
Rethinking SO(3)-equivariance with Bilinear Tensor
Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Many datasets in scientific and engineering applications are comprised of objects1

which have specific geometric structure. A common example is data inhabiting a2

representation of SO(3) scalars, vectors, and tensors. One way to exploit prior3

knowledge of the structured data is to enforce SO(3)-equivariance. While general4

methods for handling arbitrary SO(3) representations exist, they can be compu-5

tationally intensive and complicated to implement. We show that by judicious6

symmetry breaking, we can efficiently increase the expressiveness of a network7

operating on these representations. We demonstrate the method on an important8

classification problem from High Energy Physics known as b-tagging. In this9

task, we find that our method achieves a 2.7× improvement in rejection score over10

standard methods.11

1 Introduction12

In many Machine Learning (ML) applications, at least some of the data of interest have specific13

geometric structure. For example, position measurements from LiDAR imaging, the configuration of14

atoms in molecular potentials, and measurements of particle momenta are all cases where the data are15

naturally represented as spatial 3-vectors. However, classical Neural Network (NN) architectures are16

not well suited to this sort of data; for instance, the standard Multi Level Perceptron would require17

that all information, spatial or otherwise, must be collapsed into a flat list of features as input to the18

network. In this case, the spatial nature of the data, while not lost, is not communicated a priori nor19

enforced post hoc.20

More recently, developments in the field of Representation Learning have shown that equivariant21

NNs are a natural way to accommodate structured data, and in many cases lead to substantially22

improved algorithms. Very informally, a function (such as a NN) is called equivariant if the output23

transforms similarly to the input.24

Convolutional Neural Networks (CNNs) are the prototypical example of this. CNNs exploit the fact25

that image data can be most naturally represented as data on a discrete 2-dimensional grid. This data26

structure is associated with the representation of the group of discrete translations. The standard27

CNN layer takes advantage of this by operating on input grid (pixel) data with discrete translation28

operations, and returning outputs on a similar grid structure. Because the output of each layer has the29

same representational structure as the input, it is straightforward to build very deep representations30

without destroying the prior spatial structure of the data, simply by stacking CNN layers. The result,31

of course, is that CNNs have completely revolutionized the field of computer vision.32

We specifically consider the case of continuous scalar and 3-dimensional vector point data, as may33

be encountered in many point-cloud datasets. For these data, the natural group associated with their34

representation is SO(3), the set of 3D rotations. Therefore, one strategy to incorporate this structure35

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

into a neural architecture is to enforce equivariance w.r.t. SO(3), and several such architectures36

have been proposed [1, 2, 3]. In general, these approaches achieve equivariance either by defining37

a spherical convolutional operation [3, 1], or by constraining the network’s operations to maintain38

strict representational structure [2, 4].39

Our method follows the latter approach, but in a much simpler way. Rather than concerning40

ourselves with arbitrary (2ℓ + 1)-dimensional representations, we consider only a few physically41

relevant representations: scalars, vectors, and order-2 tensors. For these three representations, it42

is straightforward to enumerate the options for linear neuron layers. We also want our network43

to be able to exchange information between different representations. The Clebsh-Gordon theory44

prescribed in other methods provides the most general method for projecting arbitrary tensor products45

between representations back into irreducible representations, However, once again we take a similar46

approach, and instead introduce a simple Tensor Bilinear Layer, a subset of the CG space that consists47

of commonly known and physically intuitive operations, such as the vector dot product and cross48

product.49

Importantly, we propose a novel method that allows us to relax equivariance requirements when an50

axial symmetry is present, by allowing the global SO(3) symmetry to be locally broken down to51

SO(2). These looser conditions allow us to design of models that enforce only the instantaneously52

relevant equivariance, and allows the network to learn more expressive functions at each layer. We53

show that this kind of equivariant neuron is generally only possible with the introduction of order-254

tensor representations, but we provide an efficient implementation for vector-valued networks that55

constructs only the minimal tensors required.56

To illustrate a real-world application to data with an axial symmetry, we introduce a common57

problem from the field of High Energy Physics (HEP), described in Sec. 2. In Sec. 3, we describe58

the modular elements of our method, from which a wide variety of neural architectures may be59

composed. In Sec. 4, we describe a specific architecture based on Deep Sets [5] which will serve as a60

baseline model, and we illustrate how to adapt this architecture using our approach. In Sec. 5, we61

describe the simulated data used for training and evaluation, and describe the results of a progressive62

implementation of the modules developed herein. Finally, we offer concluding remarks in Sec. 6.63

1.1 Related Work64

From the field of High Energy Physics, there has been much work in applying various DL approaches65

to jet tagging [6, 7, 8, 9] in general and b-tagging in particular [10, 11]. The present work seeks to66

build on this effort by offering novel neural architectures that can be adapted into next-generation67

applications.68

From the field of Machine Learning, there have been numerous prior works on SO(3) equivariant69

models [1, 2, 3, 4]. In general, these approaches depend on Clebsh-Gordon (CG) decomposition70

and/or sampling from spherical harmonics. While our approach is more similar to the CG method, it71

is simpler and more relevant for the task at hand. Moreover, we innovate on the the space of allowed72

equivariant operations by relaxing the global SO(3) symmetry which is relevant for our particular73

application.74

1.2 Novel Developments75

The main innovation of this paper is to expand the set of linear equivariant maps in the special case76

where there is a “special” direction in space, which may change from sample to sample. In this77

case, it is possible to maintain global SO(3) equivariance, while breaking the per-layer equivariance78

condition down to a locally-defined SO(2) symmetry, which is parameterized by the special direction.79

We also innovate by introducing a simpler method of forming SO(3)-equivariant nonlinearities, by80

simply introducing familiar bilinear operations on spatial representations such as scalars, vectors, and81

tensors. In addition to the nonlinearity provided by the bilinear operations, we also introduce simple82

nonlinear activation functions on the vector and tensor representations, which we find helps stabilize83

training and improve performance.84

Lastly, from the physics perspective, we propose a significant departure from standard practice, by85

stipulating that our b-tagging should be provided with raw 3-dimension position and momentum86

information, as this is the only way to ensure that SO(3)/SO(2) equivariance is exploited.87

2

While we demonstrate our methods using a specifc architecture based on Deep Sets [5], we expect88

these innovations can be useful in many other applications. Given the modularity and strictly defined89

input and output representations of each layer, these elements could be used to augment other neural90

architectures such as convolutional, graph, and transformers as well.91

2 B-jet Identification at LHC Experiments92

In HEP experiments, such as ATLAS [12] and CMS [13] at CERN, b-jets are a crucial signal for93

studying rare phenomena and precision physics at the smallest scales of nature. A jet is a collimated94

spray of hadronic particles originating from energetic quarks or gluons produced in high energy95

particle collisions. A b-jet is a jet which specifically originates from a b-quark; when these quarks96

hadronize, they form metastable B-mesons which travel some distance from the collision origin97

before decaying, emitting particles from a secondary, displaced vertex.98

Charged particles originating from these vertices are measured with tracking detectors and are often99

referred to as tracks. Due to the displacement of the secondary vertex, when track trajectories100

originating from B-meson decays are extrapolated backwards, they are generally not incident to the101

origin. Therefore, we instead measure the distance to the point of closest approach; this is often102

referred to as the track impact parameter, which is a 3-vector quantity that we denote with a.103

In most applications, only the transverse and longitudinal components, d0 and z0, of this impact104

parameter are examined [14]. The magnitude of these projections is the most distinctive feature that105

indicates whether a particular jet originated from a b-quark.106

The inspiration for this work was the observation that the physical processes which govern how107

particles within a jet are produced and propagated are largely invariant with respect to rotations about108

the jet axis, denoted ĵ. This is the unit vector in the direction of the aggregate jet’s momentum vector.109

On the other hand the standard b-tagging observables d0 and z0 have no well-defined transformation110

rule under rotations, i.e. they are not part of a covariant representation.111

Previous works [8] have demonstrated that networks which exploit this natural SO(2) symmetry112

can greatly improve performance, but these methods all essentially rely on reducing the problem to113

vectors in a 2-dimensional plane. In order to obtain an equivariant representation in the case of b-jets,114

we must consider the full 3-dimensional structure of the impact parameter, which transforms as a115

vector under general rotations a R→ Ra. In addition to the 3-dimensional impact parameter a, we also116

have information about the track’s momentum p and various scalar quantities such as the particle’s117

charge, energy, and a limited identification of the particle type.118

In the next section, we will describe modular neural elements that can solve this problem, by allowing119

a network to admit a global SO(3) symmetry which preserves the scalar and vector representations,120

while also breaking SO(3) down to the more physically appropriate SO(2) whenever possible.121

3 Network Elements122

Our proposed method depends on three modular elements, described in detail in the following123

subsections. The overall strategy begins by mirroring what has proved to work for NNs in general:124

we interleave simple linear (or affine) layers with nonlinear activation functions, in order to learn125

powerful models. For an equivariant network, we first need to identify a set of linear equivariant126

maps suitable for the symmetry at hand. In our case, we come up with two sets of such maps: a127

global SO(3)-equivariant affine layer, and a locally SO(2)̂j-equivariant linear layer.128

Since we also require our network to mix between its scalar, vector, and tensor representations, we129

introduce an equivariant bilinear layer. Lastly, we define SO(3) equivariant nonlinear activations for130

each output representation.131

In Sec. 4, we demonstrate how to combine these elements into a complete neural architecture. This132

architecture is based on the Deep Sets [5] architecture suitable for variable-length, permutation-133

invariant data.134

3

3.1 SO(2)̂j-equivariant Linear Layers135

A well-known way to ensure equivariance w.r.t. any group is to broadcast the neural action across the136

representational indices of the data [15, 16]. That is, the neural weight matrix simply forms linear137

combinations of the features in their representation space. In general, it is helpful to add a bias term,138

but care must be taken to select one that preserves equivariance.139

The simplest example of this is for a collection of F scalar input features, {si}, mapping to a140

collection of K output features. The scalar has no representational indices, so this simply amounts to141

the standard affine1 network layer142

yi = Wijsj + bi (1)

where the learnable parameters Wij and bi are the neural weights and bias terms, respectively. In the143

vector case, we may generalize to144

yi = Wijvj ; bi = 0 . (2)

Note that the equivariance condition for vector-valued functions f(Rv) = Rf(v) implies that145

Rb = b for arbitrary rotation R; hence, the bias vector must be zero. Finally, the analogous case for146

order-2 tensors is:147

Yi = WijTj +Bi ; Bi = biI , (3)

where again we have learnable scalar parameters bi. In this case, the equivariance condition is148

f(RTRT) = Rf(T)RT , which implies that RBRT = B, i.e. B must commute with arbitrary R.149

Therefore, B must be proportional to the identity tensor I .150

The above neurons are purely isotropic in SO(3). However, as discussed in Sec. 1, for our problem151

we have prior knowledge that the distribution is symmetric about a specific axis. At worst, having152

only isotropic operations can over-regularize the network by imposing too much structure, and at best153

it might be harder for the network to spontaneously learn about the axial symmetry. We therefore154

consider the most general linear map is equivariant w.r.t. the axial symmetry. Since this is a lesser155

degree of symmetry, the network should have greater freedom in choosing linear maps.156

3.1.1 Vector Case157

Let ĵ be a unit vector (in our application, the jet’s momenutm axis) which is instantaneously fixed per158

batch input. The rotations about this axis define a proper subgroup Sĵ ⊂ SO(3) where we identify159

Sĵ
∼= SO(2). We therefore refer to this subgroup as SO(2)̂j ⊂ SO(3); the distinction being that160

SO(2)̂j fixes a representation on R3 which depends on ĵ.161

The set of all linear SO(2)̂j-equivariant maps is exactly the set of matrices A which commute with162

arbitrary Rĵ ∈ SO(2)̂j, which are of the form163

A = (âĵj
T
+ b(I − ĵ̂j

T
))R′

ĵ(ϕ) , (4)

for arbitrary learnable parameters θ̄ = (a, b, ϕ). The first two terms represent anisotropic scaling164

in the directions parallel and perpendicular to ĵ, respectively. The third term represents any other165

arbitrary rotation about the ĵ axis, parameterized by a single angle ϕ.166

Because A commutes with all Rĵ ∈ SO(2)̂j, the linear layer defined by167

yi = Aθ̄ijvj (5)

is SO(2)̂j-equivariant, for arbitrary parameters θ̄ij . The isotropic linear neuron of Eq. 1 corresponds168

to the special case aij = bij , ϕij = 0.169

3.1.2 Tensor Case170

In order for a tensor-valued linear map L to be equivariant, we require that L(RĵTR
T
ĵ
) = Rĵ(LT)R

T
ĵ

.171

Note that in the case of full SO(3) equivariance, the only option is for L to be proportional to the172

1Also referred to as a Dense or Linear layer.

4

Figure 1: A schematic diagram of the bilinear layer with mixing between different representations.

identity. Without loss of generality, we may assume the order-4 tensor L can be written as a sum173

of terms A⊗ B for some order-2 tensors A,B. The tensor product acts on an order-2 tensor T as174

(A ⊗ B)T := ATBT . Taking L to be of this form (up to linear combinations), the equivariance175

condition reads A(RĵTR
T
ĵ
)BT = Rĵ(ATBT)RT

ĵ
. This is satisfied when both A and B commute176

with Rĵ; we have already identified the set of such matrices in Eq. 4. Therefore, we define the action177

of the tensor-valued SO(2)̂j linear layer by:178

Yi = Aθ̄ijTjA
T
φ̄ij

+ biI , (6)

where the parameters (θ̄ij , φ̄ij) are the neural connections and we also allow for an affine bias term179

parameterized by bi, which is proportional to the identity tensor and hence also equivariant.180

3.2 Tensor Bilinear Operations181

So far we have provided two means for working with data in the SO(3) scalar, vector, and order-2182

tensor representations. However, we also desire a means for allowing information between the183

different representations to be combined and mixed.184

The most general approach to this is addressed by Clebsh-Gordon theory [2, 4]. But we adopt a185

simpler approach, wherein we take advantage of the familiar representations of our data and employ186

common bilinear operations such as dot products and cross products for vectors2. This allows187

the network to create a mixing between different representations. The operations considered are188

enumerated schematically in Fig. 1. In order to form these terms, the bilinear layer requires that the189

scalar, vector, and tensor inputs (s,v, T) all have the same size, 2F , in their feature dimension, and190

that the size is a multiple of two. We then split the features into groups of two: sa = {si}i=1..F ,191

sb = {si}i=F+1..2F , and define similarly va,b and Ta,b.192

After effecting all of the options from Fig. 1, the layer returns scalar, vector, and tensor outputs with193

3F features each.194

3.3 SO(3)-equivariant Nonlinear Activations195

For the scalar features, any function is automatically equivariant. Therefore, for these features we use196

the well-known ReLU[17] activation function, although any alternative nonlinearity would also work.197

In the vector and tensor cases, care must be taken to ensure equivariance. For the vector case, we198

state a simple theorem[18]:199

Theorem 3.1 For any vector-valued function f : R3 → R3 which satisfies f(Rx) = Rf(x) for all200

R ∈ SO(3), there exists a scalar function f̃ such that201

f(x) = f̃(|x|)x̂ ,

where x̂ = x/|x| when |x| > 0 and x̂ = 0 otherwise.202

2Of course, these operations can be expressed in terms of the CG basis, but may not span the entire space of
irreducible representations guaranteed by Schur’s lemma.

5

In other words, we may chose an arbitrary, nonlinear function f̃ which acts only on the vector magni-203

tude, and the layer must leave the direction of the input unchanged. This leaves many possibilities;204

after some experimentation, we found the following activation, which we call Vector ReLU (VReLU),205

works well:206

VReLU(v) :=

{
v |v| < 1

v/|v| else
. (7)

The VReLU activation is analogous to the standard rectified linear unit, except that the transition207

from linear to constant happens at a fixed positive magnitude rather than zero. We found that in208

particular, the saturating aspect of VReLU greatly helps to stabilize training, as otherwise the vector209

features tend to coherently grow in magnitude, leading to exploding gradients.210

For the order-2 tensor case, we note here that the tensor analog to Theorem 3.1 is much more211

nuanced[18], and in general depends on three principal invariants I1, I2, I3. For simplicity, we define212

the Tensor ReLU (TReLU) completely analogously to the vector case, and leave a more complete213

analysis of tensor nonlinearities to future work:214

TReLU(T) :=

{
T ||T ||F < 1

T/||T ||F else
. (8)

4 Benchmark Architectures215

We now have defined the four modular elements which provide the appropriate equivariant operations.216

In order to evaluate the practical effects of these modules, we define a benchmark architecture that is217

based on the Deep Sets architecture[5], also referred to as a Particle Flow Network (PFN) [19] in218

the field of HEP. The PFN is a commonly-used architecture for this sort of problem in real-world219

applications such as at the ATLAS experiment[14].220

We will first define the standard PFN architecture, which will serve as our baseline in experiments.221

Then, we describe a modified version at the module level using the analogous equivariant operations222

in place of the standard neural network layers.223

4.1 Particle Flow Network224

The basic structure of the PFN [19] is based on the Deep Sets [5] architecture, and will serve as our225

baseline. It is of the form:226

PFN({pk}) = F

(
P∑

k=1

Φ(pk)

)
. (9)

where Φ : RF → RL and F : RL → Y are arbitrary continuous functions parameterized by neural227

networks. L is the dimension of the latent embedding space in which the particles are aggregated and228

P is the number of particles in an observed jet. Y represents the relevant output space for the task at229

hand; since our task is classification, we consider Y = [0, 1].230

The input features {pk} represent the observed track particles within the jet. These features include:231

• The jet 3-momentum in detector coordinates, (p(J)T , η(J), ϕ(J))232

• The 3-momentum of each particle track in relative detector coordinates, (pkT ,∆ηk,∆ϕk)233

• The track impact parameters of each particle (dk0 , z
k
0)234

• The particle’s charge q and particle type {electron, muon, hadron}235

For each jet, we allow up to P = 30 particle tracks; inputs with fewer than 30 particles are padded236

with zeros. We also repeat the jet 3-momentum over the particle axis and concatenate with the rest237

of the per-particle features. The discrete particle type feature is embedded into 3 dimensions. After238

concatenating all features, the input to the PFN is of shape (∗, P, F) where F = 12 is the feature239

dimension.240

The subnetworks Φ and F are simple fully-connected neural networks. Φ consists of two hidden241

layers with 128 units each, and ReLU activation. The output layer of Φ has L units and no activation242

applied. The F network consists of three hidden layers with 128 units each and ReLU activations.243

6

The final output layer has two units with no activation, in order to train with a categorical cross244

entropy objective.245

4.2 Vector and Tensor PFN246

We now adapt the basic PFN architecture and promote it to what we term a Vector PFN (VPFN)247

or Tensor PFN (TPFN), according to the highest representation included. The overall architecture248

is of the same form as Eq. 9; we will simply modify the detailed implementation of the Φ and F249

sub-networks.250

The first change is that the input features now belong strictly to one of the three SO(3) representations:251

scalar, vector, or order-2 tensor:252

TPFN({(s,v, T)k}) = F

(
P∑

k=1

Φ(sk,vk, Tk)

)
(10)

In general, the number of features in any of the representation channels are independent. The features253

for the TPFN experiments include:254

• The jet 3-momentum in Cartesian coordinates (p(J)x , p
(J)
y , p

(J)
z)255

• The 3-momentum of each particle track pk256

• The 3-position of the track’s point of closest approach to the origin ak257

• The charge and particle type of each track, as described in Sec. 4.1258

As before, we replicate the jet momentum across the particle index, and we embed the particle type259

into 3 dimensions, resulting in Fs = 4 scalar and Fv = 3 vector features. Since there are no observed260

tensor features for particle tracks, we synthesize an initial set of features to act as a starting point for261

the tensor operations. This is done by taking the outer product between all combinations of the three262

available vector features, resulting in Ft = 9 features.263

We now have Φ : RFs×3Fv×9Ft → RL×3L×9L, where Fs, Fv, Ft are the number of scalar, vector,264

and tensor inputs, respectively. A single layer of Φ is formed as shown in Fig. 2, by combining265

in sequence the Affine, SO(2)̂j-Linear, Bilinear, and Nonlinear modules described in Sec. 3. The266

network consists of two hidden and one output layer. Each hidden Affine layer of the Φ network267

contains 2F = 128 features per representation, which results in 3F = 192 features after the Bilinear268

layer. The output of the Φ sub-network had L features, and there is no Bilinear or Nonlinear layers269

applied.270

The F network is built similarly to the Φ network, except that it has three hidden tensor layers. In271

lieu of an output layer, after the hidden tensor layers, the F network computes the square magnitude272

of each vector and tensor feature, in order to create a final set of 3× 3F scalar invariant features. The273

scalar features are concatenated, passed through two more hidden layers with 128 units each and274

ReLU activations, and finally to an output layer with two units and no activation.275

5 Experiments276

To train b-tagging algorithms, we must use Monte Carlo simulations of particle collision events,277

as this is the only way to get sufficiently accurate ground truth labels. The optimization of these278

algorithms is commonly studied by experiments such as ATLAS and CMS, which use highly279

detailed proprietary detector simulation software, and only limited amounts data are available for use280

outside of the collaborations. [20] There are also some community-generated datasets available for281

benchmarking [7], however none of these publicly-available datasets contain the key information that282

our method leverages for its unique equivariant approach. Specifically, our model requires the full283

3-dimensional displacement vector of each track’s impact parameter, whereas the existing datasets284

only retain the transverse and longitudinal projections d0 and z0. Therefore, we have created a new285

dataset for b-jet tagging benchmarks, to be made publicly available. The data is generated using286

standard Monte Carlo tools from the HEP community.287

We begin by generating inclusive QCD and tt̄ events for background and signal, respectively, using288

PYTHIA8[21]. PYTHIA handles sampling the matrix element of the hard processes at
√
s = 13TeV ,289

7

Tensor Bilinears

TReLU ReLU

SO(3) Affine

SO(2) Linear

VReLU

Tensor Bilinears

SO(3) Affine

SO(2) Linear

F
Tensor Bilinears

TReLU ReLU

SO(3) Affine

SO(2) Linear

VReLU

NN Layer(s)

Covariant Inputs

Invariant Output

Figure 2: A schematic diagram of the DeepSets-adapated Tensor PFN.

the parton shower, and hadronization. The hadron-level particles are then passed DELPHES[22], a290

fast parametric detector simulator which is configured to emulate the CMS[13] detector at the LHC.291

After detector simulation, jets are formed from reconstructed EFlow objects using the anti-kT [23, 24]292

clustering algorithm with radius parameter R = 0.5. Only jets with pT > 90GeV are considered. For293

the signal sample, we additionally only consider jets which are truth-matched to a B-meson. Finally,294

the highest-pT jet is selected and the track and momentum features are saved to file.295

The training dataset consists of a balanced mixture of signal and background with a total of 1M jets.296

The validation and test datasets contain 100k signal jets each. Due to the high degree of background297

rejection observed, we must generate a substantially larger sample of background events for accurate298

test metrics, so the validation and test datasets contain 300k background jets each.299

5.1 Results300

To quantify the performance of our model, we consider the following metrics in our experiments.301

First, the loss function used in the training is sparse categorical cross entropy, which is also used302

in the validation dataset. We also consider the area under the ROC curve (AUC) as an overall303

measure of the performance in signal efficiency and background rejection. We also consider the304

background rejection at fixed efficiency points of 70% and 85%, labeled by R70 and R85, respectively.305

Background rejection is defined as the reciprocal of the false positive rate at the specified true positive306

rate.307

A summary of a variety of experiments is given in Table 1. The numbers in the table represent the308

median test score over 10 training runs, where the test score is always recorded at the epoch with the309

lowest validation loss. The quoted uncertainties for the rejections are the inter-quartile range.310

5.2 Discussion311

Table 1 shows that the family of models with only vector representations can indeed improve over312

the baseline, provided that we include at least the bilinear layer allowing the vector and scalar313

representations to mix. Moreover we find that adding the the SO(2) linear operations gives the vector314

network access to a minimal set of order-2 tensors, Rĵ, ĵ̂j
T

, and I to enable it to exploit the axial315

symmetry of the data.316

8

Table 1: Test metrics for training experiments on progressive model architectures. R70 and R85

indicate the test rejection at 70% and 85% signal efficiency, respectively. The percentage relative
improvement in these metrics is also shown. Values shown are the median result over at least 10
training runs, per model type; errors quoted on rejection figures are the inter-quartile range.

Model R70 Impr.(R70) R85 Impr.(R85)
Baseline (PFN) 436± 15 – 112± 3 –
Vector PFN 1047± 85 140% 235± 12 110%
Tensor PFN 1176± 103 170% 259± 23 130%

In the case of the tensor family of models, there is a less substantial improvement when adding the317

SO(2) linear layer. We expect that this is because the network with only bilinear operations is, at least318

in theory, able to learn the relevant operations on its own. Nonetheless, there is some improvement319

when adding this layer, so it would be reasonable to include both unless computational constraints320

are a concern.321

Finally, we note that neither family of models performs even as well as the baseline, when no bilinear322

operations are allowed. This clearly demonstrates the effectiveness of a network which can mix323

SO(3) representations.324

6 Conclusion325

In this work, we have introduced four modules of neural network architecture that allow for the326

preservation of SO(3) symmetry. The Tensor Particle Flow Network (TPFN) shows promising results327

in our dataset, yielding up to 2.7× improvement in background rejection, compared to the simple328

Particle Flow baseline model. We emphasize that the overall architecture of the PFN and TPFN are329

nearly identical; the improvement is entirely due to a drop-in replacement of standard neural layers330

with our covariant and bilinear layers. We also note that in our approach, the TPFN outputs a scalar331

which is rotationally invariant. However, it is also possible to obtain a covariant output by simply332

not apply the scalar pooling operations. This could be useful for many other applications, such as333

regression tasks, where covariant predictions are desired.334

Moreover, we show that second-order tensor representations are required in order to exploit a locally-335

restricted class of equivariance with respect to the axial rotations SO(2)̂j. When computational336

constraints are a concern, it is possible to recover most of the performance of the Bilinear Tensor337

Network, by restricting it to a faster Bilinear Vector Network with the appropriate SO(2) equivariant338

linear layer.339

While the example application demonstrated here is of particular interest to the field of HEP, we340

expect our method can have great impact in other ares where vector-valued point cloud data is used.341

Finally, we note that while we demonstrated the modular elements of the TBN on a simple Deep Sets342

/ PFN type network, it should also be possible to use these modules for creating equivariant Graph343

and attention based networks.344

9

References345

[1] Nathaniel Thomas, Tess E. Smidt, Steven M. Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and346

Patrick F. Riley. Tensor field networks: Rotation- and translation-equivariant neural networks347

for 3d point clouds. ArXiv, abs/1802.08219, 2018.348

[2] Risi Kondor, Zhen Lin, and Shubhendu Trivedi. Clebsch-gordan nets: a fully fourier space349

spherical convolutional neural network. In Neural Information Processing Systems, 2018.350

[3] Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen. 3d steerable351

cnns: Learning rotationally equivariant features in volumetric data. In Neural Information352

Processing Systems, 2018.353

[4] Brandon M. Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular354

neural networks. In Neural Information Processing Systems, 2019.355

[5] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov,356

and Alex Smola. Deep sets. ArXiv, abs/1703.06114, 2017.357

[6] Anja Butter et al. The Machine Learning landscape of top taggers. SciPost Phys., 7:014, 2019.358

[7] Huilin Qu, Congqiao Li, and Sitian Qian. Particle Transformer for Jet Tagging. 2 2022.359

[8] Chase Shimmin. Particle Convolution for High Energy Physics. 7 2021.360

[9] Chase Shimmin, Peter Sadowski, Pierre Baldi, Edison Weik, Daniel Whiteson, Edward Goul,361

and Andreas Søgaard. Decorrelated Jet Substructure Tagging using Adversarial Neural Networks.362

Phys. Rev. D, 96(7):074034, 2017.363

[10] Daniel Guest, Julian Collado, Pierre Baldi, Shih-Chieh Hsu, Gregor Urban, and Daniel Whiteson.364

Jet Flavor Classification in High-Energy Physics with Deep Neural Networks. Phys. Rev. D,365

94(11):112002, 2016.366

[11] Graph Neural Network Jet Flavour Tagging with the ATLAS Detector. Technical367

report, CERN, Geneva, 2022. All figures including auxiliary figures are available368

at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-369

027.370

[12] G. Aad et al. The ATLAS Experiment at the CERN Large Hadron Collider. JINST, 3:S08003,371

2008.372

[13] S. Chatrchyan et al. The CMS Experiment at the CERN LHC. JINST, 3:S08004, 2008.373

[14] Georges Aad et al. Configuration and performance of the ATLAS b-jet triggers in Run 2. Eur.374

Phys. J. C, 81(12):1087, 2021.375

[15] Jeffrey Wood and John Shawe-Taylor. Representation theory and invariant neural networks.376

Discret. Appl. Math., 69:33–60, 1996.377

[16] Marc Finzi, Max Welling, and Andrew Gordon Wilson. A practical method for constructing378

equivariant multilayer perceptrons for arbitrary matrix groups. ArXiv, abs/2104.09459, 2021.379

[17] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann380

machines. In International Conference on Machine Learning, 2010.381

[18] C. S. Jog. Introduction to Tensors, volume 1, page 1–136. Cambridge University Press, 3382

edition, 2015.383

[19] Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. Energy flow networks: deep sets for384

particle jets. Journal of High Energy Physics, 2019(1), jan 2019.385

[20] Kimmo Kallonen. Sample with jet properties for jet-flavor and other jet-related ml studies,386

2019.387

10

[21] Christian Bierlich, Smita Chakraborty, Nishita Desai, Leif Gellersen, Ilkka J. Helenius, Philip388

Ilten, Leif Lonnblad, Stephen Mrenna, Stefan Prestel, Christian T. Preuss, Torbjorn Sjostrand,389

Peter Skands, Marius Utheim, and Rob Verheyen. A comprehensive guide to the physics and390

usage of pythia 8.3. SciPost Physics Codebases, 2022.391

[22] J. de Favereau, C. Delaere, Pavel Evgen’evich Demin, Andrea Giammanco, Vincent Lemaître,392

Alexandre Mertens, Michele Selvaggi, and The Delphes 3 collaboration. Delphes 3: A modular393

framework for fast-simulation of generic collider experiments. Journal of Physics: Conference394

Series, 523:012033, 2013.395

[23] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. FastJet User Manual. Eur. Phys. J. C,396

72:1896, 2012.397

[24] Matteo Cacciari and Gavin P. Salam. Dispelling the N3 myth for the kt jet-finder. Phys. Lett.398

B, 641:57–61, 2006.399

11

	Introduction
	Related Work
	Novel Developments

	B-jet Identification at LHC Experiments
	Network Elements
	`3́9`42`"̇613A``45`47`"603ASO(2)-equivariant Linear Layers
	Vector Case
	Tensor Case

	Tensor Bilinear Operations
	`3́9`42`"̇613A``45`47`"603ASO(3)-equivariant Nonlinear Activations

	Benchmark Architectures
	Particle Flow Network
	Vector and Tensor PFN

	Experiments
	Results
	Discussion

	Conclusion

