomaly detection in Blockchain has received considerable attention. For example,43

in Ethereum, the unexpected appearance of particular subgraphs has implied new malware (10).44

Anomaly detection in blockchain transaction networks is an emerging area of research in the cryp-45

tocurrency community (11). Wu et al. (12) investigated phishing detection in blockchain network46

using unsupervised learning algorithms. Ofori-Boateng et al. (13) have also discussed topological47

anomaly detection in multilayer blockchain networks. Given that the Ethereum network witnesses48

dynamically evolving transaction patterns, it becomes imperative to account for the temporal se-49

quences and correlations of transactions. Unlike general-purpose graph neural networks, TRW-GCN50

is a domain-specific framework tailored to the Ethereum network’s unique dynamics, see Table 1 for51

comparison. By leveraging temporal features and dynamic embeddings, our approach enables the52

detection of time-sensitive anomalies such as flash loans and MEV bots, with minimal computational53

complexity. Our research offers several contributions:54

Enhanced Anomaly Detection Effectiveness: Our model leverages TRW in tandem with GCN55

to improve anomaly detection effectiveness. This integration improves the detection of anomalies56

in the Ethereum transaction network by effectively leveraging temporal information embedded57

within transaction patterns. The model’s ability to analyze temporal correlations allows it to identify58

anomalies that traditional methods often overlook.59

Efficiency in Sampling Representative Nodes: Given the substantial size and continuous growth60

of the Ethereum blockchain, efficient sampling methods are essential. Our TRW-GCN provides61

a solution that balances accuracy with computational efficiency. Many temporal graph learning62

frameworks face performance bottlenecks when applied to densely connected graphs; for instance,63

models such as TGAT (4) and AddGraph (14) incorporate temporal dynamics but often come with64

high computational costs and are sensitive to the quality of temporal features, which can limit their65

applicability to Ethereum’s specific requirements, whereas TRW-GCN prioritize edges based on66

their timestamps, enabling the model to capture time-sensitive relationships without the overhead of67

attention mechanisms used in models like TGAT. See Table 1 for comparison.68

Detecting Patterns Leading to Sophisticated Attacks: While existing works like "Flash Boys 2.0"69

(15) and "Combatting Front-Running in Smart Contracts" (16) which focus on detecting front-running70

attacks specifically, our approach targets time-sensitive anomalies more broadly. These anomalies71

include behaviors that may precede or indirectly relate to specific exploits, such as Front-Running72

Transactions, Flash Loan Exploits, High-Frequency Token Swaps, and Irregular Contract Interactions,73

see Table 5 for definitions. By identifying these timing-dependent irregularities, our work addresses a74

wider range of anomalous behaviors that are indicative of potential security threats.75

Table 1: Comparison of TRW-GCN with Existing Temporal GNNs in Blockchain context

Aspect TGAT AddGraph TRW-GCN
Temporal Modeling
Mechanism

Temporal attention on time-
encoded node embeddings

Time-decay functions over tem-
poral edges

Temporal random walks to construct
time-aware neighborhoods

Domain Specializa-
tion (Ethereum)

General-purpose model with
time-aware positional encod-
ings and attention mechanisms

General-purpose, may under-
perform TGAT, Less inter-
pretable than attention models

Tailored for Ethereum with attention to
domain-specific phenomena (e.g., flash
loans, MEV, wash trading)

Anomaly Type Detec-
tion

Detects broad irregularities,
limited granularity, Heavy
computation due to multi-head

Captures gradual shifts, not
sharp transaction bursts

Detects fine-grained, time-sensitive
anomalies like front-running and high-
frequency exploits

Robustness to Trans-
action Bursts

Limited; signal may be diluted
by attention weights

Time-decay may smooth over
bursts

High; TRW preserves burst patterns in
short temporal windows

Real-World Applica-
bility to Ethereum

Rare in blockchain studies;
lacks deployment cases

Not used in Ethereum networks Demonstrates superior results in
transaction-based anomaly detection

2 Model Design76

GCNs are a pivotal neural network architecture crafted specifically for graph-structured data. Through77

the use of graph convolutional layers, we seamlessly aggregate information from neighboring nodes78

and edges to refine node embeddings. In enhancing this mechanism, we incorporate probabilistic79
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sampling, which proves particularly adept in analyzing the vast Ethereum network. The incorporation80

of TRW adds a rich layer to this framework. TRW captures the temporal sequences in Ethereum81

transactions and not only focuses on nodes’ spatial prominence but also considers the transactional82

chronology. Here, ’time’ is conceptualized based on the sequence and timestamps of Ethereum83

transactions, leading to a dynamically evolving, time-sensitive representation of the network.84

Here, graph is represented as G = (V, E), where V is the set of nodes (vertices) and E is the set85

of edges connecting the nodes. Each node vi in the graph is associated with a feature vector Fi,86

and F ∈ R|V |×4 represents a feature matrix of size 4. Aggregation is a process to combine the87

feature vectors of neighboring nodes using an adjacency matrix A to capture graph connectivity. To88

enable information propagation across multiple layers, the graph convolution operation is performed89

iteratively through multiple graph convolutional layers (GCLs). The output of one layer serves as90

the input to the next layer, allowing the propagation of information through the network. The node91

representations are updated layer by layer, allowing information from neighbors and their neighbors92

to be incorporated into the node features. The parameters Wl are learned during the training process93

to optimize the model’s performance on a specific graph-based task. GCNs often consist of multiple94

layers, where each layer iteratively updates the node representations:95

h
(l)
i = Activation

(
W (l)Aggregate

(
h
(l−1)
j |j ∈ N(i)

))
(1)

96
Here, h(l)

i is the representation of node i at layer l, and h
(l−1)
j is the representation of neighboring97

node j at the previous layer (l-1). The final layer is usually followed by a global pooling operation to98

obtain the graph-level representation. The pooled representation is then used to make predictions.99

2.1 Incorporating TRW into GCN100

The TRW-enhanced GCN creates a multidimensional representation that captures both the structural101

intricacies and time-evolving patterns of transactions. Such an approach requires meticulous math-102

ematical modeling to substantiate its efficacy, and exploring the depths of this amalgamation can103

reveal further insights into the temporal rhythms of the Ethereum network.104

Temporal Random Walk (TRW)105

Given a node i, the probability Pij of moving to a neighboring node j can be represented as:106

Pij =
ωij∑
k ωik

(2)

where ωij is the weight of the edge between node i and j, and the denominator is the sum of weights107

of all edges from node i. In a TRW, transition probabilities take into account temporal factors. Let’s108

define the temporal transition matrix T where each entry Tij indicates the transition probability from109

node i to node j based on temporal factors.110

Tij = α×Aij + (1− α)× f(tij) (3)

where Aij is the original adjacency matrix’s entry for nodes i and j. α is a weighting parameter. fij111

is a function of the temporal difference between node i and node j. The temporal weighting function112

could be defined as an exponentially decaying function:113

f(tij) = exp(−γ · tij) (4)

where γ > 0 is a decay hyperparameter that controls how sensitive the model is to temporal114

differences. f(tij) ∈ [0, 1], with values closer to 1 for temporally close nodes and closer to 0 for115

nodes that are far apart in time. Given this temporal transition matrix T, a normalized form T̃ can be116

used for a GCN layer:117

T̃ = D̃−1
T T (5)

where D̃T is the diagonal degree matrix of T. To incorporate the TRW’s temporal information into118

the GCN, we can modify the original GCN operation using T̃ :119

h(l+1) = σ

(
D̃

− 1
2

T T̃ D̃T

− 1
2h(l)W (l)

)
(6)
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2.2 Effect on Anomaly Detection120

The embeddings from a GCN (post TRW influence) should be more sensitive to recent behaviors121

and patterns. When these embeddings are passed to a classifier, clustering and scoring algorithms122

like DBSCAN, OCSVM, ISOLATION FOREST, and LOF, anomalies that are based on recent or123

time-sensitive behaviors are more likely to stand out. In our work, the term "anomaly" refers to124

patterns that are statistically uncommon or divergent from the norm based on the features learned125

by our model. These uncommon patterns, while not definitively erroneous, are of interest because126

they deviate from typical behavior. In the context of Ethereum transactions, such deviations indicate127

suspicious activities, novel transaction patterns, or transaction bursts.128

While we here provide insight and mathematical proofs, the true value of TRW in improving GCN129

over traditional sampling is empirical. We will compare the performance of GCN with and without130

TRW on a temporal dataset to see tangible benefits (see appendix B.5). Here is how temporal weights131

are applied:132

1. Node Features are weighted by time: When updating the node features through the matrix133

multiplication, nodes that are temporally closer influence each other more, allowing recent134

patterns to be highlighted.135

2. Temporal Relationships are captured: The modified node features inherently capture tempo-136

ral relationships because they aggregate features from temporally relevant neighbors.137

3. Higher Sensitivity to recent anomalies: With temporal weighting, anomalies that have138

occurred recently will be more pronounced in the node feature space.139

Theorem 1: Let G = (V,E) be a graph with node features hi ∈ Rd for i ∈ V , and let a GCN140

generate embeddings through neighbor aggregation. Incorporating TRW, represented by a temporal141

weight matrix T , into the aggregation mechanism enhances the effectiveness of detecting temporally142

influenced anomalies. Specifically, if T encodes temporal transitions such that Tij ̸= 1 for all i, j,143

the feature representation h
(l+1)
i for an anomalous node n differs significantly from the non-temporal144

case:145

∥h′
n − hn∥2 > δ, (7)

for some sensitivity threshold δ > 0, where hn is the embedding without TRW and h′
n is the146

embedding with TRW.147

Proof.148

Anomaly detection is the task of distinguishing outliers from normal data points in a given feature149

space. If we have an anomaly score function s : Rd → R, we can detect anomalies by: s(v) > δ150

Where δ is a threshold, and v is a vector in the feature space.151

A GCN produces node embeddings (or features) by aggregating information from a node’s neighbors152

in the graph. Let’s express this aggregation for a single node using a simple form of a GCN layer:153

h
(l+1)
i = σ

 ∑
jϵNeighbors(i)

Wh
(l)
j

 (8)

154
Where hi

(l) is the feature of node i at layer l, and W is the weight matrix.155

Incorporating TRW: With a temporal random walk, the aggregation process is influenced by time,156

so the aggregation becomes:157

h
(l+1)
i = σ

 ∑
jϵNeighbors(i)

TijWh
(l)
j

 (9)

158
Where Tij is the temporal transition probability from node j to node i. Let’s assume a node with an159

anomaly will have a different feature vector from the nodes without anomalies. For simplicity, let’s160

use the Euclidean distance as the anomaly score: s(v) = ∥v − µ∥ where µ is the mean vector of all161

node features. Given a temporal anomaly (an anomaly that’s influenced by recent events), using TRW162

will result in a modified feature vector for the anomalous node. Let’s consider two scenarios:163

1. GCN without TRW: For an anomalous node n, its feature vector is: hn = σ
(∑

j Whj

)
164
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2. GCN with TRW: For the same anomalous node n, it becomes: h′
n = σ

(∑
j TnjWhj

)
165

If the anomaly is temporally influenced, then h′
n should be significantly different from hn due166

to the weights introduced by Tnj (see Theorem 2 for weight cancellation). In the context of our167

anomaly score function: s(h′
n) − s(hn) > δ where δ is a value indicating the sensitivity of the168

temporal context; we will use this later in our scoring method. If the anomaly is truly temporally169

influenced, this difference will be significant, and thus, the GCN with TRW will have a higher170

likelihood of detecting the anomaly. From the linear algebra perspective, the effect of TRW on a171

GCN for anomaly detection is evident in how node features are aggregated. The temporal weights172

(from Tij) make the GCN more sensitive to temporal influences, making it more adept at detecting173

anomalies. The theoretical result in Theorem 1 holds for any d-dimensional feature vector, including174

the 10-dimensional vectors used in the empirical section.175

176

Theorem 2: Let Rm be a vector space, and let hn ∈ Rm represent a feature vector. Define a177

temporal transformation matrix Tnj ∈ Rm×m, where each entry tij encodes the temporal weights.178

Let h′
n = Tnjhn be the transformed feature vector.179

If the transformation matrix Tnj exhibits symmetric or complementary weight patterns that cause180

significant weight cancellation, the difference between the transformed and original vectors, ||h′
n −181

hn||2, will be insufficient to surpass a given anomaly detection threshold δ > 0.182

This proof is given in appendix A.183

Theorem 3: Let G = (V,E) represent an Ethereum transaction graph with |V | = N nodes184

(accounts) and |E| = M edges (transactions). Let X ∈ RN×d denote the feature matrix for the185

nodes, A ∈ RN×N the adjacency matrix representing transaction relationships, and Y ∈ {0, 1}N the186

binary labels indicating specific account behaviors. Probabilistic random walk sampling, defined by a187

sampling matrix P , improves the performance of a GCN for the task of predicting node labels Y in188

the context of Ethereum networks.189

This proof is given in appendix B.190

3 Empirical Analysis191

In this section, not only we provide details about the empirical analysis and evaluation methods, but192

also provide supporting information for readers to follow the experiments.193

3.1 Datasets, Materials and Methods194

We provide datasets and the code in the github link https://github.com/stefankam/temporal-spacial-195

anomaly-detection. We run the code on our department server running Linux equipped with a single196

GPU (NVIDIA A100 80GB PCIe), and 251Gi RAM.197

Creating a complete transaction graph for all Ethereum blocks would be a computationally intensive198

task, as it would involve processing and storing a large amount of data. However, in the supplemental199

material we provide the code to generate a transaction history graph for a range of 100-1000 blocks.200

We further incorporate spatial and temporal node features to capture temporal aspects more explicitly:201

incoming_value_variance: Variance of the transaction values received by the node. This metric202

quantifies the spread or dispersion of incoming transaction amounts, providing insight into the203

consistency or variability of funds received. outgoing_value_variance: Variance of the transaction204

values sent by the node. activity_rate: The activity rate of a node represents the total number of205

transactions (both incoming and outgoing) divided by the duration (in terms of blocks). It indicates206

the frequency of interactions involving the node over a specific period. change_in_activity: The207

change in activity refers to the difference in the number of transactions of the current block compared208

to the previous block for a given node. This metric captures fluctuations or deviations in transaction209

behavior over consecutive blocks. time_since_last: Time since the last transaction involving the node,210

measured as the difference between the current block number and the block number of the node’s211

most recent transaction. It provides insights into the recency of activity associated with the node.212

tx_volume: Total transaction volume associated with the node, calculated as the sum of incoming and213

outgoing transaction values. This metric represents the overall magnitude of financial transactions214

involving the node. frequent_large_transfers: Indicator variable identifying addresses engaged215
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in frequent and large transfers. Nodes meeting specific thresholds for both transaction frequency216

and volume are flagged. gas_price: Additional feature relevant for MEV detection, representing the217

gas price paid for transactions. Gas price fluctuations can signal potential MEV activities such as218

frontrunning or transaction ordering strategies. token_swaps: Another feature for MEV detection,219

indicating involvement in token swaps or trades on decentralized exchanges (DEXs). Analysis220

of token swap transactions can reveal arbitrage opportunities or manipulative behavior by MEV221

bots. smart_contract_interactions: Feature identifying transactions interacting with known DeFi222

protocols or smart contracts. MEV bots may exploit vulnerabilities or manipulate protocol behaviors.223

3.2 TRW-GCN combined method to detect anomalies224

To apply graph convolutional layers to the blockchain data for aggregating information from neigh-225

boring nodes and edges, we’ll use the PyTorch Geometric library. This library is specifically designed226

for graph-based data and includes various graph neural network layers, including graph convolutional227

layers. Note that training and testing a graph neural network on Ethereum dataset would require228

significant computational resources, as currently, the Ethereum network possesses about 20 million229

blocks, which are connected over the Ethereum network. In this study, we provide the transaction230

history within a specified range of 1000 blocks; we believe, adding blocks do not add any advantage.231

In Algorithm 1, we intend to compare the anomaly detection of full- and sub-graphs (sampling232

using TRW). The graph convolution operation combines the features of neighboring nodes to update233

the representation of a given node. As node features, we input the 10 features indicated in 3.1 as234

vector representation; considering 20 hidden layers, 100 epochs, lr=0.01, num_walks=10, and235

walk_length=100, the resulting output vector aggregates information from all neighboring nodes.236

By using the nodes from TRW for training, the GCN will be more attuned to the time-dependent237

behaviors, leading to better detection of sudden spikes in transaction volume or unusual contract238

interactions that occur in quick succession. In our experiments, we employ TRW to sample nodes239

from the entire graph, ensuring that the graph’s integrity is maintained. Here’s how it can be done:240

1. Perform TRWs to Sample Nodes for Training: The TRWs provide sequences of nodes241

representing paths through the Ethereum network graph. Nodes appearing frequently in242

these walks are often involved in recent temporal interactions.243

2. Train the GCN with the Sampled Nodes: Instead of using the entire Ethereum network244

graph for training, use nodes sampled from the TRWs. This approach tailors the GCN to245

recognize patterns from the most temporally active parts of the Ethereum network.246

Using the GCN with TRW combined method, one can achieve 1) Anomalies detected, 2) Training247

efficiency, and 3) Quality of embedding. The integration of TRW with GCNs offers a novel approach248

for generating embedding that capture both spatial and temporal patterns within the Ethereum network.249

These embedding are vital for understanding the underlying transaction dynamics and for effectively250

detecting anomalous activities. To evaluate the potential of the TRW-GCN methodology, we employ251

four distinct machine learning techniques: DBSCAN, SVM, Isolation Forest (IsoForest), and Local252

Outlier Factor (LOF). Wu et al. (12) indicated that they have obtained more than 500 million253

Ethereum addresses and 3.8 billion transaction records. However, only 1259 addresses are labeled as254

phishing addresses collected from EtherScamDB, which implies an extreme data imbalance as the255

biggest obstacle for phishing detection, therefore they used unsupervised learning detection method.256

We similarly use unsupervised learning for detection in our TRW-GCN algorithm.257

The extensive use of these four diverse methods allows us to validate the efficacy of the TRW-GCN258

framework. The high anomaly detection rates in Figure 1 by clustering methods underscores the259

importance of algorithm selection. As easily observed, using the embedding generated by TRW-GCN260

in SVM method significantly improves anomaly detection, however other methods do not show any261

improvement in anomaly detection (averaged over 10 runs); the enhanced detection capabilities in262

SVM could be attributed to the TRW’s ability to encapsulate temporal sequences and correlations of263

transactions. In Table 2, we compare these methods in terms of their precision, recall and F-score and264

compare with the outcome of SVM and IsoForest methods implemented in (12) (note that this paper265

focuses on Phishing detection in Ethereum Network, and is different from our dynamic approach in266

temporal anomaly detection). Our models are marking many data points as anomalies; precision stays267

relatively high, but low F-score. Algorithms like DBSCAN, LOF, Isolation Forest are unsupervised,268

so they often overpredict if not-cluster-fit noise is high or parameter tuning is off. DBSCAN is very269

sensitive to eps. Isolation Forest depends on contamination, and LOF is sensitive to n_neighbors.270
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Algorithm 1: TRW- GCN combined method to detect anoma-
lies
Steps:
1. Load and Preprocess the graph G.
2. For each walk k = 1 to num_walks:
W = {w_k for k in range(1, num_walks+1) for

w_k in temporal_random_walk(k)}
// Aggregate walks in W

End
3. For training step:

F = torch.stack([f(vi) for vi in V], dim=0)
A = nx.to_numpy_matrix(graph, nodelist=V)
MTRW , M = GCN(in_channels, hidden_channels,
out_channels)
train(MTRW , F, A) if use_TRW else train(M, F, A)
// Training using sampled-graphs

End
4. Apply DBSCAN, One-Class SVM, IsoForest, and LOF
on embeddings from the trained GCN model M to obtain
anomalies.

Algorithm 2: A Score-based anomaly detection associated
with time-dependent behaviors
Steps:
1. G′ = G(V,E) where E has node attributes.
2. X = [x1, x2, . . . , xn] for n ∈ V .
3. GCNModel with layers:
in_channels → hidden_channels → out_channels
4. TRW(G′, start, length) returns walk W and timestamps
T
5. For each walk i = 1 to num_walks:

All_Walks =
⋃num_walks

i=1 TRW(G′, random_node, walk_length).
// Node Sampling via TRW

End
6. Node Frequency Computation:
freq(v) = occurrences of v in All_Walks

max occurrences in All_Walk for v ∈ V .
7. Anomaly Score Computation:
S(v) =

(emb(v)latest−µ(emb(v)))

σ(emb(v))
× freq(v)

where emb is the node embedding, µ is the mean, and σ is
the standard deviation; anomalies are detected when S(v) >
threshold δ.

It is also interesting to find out which node features mainly contribute to anomaly detection; we271

show this in Figure 2. As illustrated by different colors, the feature 3-6 namely activity_rate,272

change_in_activity, time_since_last (mainly the temporal features) are the drivers of frequent anoma-273

lies (with dark blue colors), while tx_volume and frequent_large_transfers (with green colors) also274

produce anomalies but less frequently. Although we have obtained good insights into the method275

effectiveness to detect time-dependent patterns and features, but we should look for more precise and276

less prone to error detection method.277

Figure 1: A comparison (mean, std) of 4 detec-
tion models namely dbscan, svm, isoforest and
lof between full-graph and sub-graph with TRW
sampling. Using TRW-GCN clearly improves
SVM in anomaly detection; other methods do
not seem to be improved.

Figure 2: Feature distribution where Blue and
Green colors: activity_rate, change_in_activity,
and times_since_last show highest frequencies.

Table 2: Comparison of Precision/Recall/F-score of 4 methods with/out-TRW

Method Prec.(w-T) Rec.(w-T) F-S.(w-T) Prec.(o-T) Rec.(o-T) F-S.(o-T) Prec.(12) Rec.(12) F-S.(12)
DBSCAN 0.799 0.485 0.604 0.799 0.485 0.604

SVM 0.799 0.438 0.563 0.796 0.333 0.458 0.927 0.893 0.908
IsoForest 0.795 0.094 0.163 0.796 0.094 0.163 0.821 0.849 0.835

LOF 0.815 0.096 0.167 0.812 0.096 0.167

3.3 Score-based anomaly pattern278

While traditional methods compute anomaly scores based on the relative position or density of data279

points in the feature space, we need a method to be more focused on temporal dynamics, tracking280

the evolution of each node’s embedding over time and weighing it by the node’s frequency in the281

graph. To adapt the code to pick up anomalous patterns associated with time-dependent behaviors,282

the algorithm should be equipped to recognize such patterns. Hence, we augment the node features283

to capture recent activities with time features as explained in 3.1 dataset section, and after obtaining284

node embedding from the GCN, compute the anomaly score for each node based on its temporal285

behavior. The simplest way to achieve this is by computing the standard deviation of the node’s286

feature over time and checking if the latest data point deviates significantly from its mean. This was287

initially discussed in Theorem 1, with weight cancellation argument in Theorem 2.288
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We explain all the steps in Algorithm 2. Initially, we define the node features to capture recent289

activities. After training the GCN and obtaining the embedding, we compute an anomaly score based290

on how much the recent transaction volume (the latest day in our case) deviates from the mean. We291

then use a visualization function to display nodes with an anomaly score beyond a certain threshold292

(in this case, we’ve used a z-score threshold of 2.0 which represents roughly 95% confidence).293

Figure 3: Anomaly detection in (left) 100 blocks with 6 features, (middle) 100 blocks with 10 features,
(right) the anomalous addresses where the time-sensitive associated ones are hashed green.
In Figure 3, black points represent the vast majority of nodes in our specified Ethereum network294

dataset; they signify regular non-anomalous Ethereum addresses. Cluster of points inside and295

around the blue circle represent groupings of Ethereum addresses or contracts that have had frequent296

interactions with each other. The density or proximity of points to each other indicates how closely297

those addresses or contracts are related. Red points would represent the nodes that have been flagged298

as anomalous based on their recent behavior. The code identifies them by computing an anomaly299

score, and those exceeding a threshold are colored red. In the left graph, there are just 20 nodes300

detected as anomaly in 100 blocks where we used 6 structural features in our detection algorithm,301

while in the middle graph, we used 10 features to detect anomalies in the same 100 blocks, and302

12 more suspicious addresses are detected, hashed in green in the right figure. This signifies the303

importance of temporal feature selection, as by adding 4 temporal features we would be able to304

detect missing anomalies. We checked these addresses in Ether explorer website https://etherscan.io ,305

and found the corresponding labels such as MEV Bot, Metamask: Swap, Uniswap, Wrapped Ether,306

Rollbit, Blur: Bidding, which are mainly time-sensitive transactions or contracts, see next section307

for explanation on what is normal versus anomaly. In Table 3, we explain the types of such detected308

anomalies and the associated addresses. This is a proof of cross-checking with the ground-truth .309

Table 3: Some types of detected anomalies
Ethereum addresses for anomalies
detected from Figure 3

Ground Truth : cross-check with
https://etherscan.io/

0x6F1cDbBb4d53d226CF4B917
bF768B94acbAB6168

MEV Bot; certain activities may be
considered harmful

0x3fC91A3afd70395Cd496C647
d5a6CC9D4B2b7FAD

Uniswap (users to swap various
ERC-20 tokens)

0x881D40237659C251811CEC9
c364ef91dC08D300C

Metamask Swap router

0x0000000000A39bb272e79075a
de125fd351887Ac

Flashloan; Detecting involves trans-
actions with large token volumes

Table 4: TRW-GCN versus TGAT
for eth_latest_100_block file, and
z-score threshold of 2.0.

Model Accuracy / # Anomalies detected
TRW-GCN 94.5% / 20

TGAT 85.3% / 23

3.4 Normal versus Anomaly, Baseline algorithm, Algorithm complexity, and the Ground310

truth311

In Ethereum, what may be considered normal or anomalous behavior can vary depending on various312

factors such as market conditions, network activity, and the specific use cases of different addresses313

or smart contracts. Time-sensitive irregularities in Ethereum transactions refer to anomalies that314

occur within specific time frames or exhibit patterns that are indicative of immediate or rapid actions.315

These irregularities may include instances of rapid buying or selling of assets, front-running other316

traders, MEV activities, flash loan exploits, or token swaps executed within short time intervals.317

Identifying these irregularities requires analyzing transactional data in real-time or within narrow318

time windows to capture anomalous behaviors as they occur. See Table 5 for a list of time-sensitive319

items in Ethereum network including transactions, contracts, and platform activities. Our objective320

is to identify such instances; upon identifying suspicious transactions, our approach advocates for321
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further investigation. In Table 3, we cross-reference the transaction details with etherscan.io (which322

represents a source for ground truth, where one finds more information about an anomaly).323

Table 5: some time sensitive items on Ethereum network and their definitions
Time sensitive items Definitions
MEV Bot MEV refers to the additional profit that miners can extract from the Ethereum network by reordering,

censoring, or including transactions in blocks. The timing of transactions and block mining can affect the
potential profit extracted by MEV bots. MEV can affect fairness and efficiency of the Ethereum network.

Metamask: Swap Uniswap Uniswap is a decentralized exchange (DEX) protocol on Ethereum, and swaps conducted through MetaMask
can be time-sensitive, especially considering the volatility of cryptocurrency prices and liquidity on Uniswap.

Flashloan Flash loans are uncollateralized loans that must be borrowed and repaid within a single transaction block.
These loans are often used for arbitrage, liquidations, or other trading strategies that require rapid execution.

Wrapped Ether (WETH) Wrapped Ether (WETH) is an Ethereum token pegged to the value of Ether (ETH). Transactions involving
WETH can be time-sensitive, especially if they’re related to trading, liquidity provision, or token swaps.

Token Launches and Air-
drops

Token launches and airdrops often have predefined distribution schedules or timeframes during which users
can claim or receive tokens.

Smart Contract Exploits Exploiting vulnerabilities in smart contracts often requires precise timing to execute malicious transactions
before vulnerabilities are patched or mitigated.

Similar to the papers by Wu et al. (12), Zhang et al. (16), and Feng et al. (17), as baseline algorithms324

for comparison, common unsupervised methods such as Isolation Forest, One-Class SVM, LOF and325

DBSCAN are employed. Evaluation metrics, including precision, recall, F1 score in Table 2 are326

utilized to assess the performance of the proposed methods. However, clustering methods report327

many anomalies; DBSCAN, If eps is too small, leads to many points treated as noise. LOF also328

depends heavily on n_neighbors, and Isolation Forest depends on contamination parameter. That is329

why the study further introduces a statistically-based scoring method to identify anomalous nodes.330

The scoring function employs different z-score thresholds of 1.0, 1.5, and 2.0 (95% confidence level).331

Furthermore, we compare the results obtained from our scoring method with the ground truth on332

etherscan.io, providing a case-by-case evaluation of detected time-sensitive anomalies in Table 3.333

We further compare the TRW-GCN model against the state-of-the-art TGAT method. TGAT is334

specifically designed to incorporate temporal information through time-aware positional encodings335

and attention mechanisms. However, in practice, our experiments revealed significant computational336

and performance challenges when applying TGAT, particularly in complex, high-frequency networks337

such as Ethereum. TGAT’s multi-head attention mechanism introduces substantial overhead due to338

repeated matrix multiplications and attention score computations. Additionally, its dependency on339

fine-grained temporal edge attributes adds complexity to both preprocessing and model execution,340

resulting in long training time and memory inefficiency. In contrast, TRW-GCN’s use of temporal341

random walks allows it to construct meaningful local temporal subgraphs with controlled depth and342

temporal relevance, making it significantly more scalable without sacrificing temporal fidelity. From343

a performance standpoint, TGAT achieved an accuracy of 85.3% detecting 23 anomalies, while our344

TRW-GCN model — coupled with a scoring classifier — has achieved an average accuracy of 94.5%345

detecting 20 anomalies, see Table 4. One likely factor behind this discrepancy is TGAT’s sensitivity346

to the temporal quality and distribution of data. In Ethereum, where transactions are bursty and user347

behavior is non-uniform, TGAT struggles to generalize effectively. Moreover, TGAT’s reliance on348

explicit node identities (e.g., blockchain addresses) complicates indexing and neighborhood retrieval,349

especially in networks with millions of ephemeral or sparsely active nodes. TRW-GCN, in contrast,350

is more robust in such settings due to its walk-based sampling, which implicitly encodes temporal351

structure without depending on densely connected or temporally smooth interactions.352

4 Conclusion353

The evolution and complexity of the Ethereum network has heightened the urgency for temporal354

anomaly detection methods. Through our research, we’ve demonstrated that the combined TRW-GCN355

methed offers a solution to this challenge. This fusion has enabled us to delve deeper into the intricate356

spatial-temporal patterns of Ethereum transactions, offering a refined lens for anomaly detection.357

We have shown the methodology usefulness by expressing and proving three distinct theorems,358

full empirical analysis and evaluation. While this approach is used to obtain the embedding, we359

have compared different clustering and scoring classification methods to obtain highest precision in360

anomaly detection, and verified with the ground truth found on etherscan.io. Furthermore, we have361

demonstrated that the TRW-GCN method improves anomaly detection versus the state-of-the-art362

TGAT method, also proved how probabilistic sampling improves GCN performance in Appendix B.363
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A Significant weight cancellation410

Theorem 2: Let Rm be a vector space, and let hn ∈ Rm represent a feature vector. Define a411

temporal transformation matrix Tnj ∈ Rm×m, where each entry tij encodes the temporal weights.412

Let h′
n = Tnjhn be the transformed feature vector.413

If the transformation matrix Tnj exhibits symmetric or complementary weight patterns that cause414

significant weight cancellation, the difference between the transformed and original vectors, ||h′
n −415

hn||2, will be insufficient to surpass a given anomaly detection threshold δ > 0. Specifically, weight416

cancellation occurs if:417
m∑
j=1

tijhnj ≈ hni, ∀i ∈ {1, 2, . . . ,m}. (10)

Proof:418
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The transformed feature vector h′
n = Tnjhn can be expressed component-wise as:419

h′
ni =

m∑
j=1

tijhnj , ∀i ∈ {1, 2, . . . ,m}. (11)

The Euclidean norm of the difference between the transformed and original feature vectors is given420

by:421

||h′
n − hn||2 =

√√√√√ m∑
i=1

 m∑
j=1

tijhnj − hni

2

. (12)

For ||h′
n − hn||2 > δ, the inequality must hold:422

m∑
i=1

 m∑
j=1

tijhnj − hni

2

> δ2. (13)

This implies that, for at least one i, the inner term
∑m

j=1 tijhnj − hni must be at least δ2. Therefore,423

Tnj must introduce a significant alteration to the distribution of hn. Weight cancellation occurs when424

Tnj has structural properties that lead to minimal change in hn. Consider the following cases:425

- Symmetry in Tnj : If Tnj is symmetric (tij = tji) and hn has symmetric properties, the transforma-426

tion may yield:427
m∑
j=1

tijhnj ≈ hni, ∀i. (14)

In this scenario, the transformed feature vector h′
n closely resembles original vector hn, leading to428

||h′
n − hn||2 ≈ 0. (15)

- Complementary Weights: If Tnj contains complementary weights, such that certain entries tij429

and tik satisfy tij + tik = 0, and if hnj ≈ hnk, then the contributions from hnj and hnk cancel each430

other out:431
m∑
j=1

tijhnj ≈ 0, for certain i. (16)

- Spectral Properties of Tnj : If Tnj has eigenvalues close to 1, it behaves similarly to an identity432

matrix, resulting in h′
n ≈ hn. Orthogonality in rows or columns of Tnj may also preserve the433

magnitude of hn, leading to minimal changes in h′
n.434

In scenarios where weight cancellation occurs, the transformation Tnj fails to introduce meaningful435

changes to the feature vector hn. Consequently, anomalies influenced by temporal factors may not be436

detectable, as the difference ||h′
n − hn||2 remains below the threshold δ.437

B Improvement of GCN performance with probabilistic sampling438

Theorem 3: Improvement of GCN performance with probabilistic sampling in the context of random439

walk sampling.440

Consider a simplified Ethereum transaction graph with N accounts (nodes), and M transactions (edges)441

between them. Prove the performance improvement of a GCN in terms of loss, using probabilistic442

sampling for the task of predicting account behaviors, considering the following assumptions:443

1. Nodes (accounts) have features represented by vectors in a feature matrix X.444

2. The adjacency matrix A represents transaction relationships between accounts.445

3. Binary labels Y indicate specific account behaviors.446

Proof.447
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B.1 Traditional GCN performance448

Start with the definition of the normalized graph Laplacian L = I −D− 1
2AD− 1

2 , where D is the449

diagonal degree matrix and A is the adjacency matrix.450

Derive the eigenvalues and eigenvectors of the Laplacian matrix L and show their significance in451

capturing graph structure. Derive the performance of a GCN trained on the full graph using these452

eigenvalues and eigenvectors:453

Step 1: Deriving Eigenvalues and Eigenvectors of the Laplacian matrix L454

Given the normalized graph Laplacian matrix L, let λ be an eigenvalue of L and v be the corresponding455

eigenvector. In the equation Lv = λv, solving for λ and v, we get:456

D− 1
2AD− 1

2 v = (1− λ)v (17)
457

AD− 1
2 v = (1− λ)D

1
2 v (18)

This equation implies that D− 1
2AD− 1

2 is a symmetric matrix that is diagonalized by the eigenvectors458

v with corresponding eigenvalues 1− λ. The eigenvectors and eigenvalues of L capture the graph’s459

structural information. Larger eigenvalues correspond to well-connected clusters of nodes in the460

graph, while smaller eigenvalues correspond to isolated groups or individual nodes.461

Step 2: Deriving GCN performance using eigenvalues and eigenvectors462

Now let’s consider a scenario where we’re using a GCN to predict node labels (such as predicting463

high-value transactions) on the full graph. The GCN’s propagation rule can be written as:464

h(l+1) = f(Âh(l)W (l)) (19)

where h(l) is the node embedding matrix at layer l, f is an activation function, and Â = D− 1
2AD− 1

2 .465

is the symmetrically normalized adjacency matrix, and W (l) is the weight matrix at layer l. The key466

insight is that if we stack multiple GCN layers, the propagation rule becomes:467

h(L) = f(Âh(L−1)W (L−1))

= f(Âf(Âh(L−2)W (L−2))W (L−1)) . . .
(20)

We can simplify this as:468

h(L) = f

(
Â(l)h(0)W (0)

L−1∏
l=1

W (l)

)
(21)

Using the spectral graph theory, we know that Â(l) captures information about the graph’s structure469

up to L-length paths. The eigenvalues and eigenvectors of Â(l) indicate the influence of different470

sampled-graphs of length L on the node embeddings.471

B.2 Probabilistic Sampling Approach472

In this step, we’ll introduce a probabilistic sampling strategy to select a subset of nodes and their473

associated transactions. This strategy aims to prioritize nodes with certain characteristics or properties,474

such as high transaction activity or potential involvement in high-value transactions. Assign a475

probability pi to each node i based on certain characteristics. For example, nodes with higher476

transaction activity, larger balances, or more connections might be assigned higher probabilities.477

For each node i, perform a random sampling with probability pi to determine whether the node is478

included in the sampled subset. Consider a graph with N nodes represented as N = {1, 2, . . . , N}.479

Each node i has associated characteristics described by a feature vector Xi = [Xi,1, Xi,2, . . . , Xi,k],480

where K is the number of characteristics. Define the probability pi for node i as a function of its481

feature vector Xi: pi = f(Xi). Here, f(·) is a function that captures how the characteristics of node482

i are transformed into a probability. The specific form of f(·) depends on the characteristics and the483

desired probabilistic behavior. For example, f(Xi) could be defined as a linear combination of the484

elements in Xi:485

pi =

K∑
j=1

ωjXi,j (22)
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Where ωj are weights associated with each characteristic. The weights ωj can be used to emphasize486

or downplay the importance of specific characteristics in determining the probability. After obtaining487

pi values for all nodes, normalize them to ensure they sum up to 1. Nodes with higher normalized488

probabilities are more likely to be included in the sampled subset.489

pnormalized =
pi∑N
j=1 pj

(23)

B.3 Graph Laplacian for Sampled Graph490

Given the sampled adjacency matrix Âsampled, we want to derive the graph Laplacian L̂sampled for the491

sampled graph. The graph Laplacian L̂sampled is given by:492

L̂sampled = I − D̂
− 1

2

sampledÂsampledD̂
− 1

2

sampled (24)

Where D̂sampled is the diagonal degree matrix of the sampled graph, where each entry dii corresponds493

to the degree of node i in the sampled graph, and Âsampled is the sampled adjacency matrix.494

dii =

Nsampled∑
j=1

Âsampled,ij (25)

The modified Laplacian captures the structural properties of the sampled graph and is essential for495

understanding its graph-based properties. As eigenvalues of the sampled graph, we derive496

L̂sampled = I − D̂
− 1

2

sampledÂsampledD̂
− 1

2

sampled (26)

as the normalized graph Laplacian for the sampled graph. Let λ̂i be the i-th eigenvalue of L̂sampled497

and v̂i be the corresponding eigenvector. We have498

L̂sampledv̂i = λ̂iv̂i (27)

The goal is to compare the eigenvalues of L with the eigenvalues of L̂sampled and show convergence499

under certain conditions. As the sample size Nsampled approaches the total number of nodes N in the500

original graph, L̂sampled converges to L. Eigenvalues of L̂sampled converge to the eigenvalues of L.501

B.4 Impact on GCN Performance502

To demonstrate that the performance Esampled of a GCN on a sampled graph, is greater than or equal503

to the performance Efull on the full graph, we use two approaches:504

1. Reduction of Noise and Retention of Structural Information505

The total loss L of a GCN can be expressed as:506

L(h) = Ltrain(h) + E(h) (28)

where:507

• Ltrain(h): Loss on the training set.508

• E(h): Generalization error (e.g., noise or overfitting effects).509

For the sampled graph Gsampled, the loss becomes:510

L(hsampled) = Ltrain(hsampled) + E(hsampled) (29)

Probabilistic sampling prioritizes nodes with higher relevance (e.g., higher degree or centrality) by511

assigning sampling probabilities pi:512

pi = f(Xi), pnormalized =
pi∑
j pj

(30)
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where Xi represents node features. By emphasizing relevant nodes, noise is reduced, and:513

E(hsampled) < E(h) (31)

Thus, the total loss on the sampled graph satisfies:514

L(hsampled) < L(h) (32)

2. Reduction in Computational Complexity and Faster Convergence515

The computational complexity of a GCN is:516

O(L · (N +M) · d2) (33)

where N is the number of nodes, M is the number of edges, L is the number of layers, and d is the517

embedding dimension. For the sampled graph Gsampled, the complexity reduces to:518

O(L · (Nsampled +Msampled) · d2) (34)

Since Nsampled ≪ N and Msampled ≪ M , the sampled graph enables faster convergence. Let the519

convergence rate R be inversely proportional to the size of the graph:520

R(Gsampled) > R(G) (35)

Thus, the sampled graph converges faster and reaches a better minimum of the loss function:521

L(hsampled) decreases faster compared to L(h) (36)

Given the reduced noise, retention of structural information, and faster convergence, probabilistic522

sampling ensures that:523

Esampled > Efull (37)

B.5 How TRW impacts on GCN performance as compared to traditional sampling524

Let’s delve into empirical justification on why TRW sampling could enhance the performance of525

GCNs, especially in temporal networks like Ethereum. For a detailed mathematical proof on the526

probabilistic sampling in GCN, you are invited to read appendix B1-B4. One issue with traditional527

random walks is the potential for creating "jumps" between temporally distant nodes, breaking the528

temporal consistency. GCNs rely on the local aggregation of information, and since TRW promotes529

smoother temporal signals, GCNs can potentially learn better node representations. Temporal530

consistency ensures that the sequences are logically and temporally ordered. This can be crucial for531

predicting future events or understanding time-evolving patterns, making GCNs more reliable. We532

compare different GCN models (including graphSAGE and graph attention network GAT model) for533

fullgraph, and sampled-graph with traditional and temporal random walk in Figure 4. Although one534

sees little difference between the accuracy of the fullgraph and the sampled-graph in graphSAGE and535

GAT models (18), one can see that traditional random walk and temporal random walk improve GCN536

accuracy, where TRW shows even further improvement than the traditional random walk.537

Figure 4: Comparison of fullgraph, traditional RW and TRW-based on sampled graph in 100 blocks.
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C Checklist Responses538

1. Claims: Yes. The abstract and introduction reflect the contributions of the paper. TRW-GCN539

is proposed as a domain-specific temporal GCN variant tailored to Ethereum transaction540

networks. The use of probabilistic temporal walks and their effect on anomaly detection are541

experimentally demonstrated. The paper acknowledges that the model is not intended as a542

general-purpose method, and the scope is clearly limited to complex blockchain structures.543

2. Limitations: Yes. Limitations are discussed in the text. Notably, the model is tailored to544

Ethereum-like graphs and may not generalize to all temporal graph domains. Limitations545

in comparison scope (e.g., AddGraph, TGAT) and reliance on temporal features that may546

be noisy are acknowledged. We also observed that TGAT results in higher computational547

costs, primarily due to its multi-head attention mechanism, which involves multiple passes548

of matrix multiplications and attention score computations. Furthermore, TGAT’s reliance549

on temporal edge attributes added another layer of complexity, further increasing the550

computational burden.551

3. Theory, Assumptions and Proofs: Yes. We provided all theoretical claims, stated all552

assumptions clearly before theorem statements, and provided formal proofs either in the553

main paper or appendix.554

4. Experimental Result Reproducibility: Yes. Both data and code are attached at submission555

which also explains how to obtain the paper results.556

5. Open Access to Data and Code: Yes. Full Ethereum dataset is publicly avail-557

able; nevertheless, we provide our created dataset and the code in the github link558

https://github.com/stefankam/temporal-spacial-anomaly-detection, which is anonymized.559

6. Experimental Setting/Details: Yes. Full training and testing splits, model hyperparameters,560

walk lengths, and walk counts are provided in the text. Comparisons with TGAT and other561

unsupervised methods (e.g., SVM, ISOForest) are described.562

7. Experiment Statistical Significance: Yes. The scoring method is based on z-score thresh-563

olds (1.0, 1.5, 2.0), corresponding to standard confidence levels (e.g., 95%). The reported564

precision/recall/f1 are averaged over multiple thresholds and visualized. Confidence intervals565

are also included in Figure 1.566

8. Experiments Compute Resource: Yes. Experiments were run on our department server567

running Linux equipped with a single GPU (NVIDIA A100 80GB PCIe), and 251Gi RAM..568

9. Code of Ethics: Yes. The research conforms to NeurIPS Code of Ethics. No human or569

sensitive data was used. All datasets are public and open.570

10. Broader Impacts: Yes. The paper discusses anomaly detection and classification systems.571

Limitations of false positives are acknowledged specially in the clustering methods like572

dbscan which demonstrate high number of anomalies’ detection. Future work could help573

mitigate misclassification risks, and further automation.574

11. Safeguards: N/A. No pretrained models with dual-use risks are released. The framework is575

domain-specific and does not apply to general-purpose generative tasks.576

12. Licenses: Yes. Ethereum transaction data is public and under open access. All reused577

datasets (e.g., etherscan.io) are cited appropriately. Libraries used include PyTorch Geomet-578

ric (MIT License).579

13. Assets: No. While no new datasets are introduced, the model artifacts and scripts will be580

documented and released.581

14. Crowdsourcing and Research with Human Subjects: N/A. No human data or crowdsourc-582

ing was involved.583

15. IRB Approvals: N/A. Not applicable as no human or user-generated content was analyzed.584

16. Declaration of LLM Usage: Yes. LLMs (e.g., ChatGPT) were used only for editing585

and understanding of some technical concepts. They did not influence model design or586

methodology.587
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