
Probabilistic Temporal Sampling for Anomaly Detection in Ethereum Networks

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 The rapid growth of the Ethereum network necessitates advanced anomaly detection
2 techniques to enhance security, transparency, and resilience against evolving
3 malicious activities. While there have been significant strides in anomaly detection,
4 they often fall short in capturing the intricate spatial-temporal patterns inherent
5 in blockchain transactional data. This study presents a scalable framework that
6 integrates Graph Convolutional Networks (GCNs) with Temporal Random Walks
7 (TRW) specifically designed to adapt to the complexities and temporal dynamics
8 of the Ethereum transaction network. Unlike traditional methods that focus on
9 detecting specific attack types, such as front-running or flash loan exploits, our
10 approach targets time-sensitive anomalies more broadly—detecting irregularities
11 such as rapid transaction bursts, anomalous token swaps, and sudden volume spikes.
12 This broader focus reduces reliance on pre-defined attack categories, making the
13 method more adaptable to emerging and evolving malicious strategies. To ground
14 our contributions, we establish three theoretical results: (1) the effectiveness of
15 TRW in enhancing GCN-based anomaly detection by capturing temporal dependencies,
16 (2) the identification of weight cancellation conditions in the anomaly
17 detection process, and (3) the scalability and efficiency improvements of GCNs
18 achieved through probabilistic sampling. Empirical evaluations demonstrate that
19 the TRW-GCN framework outperforms state-of-the-art Temporal Graph Attention
20 Networks (TGAT) in detecting time-sensitive anomalies. Furthermore, as part
21 of our ablation study, we evaluated various anomaly detection techniques on the
22 TRW-GCN embeddings and found that our proposed scoring classifier consistently
23 achieves higher accuracy and precision compared to baseline methods such as
24 Isolation Forest, One-Class SVM, and DBSCAN, thereby validating the robustness
25 and adaptability of our framework.

26

1 Introduction

27 The Ethereum network is a dynamic and complex ecosystem, characterized by high-frequency
28 transactions, time-sensitive interactions, and evolving patterns of fraudulent activity. Anomalous
29 behaviors such as flash loans, front-running attacks, and MEV (Miner Extractable Value) bots pose
30 significant threats to the security and integrity of the network. These behaviors often unfold over
31 time, making it essential to account for temporal correlations in transaction patterns for effective
32 anomaly detection. The dynamic nature of Ethereum presents unique challenges that cannot be fully
33 addressed using static graph analysis or traditional machine learning approaches.

34 Graph Convolutional Networks (GCNs) have emerged as a transformative tool in the domain of graph-
35 structured data representation. Their ability to encapsulate both local and global graph structures has
36 paved the way for their application in diverse fields. While traditional GCNs have shown remarkable
37 potential in handling static graph structures, their application to dynamic graphs introduces new

38 challenges and opportunities. In order to extend GCNs to dynamic graphs, it is crucial to understand
39 how learning on dynamic graphs works, which is a relatively recent area of research. There have
40 been studies which investigate discrete-time graphs represented as a sequence of graph snapshots
41 (1) (2) (3). Also several continuous-time approaches have been presented (4) (5) (6) (7) (8), where
42 continuous dynamic graphs means that edges can appear at any time (8) (9).

43 Also, the topic of anomaly detection in Blockchain has received considerable attention. For example,
44 in Ethereum, the unexpected appearance of particular subgraphs has implied new malware (10).
45 Anomaly detection in blockchain transaction networks is an emerging area of research in the crypt-
46ocurrency community (11). Wu et al. (12) investigated phishing detection in blockchain network
47 using unsupervised learning algorithms. Ofori-Boateng et al. (13) have also discussed topological
48 anomaly detection in multilayer blockchain networks. Given that the Ethereum network witnesses
49 dynamically evolving transaction patterns, it becomes imperative to account for the temporal se-
50 quences and correlations of transactions. Unlike general-purpose graph neural networks, TRW-GCN
51 is a domain-specific framework tailored to the Ethereum network’s unique dynamics, see Table 1 for
52 comparison. By leveraging temporal features and dynamic embeddings, our approach enables the
53 detection of time-sensitive anomalies such as flash loans and MEV bots, with minimal computational
54 complexity. Our research offers several contributions:

55 **Enhanced Anomaly Detection Effectiveness:** Our model leverages TRW in tandem with GCN
56 to improve anomaly detection effectiveness. This integration improves the detection of anomalies
57 in the Ethereum transaction network by effectively leveraging temporal information embedded
58 within transaction patterns. The model’s ability to analyze temporal correlations allows it to identify
59 anomalies that traditional methods often overlook.

60 **Efficiency in Sampling Representative Nodes:** Given the substantial size and continuous growth
61 of the Ethereum blockchain, efficient sampling methods are essential. Our TRW-GCN provides
62 a solution that balances accuracy with computational efficiency. Many temporal graph learning
63 frameworks face performance bottlenecks when applied to densely connected graphs; for instance,
64 models such as TGAT (4) and AddGraph (14) incorporate temporal dynamics but often come with
65 high computational costs and are sensitive to the quality of temporal features, which can limit their
66 applicability to Ethereum’s specific requirements, whereas TRW-GCN prioritize edges based on
67 their timestamps, enabling the model to capture time-sensitive relationships without the overhead of
68 attention mechanisms used in models like TGAT. See Table 1 for comparison.

69 **Detecting Patterns Leading to Sophisticated Attacks:** While existing works like "Flash Boys 2.0"
70 (15) and "Combatting Front-Running in Smart Contracts" (16) which focus on detecting front-running
71 attacks specifically, our approach targets time-sensitive anomalies more broadly. These anomalies
72 include behaviors that may precede or indirectly relate to specific exploits, such as Front-Running
73 Transactions, Flash Loan Exploits, High-Frequency Token Swaps, and Irregular Contract Interactions,
74 see Table 5 for definitions. By identifying these timing-dependent irregularities, our work addresses a
75 wider range of anomalous behaviors that are indicative of potential security threats.

Table 1: Comparison of TRW-GCN with Existing Temporal GNNs in Blockchain context

Aspect	TGAT	AddGraph	TRW-GCN
Temporal Modeling Mechanism	Temporal attention on time-encoded node embeddings	Time-decay functions over temporal edges	Temporal random walks to construct time-aware neighborhoods
Domain Specialization (Ethereum)	General-purpose model with time-aware positional encodings and attention mechanisms	General-purpose, may underperform TGAT. Less interpretable than attention models	Tailored for Ethereum with attention to domain-specific phenomena (e.g., flash loans, MEV, wash trading)
Anomaly Type Detection	Detects broad irregularities, limited granularity, Heavy computation due to multi-head	Captures gradual shifts, not sharp transaction bursts	Detects fine-grained, time-sensitive anomalies like front-running and high-frequency exploits
Robustness to Transaction Bursts	Limited; signal may be diluted by attention weights	Time-decay may smooth over bursts	High; TRW preserves burst patterns in short temporal windows
Real-World Applicability to Ethereum	Rare in blockchain studies; lacks deployment cases	Not used in Ethereum networks	Demonstrates superior results in transaction-based anomaly detection

76 2 Model Design

77 GCNs are a pivotal neural network architecture crafted specifically for graph-structured data. Through
78 the use of graph convolutional layers, we seamlessly aggregate information from neighboring nodes
79 and edges to refine node embeddings. In enhancing this mechanism, we incorporate probabilistic

80 sampling, which proves particularly adept in analyzing the vast Ethereum network. The incorporation
 81 of TRW adds a rich layer to this framework. TRW captures the temporal sequences in Ethereum
 82 transactions and not only focuses on nodes' spatial prominence but also considers the transactional
 83 chronology. Here, 'time' is conceptualized based on the sequence and timestamps of Ethereum
 84 transactions, leading to a dynamically evolving, time-sensitive representation of the network.

85 Here, graph is represented as $G = (V, E)$, where V is the set of nodes (vertices) and E is the set
 86 of edges connecting the nodes. Each node v_i in the graph is associated with a feature vector F_i ,
 87 and $F \in \mathbb{R}^{|V| \times 4}$ represents a feature matrix of size 4. Aggregation is a process to combine the
 88 feature vectors of neighboring nodes using an adjacency matrix A to capture graph connectivity. To
 89 enable information propagation across multiple layers, the graph convolution operation is performed
 90 iteratively through multiple graph convolutional layers (GCLs). The output of one layer serves as
 91 the input to the next layer, allowing the propagation of information through the network. The node
 92 representations are updated layer by layer, allowing information from neighbors and their neighbors
 93 to be incorporated into the node features. The parameters W^l are learned during the training process
 94 to optimize the model's performance on a specific graph-based task. GCNs often consist of multiple
 95 layers, where each layer iteratively updates the node representations:

$$h_i^{(l)} = \text{Activation} \left(W^{(l)} \text{Aggregate} \left(h_j^{(l-1)} | j \in N(i) \right) \right) \quad (1)$$

96 Here, $h_i^{(l)}$ is the representation of node i at layer l , and $h_j^{(l-1)}$ is the representation of neighboring
 97 node j at the previous layer ($l-1$). The final layer is usually followed by a global pooling operation to
 98 obtain the graph-level representation. The pooled representation is then used to make predictions.
 99

100 2.1 Incorporating TRW into GCN

101 The TRW-enhanced GCN creates a multidimensional representation that captures both the structural
 102 intricacies and time-evolving patterns of transactions. Such an approach requires meticulous math-
 103 ematical modeling to substantiate its efficacy, and exploring the depths of this amalgamation can
 104 reveal further insights into the temporal rhythms of the Ethereum network.

105 Temporal Random Walk (TRW)

106 Given a node i , the probability P_{ij} of moving to a neighboring node j can be represented as:

$$P_{ij} = \frac{\omega_{ij}}{\sum_k \omega_{ik}} \quad (2)$$

107 where ω_{ij} is the weight of the edge between node i and j , and the denominator is the sum of weights
 108 of all edges from node i . In a TRW, transition probabilities take into account temporal factors. Let's
 109 define the temporal transition matrix T where each entry T_{ij} indicates the transition probability from
 110 node i to node j based on temporal factors.

$$T_{ij} = \alpha \times A_{ij} + (1 - \alpha) \times f(t_{ij}) \quad (3)$$

111 where A_{ij} is the original adjacency matrix's entry for nodes i and j . α is a weighting parameter. f_{ij}
 112 is a function of the temporal difference between node i and node j . The temporal weighting function
 113 could be defined as an exponentially decaying function:

$$f(t_{ij}) = \exp(-\gamma \cdot t_{ij}) \quad (4)$$

114 where $\gamma > 0$ is a decay hyperparameter that controls how sensitive the model is to temporal
 115 differences. $f(t_{ij}) \in [0, 1]$, with values closer to 1 for temporally close nodes and closer to 0 for
 116 nodes that are far apart in time. Given this temporal transition matrix T , a normalized form \tilde{T} can be
 117 used for a GCN layer:

$$\tilde{T} = \tilde{D}_T^{-1} T \quad (5)$$

118 where \tilde{D}_T is the diagonal degree matrix of T . To incorporate the TRW's temporal information into
 119 the GCN, we can modify the original GCN operation using \tilde{T} :

$$h^{(l+1)} = \sigma \left(\tilde{D}_T^{-\frac{1}{2}} \tilde{T} \tilde{D}_T^{-\frac{1}{2}} h^{(l)} W^{(l)} \right) \quad (6)$$

120 **2.2 Effect on Anomaly Detection**

121 The embeddings from a GCN (post TRW influence) should be more sensitive to recent behaviors
 122 and patterns. When these embeddings are passed to a classifier, clustering and scoring algorithms
 123 like DBSCAN, OCSVM, ISOLATION FOREST, and LOF, anomalies that are based on recent or
 124 time-sensitive behaviors are more likely to stand out. In our work, the term "anomaly" refers to
 125 patterns that are statistically uncommon or divergent from the norm based on the features learned
 126 by our model. These uncommon patterns, while not definitively erroneous, are of interest because
 127 they deviate from typical behavior. In the context of Ethereum transactions, such deviations indicate
 128 suspicious activities, novel transaction patterns, or transaction bursts.

129 While we here provide insight and mathematical proofs, the true value of TRW in improving GCN
 130 over traditional sampling is empirical. We will compare the performance of GCN with and without
 131 TRW on a temporal dataset to see tangible benefits (see appendix B.5). Here is how temporal weights
 132 are applied:

- 133 1. Node Features are weighted by time: When updating the node features through the matrix
 134 multiplication, nodes that are temporally closer influence each other more, allowing recent
 135 patterns to be highlighted.
- 136 2. Temporal Relationships are captured: The modified node features inherently capture tempo-
 137 ral relationships because they aggregate features from temporally relevant neighbors.
- 138 3. Higher Sensitivity to recent anomalies: With temporal weighting, anomalies that have
 139 occurred recently will be more pronounced in the node feature space.

140 **Theorem 1:** Let $G = (V, E)$ be a graph with node features $h_i \in \mathbb{R}^d$ for $i \in V$, and let a GCN
 141 generate embeddings through neighbor aggregation. Incorporating TRW, represented by a temporal
 142 weight matrix T , into the aggregation mechanism enhances the effectiveness of detecting temporally
 143 influenced anomalies. Specifically, if T encodes temporal transitions such that $T_{ij} \neq 1$ for all i, j ,
 144 the feature representation $h_i^{(l+1)}$ for an anomalous node n differs significantly from the non-temporal
 145 case:

$$\|h'_n - h_n\|_2 > \delta, \quad (7)$$

146 for some sensitivity threshold $\delta > 0$, where h_n is the embedding without TRW and h'_n is the
 147 embedding with TRW.

148 **Proof.**

149 Anomaly detection is the task of distinguishing outliers from normal data points in a given feature
 150 space. If we have an anomaly score function $s : \mathbb{R}^d \rightarrow \mathbb{R}$, we can detect anomalies by: $s(v) > \delta$
 151 Where δ is a threshold, and v is a vector in the feature space.

152 A GCN produces node embeddings (or features) by aggregating information from a node's neighbors
 153 in the graph. Let's express this aggregation for a single node using a simple form of a GCN layer:

$$h_i^{(l+1)} = \sigma \left(\sum_{j \in \text{Neighbors}(i)} W h_j^{(l)} \right) \quad (8)$$

154 155 Where $h_i^{(l)}$ is the feature of node i at layer l , and W is the weight matrix.

156 **Incorporating TRW:** With a temporal random walk, the aggregation process is influenced by time,
 157 so the aggregation becomes:

$$h_i^{(l+1)} = \sigma \left(\sum_{j \in \text{Neighbors}(i)} T_{ij} W h_j^{(l)} \right) \quad (9)$$

158 159 Where T_{ij} is the temporal transition probability from node j to node i . Let's assume a node with an
 160 anomaly will have a different feature vector from the nodes without anomalies. For simplicity, let's
 161 use the Euclidean distance as the anomaly score: $s(v) = \|v - \mu\|$ where μ is the mean vector of all
 162 node features. Given a temporal anomaly (an anomaly that's influenced by recent events), using TRW
 163 will result in a modified feature vector for the anomalous node. Let's consider two scenarios:

- 164 1. GCN without TRW: For an anomalous node n , its feature vector is: $h_n = \sigma \left(\sum_j W h_j \right)$

165 2. GCN with TRW: For the same anomalous node \underline{n} , it becomes: $h'_n = \sigma \left(\sum_j T_{nj} Wh_j \right)$

166 If the anomaly is temporally influenced, then h'_n should be significantly different from h_n due
167 to the weights introduced by T_{nj} (see Theorem 2 for weight cancellation). In the context of our
168 anomaly score function: $s(h'_n) - s(h_n) > \delta$ where δ is a value indicating the sensitivity of the
169 temporal context; we will use this later in our scoring method. If the anomaly is truly temporally
170 influenced, this difference will be significant, and thus, the GCN with TRW will have a higher
171 likelihood of detecting the anomaly. From the linear algebra perspective, the effect of TRW on a
172 GCN for anomaly detection is evident in how node features are aggregated. The temporal weights
173 (from T_{ij}) make the GCN more sensitive to temporal influences, making it more adept at detecting
174 anomalies. The theoretical result in Theorem 1 holds for any d -dimensional feature vector, including
175 the 10-dimensional vectors used in the empirical section.

176

177 **Theorem 2:** Let \mathbb{R}^m be a vector space, and let $h_n \in \mathbb{R}^m$ represent a feature vector. Define a
178 temporal transformation matrix $T_{nj} \in \mathbb{R}^{m \times m}$, where each entry t_{ij} encodes the temporal weights.
179 Let $h'_n = T_{nj} h_n$ be the transformed feature vector.

180 If the transformation matrix T_{nj} exhibits symmetric or complementary weight patterns that cause
181 significant weight cancellation, the difference between the transformed and original vectors, $\|h'_n -$
182 $h_n\|_2$, will be insufficient to surpass a given anomaly detection threshold $\delta > 0$.

183 This proof is given in appendix A.

184 **Theorem 3:** Let $G = (V, E)$ represent an Ethereum transaction graph with $|V| = N$ nodes
185 (accounts) and $|E| = M$ edges (transactions). Let $X \in \mathbb{R}^{N \times d}$ denote the feature matrix for the
186 nodes, $A \in \mathbb{R}^{N \times N}$ the adjacency matrix representing transaction relationships, and $Y \in \{0, 1\}^N$ the
187 binary labels indicating specific account behaviors. Probabilistic random walk sampling, defined by a
188 sampling matrix P , improves the performance of a GCN for the task of predicting node labels Y in
189 the context of Ethereum networks.

190 This proof is given in appendix B.

191 3 Empirical Analysis

192 In this section, not only we provide details about the empirical analysis and evaluation methods, but
193 also provide supporting information for readers to follow the experiments.

194 3.1 Datasets, Materials and Methods

195 We provide datasets and the code in the github link <https://github.com/stefankam/temporal-spacial->
196 anomaly-detection. We run the code on our department server running Linux equipped with a single
197 GPU (NVIDIA A100 80GB PCIe), and 251Gi RAM.

198 Creating a complete transaction graph for all Ethereum blocks would be a computationally intensive
199 task, as it would involve processing and storing a large amount of data. However, in the supplemental
200 material we provide the code to generate a transaction history graph for a range of 100-1000 blocks.
201 We further incorporate spatial and temporal node features to capture temporal aspects more explicitly:

202 **incoming_value_variance:** Variance of the transaction values received by the node. This metric
203 quantifies the spread or dispersion of incoming transaction amounts, providing insight into the
204 consistency or variability of funds received. **outgoing_value_variance:** Variance of the transaction
205 values sent by the node. **activity_rate:** The activity rate of a node represents the total number of
206 transactions (both incoming and outgoing) divided by the duration (in terms of blocks). It indicates
207 the frequency of interactions involving the node over a specific period. **change_in_activity:** The
208 change in activity refers to the difference in the number of transactions of the current block compared
209 to the previous block for a given node. This metric captures fluctuations or deviations in transaction
210 behavior over consecutive blocks. **time_since_last:** Time since the last transaction involving the node,
211 measured as the difference between the current block number and the block number of the node's
212 most recent transaction. It provides insights into the recency of activity associated with the node.
213 **tx_volume:** Total transaction volume associated with the node, calculated as the sum of incoming and
214 outgoing transaction values. This metric represents the overall magnitude of financial transactions
215 involving the node. **frequent_large_transfers:** Indicator variable identifying addresses engaged

216 in frequent and large transfers. Nodes meeting specific thresholds for both transaction frequency
217 and volume are flagged. **gas_price**: Additional feature relevant for MEV detection, representing the
218 gas price paid for transactions. Gas price fluctuations can signal potential MEV activities such as
219 frontrunning or transaction ordering strategies. **token_swaps**: Another feature for MEV detection,
220 indicating involvement in token swaps or trades on decentralized exchanges (DEXs). Analysis
221 of token swap transactions can reveal arbitrage opportunities or manipulative behavior by MEV
222 bots. **smart_contract_interactions**: Feature identifying transactions interacting with known DeFi
223 protocols or smart contracts. MEV bots may exploit vulnerabilities or manipulate protocol behaviors.

224 **3.2 TRW-GCN combined method to detect anomalies**

225 To apply graph convolutional layers to the blockchain data for aggregating information from neigh-
226 boring nodes and edges, we'll use the PyTorch Geometric library. This library is specifically designed
227 for graph-based data and includes various graph neural network layers, including graph convolutional
228 layers. Note that training and testing a graph neural network on Ethereum dataset would require
229 significant computational resources, as currently, the Ethereum network possesses about 20 million
230 blocks, which are connected over the Ethereum network. In this study, we provide the transaction
231 history within a specified range of 1000 blocks; we believe, adding blocks do not add any advantage.

232 In Algorithm 1, we intend to compare the anomaly detection of full- and sub-graphs (sampling
233 using TRW). The graph convolution operation combines the features of neighboring nodes to update
234 the representation of a given node. As node features, we input the 10 features indicated in 3.1 as
235 vector representation; considering 20 hidden layers, 100 epochs, $lr=0.01$, $num_walks=10$, and
236 $walk_length=100$, the resulting output vector aggregates information from all neighboring nodes.
237 By using the nodes from TRW for training, the GCN will be more attuned to the time-dependent
238 behaviors, leading to better detection of sudden spikes in transaction volume or unusual contract
239 interactions that occur in quick succession. In our experiments, we employ TRW to sample nodes
240 from the entire graph, ensuring that the graph's integrity is maintained. Here's how it can be done:

- 241 **1. Perform TRWs to Sample Nodes for Training:** The TRWs provide sequences of nodes
242 representing paths through the Ethereum network graph. Nodes appearing frequently in
243 these walks are often involved in recent temporal interactions.
- 244 **2. Train the GCN with the Sampled Nodes:** Instead of using the entire Ethereum network
245 graph for training, use nodes sampled from the TRWs. This approach tailors the GCN to
246 recognize patterns from the most temporally active parts of the Ethereum network.

247 Using the GCN with TRW combined method, one can achieve 1) Anomalies detected, 2) Training
248 efficiency, and 3) Quality of embedding. The integration of TRW with GCNs offers a novel approach
249 for generating embedding that capture both spatial and temporal patterns within the Ethereum network.
250 These embedding are vital for understanding the underlying transaction dynamics and for effectively
251 detecting anomalous activities. To evaluate the potential of the TRW-GCN methodology, we employ
252 four distinct machine learning techniques: DBSCAN, SVM, Isolation Forest (IsoForest), and Local
253 Outlier Factor (LOF). Wu et al. (12) indicated that they have obtained more than 500 million
254 Ethereum addresses and 3.8 billion transaction records. However, only 1259 addresses are labeled as
255 phishing addresses collected from EtherScamDB, which implies an extreme data imbalance as the
256 biggest obstacle for phishing detection, therefore they used unsupervised learning detection method.
257 We similarly use unsupervised learning for detection in our TRW-GCN algorithm.

258 The extensive use of these four diverse methods allows us to validate the efficacy of the TRW-GCN
259 framework. The high anomaly detection rates in Figure 1 by clustering methods underscores the
260 importance of algorithm selection. As easily observed, using the embedding generated by TRW-GCN
261 in SVM method significantly improves anomaly detection, however other methods do not show any
262 improvement in anomaly detection (averaged over 10 runs); the enhanced detection capabilities in
263 SVM could be attributed to the TRW's ability to encapsulate temporal sequences and correlations of
264 transactions. In Table 2, we compare these methods in terms of their precision, recall and F-score and
265 compare with the outcome of SVM and IsoForest methods implemented in (12) (note that this paper
266 focuses on Phishing detection in Ethereum Network, and is different from our dynamic approach in
267 temporal anomaly detection). Our models are marking many data points as anomalies; precision stays
268 relatively high, but low F-score. Algorithms like DBSCAN, LOF, Isolation Forest are unsupervised,
269 so they often overpredict if not-cluster-fit noise is high or parameter tuning is off. DBSCAN is very
270 sensitive to eps. Isolation Forest depends on contamination, and LOF is sensitive to n_neighbors.

Algorithm 1: TRW- GCN combined method to detect anomalies

Steps:

1. Load and Preprocess the graph G .
2. **For** each walk $k = 1$ to num_walks :
 - $W = \{w_k \text{ for } k \in \text{range}(1, \text{num_walks}+1) \text{ for } w_k \text{ in } \text{temporal_random_walk}(k)\}$
 - // Aggregate walks in W
3. **For** training step:
 - $F = \text{torch.stack}([\mathbf{f}(v_i) \text{ for } v_i \text{ in } V], \text{dim}=0)$
 - $A = \text{nx.to_numpy_matrix}(\text{graph}, \text{nodelist}=V)$
 - $M_{TRW}, M = \text{GCN}(\text{in_channels}, \text{hidden_channels}, \text{out_channels})$
 - $\text{train}(M_{TRW}, F, A)$ if use_TRW else $\text{train}(M, F, A)$
 - // Training using sampled-graphs
4. Apply DBSCAN, One-Class SVM, IsoForest, and LOF on embeddings from the trained GCN model M to obtain anomalies.

Algorithm 2: A Score-based anomaly detection associated with time-dependent behaviors

Steps:

1. $G' = G(V, E)$ where E has node attributes.
2. $X = [x_1, x_2, \dots, x_n]$ for $n \in V$.
3. GCNModel with layers:
 $\text{in_channels} \rightarrow \text{hidden_channels} \rightarrow \text{out_channels}$
4. $\text{TRW}(G', \text{start}, \text{length})$ returns walk W and timestamps T
5. **For** each walk $i = 1$ to num_walks :
 - $\text{All_Walks} = \bigcup_{i=1}^{\text{num_walks}} \text{TRW}(G', \text{random_node}, \text{walk_length})$
 - // Node Sampling via TRW
6. Node Frequency Computation:
 $\text{freq}(v) = \frac{\text{occurrences of } v \text{ in All_Walks}}{\text{max occurrences in All_Walk}}$ for $v \in V$.
7. Anomaly Score Computation:
 $S(v) = \frac{(\text{emb}(v)_{\text{latest}} - \mu(\text{emb}(v)))}{\sigma(\text{emb}(v))} \times \text{freq}(v)$

where emb is the node embedding, μ is the mean, and σ is the standard deviation; anomalies are detected when $S(v) > \text{threshold } \delta$.

271 It is also interesting to find out which node features mainly contribute to anomaly detection; we
 272 show this in Figure 2. As illustrated by different colors, the feature 3-6 namely `activity_rate`,
 273 `change_in_activity`, `time_since_last` (mainly the temporal features) are the drivers of frequent anomalies
 274 (with dark blue colors), while `tx_volume` and `frequent_large_transfers` (with green colors) also
 275 produce anomalies but less frequently. Although we have obtained good insights into the method
 276 effectiveness to detect time-dependent patterns and features, but we should look for more precise and
 277 less prone to error detection method.

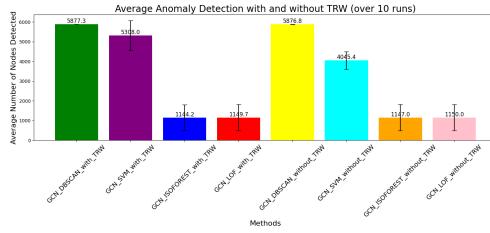


Figure 1: A comparison (mean, std) of 4 detection models namely dbscan, svm, isoforest and lof between full-graph and sub-graph with TRW sampling. Using TRW-GCN clearly improves SVM in anomaly detection; other methods do not seem to be improved.

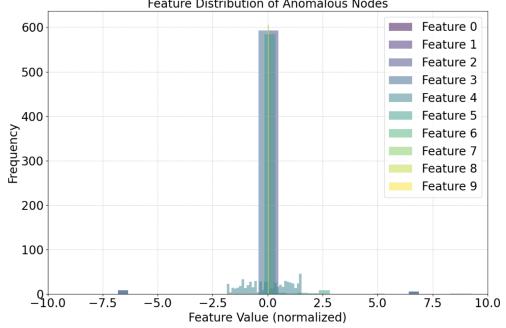


Figure 2: Feature distribution where Blue and Green colors: `activity_rate`, `change_in_activity`, and `times_since_last` show highest frequencies.

Table 2: Comparison of Precision/Recall/F-score of 4 methods with/out-TRW

Method	Prec.(w-T)	Rec.(w-T)	F-S.(w-T)	Prec.(o-T)	Rec.(o-T)	F-S.(o-T)	Prec.(12)	Rec.(12)	F-S.(12)
DBSCAN	0.799	0.485	0.604	0.799	0.485	0.604			
SVM	0.799	0.438	0.563	0.796	0.333	0.458	0.927	0.893	0.908
IsoForest	0.795	0.094	0.163	0.796	0.094	0.163	0.821	0.849	0.835
LOF	0.815	0.096	0.167	0.812	0.096	0.167			

278 **3.3 Score-based anomaly pattern**

279 While traditional methods compute anomaly scores based on the relative position or density of data
 280 points in the feature space, we need a method to be more focused on temporal dynamics, tracking
 281 the evolution of each node’s embedding over time and weighing it by the node’s frequency in the
 282 graph. To adapt the code to pick up anomalous patterns associated with time-dependent behaviors,
 283 the algorithm should be equipped to recognize such patterns. Hence, we augment the node features
 284 to capture recent activities with time features as explained in 3.1 dataset section, and after obtaining
 285 node embedding from the GCN, compute the anomaly score for each node based on its temporal
 286 behavior. The simplest way to achieve this is by computing the standard deviation of the node’s
 287 feature over time and checking if the latest data point deviates significantly from its mean. This was
 288 initially discussed in Theorem 1, with weight cancellation argument in Theorem 2.

289 We explain all the steps in Algorithm 2. Initially, we define the node features to capture recent
 290 activities. After training the GCN and obtaining the embedding, we compute an anomaly score based
 291 on how much the recent transaction volume (the latest day in our case) deviates from the mean. We
 292 then use a visualization function to display nodes with an anomaly score beyond a certain threshold
 293 (in this case, we've used a z-score threshold of 2.0 which represents roughly 95% confidence).

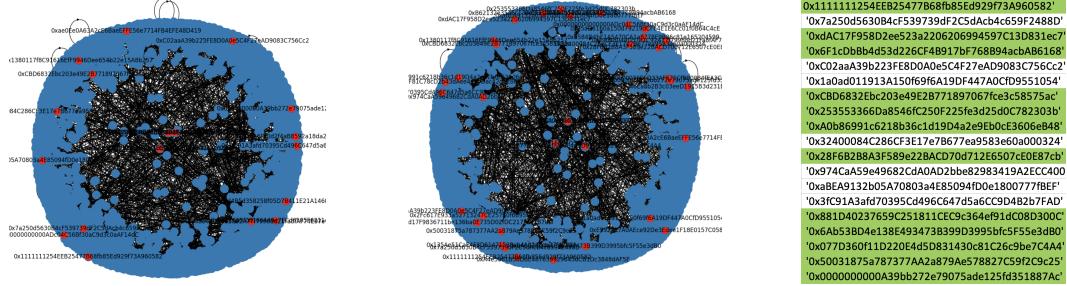


Figure 3: Anomaly detection in (left) 100 blocks with 6 features, (middle) 100 blocks with 10 features, (right) the anomalous addresses where the time-sensitive associated ones are hashed green.

294 In Figure 3, black points represent the vast majority of nodes in our specified Ethereum network
 295 dataset; they signify regular non-anomalous Ethereum addresses. Cluster of points inside and
 296 around the blue circle represent groupings of Ethereum addresses or contracts that have had frequent
 297 interactions with each other. The density or proximity of points to each other indicates how closely
 298 those addresses or contracts are related. Red points would represent the nodes that have been flagged
 299 as anomalous based on their recent behavior. The code identifies them by computing an anomaly
 300 score, and those exceeding a threshold are colored red. In the left graph, there are just 20 nodes
 301 detected as anomaly in 100 blocks where we used 6 structural features in our detection algorithm,
 302 while in the middle graph, we used 10 features to detect anomalies in the same 100 blocks, and
 303 12 more suspicious addresses are detected, hashed in green in the right figure. This signifies the
 304 importance of temporal feature selection, as by adding 4 temporal features we would be able to
 305 detect missing anomalies. We checked these addresses in Ether explorer website <https://etherscan.io> ,
 306 and found the corresponding labels such as MEV Bot, Metamask: Swap, Uniswap, Wrapped Ether,
 307 Rollbit, Blur: Bidding, which are mainly time-sensitive transactions or contracts, see next section
 308 for explanation on what is normal versus anomaly. In Table 3, we explain the types of such detected
 309 anomalies and the associated addresses. This is a proof of cross-checking with the ground-truth .

Table 3: Some types of detected anomalies

Ethereum addresses for anomalies detected from Figure 3	Ground Truth : cross-check with https://etherscan.io/
0x6F1cDbBb4d53d226CF4B917	MEV Bot; certain activities may be considered harmful
bF768B94acbAB6168	
0x3fC91A3af07095Cd496C647	Uniswap (users to swap various ERC-20 tokens)
d5a6CC9d4B2b7FAD	
0x881D40237659C251811CEC9	Metamask Swap router
c364ef91dC08D300C	
0x00000000000A39b272e79075a	Flashloan; Detecting involves transactions with large token volumes
de125fd351887Ac	

Table 4: TRW-GCN versus TGAT for eth_latest_100_block file, and z-score threshold of 2.0.

Model	Accuracy / # Anomalies detected
TRW-GCN	94.5% / 20
TGAT	85.3% / 23

3.4 Normal versus Anomaly, Baseline algorithm, Algorithm complexity, and the Ground truth

312 In Ethereum, what may be considered normal or anomalous behavior can vary depending on various
 313 factors such as market conditions, network activity, and the specific use cases of different addresses
 314 or smart contracts. Time-sensitive irregularities in Ethereum transactions refer to anomalies that
 315 occur within specific time frames or exhibit patterns that are indicative of immediate or rapid actions.
 316 These irregularities may include instances of rapid buying or selling of assets, front-running other
 317 traders, MEV activities, flash loan exploits, or token swaps executed within short time intervals.
 318 Identifying these irregularities requires analyzing transactional data in real-time or within narrow
 319 time windows to capture anomalous behaviors as they occur. See Table 5 for a list of time-sensitive
 320 items in Ethereum network including transactions, contracts, and platform activities. Our objective
 321 is to identify such instances; upon identifying suspicious transactions, our approach advocates for

322 further investigation. In Table 3, we cross-reference the transaction details with etherscan.io (which
 323 represents a source for ground truth, where one finds more information about an anomaly).

Table 5: some time sensitive items on Ethereum network and their definitions

Time sensitive items	Definitions
MEV Bot	MEV refers to the additional profit that miners can extract from the Ethereum network by reordering, censoring, or including transactions in blocks. The timing of transactions and block mining can affect the potential profit extracted by MEV bots. MEV can affect fairness and efficiency of the Ethereum network.
Metamask: Swap Uniswap	Uniswap is a decentralized exchange (DEX) protocol on Ethereum, and swaps conducted through MetaMask can be time-sensitive, especially considering the volatility of cryptocurrency prices and liquidity on Uniswap.
Flashloan	Flash loans are uncollateralized loans that must be borrowed and repaid within a single transaction block. These loans are often used for arbitrage, liquidations, or other trading strategies that require rapid execution.
Wrapped Ether (WETH)	Wrapped Ether (WETH) is an Ethereum token pegged to the value of Ether (ETH). Transactions involving WETH can be time-sensitive especially if they're related to trading, liquidity provision, or token swaps.
Token Launches and Airdrops	Token launches and airdrops often have predefined distribution schedules or timeframes during which users can claim or receive tokens.
Smart Contract Exploits	Exploiting vulnerabilities in smart contracts often requires precise timing to execute malicious transactions before vulnerabilities are patched or mitigated.

324 Similar to the papers by Wu et al. (12), Zhang et al. (16), and Feng et al. (17), as baseline algorithms
 325 for comparison, common unsupervised methods such as Isolation Forest, One-Class SVM, LOF and
 326 DBSCAN are employed. Evaluation metrics, including precision, recall, F1 score in Table 2 are
 327 utilized to assess the performance of the proposed methods. However, clustering methods report
 328 many anomalies; DBSCAN, If eps is too small, leads to many points treated as noise. LOF also
 329 depends heavily on n_neighbors, and Isolation Forest depends on contamination parameter. That is
 330 why the study further introduces a statistically-based scoring method to identify anomalous nodes.
 331 The scoring function employs different z-score thresholds of 1.0, 1.5, and 2.0 (95% confidence level).
 332 Furthermore, we compare the results obtained from our scoring method with the ground truth on
 333 etherscan.io, providing a case-by-case evaluation of detected time-sensitive anomalies in Table 3.

334 We further compare the TRW-GCN model against the state-of-the-art TGAT method. TGAT is
 335 specifically designed to incorporate temporal information through time-aware positional encodings
 336 and attention mechanisms. However, in practice, our experiments revealed significant computational
 337 and performance challenges when applying TGAT, particularly in complex, high-frequency networks
 338 such as Ethereum. TGAT's multi-head attention mechanism introduces substantial overhead due to
 339 repeated matrix multiplications and attention score computations. Additionally, its dependency on
 340 fine-grained temporal edge attributes adds complexity to both preprocessing and model execution,
 341 resulting in long training time and memory inefficiency. In contrast, TRW-GCN's use of temporal
 342 random walks allows it to construct meaningful local temporal subgraphs with controlled depth and
 343 temporal relevance, making it significantly more scalable without sacrificing temporal fidelity. From
 344 a performance standpoint, TGAT achieved an accuracy of 85.3% detecting 23 anomalies, while our
 345 TRW-GCN model — coupled with a scoring classifier — has achieved an average accuracy of 94.5%
 346 detecting 20 anomalies, see Table 4. One likely factor behind this discrepancy is TGAT's sensitivity
 347 to the temporal quality and distribution of data. In Ethereum, where transactions are bursty and user
 348 behavior is non-uniform, TGAT struggles to generalize effectively. Moreover, TGAT's reliance on
 349 explicit node identities (e.g., blockchain addresses) complicates indexing and neighborhood retrieval,
 350 especially in networks with millions of ephemeral or sparsely active nodes. TRW-GCN, in contrast,
 351 is more robust in such settings due to its walk-based sampling, which implicitly encodes temporal
 352 structure without depending on densely connected or temporally smooth interactions.

353 4 Conclusion

354 The evolution and complexity of the Ethereum network has heightened the urgency for temporal
 355 anomaly detection methods. Through our research, we've demonstrated that the combined TRW-GCN
 356 method offers a solution to this challenge. This fusion has enabled us to delve deeper into the intricate
 357 spatial-temporal patterns of Ethereum transactions, offering a refined lens for anomaly detection.
 358 We have shown the methodology usefulness by expressing and proving three distinct theorems,
 359 full empirical analysis and evaluation. While this approach is used to obtain the embedding, we
 360 have compared different clustering and scoring classification methods to obtain highest precision in
 361 anomaly detection, and verified with the ground truth found on etherscan.io. Furthermore, we have
 362 demonstrated that the TRW-GCN method improves anomaly detection versus the state-of-the-art
 363 TGAT method, also proved how probabilistic sampling improves GCN performance in Appendix B.

364 **References**

[1] B. Yu, M. Li, J. Zhang, and Z. Zhu, “3d graph convolutional networks with temporal graphs: A spatial information free framework for traffic forecasting,” 2019.

[2] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “Deep neural representation learning on dynamic graphs via self-attention networks,” in *WSDM*, 2020, pp. 519–527.

[3] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler, and C. Leiserson, “Evolvecn: Evolving graph convolutional networks for dynamic graphs,” 2019.

[4] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “Inductive representation learning on temporal graphs,” 2020, available: <https://openreview.net/forum?id=rJeW1yHYwH>.

[5] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “Dyrep: Learning representations over dynamic graphs,” 2019, available: <https://openreview.net/forum?id=HyePrhR5KX>.

[6] Y. Ma, Z. Guo, Z. Ren, E. Zhao, J. Tang, and D. Yin, “Streaming graph neural networks,” 2018.

[7] G. Nguyen, J. Lee, R. Rossi, N. Ahmed, E. Koh, and S. Kim, “Dynamic network embeddings: From random walks to temporal random walks,” in *2018 IEEE International Conference on Big Data*, 2018, pp. 1085–1092.

[8] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein, “Temporal graph networks for deep learning on dynamic graphs,” in *International Conference on Learning Representations (ICLR)*, 2020.

[9] M. Liu, K. Liang, B. Xiao, S. Zhou, W. Tu, Y. Liu, X. Yang, and X. Liu, “Self-supervised temporal graph learning with temporal and structural intensity alignment,” 2023, available: <https://arxiv.org/abs/2302.07491>.

[10] K. Xu, J. Li, S. Zhang, M. Du, K. Kawarabayashi, and S. Jegelka, “What can neural networks reason about?” 2019.

[11] S. Li, G. Gou, C. Liu, C. Hou, Z. Li, and G. Xiong, “Ttagn: Temporal transaction aggregation graph network for ethereum phishing scams detection,” in *Proceedings of the ACM Web conference 2022 (WWW '22)*. Association for Computing Machinery, 2022, pp. 661–669.

[12] J. Wu, Q. Yuan, D. Lin, W. You, W. Chen, C. Chen, and Z. Zheng, “Who are the phishers? phishing scam detection on ethereum via network embedding,” 2020, available: <https://arxiv.org/abs/1911.09259>.

[13] D. Ofori-Boateng, S. Dominguez, C. Akcora, M. Kantarcioglu, and Y. Gel, “Topological anomaly detection in dynamic multilayer blockchain networks,” in *ECML PKDD 2021: Machine Learning and Knowledge Discovery in Databases*, 2021, pp. 788–804.

[14] L. Zheng, Z. Li, J. Li, Z. Li, and J. Gao, “Addgraph: Anomaly detection in dynamic graph using attention-based temporal gcn,” in *Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)*. International Joint Conferences on Artificial Intelligence Organization, 2019, pp. 1424–1430.

[15] P. Daian and et al., “Flash boys 2.0: Frontrunning, transaction reordering, and consensus instability in decentralized exchanges,” in *IEEE symposium on security and privacy (SP)*, 2020, pp. 910–927.

[16] W. Zhang, L. Wei, S. Cheung, Y. Liu, S. Li, L. Liu, and M. Lyu, “Combatting front-running in smart contracts: Attack mining, benchmark construction and vulnerability detector evaluation,” 2023, available: <https://arxiv.org/pdf/2212.12110>.

[17] Z. Feng, Y. Li, and X. Ma, “Blockchain-oriented approach for detecting cyber-attack transactions,” *Financial Innovation*, vol. 9, no. 81, 2023.

[18] S. Behfar, R. Mortier, and J. Crowcroft, “Analysis of information propagation in ethereum network using combined graph attention network and reinforcement learning to optimize network efficiency and scalability,” in *Proceedings of the 5th Workshop on Machine Learning and Systems (EuroMLSys '25)*. ACM, 2025, pp. 238–245. [Online]. Available: <https://doi.org/10.1145/3721146.3721965>

410 **A Significant weight cancellation**

411 **Theorem 2:** Let \mathbb{R}^m be a vector space, and let $h_n \in \mathbb{R}^m$ represent a feature vector. Define a
412 temporal transformation matrix $T_{nj} \in \mathbb{R}^{m \times m}$, where each entry t_{ij} encodes the temporal weights.
413 Let $h'_n = T_{nj}h_n$ be the transformed feature vector.

414 If the transformation matrix T_{nj} exhibits symmetric or complementary weight patterns that cause
415 significant weight cancellation, the difference between the transformed and original vectors, $\|h'_n -$
416 $h_n\|_2$, will be insufficient to surpass a given anomaly detection threshold $\delta > 0$. Specifically, weight
417 cancellation occurs if:

$$\sum_{j=1}^m t_{ij}h_{nj} \approx h_{ni}, \quad \forall i \in \{1, 2, \dots, m\}. \quad (10)$$

418 **Proof:**

419 The transformed feature vector $h'_n = T_{nj}h_n$ can be expressed component-wise as:

$$h'_{ni} = \sum_{j=1}^m t_{ij}h_{nj}, \quad \forall i \in \{1, 2, \dots, m\}. \quad (11)$$

420 The Euclidean norm of the difference between the transformed and original feature vectors is given
421 by:

$$\|h'_n - h_n\|_2 = \sqrt{\sum_{i=1}^m \left(\sum_{j=1}^m t_{ij}h_{nj} - h_{ni} \right)^2}. \quad (12)$$

422 For $\|h'_n - h_n\|_2 > \delta$, the inequality must hold:

$$\sum_{i=1}^m \left(\sum_{j=1}^m t_{ij}h_{nj} - h_{ni} \right)^2 > \delta^2. \quad (13)$$

423 This implies that, for at least one i , the inner term $\sum_{j=1}^m t_{ij}h_{nj} - h_{ni}$ must be at least δ^2 . Therefore,
424 T_{nj} must introduce a significant alteration to the distribution of h_n . Weight cancellation occurs when
425 T_{nj} has structural properties that lead to minimal change in h_n . Consider the following cases:

426 - **Symmetry in T_{nj} :** If T_{nj} is symmetric ($t_{ij} = t_{ji}$) and h_n has symmetric properties, the transforma-
427 tion may yield:

$$\sum_{j=1}^m t_{ij}h_{nj} \approx h_{ni}, \quad \forall i. \quad (14)$$

428 In this scenario, the transformed feature vector h'_n closely resembles original vector h_n , leading to

$$\|h'_n - h_n\|_2 \approx 0. \quad (15)$$

429 - **Complementary Weights:** If T_{nj} contains complementary weights, such that certain entries t_{ij}
430 and t_{ik} satisfy $t_{ij} + t_{ik} = 0$, and if $h_{nj} \approx h_{nk}$, then the contributions from h_{nj} and h_{nk} cancel each
431 other out:

$$\sum_{j=1}^m t_{ij}h_{nj} \approx 0, \quad \text{for certain } i. \quad (16)$$

432 - **Spectral Properties of T_{nj} :** If T_{nj} has eigenvalues close to 1, it behaves similarly to an identity
433 matrix, resulting in $h'_n \approx h_n$. Orthogonality in rows or columns of T_{nj} may also preserve the
434 magnitude of h_n , leading to minimal changes in h'_n .

435 In scenarios where weight cancellation occurs, the transformation T_{nj} fails to introduce meaningful
436 changes to the feature vector h_n . Consequently, anomalies influenced by temporal factors may not be
437 detectable, as the difference $\|h'_n - h_n\|_2$ remains below the threshold δ .

438 B Improvement of GCN performance with probabilistic sampling

439 **Theorem 3:** Improvement of GCN performance with probabilistic sampling in the context of random
440 walk sampling.

441 Consider a simplified Ethereum transaction graph with N accounts (nodes), and M transactions (edges)
442 between them. Prove the performance improvement of a GCN in terms of loss, using probabilistic
443 sampling for the task of predicting account behaviors, considering the following assumptions:
444 1. Nodes (accounts) have features represented by vectors in a feature matrix X .
445 2. The adjacency matrix A represents transaction relationships between accounts.
446 3. Binary labels Y indicate specific account behaviors.

447 **Proof.**

448 **B.1 Traditional GCN performance**

449 Start with the definition of the normalized graph Laplacian $L = I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$, where D is the
 450 diagonal degree matrix and A is the adjacency matrix.

451 Derive the eigenvalues and eigenvectors of the Laplacian matrix L and show their significance in
 452 capturing graph structure. Derive the performance of a GCN trained on the full graph using these
 453 eigenvalues and eigenvectors:

454 Step 1: Deriving Eigenvalues and Eigenvectors of the Laplacian matrix L

455 Given the normalized graph Laplacian matrix L , let λ be an eigenvalue of L and v be the corresponding
 456 eigenvector. In the equation $Lv = \lambda v$, solving for λ and v , we get:

$$457 \quad D^{-\frac{1}{2}}AD^{-\frac{1}{2}}v = (1 - \lambda)v \quad (17)$$

$$457 \quad AD^{-\frac{1}{2}}v = (1 - \lambda)D^{\frac{1}{2}}v \quad (18)$$

458 This equation implies that $D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ is a symmetric matrix that is diagonalized by the eigenvectors
 459 v with corresponding eigenvalues $1 - \lambda$. The eigenvectors and eigenvalues of L capture the graph's
 460 structural information. Larger eigenvalues correspond to well-connected clusters of nodes in the
 461 graph, while smaller eigenvalues correspond to isolated groups or individual nodes.

462 Step 2: Deriving GCN performance using eigenvalues and eigenvectors

463 Now let's consider a scenario where we're using a GCN to predict node labels (such as predicting
 464 high-value transactions) on the full graph. The GCN's propagation rule can be written as:

$$464 \quad h^{(l+1)} = f(\hat{A}h^{(l)}W^{(l)}) \quad (19)$$

465 where $h^{(l)}$ is the node embedding matrix at layer l , f is an activation function, and $\hat{A} = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$.
 466 is the symmetrically normalized adjacency matrix, and $W^{(l)}$ is the weight matrix at layer l . The key
 467 insight is that if we stack multiple GCN layers, the propagation rule becomes:

$$467 \quad h^{(L)} = f(\hat{A}h^{(L-1)}W^{(L-1)}) \\ = f(\hat{A}f(\hat{A}h^{(L-2)}W^{(L-2)})W^{(L-1)}) \dots \quad (20)$$

468 We can simplify this as:

$$469 \quad h^{(L)} = f\left(\hat{A}^{(L)}h^{(0)}W^{(0)} \prod_{l=1}^{L-1} W^{(l)}\right) \quad (21)$$

470 Using the spectral graph theory, we know that $\hat{A}^{(L)}$ captures information about the graph's structure
 471 up to L -length paths. The eigenvalues and eigenvectors of $\hat{A}^{(L)}$ indicate the influence of different
 472 sampled-graphs of length L on the node embeddings.

472 **B.2 Probabilistic Sampling Approach**

473 In this step, we'll introduce a probabilistic sampling strategy to select a subset of nodes and their
 474 associated transactions. This strategy aims to prioritize nodes with certain characteristics or properties,
 475 such as high transaction activity or potential involvement in high-value transactions. Assign a
 476 probability p_i to each node i based on certain characteristics. For example, nodes with higher
 477 transaction activity, larger balances, or more connections might be assigned higher probabilities.
 478 For each node i , perform a random sampling with probability p_i to determine whether the node is
 479 included in the sampled subset. Consider a graph with N nodes represented as $N = \{1, 2, \dots, N\}$.
 480 Each node i has associated characteristics described by a feature vector $\mathbf{X}_i = [X_{i,1}, X_{i,2}, \dots, X_{i,k}]$,
 481 where K is the number of characteristics. Define the probability p_i for node i as a function of its
 482 feature vector \mathbf{X}_i : $p_i = f(\mathbf{X}_i)$. Here, $f(\cdot)$ is a function that captures how the characteristics of node
 483 i are transformed into a probability. The specific form of $f(\cdot)$ depends on the characteristics and the
 484 desired probabilistic behavior. For example, $f(\mathbf{X}_i)$ could be defined as a linear combination of the
 485 elements in \mathbf{X}_i :

$$486 \quad p_i = \sum_{j=1}^K \omega_j X_{i,j} \quad (22)$$

486 Where ω_j are weights associated with each characteristic. The weights ω_j can be used to emphasize
 487 or downplay the importance of specific characteristics in determining the probability. After obtaining
 488 p_i values for all nodes, normalize them to ensure they sum up to 1. Nodes with higher normalized
 489 probabilities are more likely to be included in the sampled subset.

$$p_{\text{normalized}} = \frac{p_i}{\sum_{j=1}^N p_j} \quad (23)$$

490 B.3 Graph Laplacian for Sampled Graph

491 Given the sampled adjacency matrix \hat{A}_{sampled} , we want to derive the graph Laplacian \hat{L}_{sampled} for the
 492 sampled graph. The graph Laplacian \hat{L}_{sampled} is given by:

$$\hat{L}_{\text{sampled}} = I - \hat{D}_{\text{sampled}}^{-\frac{1}{2}} \hat{A}_{\text{sampled}} \hat{D}_{\text{sampled}}^{-\frac{1}{2}} \quad (24)$$

493 Where \hat{D}_{sampled} is the diagonal degree matrix of the sampled graph, where each entry d_{ii} corresponds
 494 to the degree of node i in the sampled graph, and \hat{A}_{sampled} is the sampled adjacency matrix.

$$d_{ii} = \sum_{j=1}^{N_{\text{sampled}}} \hat{A}_{\text{sampled},ij} \quad (25)$$

495 The modified Laplacian captures the structural properties of the sampled graph and is essential for
 496 understanding its graph-based properties. As eigenvalues of the sampled graph, we derive

$$\hat{L}_{\text{sampled}} = I - \hat{D}_{\text{sampled}}^{-\frac{1}{2}} \hat{A}_{\text{sampled}} \hat{D}_{\text{sampled}}^{-\frac{1}{2}} \quad (26)$$

497 as the normalized graph Laplacian for the sampled graph. Let $\hat{\lambda}_i$ be the i -th eigenvalue of \hat{L}_{sampled}
 498 and \hat{v}_i be the corresponding eigenvector. We have

$$\hat{L}_{\text{sampled}} \hat{v}_i = \hat{\lambda}_i \hat{v}_i \quad (27)$$

499 The goal is to compare the eigenvalues of L with the eigenvalues of \hat{L}_{sampled} and show convergence
 500 under certain conditions. As the sample size N_{sampled} approaches the total number of nodes N in the
 501 original graph, \hat{L}_{sampled} converges to L . Eigenvalues of \hat{L}_{sampled} converge to the eigenvalues of L .

502 B.4 Impact on GCN Performance

503 To demonstrate that the performance E_{sampled} of a GCN on a sampled graph, is greater than or equal
 504 to the performance E_{full} on the full graph, we use two approaches:

505 1. Reduction of Noise and Retention of Structural Information

506 The total loss \mathcal{L} of a GCN can be expressed as:

$$\mathcal{L}(h) = \mathcal{L}_{\text{train}}(h) + \mathcal{E}(h) \quad (28)$$

507 where:

- 508 • $\mathcal{L}_{\text{train}}(h)$: Loss on the training set.
- 509 • $\mathcal{E}(h)$: Generalization error (e.g., noise or overfitting effects).

510 For the sampled graph G_{sampled} , the loss becomes:

$$\mathcal{L}(h_{\text{sampled}}) = \mathcal{L}_{\text{train}}(h_{\text{sampled}}) + \mathcal{E}(h_{\text{sampled}}) \quad (29)$$

511 Probabilistic sampling prioritizes nodes with higher relevance (e.g., higher degree or centrality) by
 512 assigning sampling probabilities p_i :

$$p_i = f(X_i), \quad p_{\text{normalized}} = \frac{p_i}{\sum_j p_j} \quad (30)$$

513 where X_i represents node features. By emphasizing relevant nodes, noise is reduced, and:

$$\mathcal{E}(h_{\text{sampled}}) < \mathcal{E}(h) \quad (31)$$

514 Thus, the total loss on the sampled graph satisfies:

$$\mathcal{L}(h_{\text{sampled}}) < \mathcal{L}(h) \quad (32)$$

515 2. Reduction in Computational Complexity and Faster Convergence

516 The computational complexity of a GCN is:

$$\mathcal{O}(L \cdot (N + M) \cdot d^2) \quad (33)$$

517 where N is the number of nodes, M is the number of edges, L is the number of layers, and d is the
518 embedding dimension. For the sampled graph G_{sampled} , the complexity reduces to:

$$\mathcal{O}(L \cdot (N_{\text{sampled}} + M_{\text{sampled}}) \cdot d^2) \quad (34)$$

519 Since $N_{\text{sampled}} \ll N$ and $M_{\text{sampled}} \ll M$, the sampled graph enables faster convergence. Let the
520 convergence rate R be inversely proportional to the size of the graph:

$$R(G_{\text{sampled}}) > R(G) \quad (35)$$

521 Thus, the sampled graph converges faster and reaches a better minimum of the loss function:

$$\mathcal{L}(h_{\text{sampled}}) \text{ decreases faster compared to } \mathcal{L}(h) \quad (36)$$

522 Given the reduced noise, retention of structural information, and faster convergence, probabilistic
523 sampling ensures that:

$$E_{\text{sampled}} > E_{\text{full}} \quad (37)$$

524 B.5 How TRW impacts on GCN performance as compared to traditional sampling

525 Let's delve into empirical justification on why TRW sampling could enhance the performance of
526 GCNs, especially in temporal networks like Ethereum. For a detailed mathematical proof on the
527 probabilistic sampling in GCN, you are invited to read appendix B1-B4. One issue with traditional
528 random walks is the potential for creating "jumps" between temporally distant nodes, breaking the
529 temporal consistency. GCNs rely on the local aggregation of information, and since TRW promotes
530 smoother temporal signals, GCNs can potentially learn better node representations. Temporal
531 consistency ensures that the sequences are logically and temporally ordered. This can be crucial for
532 predicting future events or understanding time-evolving patterns, making GCNs more reliable. We
533 compare different GCN models (including graphSAGE and graph attention network GAT model) for
534 fullgraph, and sampled-graph with traditional and temporal random walk in Figure 4. Although one
535 sees little difference between the accuracy of the fullgraph and the sampled-graph in graphSAGE and
536 GAT models (18), one can see that traditional random walk and temporal random walk improve GCN
537 accuracy, where TRW shows even further improvement than the traditional random walk.

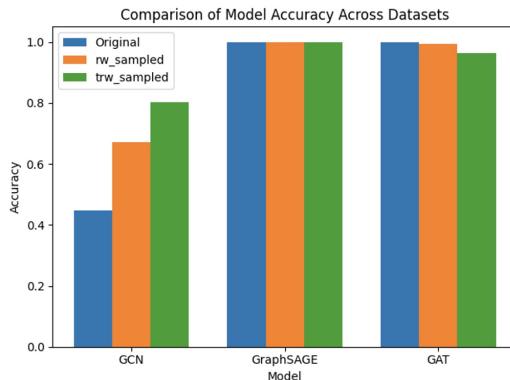


Figure 4: Comparison of fullgraph, traditional RW and TRW-based on sampled graph in 100 blocks.

538 **C Checklist Responses**

- 539 **Claims:** *Yes.* The abstract and introduction reflect the contributions of the paper. TRW-GCN
540 is proposed as a domain-specific temporal GCN variant tailored to Ethereum transaction
541 networks. The use of probabilistic temporal walks and their effect on anomaly detection are
542 experimentally demonstrated. The paper acknowledges that the model is not intended as a
543 general-purpose method, and the scope is clearly limited to complex blockchain structures.
- 544 **Limitations:** *Yes.* Limitations are discussed in the text. Notably, the model is tailored to
545 Ethereum-like graphs and may not generalize to all temporal graph domains. Limitations
546 in comparison scope (e.g., AddGraph, TGAT) and reliance on temporal features that may
547 be noisy are acknowledged. We also observed that TGAT results in higher computational
548 costs, primarily due to its multi-head attention mechanism, which involves multiple passes
549 of matrix multiplications and attention score computations. Furthermore, TGAT’s reliance
550 on temporal edge attributes added another layer of complexity, further increasing the
551 computational burden.
- 552 **Theory, Assumptions and Proofs:** *Yes.* We provided all theoretical claims, stated all
553 assumptions clearly before theorem statements, and provided formal proofs either in the
554 main paper or appendix.
- 555 **Experimental Result Reproducibility:** *Yes.* Both data and code are attached at submission
556 which also explains how to obtain the paper results.
- 557 **Open Access to Data and Code:** *Yes.* Full Ethereum dataset is publicly avail-
558 able; nevertheless, we provide our created dataset and the code in the github link
559 <https://github.com/stefankam/temporal-spacial-anomaly-detection>, which is anonymized.
- 560 **Experimental Setting/Details:** *Yes.* Full training and testing splits, model hyperparameters,
561 walk lengths, and walk counts are provided in the text. Comparisons with TGAT and other
562 unsupervised methods (e.g., SVM, ISOForest) are described.
- 563 **Experiment Statistical Significance:** *Yes.* The scoring method is based on z-score thresh-
564 olds (1.0, 1.5, 2.0), corresponding to standard confidence levels (e.g., 95%). The reported
565 precision/recall/f1 are averaged over multiple thresholds and visualized. Confidence intervals
566 are also included in Figure 1.
- 567 **Experiments Compute Resource:** *Yes.* Experiments were run on our department server
568 running Linux equipped with a single GPU (NVIDIA A100 80GB PCIe), and 251Gi RAM..
- 569 **Code of Ethics:** *Yes.* The research conforms to NeurIPS Code of Ethics. No human or
570 sensitive data was used. All datasets are public and open.
- 571 **Broader Impacts:** *Yes.* The paper discusses anomaly detection and classification systems.
572 Limitations of false positives are acknowledged specially in the clustering methods like
573 dbscan which demonstrate high number of anomalies’ detection. Future work could help
574 mitigate misclassification risks, and further automation.
- 575 **Safeguards:** *N/A.* No pretrained models with dual-use risks are released. The framework is
576 domain-specific and does not apply to general-purpose generative tasks.
- 577 **Licenses:** *Yes.* Ethereum transaction data is public and under open access. All reused
578 datasets (e.g., etherscan.io) are cited appropriately. Libraries used include PyTorch Geomet-
579 ric (MIT License).
- 580 **Assets:** *No.* While no new datasets are introduced, the model artifacts and scripts will be
581 documented and released.
- 582 **Crowdsourcing and Research with Human Subjects:** *N/A.* No human data or crowdsourc-
583 ing was involved.
- 584 **IRB Approvals:** *N/A.* Not applicable as no human or user-generated content was analyzed.
- 585 **Declaration of LLM Usage:** *Yes.* LLMs (e.g., ChatGPT) were used only for editing
586 and understanding of some technical concepts. They did not influence model design or
587 methodology.