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ABSTRACT

This paper compares unsupervised feature extraction and unsupervised feature se-
lection techniques in the context of dimensionality reduction without using la-
beled data. Unsupervised feature extraction transforms the input space into a
lower-dimensional representation by creating informative features that capture un-
derlying patterns, leading to improved model performance. On the other hand,
unsupervised feature selection chooses a subset of features based on predefined
criteria, potentially overlooking important relationships and reducing the model’s
discriminative power. State-of-the-art researches suggest that feature extraction
outperforms feature selection in terms of model accuracy and robustness. Lever-
aging the intrinsic structure of the data, unsupervised feature extraction provides
richer representations, enhancing the model’s ability to discern complex patterns.
These paper proposes to revisit feature selection algorithms from a dynamic per-
spective, where the features are selected depending on the specific sample input.
Through empirical evaluations, it will be demonstrated that unsupervised feature
selection outperforms feature extraction, both in accuracy and data compression.
These findings highlight the potential of unsupervised feature selection as a pow-
erful approach for dimensionality reduction and improved model performance,
particularly when labeled data is scarce or unavailable.

1 INTRODUCTION

Feature selection and feature extraction are two essential techniques in the field of machine learning
and data analysis, both aimed at improving the efficiency and effectiveness of predictive modeling
Zebari et al. (2020). While both approaches share the goal of reducing the dimensionality of datasets,
they diverge significantly in their fundamental strategies and objectives.

Feature selection goal is to identify a subset of relevant features from a larger set of available fea-
tures that are most informative for a given task Dhal & Azad (2022). Traditional feature selection
methods typically rely on static criteria, selecting a fixed set of features prior to model training
Balın et al. (2019); Roffo et al. (2020); Cancela et al. (2023). However, in dynamic and evolving
data environments, where the relevance of features may change over different samples, static feature
selection may not be optimal. Dynamic Feature Selection (DFS) (also referred as Instance-based or
Instancewise Feature Selection Yoon et al. (2018); Panda et al. (2021); Liyanage et al. (2021)) repre-
sents a paradigm shift in feature selection by recognizing the variability of feature importance Chen
et al. (2018); Arik & Pfister (2021) between each sample. Unlike traditional static methods, DFS al-
gorithms adaptively adjust the feature subset during model training or deployment, accommodating
changes in data characteristics and task requirements.

Moreover, feature extraction techniques transform the original feature space into a new space by
creating a set of derived features that capture essential information from the original data. These
methods, such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) or
any deep features derived from a deep learning model, seek to maximize the discriminative power
or variance of the transformed features Perera & Patel (2019); Tang et al. (2022); Izmailov et al.
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(2022). In doing so, they often create a smaller, more compact representation of the data, potentially
enhancing model performance, in spite of its interpretability.

While both feature extraction and feature selection serve to enhance the quality of input data for
machine learning models, they differ fundamentally in their approach. Feature extraction generates
entirely new features, potentially altering the interpretability of the data, while feature selection
retains the original features, preserving the original meaning and context. In this context, DFS
arises as a technique that tries to merge the versatility of feature extraction techniques with the
interpretability of feature selection approaches.

In this paper, a comprehensive study over the properties of Dynamic Feature Selection is conducted,
elucidating its fundamental principles, methodologies, and key differences compared to traditional
feature extraction techniques. A novel DFS method will be presented, aiming to provide an alterna-
tive to the classic data representation using deep features.

The main contributions of this paper are the following:

• To our knowledge, this is the first attempt to provide a DFS framework for unsupervised
scenarios.

• A novel dynamic feature selection method, called Dynamic Data Selection (DDS) will be
presented. Contrary to previous approaches like Chen et al. (2018), the memory consump-
tion of this approach will be minimal, and invariant to the maximum number of selected
features.

• A variation to the hard concrete distribution Louizos et al. (2018) will be presented. Tak-
ing the properties of the DDS algorithm, it will be used during the training procedure to
minimize the chances of premature feature eliminations.

• The algorithm will be tested in two different unsupervised scenarios, data compression and
clustering, to show its adaptability to different scopes, as well as its ease of use. The DDS
model allows the architect designer to use more complex networks, since it preserves the
position of the selected features.

This paper is organized as follows: section 2 will introduce the most important DFS approaches; sec-
tion 3 will describe the problem formulation, along with some details regarding the implementation
and the training procedure; section 4 will introduce some experimental results about the ability of
this dynamic feature selection approach to both compress the input data, and to how it can success-
fully be used in a different task, like clustering; and finally, section 5 will provide some conclusions
and future work.

2 RELATED WORK

DFS is a very recent field of study, as almost no contributions were provided prior to the rise of deep
learning architectures. Three works stand out among all: Learning to Explain (L2X) Chen et al.
(2018), INVASE Yoon et al. (2018) and TabNet Arik & Pfister (2021). However, it is worth noting
that these algorithms were entirely developed for supervised learning.

L2X Chen et al. (2018) presented an autoencoder-like architecture that is attached prior to the clas-
sification model. The output of the architecture is of the form RN×F×M , being M the maximum
number of features to be selected. Then, each input sample is transformed by performing a matrix
multiplication. Although this solution provides remarkable results in supervised scenarios, it suffers
from two major drawbacks: first, the memory requirement, as the output size of the model is de-
pendent on the number of maximum features to be selected, forcing M to have smaller values; the
second drawback is related to the matrix multiplication procedure, as it forces to input data to be
one dimensional, disabling the classification model to have complex layers like 2D convolutions.

INVASE Yoon et al. (2018) consists on 3 different networks, a selector, a predictor and a baseline.
Inspired by the actor-critic method Peters & Schaal (2008), the predictor and the baseline will output
the classification scores, only differing in the input data: while the baseline introduced the whole
features, the predictor will only select as input a small subset of the features. This subset will be
chosen by the selector algorithm. Compared to L2X, the main advantage of this algorithm is that is
able to preserve the spatial information of the input data. As major drawbacks, it is very challenging
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Figure 1: Model architecture. The Dynamic Data Selection model will be in charge of selecting,
per sample, a fixed subset of features. Those features will solve the unsupervised task in hand (in
this particular example, data reconstruction).

to successfully train all 3 networks at the same time. It will be shown that the proposed DDS method
can embed this idea by using only one network and a training trick (see section 3.2.2.

Moreover, TabNet Arik & Pfister (2021) uses sequential attention to select the most important fea-
tures per sample. It was specially designed to be used in text problems. The main advantage of this
approach is the inherent explainability, as it is easy to depict the reasoning behind the classification
decision. On the other hand, its accuracy is lower than L2X and INVASE.

Although recent contributions on DFS were conducted Shah et al. (2022); Covert et al. (2023), they
are based on the models explained before.

3 PROBLEM FORMULATION

Let X ∈ RN×F be our input data, where N is the number of instances and F is the total number of
different features. Our aim is to select, for each instance, a maximum number of features, denoted
by M . Formally speaking, our algorithm aims to solve the following minimization problem:

minimize
ΘDDS ,ΘUNSUP

L(f(g(X;ΘDDS) ◦X;ΘUNSUP ))

subject to g(X;ΘDDS) ∈ [0, 1]N×F ,

∥g(X;ΘDDS)
(i)∥0 ≤ M, ∀i ∈ {1..N}.

(1)

where L is the unsupervised loss function, M is the maximum number of features to be selected,
g(·;ΘDDS) is the DDS network, and f(·;ΘUNSUP ) is the unsupervised task one may one to solve.
For the sake of simplicity, initially f(·;ΘUNSUP ) will be considered as an autoencoder that aims to
reconstruct the initial features, including those that are masked by g(·;ΘDDS). In Section 4 it will
be shown how one can successfully change it to solve use other unsupervised tasks. The key idea
is simple: an autoencoder architecture (f ) is trained while introducing an extra network (g), which
will be in charge of selecting, at most, M relevant features per sample. After that, those features
will be passed to the autoencoder model, aiming to reconstruct the whole input data.

In this paper, a novel DDS algorithm is proposed, where the output of the model is RN×F , that is,
it is not dependent on the maximum number of selected features. Note that this method is very easy
to use, as it is defined to be a module to be inserted prior to the main task. The input of the principal
model will be the input data masked by the output of the DDS module. Thus, it can be easily adapted
to be included in any task that can be trained by using gradient minimization.
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3.1 DDS IMPLEMENTATION

As depicted in Eq. 1, two constraints have to be addressed to properly solve the minimization prob-
lem. Although this formulation is very similar to a recent feature selection algorithm called E2E-FS
Cancela et al. (2023), the solution proposed by the authors cannot be applied in this particular dy-
namic approach. E2E-FS aims to select the same M features for all instances, forcing the discarded
ones to be zeroed. Although this is a good solution for a FS approach, it is too restrictive in a dy-
namic version. We aim to keep the scores of the discarded features, so they can be used for other
purpose, like model explanation. Thus, we propose to reformulate the problem as

minimize
ΘDDS ,ΘUNSUP

L(f(τ(g̃(X;ΘDDS)) ◦ ΓM ◦X;ΘUNSUP )) + αL0(g̃(X;ΘDDS))

subject to τ(g̃(X;ΘDDS)) ∈ [0, 1]N×F ,

ΓM ∈ {0, 1}N×F ,

∥ΓM∥0 ≤ M,∀i ∈ {1..N}.

(2)

where

τ(x) = min

(
1,max

(
0, σ

(
x

β

)
(ζ − γ) + γ

))
, (3)

begin σ the sigmoid function. τ(x) is the hard concrete gate presented in Louizos et al. (2018).

The idea is to split the DDS model g into two different terms. In first place, g̃(·;ΘDDS) is imple-
mented in the same way as g was previously defined, without the 0-norm constraint. This constraint
is now placed to a different matrix, called ΓM . ΓM is a binary matrix with all zeroes but the top-M
scores of each sample of g̃(·;ΘDDS). Mathematically, each row Γ

(i)
M can be recursively defined as

T(i)
0 = ∅

T(i)
n+1 = T(i)

n+1 ∪ {g̃(X;ΘDDS)
(i) \ T(i)

n }

Γ
(i)
M =

{
1 ∀f ∈ T(i)

M

0 otherwise

(4)

Besides that, it is still required to add a regularization to the output of g̃, aiming to force to have
low importance values only to the less informative features. This is done by the L0 term, which is
defined as the L0 regularization term presented in Louizos et al. (2018):

L0(x) =
1

N

∑
σ

(
x− β log

−γ

ζ

)
(5)

During all the experiments, the hyper-parameters where set to α = 2 · 10−5, β = 2
3 , ζ = 1.1 and

γ = −0.1.

3.2 TRAINING PROCEDURE

The training procedure is similar to the one used in Louizos et al. (2018), with two main differences:

• A variation of the hard concrete distribution Maddison et al. (2016); Jang et al. (2016)
presented in Louizos et al. (2018) is created, aiming to increase the probability mass of
values close to 1.

• Two training tricks with decaying factor are used, in order to prevent the weight initializa-
tion to play an important role in the final result.

3.2.1 VARIATION TO THE HARD CONCRETE DISTRIBUTION

The hard concrete distribution presented in Louizos et al. (2018) aimed to increase the probability
mass near 0 and 1, in order to either force some features to be discarded, or to increase the feature
probability to near 1. In our case, the discard part in not necessary, as the ΓM matrix will already
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discard all the features that are not part of the top-M most important features for each instance. Is
fact, using the original hard concrete distribution is also counterproductive, as it could unadvisedly
force the model to remove more features than the target M , causing a degrade in the performance of
the algorithm.

In order to avoid this problem, a variation of this distribution is presented, aiming to only increase
the probability mass only near 1. This distribution is defined as

τu(x) = min

(
1,max

(
0, σ

(
x− 2 log(u)

β

)
(ζ − γ) + γ

))
, u ∈ U(0, 1). (6)

These distribution will ensure that, at some point, all values in ΓM will be 1 at some point of the
training procedure, without causing any undesired removal.

3.2.2 DECAYING FACTOR FOR TRAINING TRICKS

Although the inclusion of Eq. 6 during training helps the stability of the procedure, it also causes
a slight under-fitting over the training of the original problem f(·;ΘUNSUP ). Initial experiments
conducted for this study showed that Eq. 6 help is focused on the beginning of the training. In order
to avoid the under-fitting problem over f(·;ΘUNSUP ), a decay factor is placed over Eq. 6, aiming
to erase τu(x) over the last steps of the training procedure. The modified version is defined as

τ̃(x) = αt
ττu(x) + (1− αt

τ )τ(x) (7)
being t the training iteration. During the experiments, ατ was set to 0.99995.

Besides that, it was also noted that the model initialization affects the training result by a huge mar-
gin. Following Cancela et al. (2023), it was found that f(·;ΘUNSUP ) should be properly warmed-
up to provide a consistent training. However, it is possible to circumvent it by substituting, with a
low probability, ΓM for ΓF , that is, selecting all features. In a similar fashion with the previous
trick, this probability will decay until it disappears. Strictly speaking, ΓM is substituted by

Γ =

{
ΓF with probability p = min(ϵΓ, α

t
Γ)

ΓM with probability p = 1−min(ϵΓ, α
t
Γ)

(8)

being t the training iteration. During the experiments, αΓ was set to 0.9995 and ϵΓ was set to 0.2.
These two tricks will help the training procedure to be invariant to the model initialization.

4 EXPERIMENTS

The experimental section of this paper will be divided in two main tasks, aiming to solve two dif-
ferent questions. First, some experiments regarding to data compression will be conducted, aiming
to test if this dynamic feature selection technique could be considered as a replacement of a classic
feature extraction method. Finally, the DDS model will be attached to a state-of-the-art clustering
technique, in order to show the versatility of this approach. All algorithms, scripts and results are
accessible via GitHub1

4.1 DATA COMPRESSION

In order to evaluate the ability of the DDS algorithm to reconstruct the input data, two different
image datasets have been selected: MNIST LeCun et al. (1998), composed of 28 × 28 gray-scale
images (almost binary); and CIFAR-10 Krizhevsky et al. (2009), composed of 32×32 RGB images.

As stated in section 1, one of the main advantages of the DDS algorithm is that it is able to preserve
the spatial location of the selected features. This means that the output of the DDS procedure has the
same shape of its input. In a data reconstruction environment, this effect causes a huge advantage,
because more complex networks that a classic autoencoder can be used to reconstruct the input data
from the DDS output.

1URL will be included upon acceptation.
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(a) MNIST (b) CIFAR-10

Figure 2: Reconstruction errors when using the same number of features in both architectures. The
DDS model is able to obtain a more accurate representation of the input data in both datasets.

In this scenario, the U-Net architecture Ronneberger et al. (2015) was selected to model either the
DDS architecture g(·;ΘDDS) and the reconstruction part f(·;ΘUNSUP ). It consists of a fully
convolutional network with a contracting and an expansive path. Starting with C channels in the
first layer, the number of channels is doubled every time a 2-downsampling procedure is performed.
Multiple residual links connect both the contracting and the expanding layers.

In order to make a fair comparison against a similar network, a naive U-Net model without the resid-
ual links was selected. As a classic autoencoder, the output of the deepest layer will be considered
as the extracted deep features. The number of deep features will depend on the number of initial
channels C. Aiming also to remove the network size as a cause of the disparity of the results, the
number of channels in the naive network will be doubled with respect to each U-Net in the DDS
configuration. With this simple modification, a similar number of trainable weights will be ensured.

As loss function, a elastic approach was selected, defined as

L(X, X̃) = ∥X− X̃∥22 + αL∥X− X̃∥1, (9)

being X the input data, X̃ the data reconstruction, and αL = 10−2 the hyper-parameter controlling
the L1 norm. The Adam optimizer Kingma & Ba (2014) with a learning rate of 10−3 was used for
100 epochs, with a batch size of 256. The algorithms were trained over the train partitions of each
dataset, whereas the results provided in this paper correspond to the test partition.

This experiment aims to answer two different questions:

• Can dynamic feature selection be an alternative to feature extraction whenever they share
the same number of features?

• Can dynamic feature selection be an alternative to feature extraction whenever their mem-
ory consumption is similar? Although dynamic feature selection has the advantage of pre-
serving the input data positioning, it also requires to allocate an extra memory space to
store the index of the selected positions.

4.1.1 DFS VS FE: USING THE SAME NUMBER OF FEATURES

In this experiment, DDS will select the same number of features than the number of deep features
provided by the naive model. By controlling the number C of channels of the first layer, we can
modify the number of deep features. Fig. 2 shows both the Mean Average Error (MAE) and the
Mean Squared Error (MSE) of both models, over the two datasets. The experimental results con-
ducted over the MNIST dataset clearly indicate that the DDS Algorithm significantly outperformed
the naive autoencoder. It also have a MAE lower than the MSE of the naive model, which is impres-
sive. It suggest that the DDS network is very capable of reconstructing data that almost only contain
two different values (0s and 1s).
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(a) MNIST (b) CIFAR-10

Figure 3: Reconstruction errors when using the same storing memory in both architectures. Besides
when selecting a small number of featues in the CIFAR-10 dataset, the DDS model is able to obtain
a more accurate representation of the input data.

(a) MNIST (b) CIFAR-10

Figure 4: Reconstruction examples for both datasets when using the same amount of bytes to store
the data compression (equivalent to 128 features for the naive model). From top to bottom: original
image, DDS selected features (white in MNIST, red in CIFAR-10), DDS reconstruction and Naive
reconstruction.

On the contrary, the results obtained in CIFAR-10 are closer between the two models, specially
when the number of features is small. Nevertheless, an interesting effect arises when looking at the
MAE scores: as the number of features increases, the MAE improvement in the naive model quickly
decreases, showing almost no gain when the number of features is higher than 500. However, this
bottleneck does not affect to the DDS model, as the MAE continues to reduce, increasing the error
gap between these two approaches.

4.1.2 DFS VS FE: USING THE SAME MEMORY ALLOCATION

As early mentioned, if the main purpose of the task is to store the selected features, it is also needed
to save some space for their indexes. Thus, this test will show the quality of the data reconstruction
when both models use the same space to store their data compression information. Knowing that
each MNIST image has 784 pixels, and the CIFAR-10 images contain 3072 features, 10 and 12 bits
will be needed to store each index position, respectively. For instance, let the naive model outputs
128 32-bit float point deep features for the MNIST dataset. In order to occupy the same amount of
memory, the DDS model can only select 97 features.

Fig. 3 shows the obtained results. Again, the results obtained by the DDS model overcome the nave
model results by a huge margin, suggesting that dynamic feature selection could be a better data
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Table 1: Comparative clustering results on four different datasets. The DDS model is able to main-
tain similar results to thos obtained by the algorithm attached to it, even when using a low number
of selected features.

CIFAR-10 CIFAR-100/20 STL-10 TINY-IMAGENET/200
MODEL ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

DAC 52.2 39.6 30.6 23.8 18.5 8.8 47.0 36.6 25.7 6.6 19.0 1.7
DCCM 62.3 49.6 40.8 32.7 28.5 17.3 48.2 37.6 26.2 10.8 22.4 3.8
SCAN 88.3 79.7 77.2 50.7 48.6 33.3 80.9 69.8 64.6 - - -
CC 79.0 70.5 63.7 42.9 43.1 26.6 85.0 76.4 72.6 14.0 34.0 7.1
TCL 88.7 81.9 78.0 53.1 52.9 35.7 86.8 79.9 75.7 - - -
IMC-SwAV 89.1 81.1 79.0 49.0 50.3 33.7 83.1 72.9 68.5 27.9 48.5 14.3

DDS(10%)+ 82.0 70.4 66.7 39.4 40.9 25.3 82.7 72.2 67.5 23.3 49.2 11.3IMC-SwAV

DDS(25%)+ 85.9 76.6 73.4 45.0 47.0 29.9 84.8 74.4 70.7 26.4 51.3 13.3IMC-SwAV

DDS(50%)+ 89.1 80.5 78.9 48.9 49.8 33.5 84.8 74.4 70.8 26.5 51.3 13.3IMC-SwAV

DDS(100%)+ 89.3 81.1 79.4 51.2 52.1 35.3 84.5 73.6 70.2 27.8 52.5 14.2IMC-SwAV

compression protocol for this special type of dataset. With respect to the CIFAR-10 dataset, the
naive model is able to obtain a better data compression when using a very low number of features
(64). However, as the number of features is increased, the data compression quality of the DDS
model surpasses the naive model by a huge margin. Fig. 4 also shows some random examples of
data reconstruction on both datasets. The DDS reconstruction provides a less blurry solution than
the one offered by the naive model. Note that, although the algorithm selects some border pixels
in the MNIST dataset, their importance score is zero. In practice, it is like these pixels were not
selected.

4.2 CLUSTERING

An extra experiment will be conducted, aiming to test the ability of the DDS model to adapt it to
different unsupervised scenarios. This experiment will show the results obtained in a clustering
problem, when the DDS model is just attached to a state-of-the-art architecture, without performing
any calibration or hyper-parameter tuning.

Over the recent years, the contrastive learning boosts the quality of the unsupervised clustering
in images. Techniques like Contrastive Clustering (CC) Li et al. (2021) or its upgrade, the Twin
Contrastive Clustering (TCL) Li et al. (2022) achieved results near to those obtained by supervised
techniques, which is remarkable. However, some of these works perform image resizing, changing
the initial CIFAR-10 image size 32 × 32 to a much bigger one (224 × 224 for TCL, for instance).
Therefore, it makes no sense to perform a dynamic feature selection over an image that is artificially
enlarged.

In order to make a fair experiment, DDS should be attached to a clustering model that does not
require image resizing to achieve state-of-the-art results. Over these solutions, IMC-SwAV Ntelemis
et al. (2022) stands out from the rest. Therefore, the DDS module g(·;ΘDDS) was attached to
the IMC-SwAV model f(·;ΘUNSUP ), without incurring in any optimization. The same training
procedure presented in Ntelemis et al. (2022) will be applied here. The U-Net model (with C = 16)
will be used as the DDS architecture.

As baselines, in addition to the aforementioned CC, TCL and IMC-SwAV, models like DAC Chang
et al. (2017), DCCM Wu et al. (2019) and SCAN Van Gansbeke et al. (2020) were also included.
Table 1 shows the clustering results obtained over four different datasets: CIFAR-10, CIFAR-100/20
Krizhevsky et al. (2009), STL-10 Coates et al. (2011) and Tiny-ImageNet/200 Le & Yang (2015),
which is a subset of ImageNet containing 200 classes downsampled to a lower resolution. The
results show that DDS is able to significantly reduce the number of input features without incurring
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in a huge increase of the IMC-SwAV performance. Besides that, it is also able to keep or even
increase its performance when selecting at least half of the input features.

It is specially interesting to note that, even when only selecting the 10% of the input features, the
score obtained is higher than state-of-the-art techniques of 4 years ago. These results suggest that
DDS can be attached to any state-of-the-art model with almost no clustering performance loss.

5 DISCUSSION

A general recipe for Dynamic Feature Selection on unsupervised scenarios was presented in this pa-
per, that allows to attach the so-called DDS architecture to the input of any unsupervised task. The
method is based on the creation of an autoencoder-like architecture that outputs the selection of, at
most, M relevant features with its respective score, being M a fixed parameter tuned by the operator.
This output is regularized by an L0 regularization, ensuring that unimportant features will receive
close to zero importance. A novel concrete distribution was created, aiming to introduce variability
in the dynamic feature selection without forcing any of them to be prematurely removed. In the ex-
periments, it was shown that the DDS architecture can perform data compression with better results
than a classic autoencoder, even when taking into account that extra memory is needed for saving the
feature selection indexes. This effect is caused by two factor: first, the information provided by the
selected features is extremely discriminative; and second, more complex autoencoder-like architec-
tures, like U-Net, can be used with this approach, since the input data structure is always preserved.
It was also shown that the DDS architecture can be attached to a state-of-the-art clustering model,
achieving similar results even when selecting a tiny fraction of the input data.

It is worth noting that the output of the DDS architecture is not forced to be binary. In fact, prelimi-
nary studies show that the feature importance score barely reaches the perfect score of 1. This could
be a problem in terms of explainability, a the stored compressed data is modified from the original
one. Thus, two solutions can be performed to solve this problem. In first place, it is possible to store
the input data and their importance score in separate ways, but it causes the memory requirements
to be almost doubled. The second solution is to force the DDS output to be binary by introduc-
ing more restrictions into the model. Although initial tests show a remarkable degrade in the DDS
performance, only a small fraction of techniques were used to force this extra restriction.

For future work, it is planned to further study the issue mentioned before. It would be also interest-
ing to take advance of the ability of the DDS architecture to preserve the input data structure. Novel
contrastive learning loss functions can be derived from this idea, as the selected pixels of an image
should be similar no matter how many geometrical operations are applied to perform data augmen-
tation over them. Finally, it would also be interesting to extend this architecture to the supervised
scenario, in a similar fashion previous DFS algorithms did.
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