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Abstract

In structured output prediction, the goal is to jointly
predict several output variables that together en-
code a structured object — a path in a graph, an
entity-relation triple, or an ordering of objects.
Such a large output space makes learning hard
and requires vast amounts of labeled data. Differ-
ent approaches leverage alternate sources of su-
pervision. One approach — entropy regularization —
posits that decision boundaries should lie in low-
probability regions. It extracts supervision from
unlabeled examples, but remains agnostic to the
structure of the output space. Conversely, neuro-
symbolic approaches exploit the knowledge that
not every prediction corresponds to a valid struc-
ture in the output space. Yet, they do not further re-
strict the learned output distribution. This paper in-
troduces a framework that unifies both approaches.
We propose a loss, neuro-symbolic entropy regular-
ization, that encourages the model to confidently
predict a valid object. It is obtained by restricting
entropy regularization to the distribution over only
the valid structures. This loss can be computed effi-
ciently when the output constraint is expressed as a
tractable logic circuit. Moreover, it seamlessly inte-
grates with other neuro-symbolic losses that elimi-
nate invalid predictions. We demonstrate the effi-
cacy of our approach on a series of semi-supervised
and fully-supervised structured-prediction experi-
ments, where it leads to models whose predictions
are more accurate as well as more likely to be valid.

1 INTRODUCTION

Neural networks have achieved breakthroughs across a wide
range of domains. Such breakthroughs are often only possi-
ble in the presence of large labeled datasets, which can be

hard to obtain. Increasing efforts are therefore being devoted
to approaches that utilize alternate sources of supervision in
lieu of more labeled data. Entropy regularization constitutes
one such approach [Grandvalet and Bengio), |2005, |Chapelle
et al.,[2010]. It posits that data belonging to the same class
tend to form discrete clusters. Minimizing the entropy of the
predictive distribution can thus be regarded as minimizing a
measure of class overlap under the learned representation.
Intuitively, a classifier guessing uniformly at random has
maximum entropy and has not learned features that are in-
formative of the underlying class. Consequently, we prefer
a minimum entropy classifier that learns features maximally
informative of the underlying class, even on unlabeled data.

The need for labeled data is only exacerbated in structured
prediction, where the objective is to predict multiple inter-
dependent output variables representing a discrete object.
Viewed as traditional classification, the number of classes
in structured prediction is exponential in the number of
output variables — all possible output configurations. Neuro-
symbolic methods can provide additional supervision, lever-
aging symbolic knowledge regarding the structure of the out-
put space [[De Raedt et al.l 2020]. This knowledge, typically
expressed in logic, characterizes the set of valid structures;
for instance, a path in a graph is a series of connected edges
commencing at the source and terminating at the destination.

In this paper, we take a principled approach to unifying the
aforementioned forms of supervision. Naively, we might
consider simply optimizing both losses simultaneously.
However, computed in that manner, entropy regularization
does not account for the structure of the output space and is
therefore likely to push the network towards invalid struc-
tures. Instead, we restrict the entropy loss to the network’s
distribution over the valid structures, as characterized by the
constraint, as opposed to the entire predictive distribution,
proposing neuro-symbolic entropy regularization. That is,
we require that the network’s output distribution be max-
imally informative of the target subject to the constraint.
Intuitively, the network should “know” the right structure
among the valid structures. Computing the entropy of a
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distribution subject to a constraint is, in general, computa-
tionally hard. We provide an algorithm leveraging structural
properties of tractable logical circuits to efficiently compute
this quantity. Our framework integrates seamlessly with
other neuro-symbolic approaches that maximize the con-
straint probability, in effect “eliminating” invalid structures.

Empirically, we evaluate our loss on four structured pre-
diction tasks, in both semi-supervised and fully-supervised
settings. We observe it leads to models whose predictions
are more accurate, and more likely to satisfy the constraint.

Organization This paper is structured as follows. We
start by introducing the notation and background assumed
throughout the paper. Section [2] motivates, and formally
defines, our neuro-symbolic entropy loss. Section [3 de-
rives an algorithm that exploits certain structural proper-
ties of logical circuits that enable the efficient computa-
tion of our loss. Section [] illustrates our algorithm on a
toy constraint, where the probability and neuro-symbolic
entropy computations are made explicit. Section [5| empir-
ically validates our proposed approach on tasks in both
semi-supervised and fully-supervised settings. Section [6]
reviews, and draws connections to the the neuro-symbolic
and the semi-supervised literatures. We step through an
example compiling a logical formula in Section [A] and
conclude in Section [7} Our code can be found at https
//github.com/UCLA-StarAI/NeSyEntropyh

2 NEURO-SYMBOLIC ENTROPY LOSS

We first introduce background on logical constraints and
probability distributions over output structures. Afterwards,
we motivate and define our neuro-symbolic entropy loss.

2.1 BACKGROUND

We write uppercase letters (X, Y) for Boolean variables
and lowercase letters (x, y) for their instantiation (Y = 0
or Y = 1). Sets of variables are written in bold uppercase
(X, Y), and their joint instantiation in bold lowercase (x,
y). A literal is a variable (Y") or its negation (—Y). A logical
sentence (« or 3) is constructed from variables and logical
connectives (A, V, etc.), and is also called a (logical) formula
or constraint. A state or world y is an instantiation to all
variables Y. A state y satisfies a sentence «, denoted y = «,
if the sentence evaluates to true in that world. A state y that
satisfies a sentence « is also said to be a model of ov. We
denote by m(«) the set of all models of «. The notation
for states y is used to refer to an assignment, the logical
sentence enforcing the assignment, or the binary output
vector capturing the assignment, as these are all equivalent
notions. A sentence « entails another sentence /3, denoted
a | B, if all worlds that satisfy « also satisfy /3.

A Probability Distribution over Possible Structures Let
« be a logical sentence defined over Boolean variables Y =
{Y1,...,Y,}. Let p be a vector of probabilities for the same
variables Y, where p; denotes the predicted probability of
variable Y; and corresponds to a single output of the neural
network. The neural network’s outputs induce a probability
distribution P(-) over all possible states y of Y:

Py)= [[ » JI 1-po). (1)

wyEY;  wyE-Y;

Semantic Loss The semantic loss [Xu et al., [ 2018]] is a
function of the logical constraint o and a probability vec-
tor p. It quantifies how close the neural network comes to
satisfying the constraint by computing the probability of
the constraint under the distribution P(+) induced by p. It
does so by reducing the problem of probability computa-
tion to weighted model counting (WMC): summing up the
models of «, each weighted by its likelihood under P(+). It,
therefore, maximizes the probability mass allocated by the
network to the models of «

Eyp [y Fa}] = > P(y). 2)

YEa

Taking the negative logarithm recovers semantic loss. We
make use of semantic loss in our experiments to "eliminate"
invalid structures under the neural network’s distribution.

2.2 MOTIVATION AND DEFINITION

Consider the plots in Figure [I| For any given data point
x, the neural network can be fairly uncertain regarding the
target class, accommodating for both valid and invalid struc-
tured predictions under its predicted distribution.

A common underlying assumption in many machine learn-
ing methods is that data belonging to the same class tend to
form discrete clusters [Chapelle et al.l 2010] — an assump-
tion deemed justified on the sheer basis of the existence
of classes. Consequently, a classifier is expected to favor
decision boundaries lying in regions of low data density, sep-
arating the clusters. Entropy-regularization [Grandvalet and
Bengiol 2005]] directly implements the above assumption,
requiring that the classifier output confident — low-entropy
— predictive distributions, pushing the decision boundary
away from unlabeled points, thereby supplementing scarce
labeled data with abundant unlabeled data. Seen through
that lens, minimizing the entropy of the predictive distri-
bution can be regarded as minimizing a measure of class
overlap as a function of the features learned by the network.

Entropy regularization, however, remains agnostic to the un-
derlying domain, failing to exploit situations where we have
knowledge characterizing valid predictions in the domain.
Therefore, it can often be detrimental to a model’s perfor-
mance, causing it to grow confident in invalid predictions.
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Figure 1: A network’s predictive distribution can be uncer-
tain or certain (<), and it can allow or disallow invalid
predictions under the constraint « (J). Entropy regulariza-
tion steers the network towards confident, possibly invalid
predictions (b). Neuro-symbolic learning steers the network
towards valid predictions without necessarily being confi-
dent (c). Neuro-symbolic entropy-regularization guides the
network to valid and confident predictions (d).

Conversely, neuro-symbolic approaches steer the network
towards distributions disallowing invalid predictions, by
maximizing the constraint probability, but do little to ensure
the network learn features conducive to classification.

Clearly then, there is a benefit to combining the merits of
both approaches. We restrict the entropy computation to the
distribution over models of the logical formula, ensuring
the network only grow confident in valid predictions. Com-
plemented with maximizing the constraint probability, the
network learns to allocate all of its mass to models of the
constraint, while being maximally informative of the target.

Defining the Loss More precisely, let Y be a random
variable distributed according to Equation|If Y ~ P. We
are interested in minimizing the entropy of Y conditioned
on the constraint o

H(Y|a) = - > P(yla)logP(y|a)
yEa 3)
~ By, logP(Y]a)].

Algorithm 1 ENT(c, P, ¢)
Input: a smooth, deterministic and decomposable logical
circuit ¢, a fully-factorized probability distribution P(-) over

states of «, and a cache ¢ for memoization
Output: H(Y|«a), where Y ~ P()

1: if & € c then return c(«)

2: if « is a literal then

3 e« 0

4: else if o is an AND gate then

5: e+ ENT(S,P,c) + ENT(~, P, c)

6: else if o is an OR gate then

7 e« MY P(B;) log P(8;)+ P(B;) ENT(5;, P, c)
8: cla) e

9: return e

3 COMPUTING THE LOSS

The above loss is, in general, hard to compute. To see this,
consider the uniform distribution over models of a con-
straint «v. That is, let P(y|«) = |m(a)| for all y = «. Then,
H(Y]a) ==3y, |m(1a)| log ‘m(a i = log|m(a)|. This
tells us how many models of « there are, which is a well-
known #P-hard problem [Valiant, [1979alb]]. We will show
that, through compilation into tractable circuits, we can
compute Equation [3]in time linear in the size of the circuit.

3.1 COMPUTATION THROUGH COMPILATION

Tractable Circuit Compilation We resort to knowledge
compilation techniques — a class of methods that transform,
or compile, a logical theory into a target form with cer-
tain properties that allow certain probabilistic queries to be
answered efficiently. More precisely, we know of circuit
languages that compute the probability of constraints [Dar{
wiche} |2003]], and that are amenable to backpropagation. We
use the circuit compilation techniques in [Darwiche[2011]]
to build a logical circuit representing our constraint. Due
to the structural properties of this circuit form, we can use
it to compute both the probability of the constraint as well
as its gradients with respect to the network’s weights, in
time linear in the size of the circuit [Darwiche and Marquis),
2002]. This does not, in general, escape the complexity of
the computation: worst case, the compiled circuit can be
exponential in the size of the constraint. In practice, how-
ever, constraints often exhibit enough structure (repeated
sub-problems) to make compilation feasible. We refer to
Section[A]for an illustrative example of such a compilation.

Logical Circuits More formally, a logical circuit is a
directed, acyclic computational graph representing a log-
ical formula. Each node 7 in the DAG encodes a logical
sub-formula, denoted [n]. Each inner node in the graph is
either an AND or an OR gate, and each leaf node encodes
a Boolean literal (Y or —Y"). We denote by in(n) the set of



n’s children, that is, the operands of its logical gate.

Structural Properties As already alluded to, circuits en-
able the tractable computation of certain classes of queries
over encoded functions granted that a set of structural prop-
erties are enforced. We explicate such properties below.

A circuit is decomposable if the inputs of every AND gate
depend on disjoint sets of variables i.e. for o = § A 7,
vars(3) N vars(y) = @. Intuitively, decomposable AND
nodes encode local factorizations of the function. For the
sake of simplicity, we assume that decomposable AND gates
always have two inputs, a condition that can be enforced
on any circuit in exchange for a polynomial increase in its
size [Vergari et al., 2015| |Peharz et al., [2020]].

A second useful property is smoothness. A circuit is smooth
if the children of every OR gate depend on the same set
of variables i.e. for & = \/, f;, we have that vars(3;) =
vars(f3;) Vi, j. Decomposability and smoothness are a suffi-
cient and necessary condition for tractable integration over
arbitrary sets of variables in a single pass, as they allow
larger integrals to decompose into smaller ones [Choi et al.,
2020].

Lastly, a circuit is said to be deterministic if, for any input,
at most one child of every OR node has a non-zero output
i.e. fora =/, 5;, we have that 5; A 5; = L forall i # j.
Figure 2] shows an example of smooth, decomposable and
deterministic circuit.

3.2 ALGORITHM

Let o be a smooth, deterministic and decomposable logi-
cal circuit encoding our constraint, defined over Boolean
variables Y = {Y7,...,Y,}. We now show that we can
compute the constrained entropy in Equation [3|in time lin-
ear in the size of . The key insight is that, using circuits, we
are able to efficiently decompose an expectation with respect
to a fully-factorized distribution by alternately splitting the
query variables and the support of the distribution until we
reach the leaves of the circuit, which are simple literals. In
what follows, in a slight abuse of notation for brevity, all
unconditional probabilities are implicitly conditioned on
constraint «; that is we redefine P(-) as P(-|«).

3.2.1 Base Case: « is a literal

When « is a literal, « = Y; or « = Y, we have that

1{y; &= [o]}, and
— P(yila) log P(y;|a) = 0.

P(yila) =
H(yila) =

Intuitively, a literal has no uncertainty associated with it.

3.2.2 Recursive Case: « is a conjunction

When « is a conjunction, decomposability enables us to
write

= P(y118)

as it decomposes « into two independent constraints 3 and +,
and y into two independent assignments y; and yo. The
neuro-symbolic entropy —Evy |, [log P(Y|a)] is then

P(y|a) P(y2|v), where vars(5)nvars(y) = @

~Eivixa}a [log P(Y1]5) + log P(Yzlv)}
~[Bv,15 (108 P(Y118)] + By, [logP(Yal)] |

That is, the entropy given a decomposable conjunction « is
the sum of entropies given the conjuncts of a.

3.2.3 Recursive Case: « is a disjunction

When « is a smooth and deterministic disjunction, we have

that o = \/l Bi, where the ;s are mutually exclusive, and
therefore partition «e. Consequently, we have that

P(yla) = ZP Bi) -

The neuro-symbolic entropy decomposes as well:

> P(yle) log P(yla)

P(y|B:).

— Eyja [logP(Y[e)] = —

yEa
=-Y" 3 P(B)P(y|B:)log [ZP(@) P(ylﬁj)}
yla i J
==Y Y PB)PyIB)y E Bl
yla i

log [ZP 85) P18y = 3],

where by determinism, we have that, for any y such that

yE&yEpB = y B foralli# j. In other words,
any state that satisfies the constraint « satisfies one and only

one of its terms, and therefore, the above expression equals

= > Y P(B) Pyl log [ P(8:) P18 Iy = 5]
yEa i

I

i yEB

P(y8;)log | P(8,) P(y5)]

Further simplifying the expression, expanding the logarithm,
and using the fact that probability sums to 1 yields

= —ZP(Bi)logP(ﬂi) Z P(y[B:)

YEB:

P(8:) > P(y|si) log P(y]5;)
Y':ﬁi
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Figure 2: For a given data point, the network (middle) out-
puts a distribution over classes A, B and C, highlighted
in blue, green and red, respectively. The circuit encodes
the constraint (A A B) = C. For each leaf node [, we
plug in P(I) and 1 — P(!) for positive and negative literals,
respectively. The computation proceeds bottom-up, taking
products at AND gates and summations at OR gates. The
value accumulated at the root of the circuit (left) is the proba-
bility allocated by the network to the constraint. The weights
accumulated on edges from OR gates to their children are
of special significance: OR nodes induce a partitioning of
the distribution’s support, and the weights correspond to the
mass allocated by the network to each mutually-exclusive
event. Complemented with a second upward pass, where the
entropy of an OR node is the entropy of the distribution over
its children plus the expected entropy of its children, and
the entropy of an AND node is the product of its children’s
entropies, we get the entropy of the distribution over the con-
straint’s models — the neuro-symbolic entropy regularization
loss (right).

= — Y P(B)log P(B) + P(8)Exys, [ log PY|5)].

That is, the entropy of the random variable Y conditioned on
a disjunction « is the sum of the entropy of the distribution
induced on the children of «, and the average entropy of its
children. The full algorithm is illustrated in Algorithm [I]

4 ANILLUSTRATIVE EXAMPLE

Consider Figure [2| Given a data point, the neural network
defines a distribution over Boolean random variables A, B,
and C, where P(A) = pp and P(—A) = 1—pg, P(B) = p1
and P(—=B) = 1—py, etc. The circuit encodes the constraint
(AAB) = C. To compute the the probability of the
constraint under the network’s distribution, we feed the prob-
abilities into the circuit, proceeding in a bottom-up fashion,
taking products at AND gates and summations at OR gates,
accumulating intermediate computations on the edges of

the circuit. The value accumulated at the root of the circuit
is the probability mass allocated by the network to models
of the formula, and corresponds to the probability of the
constraint under the network’s distribution — this is exactly
the semantic loss, up to a negative logarithm. The weights
accumulated on edges from OR gates to their children are
of special significance: OR nodes induce a partitioning of
the distribution’s support, and the weights correspond to the
mass allocated by the network to each mutually-exclusive
event. Complemented with another upward pass, where the
entropy of every OR node is the entropy of the distribution
over it’s children plus the expected entropy of its children,
and the entropy of every AND node is the product of its chil-
dren’s entropies, we calculate the entropy of the distribution
over models of the constraint — this is exactly the neuro-
symbolic entropy regularization. Therefore, performing two
upward sweeps of the circuit, we are able to compute the
neuro-symbolic entropy regularization and the semantic loss

S5 EXPERIMENTAL EVALUATION

In this section we set out to empirically test our neuro-
symbolic entropy loss. To that end, we devise a series of
semi-supervised and fully-supervised structured prediction
experiments. Such are settings where, contrary to the their
dominant use, classifiers are expected to predict structured
objects rather than scalar, discrete or real values. Such ob-
jects are defined in terms of constraints: a set of rules charac-
terizing the set of solutions. We aim to answer the following:

1. Does entropy regularization, in general, lead to predic-
tive models with improved generalization capabilities?

2. If the answer to the above question is in the positive, it
is our expectation that restricting the distribution acted
upon by entropy regularization to that over just the
models of the constraint might seem more sensible as
compared to entropy-regularizing the entire predictive
distribution—including non-models of the constraint.
Do experiments corroborate such a hypothesis?

3. Finally, entropy regularization can be interpreted as
clustering the different classes, and has intimate con-
nections to transductive Support Vector Machines
[Chapelle et al., [2010]. Does such an interpretation
carry over to models and non-models of the constraint?
Put differently, can we expect entropy-regularized pre-
dictive models to better conform to our constraints,
measured by the percentage of predictions satisfying
the constraint regardless of matching the groundtruth.

5.1 SEMI-SUPERVISED: ENTITY-RELATION
EXTRACTION

We begin by testing our research questions in the semi-
supervised setting. Here the model is presented with only



Table 1: Experimental results for entity-relation extraction on ACEO5 and SciERC. #Labels indicates the number of
labeled data points available to the network per relation. The remaining training set is stripped of labels and utilized in an
unsupervised manner. We report the F1-score where a prediction is correct if the relation and its entities are correct.

# Labels 3 \ 5 \ 10 \ 15 \ 25 \ 50 \ 75
Baseline 492+ 1.12 | 724 £1.75 | 13.66 + 0.18 | 15.07 + 1.79 | 21.65 & 3.41 | 28.96 £ 0.98 | 33.02 = 1.17
- Self-training ~ 7.72+ 1.21 | 12.83 +£2.97 | 16.22 +3.08 | 17.55 + 1.41 | 27.00 + 3.66 | 32.90 + 1.71 | 37.15 + 1.42
3 Product t-norm  8.89 £5.09 | 14.52 +£2.13 | 19.22 £ 5.81 | 21.80 £ 7.67 | 30.15 £ 1.01 | 34.12 £ 2.75 | 37.35 £ 2.53
2 Semantic Loss ~ 12.00 + 3.81 | 14.92 + 3.14 | 22.23 + 3.64 | 27.35 + 3.10 | 30.78 + 0.68 | 36.76 + 1.40 | 38.49 + 1.74
+ Full Entropy ~ 14.80 £ 3.70 | 15.78 £ 1.90 | 23.34 £ 4.07 | 28.09 + 1.46 | 31.13 £ 2.26 | 36.05 £ 1.00 | 39.39 + 1.21
+NeSy Entropy 14.72 & 1.57 | 18.38 & 2.50 | 26.41 = 0.49 | 31.17 £ 1.68 | 35.85 £ 0.75 | 37.62 + 2.17 | 41.28 + 0.46
Baseline 2714+ 1.10 | 2.944+1.00 | 349+ 1.80 | 3.56 +1.10 | 8.83 4+ 1.00 | 12.32 £ 3.00 | 12.49 + 2.60
O Self-training 356+ 140 | 3.04£090 | 4.14+£2.60 | 3.73+£1.10 | 9.44£3.80 | 14.82 £ 1.20 | 13.79 £ 3.90
& Product t-norm  6.50 £2.00 | 8.86 £ 1.20 | 10.92 + 1.60 | 13.38 £ 0.70 | 13.83 +2.90 | 19.20 + 1.70 | 19.54 + 1.70
2 Semantic Loss ~ 6.47 & 1.02 | 931 £0.76 | 11.50 + 1.53 | 12.97 + 2.86 | 14.07 + 2.33 | 20.47 +2.50 | 23.72 4 0.38
+Full Entropy 626+ 1.21 | 849 £0.85 | 11.12+£1.22 [ 14.10 £2.79 | 17.25 £ 2.75 | 22.42 + 0.43 | 24.37 + 1.62
+NeSy Entropy  6.19 +2.40 | 8.11 £3.66 | 13.17 & 1.08 | 15.47 £2.19 | 17.45 + 1.52 | 22.14 + 1.46 | 25.11 & 1.03

a portion of the labeled training set, with the rest used ex-
clusively in an unsupervised manner by the respective ap-
proaches.

We make use of the natural ontology of entity types and
their relations present when dealing with relational data.
This defines a set of relations and their permissible argu-
ment types. As is with all of our constraints, we express the
aforementioned ontology in the language of Boolean logic.

Our approach to recognizing the named entities and their
pairwise relations is most similar toZhong and Chen|[2020].
Contextual embeddings are first procured for every token in
the sentence. These are then fed into a named entity recog-
nition module that outputs a vector of per-class probability
for every entity. A classifier then classifies the concatenated
contextual embeddings and entity predictions into a relation.

We employ two entity-relation extraction datasets, the Auto-
matic Content Extraction (ACE) 2005 [Walker et al., 2006]]
and SciERC datasets [Luan et al.| 2018|]. ACEO5 defines
an ontology over 7 entities and 18 relations from mixed-
genre text, whereas SciERC defines 6 entity types with 7
possible relation between them and includes annotations
for scientific entities and there relations, assimilated from
12 AI conference/workshop proceedings. We report the per-
centage of coherent predictions: data points for which the
predicted entity types, as well as the relations are correct.

We compare against five baselines. The first baseline is a
purely supervised model which makes no use of unlabeled
data. The second is a classical self-training approach based
off of |Chang et al.|[2007]], and uses integer linear program-
ming to impute the unlabeled data’s most likely labels sub-
ject to the constraint, and consequently augment the (small)
labeled set. The third baseline is a popular instantiation of a
broad class of methods, fuzzy logics, which replace logical
operators with their fuzzy t-norms and logical implications

Table 2: Grid shortest path test results

Test accuracy % Coherent Incoherent Constraint

5-layer MLP 5.62 85.91 6.99

Semantic loss 28.51 83.14 69.89
+ Full Entropy  29.02 83.76 75.23
+ NeSy Entropy  30.12 83.01 91.61

with simple inequalities. Lastly, we compare our proposed
method, dubbed “NeSy Entropy”, to vanilla semantic loss
as proposed in|Xu et al.|[2018]] as well as another entropy-
regularized baseline, dubbed “Full Entropy”’, which mini-
mizes the entropy of the entire predictive distribution, as
opposed to just the distribution over the constraint’s models.

Our results are shown in Table [l We observe that seman-
tic loss outperforms the baseline, self-training, and product
t-norm across the board. We attribute such a performance
to the exactness of semantic loss, and its faithfulness to
the underlying constraint. We also observe that entropy-
regularizing the predictive model, in conjunction with train-
ing using semantic loss leads to better predictive models,
as compared with models trained solely using semantic
loss. Furthermore, it turns out that restricting entropy to the
distribution over the constraint’s models, models that we
know constitute the set of valid predictions, compared to the
model’s entire predictive distribution, which includes valid
and invalid predictions, leads to a non-trivial increase in the
accuracy of predictions.

5.2 FULLY-SUPERVISED LEARNING

We now turn our attention to testing our hypotheses in a fully
supervised setting, where our aim is to examine the effect of
constraints enforced on the training set. We note that this is



Table 3: Preference prediction test results

Test accuracy % Coherent Incoherent Constraint

3-layer MLP 1.01 75.78 2.72

Semantic loss 15.03 72.43 69.83
+ Full Entropy  17.52 71.80 80.21
+ NeSy Entropy 18.17 71.51 96.04

Table 4: Warcraft shortest path prediction results

Test accuracy % Coherent Incoherent Constraint

ResNet-18 44.8 97.7 56.9
Semantic loss 50.9 91.7 67.4
+ Full Entropy  51.5 97.6 67.7
+ NeSy Entropy 55.0 97.9 69.8

a seemingly harder setting in the following sense: In a semi-
supervised setting we might make the argument that, despite
its abundance, imposing an auxiliary loss on unlabeled data
provides the predictive model with an unfair advantage as
compared to the baseline. We concern ourselves with two
tasks: predicting paths in a grid and preference learning.

Predicting Simple Paths For this task, our aim is to find
the shortest path in a graph, or more specifically a 4-by-4
grid, G = (V, E) with uniform edge weights. Our input
is a binary vector of length |V| + |E|, with the first |V|
variables indicating the source and destination, and the next
|E| variables encoding a subgraph G’ C G. Each label
is a binary vector of length | E| encoding the shortest sim-
ple path in G’, a requirement that we enforce through our
constraint. We follow the algorithm proposed by [Nishino
et al.| [2017] to generate a constraint for each simple path
in the grid, conjoined with indicators specifying the corre-
sponding source-destination pair. Our constraint is then the
disjunction of all such conjunctions.

To generate the data, we begin by randomly removing one
third of the edges in the graph G, resulting in a subgraph,
G’. Subsequently, we filter out connected components in
G’ with fewer than 5 nodes to reduce degenerate cases.
We then sample a source and destination node uniformly
at random. The latter constitutes a single data point. We
generate a dataset of 1600 examples, with a 60/20,/20
train/validation/test split.

Preference Learning We also consider the task of pref-
erence learning. Given the user’s ranking of a subset of
elements, we wish to predict the user’s preferences over the
remaining elements of the set. We encode an ordering over n
items as a binary matrix X;;, where foreachi,j € 1,...,n,
X;; denotes that item ¢ is at position j. Our constraint o
requires that the network’s output be a valid total ordering.
We use preference ranking data over 10 types of sushi for

Input

Figure 3: Warcraft dataset. Each input (left) is a 12 x 12
grid corresponding to a Warcraft II terrain map, the output
is a matrix (middle) indicating the shortest path from top
left to bottom right (right).

5,000 individuals, taken from PREFLIB [Mattei and Walsh)
2013|, split 60/20/20. Our inputs consist of the user’s prefer-
ence over 6 sushi types, with the model tasked to predict the
user’s preference, a strict total order, over the remaining 4.

Tables [2] and [3] compares the baseline to the same MLP
augmented with semantic loss, semantic loss with entropy
regularization over the entire predictive distribution, dubbed
“Full Entropy” and entropy regularization over the distribu-
tion over the constraint’s models, dubbed “NeSy Entropy".

Similar to Xu et al.|[2018]], we observe that the semantic
loss has a marginal effect on incoherent accuracy, but sig-
nificantly improves the network’s ability to output coherent
predictions. We also observe that, similar to semi-supervised
settings, entropy-regularization leads to more coherent pre-
dictions using both “Full Entropy” and “NeSy Entropy",
with “NeSy Entropy" leading to the best performing pre-
dictive models. Remarkably, we also observe that “NeSy
Entropy” leads to predictive models whose predictions al-
most always satisfy the constraint, captured by “Constraint”.

Warcraft Shortest Path Lastly, we consider a more real-
world variant of the task of predicting simple paths. Fol-
lowing [Pogancic€ et al., 2020], our training set consists of
10, 000 terrain maps curated using Warcraft II tileset. Each
map encodes an underlying grid of dimension 12 x 12,
where each vertex is assigned a cost depending on the type
of terrain it represents (e.g. earth has lower cost than water).
The shortest (minimum cost) path between the top left and
bottom right vertices is encoded as an indicator matrix, and
serves as label. Figure [3|shows an example input presented
to the network, the groundtruth, and the input with the an-
notated shortest path. Figure ] shows examples of baseline
predictions and those obtained by training with constraints.

Presented with an image of a terrain map, a convolutional
neural network — following [Poganci€ et al., 2020]], we use
ResNet18 [He et al.,2016] — outputs a 12 x 12 binary matrix
indicating the vertices that constitute the minimum cost path.
We report three metrics: “Coherent” denotes the percent-
age of optimal-cost predictions, “Incoherent” denotes the
percentage of individual vertices matching the groundtruth,
and “Constraint” indicates the percentage of predictions that
constitute valid paths. Our results are shown in Table[d]

In line with our previous experiments, we observe that incor-



Figure 4: Example maps from the Warcraft dataset (left)
annotated with the baseline predictions in red (center), and
the predictions obtained using constraints in yellow (right)

LT}

porating constraints into learning improves the “Coherent
metric from 44.8% to 50.9%, and of the “Coherent” met-
ric from 56.9% to 67.4%. Augmenting semantic loss with
the entropy over the network’s predictive distribution, “Full
Entropy”, we attain a modest improvement from 50.9% to
51.5% and 67.4% to 67.7% for the “Coherent” and “Con-
straint” metrics respectively. Restricting the entropy mini-
mization to models of the constraint, “NeSy Entropy”, we
observe that we attain a large improvement to 55.0% and
69.8% for the “Coherent” and “Constraint” metrics resp.

6 RELATED WORK

The idea of using a model’s predictions to obtain artificial
labels for unlabeled data is as old as time
[1975]], and has often known throughout the lit-

erature as pseudo-labeling or self-training. Self-training is
an iterative process by which a learner imputes the labels
of examples which have been confidently classified in the
previous step, and can therefore be viewed as implicitly
minimizing the model’s entropy. This is done explicitly in
[Grandvalet and Bengio| [2005] with a loss term which mini-
mizes the entropy of the model’s predicted distribution for
any given unlabeled data point, thereby rendering the en-
tropy computation amenable to differentiation, and allowing
finer control on the influence of the unlabeled data. It has
been applied successfully across a wide range of domain,

including NLP [McClosky et al., [2006], object detection
[Rosenberg et al. 2005]], image classification 2013]
2019]], domain adaptation [Zou et al., 2018]], to

name a few. It has also been used recently by a plethora of
semi-supervised learning algorithms as a constituent of their

training pipelines [Arazo et al.,[2019] [Pham and Le}, 2019]
Miyato et al.,[2018] [Berthelot et al.} 2019]. This is in contrast

to entropy maximization, used in reinforcement learning,
where the aim is to capture the entire range of low-cost

behaviors, not a single correct one[Toussaint, 2009].

In an acknowledgment to the need for both symbolic as
well as sub-symbolic reasoning, there has been a plethora of
recent works studying how to best combine neural networks
and logical reasoning, dubbed neuro-symbolic reasoning.
The focus of such approaches is typically making probabilis-
tic reasoning tractable through first-order approximations,
and differentiable, through reducing logical formulas into
arithmetic objectives, replacing logical operators with their
fuzzy t-norms, and implications with inequalities
let al, 2012] [Rocktaschel et all,[2013] [Fischer et al., 2019].

Constraint driven learning [Chang et al., 2007] is a classic
work that lies at the intersection of both bodies of work.
Therein, in a fashion similar to self-training, the learner
imputes the labels of the samples that were confidently
classified subject to the constraint. Therefore, the imputed
labels are guaranteed to be valid. CoDL, however, performs
a first-order approximation, approximating the netwok’s full
posterior by the MAP. Furthermore it is not differentiable.

Diligenti et al.| [2017] and [Donadello et al.| [2017]] use first-

order logic to specify constraints on outputs of a neural net-
work. They employ fuzzy logic to reduce logical formulas
into differential, arithmetic objectives denoting the extent to
which neural network outputs violate the constraints, thereby
supporting end-to-end learning under constraints. More re-
cently, [2018] introduced semantic loss, which
circumvents the shortcomings of fuzzy approaches, while
still supporting end-to-end learning under constraints. More
precisely, fuzzy reasoning is replaced with exact probabilis-
tic reasoning, made possible by compiling logical formulae
into structures supporting efficient probabilistic queries.

Another class of neuro-symbolic approaches have their
roots in logic programming. DeepProbLog
extends ProbLog, a probabilistic logic programming
language, with the capacity to process neural predicates,
whereby the network’s outputs are construed as the prob-
abilities of the corresponding predicates. This simple idea
retains all essential components of ProbLog: the semantics,
inference mechanism, and the implementation. In a similar
vein, combine domain knowledge speci-
fied as purely logical Prolog rules with the output of neural
networks, dealing with the network’s uncertainty through
revising the hypothesis by iteratively replacing the output of
the neural network with anonymous variables until a consis-
tent hypothesis can be formed. [BoSnjak et al| [2017]] present
a framework combining prior procedural knowledge, as a
Forth program, with neural functions learned through data.
The resulting neural programs are consistent with specified
prior knowledge and optimized with respect to data.




7 CONCLUSION

In conclusion, we proposed neuro-symbolic entropy regular-
ization, a principled approach to unifying neuro-symbolic
learning and entropy regularization. It encourages the net-
work to output distributions that are peaked over models of
the logical formula. We are able to compute our loss due to
structural properties of circuit languages. We validate our
hypothesis on four different tasks under semi-supervised
and fully-supervised settings and observed an increase in
accuracy as well as the validity of the model’s predictions.
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A  COMPILING LOGICAL FORMULAS
INTO TRACTABLE CIRCUITS

At a high level, there exist off-the-shelf compilers [Choi
and Darwichel 2013} |Oztok and Darwiche, [2015| [Darwichel,
2004, Muise et al., 2012} [Lagniez and Marquis}, 2017, [Toda
and Soh, 2016] utilizing SAT solvers, essentially through
case analysis, to compile a logical formula into a tractable
logical circuit. NeSy Entropy is agnostic to the exact flavor
of circuit so long as the properties outlined in Section [3.2]
are respected. In our experiments, we use PySDlﬂ] a python
SDD compiler [Darwiche} 2011}, |(Choi and Darwiche}, 2013]].
We will now step through an example of compiling a logical
formula. Consider the circuit in Figure[2]encoding constraint

(ANB) = C,

to be construed as encoding, animal A barks = dog.

Intuitively, our aim is to transform the above logical for-
mula into a compact target form representing all possible
assignments to A, B and C satisfying the logical formula.
We compile such a constraint by proceeding in a bottom up
fashion, where bottom-up compilation can be seen as com-
posing Boolean sub-functions whose domain is determined
by a variable ordering. Concretely, starting from circuits for
literals A and B, we compile a circuit 5 = A A B. We com-
pose the previously compiled circuit S with the circuit for
literal C. We point out that this is achieved using a couple of
simple API calls to a bottom-up compiler. We will now step
through the actual construction of the circuit. We introduce
logical circuits representing the literals

A -A B -B c -C

"https://github.com/wannesm/PySDD

The compiler disjoins literals A with = A, and B with =B,
introducing deterministic and smooth OR nodes.

2 5

A A B -B

An OR node represents disjoint solutions to the logical
formula, meaning there exists distinct assignments, charac-
terized by the children, satisfying the constraint e.g. a, —a, b
and —b all occur as part of distinct solutions to the constraint.

Compilation proceeds by conjoining constraint circuits for
AV —-Awith BV -B, -A with BV =B and A with —=B.

A -A B -B

Decomposable AND nodes compose functions over disjoint
sets of variables. These AND nodes represent Boolean func-
tions (AV —A)A(BV —B),"AA(BV-B),and AA-B.

The compiler disjoins A A (B V =B), with A A =B and
(AV —A) A (B V —B) with true, the multiplicative identity,
guaranteeing alternating AND and OR nodes, for conve-
nience. It is worth reiterating that every child of an OR node
encodes disjoint solutions over the same set of variables.

So far, we have compiled logical circuits for the formula
(mAAN(BV-B))V(AAN-B) “)
as well as for the fomula

(AVv-A)A(BV-B) )

What remains is to conjoin eq. @) with C, and eq. (3)) with
—C, and disjoin the resulting circuits. What we get is a
disjunction over the possible solutions of the constraint:
predicting the presence of a barking animal implies the
presence of a dog. Otherwise, there might or not be a dog.

A -A B -B

Compilation techniques like the one we illustrated do not,
however, escape the hardness of the problem: the compiled
circuit can be exponential in the size of the constraint, in
the worst case. In practice, however, we can obtain compact
circuits because real-life logical constraints exhibit enough
structure (e.g., repeated sub-problems) that can be easily
exploited by a compiler [Darwiche and Marquis, [2002].
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