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Abstract

Large-scale machine learning (ML) models are increasingly being used in crit-
ical domains like education, lending, recruitment, healthcare, criminal justice,
etc. However, the training, deployment, and utilization of these models demand
substantial computational resources. To decrease computation and memory costs,
machine learning models with sparse weight matrices are widely used in the lit-
erature. Among sparse models, those with special sparse structures (e.g., models
with block-wise sparse weight matrices) fit generally better with the hardware
accelerators and can decrease the memory and computation costs during the in-
ference. Unfortunately, while weight matrices with special sparsity patterns can
make the models efficient during inference, there is no efficient method for training
these models. In particular, existing training methods for block-wise sparse models
start with full and dense models leading to an inefficient training process. In this
work, we focus on training models with block-wise sparse matrices and propose
an efficient training algorithm to decrease both computation and memory costs
during the training. Our extensive empirical and theoretical analyses show that our
proposed algorithms can decrease the computation and memory costs significantly
without a performance drop compared to baselines.

1 Introduction

Deep learning models have achieved remarkable success across various domains, but training these
models on resource-constrained devices remains challenging due to their computational and memory
requirements. To decrease memory and computational costs, sparse machine learning models have
been widely used in literature. Sparse networks are mainly categorized into two groups: fine-grained
sparse networks and coarse-grained sparse networks (see Figure 1 which provides an example of a
fine-grained sparse weight matrix and two examples of coarse-grained sparse weight matrices). In
fine-grained sparse networks, the weight matrices are sparse but they do not have any special structure.
This type of sparsity generally improves the storage cost but does not improve the inference time
significantly. This is because the random distribution in fine-grained sparse weight matrices does not
fit with the hardware accelerators, and they can speed up the inference time only if the sparsity ratio
is higher than 95% [45, 46]. On the other hand, coarse-grained sparse matrices are better alternatives
to speed up inference [34, 9, 10].

To train coarse-grained (structured) sparse weight matrices, it is common to use iterative pruning
[40, 50] or group lasso techniques [1, 36, 18]. Iterative pruning works as follows. First, a sparsity
pattern is defined (e.g., 2:4 sparsity[32] or channel-wise sparsity[28]). Based on this pattern, the
weight parameters are divided into separate groups. A deep model is trained and then by looking at
weight matrices, we prune some of the groups that are not impacting the performance of the model.
Then, we re-train (fine-tune) the remaining weights and again prune those groups that have the

smallest impact on the performance. This procedure is repeated until we achieve the desired sparse
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Figure 1: Examples for fine-grained and coarse-grained sparse matrices. White entries represent zero
value.

network. Group LASSO technique adds a regularizer to the objective function which ensures that
weights in several groups go to zero during the training. In particular, for Group LASSO, first, we
divide the parameters in each weight matrix into several groups (each block can be considered as a
group) and add a regularizer for each group to the objective function. As a result, the weights in certain
groups with minimal impact on accuracy will eventually go to zero during training. Nevertheless,
iterative pruning and group lasso techniques mainly focus on reducing memory and computation costs
at the time of inference. However, they can be very costly during the training as the training process
starts with the full network (i.e., all the weights are non-zero at the beginning) and the gradient needs
to be calculated with respect to all the model parameters.

In this paper, we propose a technique that enables us to train block-wise sparse matrices that optimize
both computation and memory costs during training and inference. We leverage the Kronecker
product decomposition to propose a new matrix factorization technique suitable for block-wise sparse
matrices. Our contributions in this work can be summarized as follows,

• To the best of our knowledge, this is the first work that focuses on efficient training for block-
wise sparse models. This work is also the first work that makes a connection between block-
wise sparse matrices and the Kronecker product decomposition for efficient training. While
there have been several algorithms for training block-wise sparse models [2, 26, 23, 33],
they are not efficient during training.

• We theoretically demonstrate every block-wise sparse matrix can be represented using our
proposed decomposition resulting in no significant performance drop.

• Our theoretical analyses show that our proposed approach decreases the number of flops and
training parameters during the training compared to existing methods for training block-wise
sparse models.

• Through extensive empirical study, we show that in some cases, our proposed method can
reduce the number of training parameters and training FLOPs by 97% with a minimal
accuracy drop.

2 Preliminary

Group LASSO: LASSO is a method for learning sparse models by adding a penalty term to the
cost function, which is proportional to the l1 norm of the model’s coefficients. This encourages the
model to be sparse and sets some of the model parameters to be zero. Group LASSO is an extension
of LASSO which divides the model parameters into several groups and imposes a regularizer on each
group. This encourages the coefficient in several groups to go to zero during the training. Group
LASSO can be used to train block-wise sparse matrices (see Figure 2) by defining each block as a
group. In particular, consider a neural network with L layers, with W being the weight matrices of
the whole network and W [l] being the weight matrix in layer l. Also, let W [l]

g denotes the block/group
g in layer l. Then, the group LASSO solves the following optimization problem,

Ŵλ = argmin
W

J (W [1], . . . ,W [L];D) + λ

L∑
l=1

∑
g

||W [l]
g ||F , (1)

where Ŵλ is the optimized weight matrices with hyperparameter λ, J is the loss function, and D is
the training dataset, and ||.||F denotes the Frobenius norm.

Kronecker Product Decomposition: The Kronecker product, denoted by ⊗, is a mathematical
operation that combines two matrices to form a larger matrix. Given two matrices A and B, if A is of
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Figure 2: Illustration of why (3) leads to block-wise sparsity when S[l] is sparse. White entries
represent zero value.

size m1 ×n1 and B is of size m2 ×n2 , then the Kronecker product of A and B results in a matrix of
size m1m2 × n1n2. Let W be an m by n matrix, where m = m1m2, n = n1n2 we can decompose
this matrix using the Kronecker product decomposition as follows [44],

W =
∑R

i=1 Ai ⊗Bi =
∑R

i=1 Wi, (2)

where Ai is an m1 by n1 matrix, Bi is an m2 by n2 matrix, and R = min{m1n1,m2n2}. Given this
decomposition, Wx (where x ∈ Rn×1) also can be calculated as follows, Wx = vec(

∑R
i=1 Bix̌A

T
i ),

where x̌ is n2 by n1 matrix and can be obtained by re-arranging the elements of vector x [44].

It turns out that the low-rank approximation is a special case of decomposition (2). More precisely, if
we set m2 = 1 and n1 = 1, Equation 2 is equivalent to the low-rank approximation. Let’s assume
that we want to approximate matrix W by r terms of (2). In this case, W ≈ Wr =

∑r
i=1 Ai ⊗Bi,

where Wr is expressed by r(m1n1 +m2n2) parameters.

It is worth mentioning that similar to the low-rank approximation, Kronecker product decomposition
can be used for compressing deep models [19, 8]. However, to the best of our knowledge, there is no
tensor/matrix factorization for generating and training block-wise sparse matrices. In the next section,
we will explain how we can take advantage of Kronecker product decomposition to efficiently train
block-wise sparse matrices and reduce the memory footprint during the training process.

3 Problem Statement and Proposed Solution

There are several methods including iterative pruning or group LASSO to train block-wise sparse
weight matrices (see Section A.1 for related literature). However, these methods have to start with
a full uncompressed model and sparsify the weight matrices gradually during the training. As a
result, these methods do not decrease computation and memory during training. However, in this part,
we propose a new matrix decomposition method leveraging the Kronecker product decomposition
algorithm to train block-wise sparse matrices with fewer training parameters and fewer flops for
forward and backward propagation compared to the group LASSO and structured pruning approaches.
To demonstrate how to learn a structured sparse weight matrix efficiently, assume that W [l] is the
weight matrix associated with layer l (if we are working with a convolutional neural network, W [l]

can be a tensor.) Instead of learning W [l], we propose to estimate it by

W [l]
r =

rl∑
i=1

(S[l] ⊙A
[l]
i )⊗B

[l]
i , (3)

where rl is a hyper-parameter called rank, ⊙ is element-wise product, S[l] and A
[l]
i are m1 by n1

matrices and B
[l]
i is an m2 by n2 matrices. Then, we can train S[l], (A

[l]
i , B

[l]
i )rli=1 directly during the

training process (we calculate the gradient of the loss function with respect to these parameters). By
imposing an l1 regularizer on S[l], we can make sure that S[l] is sparse in the following problem,

min
[S[l],A

[l]
i ,B

[l]
i ]i≤rl,l≤L

J ([S[l], A
[l]
i , B

[l]
i ]i≤rl,l≤L,D) + λ

L∑
l=1

||S[l]||1, (4)

where λ is a constant and controls the sparsity rate. If S[l] is an unstructured sparse matrix, W [l]
r =∑rl

i=1(S
[l] ⊙A

[l]
i )⊗B

[l]
i will be a block-wise sparse matrix (see Figure 2). After training, depending

our application, we can use W
[l]
r during the inference time or we can use S[l], (A

[l]
i , B

[l]
i )rli=1 directly
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during the inference time. It is worth mentioning that the decomposition in (3) provides several
degrees of freedom and hyper-parameters (i.e., m1,m2, n1, n2, rl). Note that the block size in W

[l]
r

is determined by the size of matrix B
[l]
i (i.e., (m2, n2)). If our only goal is to minimize the number

of parameters using (3), then the hyper-parameters can be determined by an optimization problem. In
particular, we can set rl = 1 and solve the following integer programming,

min
m1,n1,m2,n2

2m1n1 +m2n2, s.t.,m1m2 = m,n1n2 = n, (5)

where the objective function is equal to the number of parameters in (3). The above optimization
problem is nonconvex. We can solve it by setting m2 = m/m1 and n2 = n/n1. The above
optimization problem reduces to minm1,n1

2m1n1+
mn

m1·n1
. By the first order condition, the minimizer

of 2m1n1 +
mn

m1·n1
is m1n1 =

√
0.5 ·mn if

√
0.5 ·mn is integer (if

√
0.5 ·mn is not an integer,

we can use integer programming tools like branch and bound to solve the problem). To clarify, we
provide an example.

Example 1 Let m = 23 and n = 28. In this case, for the minimum possible space complexity under
factorization (3), we need to have m1n1 = 32. For example, we can set m1 = 4, n1 = 8,m2 =
2, n2 = 32. In this case, the total number of parameters would be 128. The original matrix W [l], has
2048 training parameters. Therefore, at the time of training, using (3), we need to train 128 variables
while the group LASSO technique needs to train 2048 variables. At the inference time, we can use
directly sparse matrix (S[l] ⊙A

[l]
1 ) and B

[l]
1 to make an inference. We can also use block-wise sparse

matrix W
[l]
1 to make an inference.

The above example shows the proposed factorization in (3) can reduce the training parameters
significantly. In the remaining part of this section, we explain how any block-wise sparse matrix can
be represented by (3) and why the proposed factorization can decrease the number of flops during
forward and backward propagation compared to group LASSO/Structured Pruning.

Proposition 1 Let Ŵ [l] be a block-wise sparse matrix trained by group LASSO or iterative pruning.
If the blocks have the same size, then there exists r̂l and Ŝ[l] and (Â

[l]
i , B̂

[l]
i )rli=1 such that Ŵ [l] =∑r̂l

i=1(Ŝ
[l] ⊙ Â

[l]
i )⊗ B̂

[l]
i .

Intuitively, the above proposition implies that if the hyper-parameters rl, n1, n2,m1,m2 are chosen
correctly, then training matrices S[l], (A

[l]
i , B

[l]
i )rli=1 should have the same performance of a model

trained by the group LASSO or pruning technique.

Proposition 2 [Number of Flops for Forward and Backward Passes in A Linear Model] Consider
multivariate linear regression model h(x) = Wx, where W is an m by n matrix, and x ∈ Rn is
the input feature vector. Let D = {(xj , yj)|j = 1, . . . , N} be the training dataset, and J (W ;D) =∑N

j=1 ||Wxj − yj ||22 be the objective function. If we estimate W by
∑r

i=1(S ⊙Ai)⊗Bi and write

J (S, (Ai, Bi)
r
i=1;D) =

∑N
j=1 ||

∑r
i=1[(S ⊙Ai)⊗Bi]xj − yj ||22, then,

• Forward pass: Number of flops for calculating J (W ;D) is O(2(n +
1)mN). On the other hand, J (S, (Ai, Bi)

r
i=1;D) can be calculated by

O (2Nrm1n1(m2 + n2)−Nr(m+ 2m2n1) + 3Nm) flops.

• Backward pass: Number of flops for calculating gradient of J (W ;D) with respect to W

is O(mN(2n+ 1)). On the other hand, ∂J (S,(Ai,Bi)
r
i=1;D)

∂Ai
and ∂J (S,(Ai,Bi)

r
i=1;D)

∂Bi
can be

calculated by O(2Nn1m2(n2 + m1) − Nn1m2 + m1n1) flops and O(2Nm1n2(m2 +

n1) + m1n1 − Nn2m1) flops, respectively. In addition, ∂J (S,(Ai,Bi)
r
i=1;D)

∂S needs
O (Nm+Nr(4m1m2n1 −m2n1 + 2m2n1n2)) flops.

The above proposition implies forward and backward passes for J (S, (Ai, Bi)
r
i=1,D) can be more

efficient compared to calculating J (W,D) if right values for parameters m1, n1,m2, n2, r are chosen.
This is because the forward and backward passes for J (W,D) needs O(mnN) while mn does not
appear in the time complexity of forward and backward passes of J (S, (Ai, Bi)

r
i=1,D). In addition

to flops for calculating the gradient, in each epoch of gradient descent for J (W,D), we need to update
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mn parameters which needs O(mn) flops. On the other hand, in each epoch of gradient descent
for J (S, (Ai, Bi)

r
i=1,D), after calculating the gradient, we update r(m1n1 + m2n2) parameters

which need O(r(m1n1 +m2n2)) flops. This is another reason that the training process can be more
efficient under decomposition (3).

We want to emphasize that our experimental results also show that number flops during the training
can be significantly decreased by decomposition (3) (e.g., Table 2 shows 97% reduction in number
flops with 1 percentage point performance drop compared to the dense model.)

4 Experiment

4.1 LeNet on MNIST

In this part, we conduct an experiment with the LeNet-5 Network [21] and the MNIST dataset.
Similar to the previous part, we compare our algorithm with group LASSO, elastic group LASSO,
and unstructured iterative pruning. The results are shown in table1. Since LeNet-5 has three fully
connected layers, the column block size indicated the block sizes for these layers. For example,
(16,8)(8,4)(4,2) indicates that the block size in the first layer is 16 by 8, in the second layer is 8 by
4, in the third layer is 4 by 2. The rank of the decomposition under our algorithm is 5 for all the
layers in all the experiments. We can see that the performance and sparsity rate of our method and
the baselines are the same. However, the number of FLOPs and the number of training parameters of
our algorithms remains significantly lower compared to baselines.

Table 1: Accuracy, sparsity rate, number of training parameters, and number of FLOPs for LeNet-5
network trained on MNIST dataset for different block sizes.

Block-size Methods Accuracy Sparsity Rate Train Param FLOPs
(16, 8) (8, 4) (4, 2) group LASSO 98.31 ± 0.54 49.43 ± 0.06 61k 435.85k
(16, 8) (8, 4) (4, 2) Elastic group LASSO 98.23 ± 0.60 49.47 ± 1.02 61k 435.85k
(16, 8) (8, 4) (4, 2) Ours 98.55 ± 0.56 50.85 ± 0.70 6.2k 270.59k
(8, 4) (4, 4) (2, 2) group LASSO 97.96 ± 0.51 72.97 ± 14.01 61k 435.85k
(8, 4) (4, 4) (2, 2) Elastic group LASSO 98.02 ± 0.51 63.28 ± 12.89 61k 435.85k
(8, 4) (4, 4) (2, 2) Ours 99.06 ± 0.52 52.49 ± 1.23 22.6k 287.54k
(4, 4) (4, 4) (2, 2) group LASSO 98.08 ± 0.60 52.58 ± 4.94 61k 435.85k
(4, 4) (4, 4) (2, 2) Elastic Group LASSO 98.17 ± 0.55 52.77 ± 5.93 61K 435.85k
(4, 4) (4, 4) (2, 2) Ours 99.08 ± 0.53 54.02 ± 1.53 13.7k 306.74k
(4, 4) (2, 2) (2, 2) group LASSO 98.08 ± 0.53 63.29 ± 9.21 61k 435.85k
(4, 4) (2, 2) (2, 2) Elastic Group LASSO 99.08 ± 0.68 54.30 ± 1.59 61k 435.85k
(4, 4) (2, 2) (2, 2) Ours 99.08 ± 0.68 54.30 ± 1.59 9.7k 319.34k
(2, 2) (2, 2) (2, 2) group LASSO 98.27 ± 0.73 49.38 ± 0.02 61k 435.85k
(2, 2) (2, 2) (2, 2) Elastic group LASSO 97.58 ± 0.60 84.43 ± 8.43 61k 435.85k
(2, 2) (2, 2) (2, 2) Ours 98.66 ± 0.59 56.27 ± 2.71 6.1k 357.74k

- iterative pruning 98.02 ± 0.82 58.56 ± 1.32 61k 425.85k

4.2 ViT/Swin-Transformer on CIFAR-100

We conduct another experiment with our approach with the ViT-tiny [5, 43] and Swin-transformer
Tiny [27] on CIFAR-100 image classification dataset [12]. The dataset has 60 thousand pictures of
100 different categories. The model is trained using this dataset for 300 epochs. We keep the rank of
our algorithm equal to 4. To train the model by group LASSO, we train the network from scratch
and increase the regularizer parameters of the group LASSO gradually. Since most of the modules
in transformer architecture are linear layers, our method can significantly decrease the number of
parameters. It can be seen in Table 2, that our model’s number of parameters during the training is
only 3% of that of the original model for ViT. Moreover, in the case of the Swin Transformer, we
can also achieve 80% compression rate during the training. We want to emphasize that both (Elastic)
Group LASSO and our method can achieve high accuracy. However, as we expected, the number of
training parameters and FLOPs are significantly smaller under our proposed algorithm. We want to
also mention that there is no efficient training algorithm for training block-wise sparse matrices. As
a result, other baselines for training block-wise sparse matrices would be more expensive than our
proposed method during the training.
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Table 2: Experiment with CIFAR-100 dataset. Our method can significantly reduce the training
parameters and training FLOPs while maintaining the accuracy close to the original model and
(Elastic) Group LASSO method.

Method Block-size accuracy Sparsity Rate Training Params FLOPs
ViT-t (Original Model) - 64.32 ± 1.92 - 5.5M 2.16G

Group LASSO 4 × 4 60.41 ± 4.24 49.99 ± 0.02 5.5M 2.16G
Elastic group LASSO 4 × 4 61.92 ± 3.01 49.92 ± 0.11 5.5M 2.16G

Ours 4 × 4 62.99 ± 0.73 49.64 ± 0.72 0.16M 65.37M
Swin-t(Original Model) - 81.44 ± 0.05 - 27.60M 26.18G

Group LASSO 4 × 4 75.87 ± 2.17 50.24 ± 0.13 27.60M 26.18G
Elastic group LASSO 4 × 4 76.34 ± 0.82 50.19 ± 0.25 27.60M 26.18G

Ours 4 × 4 77.54 ± 0.42 53.25 ± 0.36 5.3M 167.33M

4.3 Ablation Experiments

Table 3: The impact of rank in decomposition (3) on the model’s accuracy, sparsity rate, number of
training parameters, and number of FLOPs.

Model Rank accuracy sparsity Training Params Training FLOPs
Linear 1 48.40 ± 0.40 53.57 ± 2.43 0.26k 0.56k
Linear 2 66.79 ± 0.91 53.57 ± 1.57 0.46k 1.13k
Linear 4 84.58 ± 3.55 55.36 ± 0.72 0.85k 2.24k
Linear 6 88.19 ± 0.32 51.79 ± 0.56 1.24k 3.36k
ViT-t 1 36.86 ± 2.41 52.20 ± 0.13 0.88M 0.54M
ViT-t 2 59.71 ± 2.63 50.74 ± 0.27 1.22M 1.02M
ViT-t 4 62.99 ± 0.73 49.64 ± 0.72 1.88M 1.88M

Swin-t 1 58.46 ± 0.16 51.39 ± 0.67 3.53M 55.78M
Swin-t 2 68.22 ± 0.04 54.37 ± 1.01 5.25M 108.65M
Swin-t 4 77.54 ± 0.42 53.25 ± 0.36 8.69M 167.33M

In this part, we conduct an experiment to understand the impact of the rank on the accuracy, number
of training parameters, and number of training flops during the forward path and backward path. We
set the block size equal to 4 × 4. We conduct ablation experiments on the linear model, ViT-tiny,
and Swin Transformer separately. As we expected, we can improve the accuracy of the model by
increasing the rank. Moreover, we observe that as the rank increases, the accuracy improvements
diminish. In this experiment, we kept the regularizer parameter the same for different ranks. As a
result, the sparsity rate is not sensitive to the rank and remains almost the same for different ranks.

5 Conclusion

In this paper, we introduce a novel approach for training block-wise sparse matrices using Kronecker
product decomposition. This method offers an alternative to group LASSO and structured pruning,
enabling training block-wise sparse matrices with fewer parameters and FLOPs. Our theoretical
results show that our proposed method can decrease the number of training parameters and the
number of FLOPs without hurting accuracy compared to the group LASSO and structured pruning
algorithms. Our experiments demonstrate the effectiveness of our approach in terms of efficiency and
accuracy.
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A Appendix / supplemental material

A.1 Related Work

Pruning is an effective technique for reducing model parameters and has seen tremendous progress
in recent years[37, 41, 11]. Pruning generally can be divided into structured pruning [2, 26, 23] and
unstructured pruning[4, 38]. Unstructured pruning finds fine-grained sparse matrices by setting the
unimportant weights to zero (See Figure 1). While unstructured pruning can decrease the number
of model parameters at the inference time, it generally does not improve the inference time [45].
Structured pruning, on the other hand, trains coarse-grained sparse matrices leading to a decrease in
the memory cost and inference time. It is important to note that pruning methods generally start with
a dense full network and prune the network in one-shot or in several iterations and retrain the network
to improve the performance. As a result, memory and computation costs during the training can be
expensive. Recently, several pruning methods have been proposed to decrease the training cost as
well. These methods try to prune the network right after initialization and train the sparse network
[22]. The current Pruning After Initialization (PAI) methods are able to perform unstructured pruning,
and they need large memory at the time of initialization which makes it impossible to do training on
small devices. On the other hand, our proposed method is able to decrease the number of parameters
and flops from the beginning of the initialization and train block-wise sparse matrices to decrease
inference memory and time.

Regularization is another method for training a network with sparse weight matrices. It is common to
add l1 or l0 regularizer to the loss function [30, 29] to find unstructured sparse weight matrices. Group
LASSO, an extension of the LASSO method, is a method that imposes a regularizer to pre-defined
groups of model parameters leading to block-wise or group-wise sparsity structures in deep neural
networks[25, 39, 1]. To improve the performance of group LASSO, recently a new variation of group
LASSO called Elastic group LASSO [33] has been proposed. It is worth mentioning that group
LASSO is only able to remove the computation and memory cost during inference. The training
cost associated with group LASSO is relatively high as this method starts the training with a dense
network.

Matrix/tensor factorization [51, 47] is a compression method that is able to reduce the training
and inference cost by reducing the number of training parameters from the beginning of the training
process. While matrix/tensor factorization has been widely used for model compression [16, 8, 6, 49],
these methods are not able to find block-wise sparse matrices for deep models.

Knowledge Distillation (KD) methods train a smaller student network based on the guidance of a
bigger teacher network [15, 24]. Knowledge distillation methods try to make sure that the student
network mimics the behavior of teacher network by comparing outputs [3, 7, 31, 52] or intermediate
features [13, 14, 17, 20, 35, 42]. The training process under KD can be computationally heavy as we
need to train a teacher model first and then use the teacher model to train a student model [48].

In this paper, our goal is to propose a new method for finding block-wise sparse matrices that is
efficient during both training and inference. The proposed method can decrease the number of
training parameters and flops significantly without degrading the model performance compared to the
baselines (e.g., group LASSO, iterative pruning).

A.2 Proofs

Proof [Proposition 1] In this section, we will prove that each block-wise sparse matrix trained by
group LASSO could be decomposed by the decomposition in (3).

We assume the block-wise sparse matrix W has a size of m by n, the number of groups is m1 × n1

and the block size is m2 by n2 where m1 ×m2 = m and n1 × n2 = n. We want to find S,Ai, Bi

such that the following holds where W is given by the group LASSO method.

W =
∑r

i=1 (S ⊙Ai)⊗Bi (6)

Assume that T groups among n1m1 groups are non-zero in matrix W and the index of the groups are
t1, t2, ..., tT . We set r = T and we generate a series of Ai and Bi for i = 1, ..., T to make sure (6)
holds. In particular, we set Bi matrix to be equal to the block of ti in matrix W , and Ai is a matrix
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that only has one entry equal to 1 which is associated with block ti and the other entries are zeros.
We also can set S to be a binary matrix. Each entry in S corresponds to a block in W . If a block in
W is non-zero (resp. zero), then the entry associated with that block in S would be 1 (resp. 0). By
this construction, S,Ai, Bi satisfy (6).

Proof [Proposition 2]

Consider a one layer network withou bias term. The input dimension of it is n. The output dimension
of it is m. We can knoe the shape of the weight matrix W is Rm×n. Since we have N data points,
the input matrix X ∈ RN×n.

Forward FLOPs with full matrix When using full weight matrix, the first step is to compute the
output O ∈ RN×m as

O = XWT . (7)

The FLOPs of this step is Nm(2n− 1). Then we calculate the loss as

J = ∥O − Y ∥2F , (8)

where Y ∈ RN×m is the label matrix. The FLOPs for this step is 3Nm− 1. Therefore, the FLOPs
of the forward computation is

Nm(2n− 1) + (3Nm− 1) = O (2Nm(n+ 1)) . (9)

Backward FLOPs with full matrix In the backward process, we need to calculate the gradient of J
on W . Using chain rule, the first step is to compute

∂J
∂O

= 2(O − Y ). (10)

Since O − Y has been calculated in the forward pass, the FLOPs is Nm. The gradient of W is

∂J
∂W

=

(
∂J
∂O

)T

X. (11)

The FLOPs for this step is mn(2N − 1). Therefore, the FLOPs for the backward pass is

Nm+mn(2N − 1) = O (Nm(2n+ 1)) . (12)

Forward FLOPs with sparse matrix With Kronecker product decomposition, we replace W by∑r
i=1(S ⊙Ai)⊗Bi. S and Ai ∈ Rm1×n1 , Bi ∈ Rm2×n2 , where m1m2 = m, n1n2 = n.

In the forward pass, we need to firstly reshape X ∈ RN×n into reshape(X) ∈ Rn2×Nn1 . Then we
calculate Bireshape(X) ∈ Rm2×Nn1 with FLOPs Nn1m2(2n2 − 1). The result is reshape into
reshape(Bireshape(X)) ∈ RNm2×n1 .

Then we calculate S ⊙Ai ∈ Rn1×m1 with FLOPs m1n1. After this, we get

Oi = reshape(Bireshape(X))(S ⊙Ai)
T ∈ RNm2×m1 , (13)

with FLOPs Nm1m2(2n1 − 1). We denote O as the output of the layer, which is to say

O =

r∑
i=1

Oi =

r∑
i=1

reshape(Bireshape(X))(S ⊙Ai)
T . (14)

The total FLOPs to get O is

r(Nm1m2(2n1 − 1) +m1n1 +Nn1m2(2n2 − 1)) + (r − 1)Nm (15)

Then we reshape O in to reshape(O) ∈ RN×m. The loss is calculated as

J = ∥reshape(O)− Y ∥2F (16)

The FLOPs for this step is 3Nm− 1. Therefore the FLOPs of the forward computation is

r(2Nm1m2n1 −Nm1m2 +m1n1 + 2Nm1n1n2 −Nm2n1) + (r − 1)Nm+ 3Nm− 1

=O (2Nrm1n1(m2 + n2)−Nr(m+ 2m2n1) + 3Nm) (17)
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Backward FLOPs with sparse matrix In the backward process, we need to calculate the gradient of
J on S,Ai and Bi. Using chain rule, the first step is to compute

∂J
∂reshape(O)

= 2(reshape(O)− Y ). (18)

Since reshape(O)−Y has been calculated in the forward pass, the FLOPs is Nm. Then we reshape
it into ∂J

∂O ∈ RNm2×m1 . Then we can get

∂J
∂(S ⊙Ai)

=

(
∂J
∂O

)T

reshape(Bireshape(X)). (19)

Since reshape(Bireshape(X)) has been obtained in the forward pass, the FLOPs for this step is
m1n1(2Nm2 − 1). To get the gradient on S and Ai, we have

∂J
∂S

=

r∑
i=1

∂J
∂(S ⊙Ai)

⊙Ai, (20)

with FLOPs rm1n1 + (r − 1)m1n1, and

∂J
∂Ai

=
∂J

∂(S ⊙Ai)
⊙ S, (21)

with FLOPs m1n1. The gradient on reshape(Bireshape(X)) is

∂J
∂ reshape(Bireshape(X))

=
∂J
∂O

(S ⊙Ai). (22)

The FLOPs for this step is Nm2n1(2m1 − 1). We reshape the gradient into ∂J
∂ Bireshape(X) ∈

Rm2×Nn1 . So, we can get the gradient on Bi as

∂J
∂Bi

=
∂J

∂ Bireshape(X)
reshape(X)T , (23)

with FLOPs of m2n2(2Nn1 − 1). Therefore, we can get the total FLOPs for the backward pass as

Nm+ rm1n1(2Nm2 − 1) + rm1n1 + (r − 1)m1n1 + rm1n1 + rNm2n1(2m1 − 1) + rm2n2(2Nn1 − 1)

=O (Nm+Nr(4m1m2n1 −m2n1 + 2m2n1n2)) (24)

B Computation resource

we used a server with 64 CPUs of AMD EPYC 7313 16-Core Processor. The server has 8 RTX
A5000 GPUs, with 24GB memory for each one. For the experiment with linear model and LeNet, we
used only one single GPU. And for the ViT-tiny experiment, we use 2 GPUs at the same time.
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