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Abstract
Controlling false positives (Type I errors) through statistical hypothesis testing is a foundation

of modern scientific data analysis. Existing causal structure discovery algorithms either do not
provide Type I error control or cannot scale to the size of modern scientific datasets. We consider
a variant of the causal discovery problem with two sets of nodes, where the only edges of interest
form a bipartite causal subgraph between the sets. We develop Scalable Causal Structure Learning
(SCSL), a method for causal structure discovery on bipartite subgraphs that provides Type I error
control. SCSL recasts the discovery problem as a simultaneous hypothesis testing problem and
uses discrete optimization over the set of possible confounders to obtain an upper bound on the
test statistic for each edge. Semi-synthetic simulations demonstrate that SCSL scales to handle
graphs with hundreds of nodes while maintaining error control and good power. We demonstrate the
practical applicability of the method by applying it to a cancer dataset to reveal connections between
somatic gene mutations and metastases to different tissues.
Keywords: Causal Inference, Hypothesis Testing, Directed Acyclic Graphs

1. Introduction

Many scientific applications can be posed as a causal discovery problem where a directed acylic graph
(DAG) is learned that models the causal dependencies within an observational dataset (e.g. Tennant
et al. (2020), Ogburn et al. (2022)). In order to ensure the reliability of these findings, controlling
the error rate on the set of causal discoveries is critical. Given finite data and noisy observations,
exact determination of causal arrows in a DAG is impossible. As such, the causal discovery task is
typically cast through the lens of statistical hypothesis testing for conditional independencies (Spirtes
et al., 2000).

Although the problem of large-scale multiple hypothesis testing and uncertainty quantification is
well studied in settings where purely associative relationships are the target discoveries (Benjamini
and Hochberg, 1995; Goeman and Solari, 2014), large-scale causal learning produces a unique set of
challenges. The number of possible DAGs scales superexponentially with the number of nodes in
a graph, making causal learning an especially difficult problem when the number of variables in a
dataset is large. Moreover, existing causal structure learning algorithms learn a graph with either
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no attempt to provide frequentist error guarantees (Chickering, 2003; Ramsey et al., 2017a; Zheng
et al., 2018; Cundy et al., 2021b; Annadani et al., 2021; Cundy et al., 2021a) or require parametric
assumptions on the data generating distribution which are unknown in practice (Strobl et al., 2019).

A feature of many scientific datasets that can be exploited to decrease the computational burden
of this task is temporal separation of variables. If a dataset has a sequence of variables that measure
quantities that came into existence at different times, this corresponds to a priori knowledge that
some edges can only be oriented in a particular direction. This allows us to reduce the number of
conditional independence tests required to draw an edge on a causal graph.

In this paper, we introduce Scalable Causal Structure Learning (SCSL), a method for large-scale
causal hypothesis testing that can scale to problems with hundreds of variables and thousands of po-
tential edges for causal graphs with temporally separated sets of nodes. SCSL enables the use of black
box machine learning models for hypothesis testing, requires no parametric assumptions, and returns
a p-value for each edge under consideration. To scale to large graphs, SCSL recasts the causal search
process as a discrete optimization problem. It then amortizes the dominant cost in causal structure
identification: conditional independence testing over the combinatorial set of possible parent nodes
in the causal graph. This avoids the combinatorial explosion in the candidate conditioning sets and re-
duces the search to a series of parallelizable optimization problems for each edge. We validate SCSL
through semi-synthetic experiments using a cancer dataset that pairs genomic mutations at the primary
tumor location of a cancer patient with information about metastases that have developed elsewhere
in a patient’s body (Nguyen et al., 2022). These simulation studies indicate that the method has high
power, controls Type I error rate at the target level, and scales to larger graphs than existing methods.

Background and related work Classical algorithms for causal discovery like the SGS and PC
algorithms (Spirtes et al. (2000)) convert causal structure learning into queries of conditional indepen-
dence between nodes. The SGS algorithm draws an edge between two nodes if they are conditionally
dependent given any possible subset of the remaining nodes. The PC algorithm simplifies this process
by first deleting edges in the causal graph based on marginal independence testing. The size of the
conditioning subsets is then allowed to increase by one for each subsequent round of CI testing, but
fewer CI tests are required in each round as the algorithm only considers conditioning subsets of
nodes that have remained adjacent to each other. The computational complexity of SGS matches the
complexity of the PC in the worst case, but in most settings where the causal graph is reasonably
sparse, the PC algorithm significantly reduces the number of independence tests needed to learn
a causal graph. However, both methods are based on perfect knowledge of the CI structure and
are computationally intractable beyond a few dozen nodes. Related work used the PC algorithm
as a starting point and then relaxes assumptions around faithfulness (e.g. Ramsey et al. (2006)) or
causal sufficiency (e.g. Spirtes (2001)), but these methods also rely on having perfect knowledge
of the graph’s CI structure. The work of Strobl et al. (2019) extends the PC algorithm to generate
edge-specific p-values, but only with provable Type I error control under the assumption of zero Type
II error during the edge deletion stage of skeleton discovery.

Other approaches to causal graph are score-based methods which maximize a score function
such as BIC (D and Heckerman, 1997) or BDeau (Heckerman et al., 1995) over the space of all
possible DAGs. Since the number of DAGs increases superexponentially with the number of nodes,
approximate algorithms based on greedy search (Chickering, 2003; Ramsey et al., 2017a), coordinate
descent (Aragam and Zhou, 2015; Fu and Zhou, 2013) or other methods are required. Other methods
impose more stringent modeling assumptions such as linearity (e.g. Shimizu et al. (2011)) simplify
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the task. Follow-up work (Ramsey et al., 2017b; Solus et al., 2017) improves several of these methods
to scale to datasets with thousands of nodes and potential edges using parallelization. However,
none of these methods output edge specific p-values and are therefore not directly comparable to our
proposed method.

More recently, differentiable approaches to causal discovery have been proposed (Zheng et al.,
2018), many of which enable Bayesian inference of the posterior distribution over DAGs (Cundy et al.,
2021b; Annadani et al., 2021; Cundy et al., 2021a). Unfortunately, these methods focus primarily on
continuous rather than discrete data, limiting the application to datasets like the cancer dataset we
consider in our simulations. Further, Bayesian uncertainty requires accurate model specification for
valid posterior coverage. When the model is misspecified, Bayesian credible intervals can massively
inflate Type I error. Similarly, Peters et al. (2016) weaken the faithfulness assumptions, but require
repeated observations of variables across different intervention settings instead of relying on purely
observational data. Overall, no method exists that is capable of providing Type I error control on
individual edges across a large graph without making stringent parametric assumptions.

2. Methodology

Consider a directed acyclic graph (DAG) G with two sets of nodes, X and Y , where we want to
learn the directed edges between X and Y from observational data. We assume that we have prior
knowledge that no edge is directed from Y to X such as temporal separation between the sets of
nodes. For instance, in the cancer dataset, Y would represent metastasis events that occur after the
tumors represented by X were sequenced.

The problem reduces to learning which Xj P X are connected to which Yk P Y . A naive
approach might be to infer an edge based on a conditional independence test of Xj KK Yk|tX´j , Y´ku

where X´j :“ X zXj and Y´k :“ YzYk. However, a collider being present in Y could introduce
dependence even when there is no edge present as Figure 1 demonstrates.

X1

X2

Y1

Y2

Figure 1: X “ tX1, X2u and Y “ tY1, Y2u. Y1 is a collider, so a conditional independence test would
indicate X1 and Y2 are conditionally dependent given tX2, Y1u. However, X1 and Y2 are not conditionally
independent given X2. Querying all dependence relations prevents an edge from being drawn erroneously.

We make the following assumptions about the graph and distribution of the data which are
common in the literature (Spirtes et al., 2000).

Assumption 1 (Global directed Markov property) For a graph G, if two nodes U and V are
d-separated given a disjoint set nodes W , then U and V are conditionally independent given W .

Assumption 2 (d-separation Faithfulness) For a graph G, if two nodes U and V are conditionally
independent given a disjoint set of nodes W , then U and V are d-separated given W .
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Assumption 3 (Causal sufficiency) The graph G includes all common causes for any pair of nodes
contained in G.

These assumptions lead to Proposition 1, which enables us to reduce queries about edge presence
to queries about conditional independence between nodes.

Proposition 1 Assume G satisfies the global directed Markov property and the probability distribu-
tion is d-separation faithful. Furthermore, assume that edges may not be directed from any element
in Y to any element in X . Then there is an edge between two vertices Xj P X and Yk P Y if and
only if Xj and Yk are conditionally dependent given S Y X´j for all S Ď Y´k.

In order to construct a p-value, we consider a hypothesis test for each pair pXj , Ykq as follows:

H0 : Xj Ñ Yk is absent,

H1 : Xj Ñ Yk is present.
(1)

Proposition 1 lets us restate the null and alternative as

H0 : DS Ď YzYk such that Xj KK Yk|S,X´j ,

H1 : Xj is not independent of Yk given tS,X´ju for all S Ď Y´k.
(2)

Let pXjKKYk|S denote the p-value corresponding to a test for conditional independence between Xj

and Yk given a set of nodes S. Equation (2) implies that the p-value pXjÑYk
can be bounded by

pXjÑYk
ď max

SĎY´k

pXjKKYk|S,X´j
. (3)

Constructing a p-value to test H0 thus reduces to computing p-values for a series of conditional
independence tests.

2.1. Conditional Independence Testing

To test the null hypothesis that Xj KK Yk|S,X´j , we employ the generalized covariance measure
(GCM) of Shah and Peters (2020). The GCM recasts the problem of conditional independence into
one about functional estimation of the expected conditional covariance

E rCov pXj , Yk|S,X´jqs :“ErErXjYk|S,X´js

´ErXj |S,X´jsErYk|S,X´jss,
(4)

and then tests whether this quantity is equal to 0. Any set of joint densities for pX ,Yq that are null
will have this property, although it is possible for Xj and Yk to be conditionally dependent but with 0
covariance. Therefore, this measure will only have power against the set of alternatives which have
non-zero conditional covariance, which is likely to be the case in most practical settings.

The procedure constructs a test for the null hypothesis of 0 conditional covariance by first finding
estimates X̂j for the conditional expectation ErXj |S,X´js and Ŷk for the conditional expectation
ErYk|S,X´js. Any type of predictive modeling to construct this estimate is valid, for example
construction of a neural net, so long as the product of the mean square errors of the two quantities is
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which will be distributed asymptotically as N p0, 1q under the null, allowing us to construct a valid
p-value. For a precise account of the technical conditions for the theorem, see Theorem 6 of Shah
and Peters (2020) which we recall in the Appendix for completeness.

We note that our method is adaptable to other CI testing procedures such as conditional random-
ization tests (e.g. Candes et al. (2016), Tansey et al. (2022), Liu et al. (2021)). We focus on the GCM
in this work because it requires less stringent modeling assumptions on the conditional distribution
X|Z and is less computationally burdensome.

2.2. Amortized Predictive Modeling

The GCM only requires the computation of a single test statistic per conditional independence query.
While the computation of the individual test statistics is straightforward, this approach may still
become computationally onerous when testing for the presence of an edge using Equation (3) due
to the fact that two separate predictive models need to be created for each of the 2|Y|´1 CI tests
corresponding to H0 which will cause this methodology to scale poorly as |Y| increases.

To make this process more computationally tractable, we will create a single predictive model for
each element Yk P Y that has the flexibility to take in a choice of conditioning set S Ď Y´k as well
as a choice of element Xj P X and outputs an estimate of ErYk|X´j , Ss. We call this amortized
predictive modeling because instead of creating bespoke models for each S, we localize the cost
of training into a single flexible model. Formally, we wish to train a function for each Yk denoted
as πk : R|X | ˆ R|Y| ˆ t0, 1u|Y|´1 ˆ r|X |s Ñ R where r|X |s :“ t1, ..., |X |u. The first two inputs
into the function are the realized data points corresponding to X and Y while the second two inputs
are user-specified masks which correspond to the set of nodes that the user wishes to include in the
conditioning set. For the third input, which we label Y mask, we interpret S :“ tY mask

i s.t. Y mask
i “ 1u.

For the fourth input, we can interpret the choice as corresponding to an element Xj P X to not
include in the conditioning set X´j .

When the predictive model is trained by minimizing a loss function ℓ through gradient descent,
our strategy will be to amortize the model by randomly masking the inputs when using mini-batching.
In particular, for each mini-batch, we can sample Bk P Berppq and M P Catp|X |, qq where the
probabilities q are just 1

|X |
for each component. Then, the sampled data Xi

j and Y i
k are replaced with

perturbed updates:
rY i
k :“ Y i

k ˆ Bk, and rXi
j :“ Xi

j ˆ Mi,

where Mi :“ 1M‰j . The parameter p can be chosen by the user based on the amount of dependency
they believe is present within Y . For sparser graphs, the user may wish to choose larger values of p
because there is less potential for colliders so a larger conditioning set is more appropriate. If the user
suspects Y to be less sparse, they can choose smaller values of p to bias towards smaller conditioning
sets. This process is summarized in Algorithm 1 and can be visualized in Figure 2.

For simplicity, we assume all data is binary-valued. This allows us to only consider interactions
between the generated masks and the elements of X and Y . In the continuous setting, this can be
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Algorithm 1 Amortized predictive model training

Input: Data: DX P t´1, 1unˆ|X |; DY P t´1, 1unˆ|Y|; nep (number of epochs), nbatch (batch
size), p (masking parameter), loss function ℓ pθ,X , Y´k, Ykq

for i “ 1 to nep do
for i “ 1 to rn{nbatchs do

Draw nbatch new samples
Draw Bm „ Berppq for each Ym P Y´k

Draw M „ CatpX , qq with equally-weighted probabilities
Construct Ỹ´k by taking each Y i

m in the sample and replacing with rY i
k :“ Y i

m ˆ Bm

Construct X̃ by taking each Xi
j and replacing with rXi

j :“ Xi
j ˆ 1M‰k

Compute BℓpX̃ ,Ỹ´k,Ykq

Bθ

θ Ð θ ´ η
BℓpX̃ ,Ỹ´k,Ykq

Bθ
end for

end for

X1

...

Xp

Y1

...

Ym

M1

...

Mp

B1

...

Bm

ˆ

ˆ

ˆ

ˆ ML Model

Ŷk

ℓpŶk, Ykq

Backpropagation

Figure 2: Illustration of masking procedure with mini-batch gradient descent. During model training, masks
Bk „ Berppq and M P Catp|X |, qq are sampled during mini-batching to randomly hide nodes within Y . This
simulates the process of a user choosing a conditioning subset during model evaluation.

generalized by including both the interactions and the masks themselves as inputs into the predictive
model. Additional details and empirical results for the continuous case are included in the Appendix.

Note that the above process describes a methodology for computing an estimate of ErYk|X´j , Ss,
but we need a similar procedure for computing an estimate of ErXj |X´j , Ss for every Xj P X . We
proceed in much the same way as before, but now let πj : t´1, 1u|X | ˆt´1, 1u|Y| ˆt0, 1u|Y|´1 Ñ R.
The user only needs to choose S Ď Y because X´j is conditioned on by default. Algorithm 1 can
then be modified to only draw Bernoulli variables and ignore the categorical variable used to mask
the elements of X . We again make this precise in the Appendix.
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θ1 g11 g12

S̃1

. . . θp gp1 gp2

S̃p. . .

Conditioning Set (S)

ÊrYk|S,X´js ÊrXj |S,X´js

T pnq

Parameter to estimate Deterministic node

Stochastic node Output

Figure 3: Optimization procedure. Stochastic nodes are sampled from a Gumbel distribution, allowing for
back propagation of BT pnq

Bθi
.

2.3. P-value optimization

In order to find the maximal p-value corresponding to Equation (3), one approach would be to
exhaustively search over all possible subsets. However, this will not be computationally tractable
for large graphs as the number of conditional independence tests needed to compute a p-value for
a single edge scales exponentially with the number of nodes. The approach that we pursue is to
learn the conditioning subset that minimizes the test statistic in Equation (5) through numerical
optimization. However, since the conditioning set is a discrete rather than continuous variable,
standard techniques such as gradient descent do not immediately apply. To overcome this, we use the
the Gumbel-Softmax reparamaterization trick (Jang et al., 2017) to express the gradient with respect
to the discrete variables we wish to optimize over with continuous relaxations.

Formally, we are learning the parameter θ :“ pθ1, ..., θmq where the conditioning subset is
sampled as 1YiPS „ Berpθiq. We then search for the value of θ which minimizes the expected value
of Equation (5) through gradient descent. To do this, we approximate BT pnq

BS « BT pnq

BS̃
where S̃ is

constructed as

S̃i “
exp pplog θi ` gi1q {τq

exp plog θi ` gi1q ` exp plogp1 ´ θiq ` gi2q
,

with gi1, gi2 „ Gumbelp0, 1q. This approximates a discrete variable, with the quality of the approxi-
mation increasing as τ Ñ 0. There’s a trade-off between the quality of the approximation and the
variance of the gradient, so we set τ to be large at first and then anneal it over subsequent iterations.
The above process is summarized in Figure 3.

As a final step, after some number of iterations where the parameter θ is learned, we need to
define a procedure for converting the probabilities to a discrete set of choices Ŝ. A successful search
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generates a Ŝ corresponding to a test statistic at least as small as the statistic for any d-separating
set S‹. We investigate two different approaches. First, we simply let Ŝ “ ti : θ̂i ą 0.5u after q
iterations. This is labeled Gumbel-Softmax optimization (GSO) in simulations.

For the second approach, after q1 iterations, we sample from conditioning subsets without
replacement, but with the probability of sampling a set being proportional to its probability given
θ̂. Precisely, the weights for each subset S are chosen as wS “

ś

i θ̂
1iPS
i p1 ´ θ̂iq

1iRS for every
S P PpY´kq. After q2 samples, Ŝ is taken to be the subset yielding the minimal test statistic over
the q2 samples. This is labeled hybrid approach in simulations. The hybrid approach tackles the
search process in two stages. The first is an exploration stage where a probability distribution over
the combinatorial space is learned. The second step explores this space efficiently by prioritizing
sets that are most likely under the learned distribution. Empirically, this approach has better results
than only using Gumbel-Softmax optimization or the more simplistic approach of sampling without
replacement from all possible sets using equal weights, which we explore in detail in Figure 4.

In our experiments, we choose fixed values for the parameters q, q1, and q2 — this corresponds
to learning parameters with gradient descent and terminating the process after a fixed number of
iterations. In principle, the performance of the method may be improved by using other stopping
rules for gradient descent, such as terminating after the change in loss is below a threshold. We leave
a detailed empirical investigation of this point an open avenue of inquiry.

Early stopping rule By definition, pXjÑYk
ď 1. If during the search process, we find that there

exists an S such that p̂XjKKYk|S,X´j
ą α for some pre-determined level α that we know we are not

interested in rejecting above, we end the search early by setting p̂XjÑYk
:“ 1. This decreases the

computational cost of computing p-value for null edges without impacting Type I error control and at
the cost of power only at rejection thresholds that are of no practical significance.

3. Results

We perform a benchmark and simulation study centered on a n “ 22, 352 dataset that pairs metastatic
events with pre-metastasis tumor mutational info (Nguyen et al. (2022)). Previous studies have
looked at the genomic landscape of metastases in different tissues such as brain (Brastianos et al.,
2015)) and breast (Brown et al., 2017) metastases. However, this dataset is the only large database
that pairs metastatic events with pre-metastasis tumor mutational info across a range of different sites
in the body. In total, 234 genes were sequenced for each patient along with 23 secondary metastatic
tissue sites (e.g. colon, breast, brain, etc.). Although records are collated across dozens of primary
tumor site locations, we focus on the 10 sites with the most patient records availability (breast, colon,
liver, lung, ovary, pancreas, rectum, skin, and uterus) to ensure adequate sample size.

This dataset presents an opportunity for statistical models to discover new genomic biomarkers of
metastatic potential. For each sequenced gene in a given tumor, we wish to know whether a mutation
in that gene has a causal effect on metastasis to another site. Somatic mutations in genes are often
highly correlated (Cheng et al., 2015), eliminating the use of simple association tests. Further, tumor
colonization in one site may cause eventual metastasis to another site, such as liver metastases in
colon cancer (Paschos et al., 2009). It is therefore important to discover biomarkers with direct causal
effect from the gene mutation to the specific metastatic site, such that intervention on that biomarker
will have a positive effect on patient outcomes. Further, to ensure that discovered biomarkers are
reliable, we wish to control the statistical error rate on reported causal links.
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Figure 4: Comparison of the log-rank of the test statistic for each of the methodologies described in Section 2.3
when run on a semi-synthetic dataset created as described in Section 3.2 with |X | “ 47 and |Y| “ 12. The
hybrid approach dominates both the naive and GSO approaches after a sufficient number of iterations.

Since the secondary tumor sites developed only after the primary tumor location has been
sequenced, we know a priori that one set of variables (gene mutations in the primary tumor site)
cannot be caused by a second set of variables (secondary metastatic events). We therefore can apply
the methodology developed in this paper directly, letting X denote the mutations that have been
sequenced and Y denote the potential secondary metastatic locations.

Modelling approach The underlying predictive models used to construct the GCM test statistics
for all the results in this section are logistic regressions with L2 regularization. Although we
experimented with other approaches such as neural networks for learning the regression functions,
we found these methods to have similar or lower power compared to a more parsimonious logistic
model so these results were omitted. See the Appendix for further comparisons on test statistics
constructed from alternative predictive models.

Baselines Our primary baseline is the PC-p algorithm (Strobl et al. (2019)) as it is the only other
existing methodology designed for frequentist error coverage. We use the same GCM test statistics
described to perform CI tests for this method. We also employ the same simplifying assumptions
used by SCSL to streamline the number of conditional independence tests that need to be evaluated
— namely, by conditioning on all elements of X by default and orienting all edges between X and Y
away from genetic sites and towards metastases.

We also compare to other causal search algorithms implemented by the TETRAD project.
Although these methods are not direct competitors to SCSL because they do not produce p-values
and therefore cannot be used for false discovery rate control, empirical results suggests that SCSL’s
performance is still competitive. More information about the benchmark methodologies provided by
TETRAD are included in the Appendix.

3.1. Semi-synthetic simulations with real-world confounding

In order to test the method, we need to produce a dataset that matches the structure of the actual
data source, but with ground truth knowledge of the causal structure so that performance can be
measured. To this end, we propose the construction of a semi-synthetic dataset. The method for data
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Figure 5: Left hand side shows this ratio on a semi-synthetic dataset generated with real-world confounding
which matches the complexity of the real dataset (|X | = 47 and |Y| = 23). Right hand side shows the
ratio of actual false positive rate to target rate on the PC-p algorithm (dashed) compared with the proposed
methodology (solid) on semi-synthetic datasets generated with synthetic confounding and confoundedness
parameter p P t0.2, 0.4, 0.6, 0.8u.

construction outlined in this section preserves the joint distribution of X and Y , but allows for a
conditional distribution P pY | X q that is synthetic.

Dataset construction The algorithm takes the realized datasets DX P t0, 1unˆp and DY P

t0, 1unˆm and generates a synthetic data for Y which we denote D̃Y . To do this, we sample
K features from X for every element of Y . We let X ‹

k be the features of X chosen for a particular
Yk and sample coefficients βk P RK from a N p2, 1q distribution.

Letting D‹
X ,k,i P t0, 1uK be the realized data points corresponding to the chosen features for

the ith individual, we generate a logistic likelihood function fYk,i
pD‹

X ,k,iq :“
1

1`expp´βT
k D‹

X ,k,iq
. An

issue with using this likelihood function directly to generate the data is that the outcome dataset will
no longer have the same dependence structure as the original. To circumvent this issue, we use the
likelihood function to sample actual rows of DY . Specifically, we generate D̃Y,i „ Catpθ1, ..., θnq

where θi9
ś

k fYk,i
pD‹

X ,k,iq. In other words, each row gets sampled in proportion to its overall
likelihood under the assumed model. The procedure is described more explicitly in the Appendix.

Results We first investigate how quickly the methods for optimizing the worst-case p-value de-
scribed in Section 2.3 converge to the actual minimum, compared with the naive approach of randomly
searching over the space in Figure 4. We see that the Gumbel-Softmax approach performs better
than the naive approach at first, but then approaches an asymptote as it converges on a solution. The
hybrid approach is able to dominate both approaches by allowing for both learning and exploration
of the full combinatorial space. In this case, we manually choose to switch to sampling conditioning
subsets without replacement at 200 iterations, though in principle it may be possible to learn an
optimal time to swap procedures from the data.

Figure 5 (left) shows the Type I error for SCSL and the PC-p algorithm on the generated data. We
note that the SCSL algorithm achieves Type I error control, while the PC-p algorithm inflates the Type
I error rate when p-values are small. To allow for comparison with methodologies that do not aim at
frequentist error control, we also track the F1 score of SCSL along with benchmark methodologies
in Table 1. We note that SCSL outperforms existing methods when the dimension of the node set is
large relative to the number of observations. Additional details about these experiments and more
extensive empirical results are reported in the Appendix.
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n |X | |Y|
F1 Score

SCSL PC-p PC BOSS CCD FCI FGES GFCI GRASP GRaSP-FCI
200 5 5 0.26 0.24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 10 0.07 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
15 15 0.09 0.07 0.0 0.0 0.0 0.0 0.03 0.03 0.03 0.06
20 20 0.04 0.04 0.02 0.11 0.02 0.02 0.04 0.04 0.06 0.06

2000 5 5 0.71 0.38 0.0 0.18 0.0 0.0 0.17 0.17 0.0 0.17
10 10 0.30 0.14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
15 15 0.12 0.10 0.0 0.03 0.0 0.0 0.0 0.0 0.03
20 20 0.08 0.06 0.0 0.04 0.0 0.0 0.02 0.04 0.04

20,000 5 5 0.87 0.57 0.95 0.84 0.95 0.82 0.95 0.89 0.84 0.89
10 10 0.78 0.37 0.29 0.46 0.29 0.06 0.46 0.24 0.38 0.24
15 15 0.49 0.16 0.15 0.13 0 0.15 0.06
20 20 0.33 0.06 0.06 0.04 0.02 0.08

Table 1: Comparison between F1 scores of SCSL comapred to existing methods for large-scale causal
discovery for synthetic datasets constructed with real-world confounding. SCSL has an advantage over
competing methods when the dimension of the node set (X ,Y) is high relative to the sample size. Blank
entries indicate the method failed to complete running after 12 hours of computation time.

3.2. Semi-synthetic simulations with synthetic confounding

Causal structure in Y is the key challenge in our task, as illustrated in Figure 1. To evaluate the
robustness of our method in the presence of different degrees of confoundedness, we construct a
collection of semi-synthetic datasets where we stochastically control the degree of confounding,
allowing us to stress test the methodology under adverse conditions. Compared with Section 3.1,
these datasets have the disadvantage of not matching the structure of the actual dataset as closely.
However, they are still a valuable point of comparison to assess performance across additional types
of confoundedness.

Dataset construction We take as input the actual datasets DX P t0, 1unˆp and generates a synthetic
dataset for Y which we label D̃y. For each desired Yk, we choose K features in X and generate
coefficients βk P RK sampled from a N p2, 1q distribution. We store the chosen features in X ‹

Yk
and

denote D‹
X ,k,i P t0, 1uK to be the corresponding realized values of the chosen features for the ith

individual. We now proceed by generating the elements of D̃y which we call Yk,i in a sequential way.
For the first element, the likelihood is defined simply as fY1,ipD‹

X ,k,iq :“
1

1`expp´βT
k D‹

X ,k,iq
and now

Y1,i „ BerpfYk,1
pD‹

X ,Y1,i
qq is generated.

For subsequent features Yk,i, we also pick features Yl for l ă k with probability p to con-
tribute to the likelihood function. Denote D‹

Y,Yk,i
as vector containing the chosen Yl for an in-

dividual i and the coefficients, again sampled from a N p2, 1q distribution, as γk. Now, define
the likelihood as fYk,i

pD‹
X ,k,i,D‹

Y,k,iq :“ 1
1`expp´βT

k D‹
X ,k,i´γT

k D‹
Y,Yk,iq

and again sample Yk,i „

Ber
´

fYk,i
pD‹

X ,k,i,D‹
Y,Yk,i

q

¯

. One can think of p as a confounding parameter which makes the
causal learning problem more difficult by increasing the number of dependencies in the graph. This
algorithm is described in detail in the Appendix.
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Results Figure 5 (right) shows the Type I error control for our method and the PC-p algorithm
across four different levels of confoundedness (p P t0.2, 0.4, 0.6, 0.8u). Across all four levels,
the PC-p algorithm inflates the Type I error rate, sometimes by as much as 8x the nominal level.
Comparisons in terms of F1 score and power are included in the Appendix, though we note results are
broadly similar to those shown in Table 1 for the datasets constructed with real-world confounding.

3.3. Results on real dataset

Finally, we run the methodology on the real data. We stratify the dataset based on the primary tumor
site location, and calculate p-values separately within each stratum to identify the secondary tumor
location and gene combinations that are significant across different metastases. A rejection set is
formed using the Benjamini-Hochberg (BH) (Benjamini and Hochberg, 1995) procedure with target
FDR of 0.05 and is shown in Table 2. As a point of comparison, we also calculate the p-values
for marginal tests of independence that the original paper used to identify connections. Figure 6
compares the marginal p-values used by the original paper with the causal p-values calculated
through SCSL. Applying the BH procedure with the same target threshold results in 161 rejections
of marginal p-values. However, only 6 of these 161 remained in the causal rejection set.

The causal mutations discovered have mechanistic evidence in the biology literature. For
instance, CDH1 has been mechanistically investigated in breast cancer models of metastasis through
its connection to asparagine (Knott et al., 2018). Colon cancers are often treated with EGFR-
inhibitors, which are ineffective in the presence of KRAS mutants which continue to activate the
MAPK pathway, leading to eventual metastasis (Prenen et al., 2010). TP53 mutations in certain
pancreas cancers have been shown to increase fibrosis, enabling tumors to better evade the immune
system and increasing metastatic potential (Maddalena et al., 2021). While these mechanistic links
between the primary site, gene, and general metastasis are known, the site-specific patterns have not
been investigated. Thus, our causal testing results may provide valuable guidance to scientists and
clinicians considering the utility of invasive patient monitoring.
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Figure 6: Plot of the 161 discoveries re-
jected using the BH procedure with target
FDR of 0.05 on the marginal independence
associations. Only 6 discoveries remain
when applying the BH procedure with the
same target threshold on the causal p-values.

p-value
Primary Gene Secondary Causal Marginal
Breast CDH1 Lung 3.5 ˆ 10´7 2.3 ˆ 10´18

Colon KRAS Lung 1.4 ˆ 10´5 2.6 ˆ 10´8

Liver TERT Liver 2.3 ˆ 10´5 3.4 ˆ 10´8

Lung EGFR CNS (Brain) 2.8 ˆ 10´5 3.3 ˆ 10´11

Pancreas KRAS Lymph 2.2 ˆ 10´16 4.5 ˆ 10´31

Pancreas TP53 Lymph 1.1 ˆ 10´8 1.7 ˆ 10´11

Table 2: List of all 6 genes and tumor combinations (corre-
sponding to red markers on right graph) identified as signifi-
cant at each primary site after forming a rejection set using the
Benhamini-Hochberg procedure with target FDR of 0.05. The
causal p-values are significantly more conservative, leading to
fewer rejections.
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4. Conclusion

We introduced a new algorithm for causal discovery which drastically decreases the computational
burden required to compute a p-value for a causal relationship between two nodes in a directed acyclic
graph with temporally separated sets of variables. We tested this methodology on semi-synthetic
data constructed from a recent study on somatic tumor mutations and metastatic potential for a panel
of patients and found that the methodology successfully controlled Type I error and had reasonable
power across datasets of differing levels of confoundedness. When run on the dataset of Nguyen
et al. (2022) , interesting connections between metastases and genes are identified.

Several avenues for follow-up work exist. From a statistical perspective, the p-values generated
from the procedure are conservative and power can potentially be improved through post-hoc
adjustment to the p-values, for example through the use of Empirical Bayes methods (Efron, 2008).
From a computational perspective, more sophisticated probability models could be used to find the
worst-case p-value to search the combinatorial space.

Other areas of improvement relate to the causal ordering assumption that edges can only be
directed from X to Y due to separation in time. For datasets that cannot be partitioned in this way,
many aspects of the method can still be used to improve computational and statistical efficiency
such as p-value optimization and amortized predictive modeling. In addition to increasing the
computational burden of the method, this would leave open the question of how to orient the edges
after skeleton discovery when used on more generic datasets. Alternatively, instead of only two
groups of temporally seperated nodes, it would be interesting to investigate how this methodology
performs when adapted to datasets with several groups of nodes coming into existence over time.
Finally, although we have motivated our method from a metastasis dataset, the methodology is
general and could be applied to a number of datasets in areas like genome-wide association studies.
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Appendix A. Omitted Proofs

Proof of Proposition 1 First, assume that there is an edge between Xj and Yk. Then, Xj and Yk
are not d-separated given any set of nodes V Ď X´j Y Y´k. By Assumption 2, Xj and Yk will be
conditionally dependent given V . In particular, they will be conditionally dependent for S YX´j for
all S Ď Y´k.

Next, assume that Xj and Yk are conditionally dependent given S Y X´j for all S Ď Y´k. Since
no edges are directed from any element in Y to any element in X , then there are no colliders in W for
any W Ď X´j . This implies that Xj and Yk are also conditionally dependent given T Ď X´j YY´k.
This implies that Xj and Yk are not d-separated given any T . Assumption 1 and Assumption 3 then
together imply that Xj and Yk must share an edge.

Appendix B. Algorithms for construction of semi-synthetic datasets

We include the pseudocode for construction of semi-synthetic datasets in Algorithm 3 and Algorithm 2
below.

Algorithm 2 Semi-synthetic dataset with real-world confounding

Input: Data: DX P t0, 1unˆp and DY P t0, 1unˆm,
Shuffle rows of DX and store as D̃X
Shuffle rows of DY
Sample K features from X for each element of Y and denote X ‹

k the features for a particular Yk
Create likelihoods for the rows of Y from X ‹ by

1. Sampling coefficients βk P RK for X ‹
Yk

(e.g., from a standard normal)

2. Let fYk,i
pD‹

X ,k,iq :“
1

1`expp´βT
k D‹

X ,k,iq
be the likelihood associated with each response Yk

and row i, where D‹
X ,k,i P t0, 1uK are the realized data corresponding to X ‹

k for the ith
individual in the dataset.

for row i “ 1 to n do
sample D̃Y,i „ Catpθ1, . . . , θnq with θi9

ś

k fYk,i
pD‹

X ,k,iq

end for
Return semi-synthetic data D̃X and D̃Y

Appendix C. Adjustments for continuous and mixed-value data

In Algorithm 4, we present a slightly augmented the methodology to train amortized predictive
models to accommodate continuous valued data. The algorithm is largely the same as the one
presented in the main paper, with the modification that both the masks pB,Mq and the interactions
between the mask are inputs into the loss function. In the case that binary-valued data was used with
Xj , Yk P t´1, 1u, then this was not necessary as the interactions would simply lead to the masked
versions X̃j , Ỹk P t´1, 0, 1u. In the case of continuous or mixed valued data, however, there is a
need to distinguish between data that is 0 because it has been masked or data that is actually 0.

17



LEINER MANZO RAMDAS TANSEY

Algorithm 3 Semi-synthetic dataset with synthetic confounding

Data: DX P t0, 1unˆp

Shuffle rows of DX and store as D̃X
for k “ 1 to |Y| do

Sample K features from X and denote X ‹
k the features for a particular Yk

For each elements Yk P S2 with l ă k, add Yl to Y‹
Yk

with probability p.
Sample coefficients βk P RK for X ‹

Yk
(e.g., from a standard normal) and γk P RK for Y‹

k .
Let fYk,i

pD‹
X ,k,i,D‹

Y,k,iq :“ 1
1`expp´βT

k D‹
X ,k,i´γT

k D‹
Y,k,iq

the likelihood associated with each

response Yk, where D‹
X ,k,i is the realized data corresponding to X ‹

k and D‹
Y,k,i is a vector

corresponding to the realized data for Y‹
k for the ith individual in the dataset

for row i “ 1 to n do
sample D̃Yk,i „ Berpθi,kq with θi,k “ fYk,i

pD‹
X ,Yk,i

,D‹
Y,Yk,i

q

end for
end for
Return semi-synthetic data D̃X and D̃Y

Algorithm 4 Amortized predictive model training for continuous response data

Input: Data: DX P Rnˆ|X |; DY P Rnˆ|Y|; nep (number of epochs), nbatch (batch size), p
(masking parameter), loss function ℓ pθ,X , Y´k, Yk, B,Mq

for i “ 1 to nep do
for i “ 1 to rn{nbatchs do

Draw nbatch new samples
Draw Bm „ Berppq for each Ym P Y´k. Denote B “

`

B1, ¨ ¨ ¨ , Bk´1, Bk`1, ..., B|Y|

˘

.
Draw M „ CatpX , qq with equally-weighted probabilities
Construct Ỹ´k by taking each Y i

m in the sample and replacing with rY i
m :“ Y i

m ˆ Bm

Construct X̃ by taking each Xi
j and replacing with rXi

j :“ Xi
j ˆ 1M‰k

Compute Bℓp ˜θ,X ,Ỹ´k,Yk,B,Mq

Bθ

θ Ð θ ´ η
Bℓpθ,X̃ ,Ỹ´k,Yk,B,Mq

Bθ
end for

end for

To construct semi-synthetic datasets to test this dataset, Algorithm 2 and Algorithm 3 can be
modified slightly by letting the likelihood functions correspond to a Gaussian distribution instead of
a logistic response, and then sampling appropriately.

Appendix D. Flowchart summarizing methodology

In Figure 7, we present a visual flowchart illustrating how to apply the methodology. Assumed inputs
into this process are a method for computing p-values corresponding to conditional independence
tests. For all of our experiments, we use amortization to efficiently compute the GCM test statistic
for different conditioning subsets.
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Sample
St „ Berpθt1q ˆ Berpθtpq

Add St to Slist

Calculate T pnqpStq

Compute p-value p̂t Add p̂t to plist

p̂t ď α p̂t ą α

End search;
set p̂XjÑYk

:“ 1
Update

θt`1 “ θt ´ γ BT pnq

Bθt

t ` 1 ď q1 t ` 1 ą q1
Compute wS “

śp
i“1rθtis

1iPS r1 ´ θtis
1iRS

for every S P PpS2 YkqzSlist

Draw St „ Catpπ1, ..., πLq with
πS9wS for every S P PpS2 YkqzSlist

Add St to Slist

Calculate T pnqpStq

Compute p-value p̂t Add p̂t to plist

p̂t ď α p̂t ą α

End search;
set p̂XjÑYk

:“ 1

t ` 1 ď q1 ` q2 t ` 1 ě q1 ` q2

End search;
set p̂XjÑYk

:“ maxplist

“Inner” p-value

“Outer” p-value

α Cutoff for early stopping rule

q1 No. iterations to train θ

q2 No. iterations for search process

Figure 7: Flowchart illustrating the methodology. Nodes colored in blue represent p-values for the individual
conditional independence tests corresponding to the “inner” null that Xj KK Yk|S,X´j . Nodes colored in
yellow correspond to p-values testing the “outer” null that Xj Ñ Yk is absent.

Appendix E. Technical exposition of Generalized Covariance Measure

We recall the details of the technical conditions described in Shah and Peters (2020) for completeness.
We assume that the dataset consists of i.i.d. n samples, with individual observations denoted
tXi

j , Y
i
k , S

i, Xi
´ju

n
i“1. Let P0 denote the family of joint distributions corresponding to the null that

Xj KK Yk|S,X´j .

Define Ri “

´

Xi
j ´ pXi

j

¯ ´

Y i
k ´ pY i

k

¯

and the test statistic:

T pnq “

?
n ¨ 1

n

řn
i“1Ri

´

1
n

řn
i“1R

2
i ´

`

1
n

řn
r“1Rr

˘2
¯1{2

. (6)
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Further denote ϵj,P :“ Xj ´ EP rXj |S,X´js and ϵk,P :“ Yk ´ EP rYk|S,X´js.

Fact 1 (Theorem 6 of Shah and Peters (2020)) Define the following quantities:

Af :“
1

n

n
ÿ

i“1

!

Xi
j ´ pXi

j

)2
, Ag :“

1

n

n
ÿ

i“1

!

Y i
k ´ pY i

k

)2
,

Bf :“
1

n

n
ÿ

i“1

!

Xi
j ´ pXi

j

)2
EP

`

ϵ2j,P |S,X´j

˘

, and Bg :“
1

n

n
ÿ

i“1

!

Y i
k ´ pY i

k

)2
EP

`

ϵ2k,P |S,X´j

˘

.

1. If for P P P0, AfAg “ opn´1q, Bf “ op1q, Bg “ op1q, and 0 ď EP

´

ϵ2j,P ϵ
2
k,P

¯

, then

suptPR |PP

`

T pnq ď t
˘

´ Φptq| Ñ 0.

2. Let P Ď P0 denote the set of null distributions such that AfAg “ opn´1q, Bf “ op1q, Bg “

op1q, infPPP EpEP

´

ϵ2jϵ
2
k

¯

ě c1, and supPPP EpEP

´

ϵ2j,P ϵ
2
k,P

¯

ď c2 for some c1, c2 ą 0.

Then supPPP suptPR |PP

`

T pnq ď t
˘

´ Φptq| Ñ 0.

Appendix F. Additional experimental results

Additional results for each of the semi-synthetic simulations are shown in this section.

Additional information on alternative predictive modelling approaches In addition to using a
logistic regression to compute the underlying regression functions in the GCM test statistic, we also
experimented with a multi-layer perceptron neural network with with 2 hidden layers comprised of
200 nodes in each layer and dropout regularization. The performance of this method is compared
and contrasted with the logistic regression used in the main paper in Figure 8. Since the logistic
regression had higher power, we focused on using it as a predictive model in the main paper.
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Figure 8: Type I error and Type II error rates for SCSL compared when logistic models (solid) are swapped
out for a neural network (dashed). The top row shows results for the datasets with synthetic confounding while
the bottom row shows results for datasets constructed with real confounding (note that the tuple pa, bq in the
legend indicates the number of variables contained in each node set with |X | “ a and |Y| “ b respectively).
The performance across all methods is comparable, though we note the logistic model has higher power in
general.

Additional results on power As discussed in the results section, the PC-p algorithm does have
higher power than SCSL, but this comes at the expense of Type I error control. This is a natural
consequence of the fact that the PC-p algorithm draws an edge between two nodes based on a
consideration set of CI tests that is a subset of the tests considered by SCSL. Since we use the same
underlying CI test in our comparison of the methodologies, this necessitates that the PC-p algorithm
will have strictly lower p-values than SCSL. Nonetheless, the decrease in power resulting from a
move to this new methodology is not significant. We compare the power of the two methodologies
side by side in Figure 9 for the same configuration of datasets discussed in the results section.
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Figure 9: True positive rate for proposed methodology (solid) contrasted with PC-p method (dashed). Left-
hand side shows the power for each of these methodologies run on datasets constructed by Algorithm 3 for
the same sequence of confoundedness parameters discussed in the main paper with p P t0.2, 0.4, 0.6, 0.8u.
Right-hand side shows the power for these two methods on the semi-synthetic dataset constructed with
Algorithm 2.

Comparisons to procedures without frequentist error guarantees Although the PC-p algorithm
is the only existing method that aims at constructing p-values with frequentist error control, we
also benchmark this procedure against approaches not aimed at controlling type I error that are
implemented in the TETRAD project. The only two methods that scale reasonably to datasets of
a similar size as the dataset of Nguyen et al. (2022) are Fast Greedy Equivalence Search (FGES)
(Ramsey et al., 2017b) and the Best Order Score Search (BOSS) algorithm (Lam et al., 2022). Other
methods used as baselines are Cyclic Causal Discovery (CCD, Richardson (1996)) , Fast Causal
Inference (FCI, Spirtes (2001)), Greedy Fast Causal Inference (GFCI, Ogarrio et al. (2016)), Greedy
relaxation of the sparsest permutation (GRaSP, Lam et al. (2022)), and GRaSP-FCI (Ogarrio et al.,
2016).

We note that above methods produce output in the form of a learned graph rather than a numeric
p-value. To facilitate comparisons, we compare the accuracy of the causal graph learned via these
methods with a causal graph produced by taking the p-values from the SCSL and PC-p methods
and drawing an edge when the p-value is below 0.1. We summarize the accuracy of these methods
(in terms of ability to detect edges when present) using F1 score. The F1 scores are shown in
Table 3 and overall wall time is shown in Table 4. The experiments are conducted across variety of
dataset configurations described in this paper: synthetic versus real-world confounding, degree of
confoundedness (p), size of dataset, and size of node set. A similar set of results for continuous-valued
datasets constructed using the methods in Appendix C are shown in Table 5 and Table 6.

We note that although the primary strength of SCSL is its ability to control the error rate by
producing valid p-values, the experimental results demonstrate that the method is also competitive
with existing methods in terms of accuracy, power, and speed of computation. SCSL often has the
highest F1 score among the tested methods and is nearly as fast as the BOSS and FGES algorithms.
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Figure 10: Performance of causal discovery algorithms implemented in TETRAD for semi-synthetic datasets
constructed from Algorithm 2. Performance of all methods decreases markedly for larger graphs. Entries are
missing if computation time exceeds 36 hours for any method.
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5:

C
om

parison
betw

een
F1

scores
ofSC

SL
w

ith
existing

m
ethods

forlarge-scale
causaldiscovery

forsynthetic
datasets

w
ith

continuous-valued
entries

ofY
.SC

SL
has

betterperform
ance

than
other

p-value
producing

m
ethods

and
has

com
parable

perform
ance

to
FG

E
S.
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A
lgorithm

D
ata

Type
p

n
|X

|
|Y

|
F1

Score
SC

SL
PC

-p
PC

B
O

SS
C

C
D

FC
I

FG
ES

G
FC

I
G

R
A

SP
G

R
aSP-FC

I
Synthetic

C
ontinuous

0.40
200

5
5

0.00
0.05

0.00
0.00

0.00
0.00

0.00
0.00

0.00
C

ontinuous
0.40

200
10

10
0.00

0.22
0.01

0.00
0.01

0.00
0.00

0.00
0.00

0.01
C

ontinuous
0.40

200
15

15
0.00

0.35
0.02

0.01
0.02

0.01
0.00

0.02
0.01

0.13
C

ontinuous
0.40

200
20

20
0.00

0.67
0.03

0.05
0.03

0.03
0.01

0.11
0.03

0.37
C

ontinuous
0.40

2,000
5

5
0.01

0.17
0.01

0.00
0.02

0.01
0.00

0.00
0.01

C
ontinuous

0.40
2,000

10
10

0.01
1.13

0.09
0.02

0.19
0.12

0.01
0.64

0.01
0.47

C
ontinuous

0.40
2,000

15
15

0.01
3.67

0.33
0.16

0.74
0.41

0.02
14.58

0.10
0.94

C
ontinuous

0.40
2,000

20
20

0.01
6.30

0.70
0.69

1.37
1.02

0.09
0.44

11.23
C

ontinuous
0.00

20,000
5

5
0.08

2.16
0.60

0.01
1.52

1.09
0.01

1.50
0.01

1.72
C

ontinuous
0.20

20,000
5

5
0.11

2.45
0.36

0.01
0.83

1.34
0.01

0.01
0.58

C
ontinuous

0.40
20,000

5
5

0.18
1.03

0.40
0.01

1.00
0.89

0.02
0.01

0.45
C

ontinuous
0.60

20,000
5

5
0.14

1.09
0.35

0.01
0.83

0.41
0.01

0.90
0.01

0.35
C

ontinuous
0.80

20,000
5

5
0.18

1.22
0.45

0.01
1.53

0.58
0.01

3.09
0.01

0.37
C

ontinuous
0.00

20,000
10

10
0.18

26.54
6.00

0.14
25.02

0.04
22.59

C
ontinuous

0.20
20,000

10
10

0.14
31.70

7.03
0.23

35.60
0.04

0.12
33.37

C
ontinuous

0.40
20,000

10
10

0.24
4.06

0.26
7.72

0.05
0.16

14.22
C

ontinuous
0.60

20,000
10

10
0.18

22.25
5.31

0.46
17.18

6.49
0.12

0.27
12.68

C
ontinuous

0.80
20,000

10
10

0.23
32.75

4.26
0.44

16.09
5.19

0.10
0.38

14.91
C

ontinuous
0.00

20,000
15

15
0.23

0.91
0.07

C
ontinuous

0.20
20,000

15
15

0.17
29.03

1.84
0.27

1.22
C

ontinuous
0.40

20,000
15

15
0.30

24.83
2.04

34.56
0.34

1.28
C

ontinuous
0.60

20,000
15

15
0.26

16.28
3.29

28.29
0.41

2.10
C

ontinuous
0.80

20,000
15

15
0.21

22.17
3.62

0.43
C

ontinuous
0.00

20,000
20

20
0.22

4.31
0.22

1.98
C

ontinuous
0.20

20,000
20

20
0.30

6.95
1.45

4.46
C

ontinuous
0.40

20,000
20

20
0.26

9.94
1.55

5.56
C

ontinuous
0.60

20,000
20

20
0.31

12.58
1.59

C
ontinuous

0.80
20,000

20
20

0.16
14.07

1.36
11.42

Table
6:

C
om

parison
ofw

alltim
e

(in
hours)scores

ofSC
SL

w
ith

existing
m

ethods
forlarge-scale

causaldiscovery
fordatasets

w
ith

continuous-valued
entries

ofY
.
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