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Abstract

We propose reconstruction advantage measures to audit label privatization mecha-
nisms. A reconstruction advantage measure quantifies the increase in an attacker’s
ability to infer the true label of an unlabeled example when provided with a private
version of the labels in a dataset (e.g., aggregate of labels from different users or
noisy labels output by randomized response), compared to an attacker that only
observes the feature vectors, but may have prior knowledge of the correlation
between features and labels. We consider two such auditing measures: one addi-
tive, and one multiplicative. These incorporate previous approaches taken in the
literature on empirical auditing and differential privacy. The measures allow us
to place a variety of proposed privatization schemes—some differentially private,
some not—on the same footing. We analyze these measures theoretically under a
distributional model which encapsulates reasonable adversarial settings. We also
quantify their behavior empirically on real and simulated prediction tasks. Across a
range of experimental settings, we find that differentially private schemes dominate
or match the privacy-utility tradeoff of more heuristic approaches.

1 Introduction

Data sharing and processing provides an undeniable utility to individuals and the society at large.
The modern data ecosystem has played a significant role in scientific advancement, economic growth,
and technologies that benefit individuals in their daily lives. Yet, the collection, processing, and
sharing of sensitive information can lead to real privacy harms. Understanding the theoretical and
empirical risks associated with different types of data disclosure is a rich area of research and topic
of discussion. The privacy community has studied a number of empirical measures of disclosure
risks against several types of attacks, including: inference attacks [29], reconstruction attacks [5],
re-identification attacks [14] and label inference attacks [13, 31].

While differential privacy gives rigorous guarantees against these attacks by worst-case adversaries,
it is natural to wonder whether non-DP (deterministic) mechanisms give any empirical privacy
protections. This line of inquiry necessitates empirical measures of privacy that take adversarial un-
certainty into account. At a fundamental level, whether one is studying reconstruction or membership
inference, nearly every privacy disclosure metric comes down to quantifying the relationship between
an adversary’s prior and posterior knowledge before and after a data release.

In this work, we consider a number of ways to summarize this prior-posterior relationship, and we
apply our proposed metrics to a few Privacy Enhancing Technologies (PETs). We consider two
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families of metrics: As a coarse measure, we consider the expected additive difference between the
prior and posterior success rates; while this does not capture unlikely high-disclosure events, it gives
a sense for the risk posed to an average individual. To better capture such events, we then consider the
finer-grained multiplicative difference between the adversary’s prior and posterior. These empirical
measures of privacy risk allow us to relate and compare the risks of both aggregation-based and
differential privacy-based PETs, and hence compare their privacy-accuracy trade-off curves: What
accuracy does one get for a given level of privacy protection? Together, these metrics paint a more
balanced and nuanced picture of the disclosure risks and accuracy trade-offs posed by aggregation
and differentially private mechanisms.

We will focus on the simplest possible scenario for information sharing: the case where a user wishes
to disclose a single bit of information (for instance a binary label in a classification problem). While
this problem is simple to present, it already highlights a lot of the difficulties in providing measures of
privacy that are meaningful for both noise-based and aggregate-based tools. Most notably, it already
requires handling the correlations—known to an attacker, but unknown to the mechanism—between
the visible features and the hidden, sensitive labels. Similar to [31], we incorporate adversarial
knowledge by a prior, and measure the difference between the prior and the adversary’s posterior
distribution conditional on observed aggregates.

Understanding binary labels already has practical implications. For instance, with Chrome’s proposed
conversion reporting API [1], the event of a user converting after clicking on an online ad — buying
a product, signing up for a newsletter, installing an app, etc. — or not is considered sensitive, and
therefore is reported only with some noise. However, once reported, ad tech providers can use features
associated with an ad click (impression information, publisher information, etc.) to train models that
can predict future conversions.
Our contribution. We make several contributions: (i) We introduce additive reconstruction advan-
tage measures as ways to quantify the amount of leakage associated with a generic (not necessarily
differentially private) privacy mechanism. These are variants and extensions of the Expected Attack
Utility (EAU) and advantage contained in [31]. (ii) We quantify such measures for randomized
response and random label aggregation under different correlation assumptions with public data.
(iii) We consider a more demanding multiplicative reconstruction advantage measure (in the spirit
of predecessors of differential privacy [17, 10]), and again quantify this advantage for randomized
response and random label aggregation. (iv) We conduct a series of experiments on benchmark and
synthetic datasets measuring the privacy-utility tradeoff of a number of basic mechanisms, including
randomized response, label aggregation and label aggregation plus Laplace or geometric noise.
Remarkably, these experiments show that learning with aggregate labels tends to be strictly harder
in practice than learning with randomly perturbed labels. That is, differentially private schemes
dominate or match the privacy-utility tradeoff of label aggregate schemes for all or most privacy
levels and for both types of advantage measure, a conclusion we have not seen clearly spelled out in
prior work on privacy. Even measured “on their own turf”, deterministic aggregation—which lack
provable guarantees like differential privacy—do not provide a significant advantage.
Prior Work. Our measures of privacy risk relate closely to previous work on membership inference
and auditing, as well as to variants of differential privacy that assume adversarial uncertainty. We
discuss these in Section 3.3, after defining our measures.
Reproducibility. For the sake of full reproducibility of our experimental setting and results,
our code is available at the link https://github.com/google-research/google-research/
tree/master/auditing_privacy_via_lia.

2 Preliminaries

For a natural number n, let [n] = {i ∈ N : i ≤ n}. Let X denote a feature (or instance) space and
Y be a binary (Y = {0, 1}) or multiclass (Y = [c]) label space. We assume the existence of a joint
distribution D on X × Y , encoding the correlation between the input features and the labels. The
marginal distribution over X will be denoted by DX , and the conditional distribution of y given x will
be denoted by DY|x. For distributions over binary labels, we denote by η(x) = Py∼DY|x(y = 1|x)
the probability of drawing label 1 conditioned on feature vector x. In the multiclass case, we will use
η(x, a) = Py∼DY|x(y = a|x), for a ∈ Y = [c]. We define a dataset S = ⟨(x1, y1), . . . , (xm, ym)⟩
as a sequence of pairs (xi, yi), each one drawn i.i.d. from D. We use x = (x1, . . . , xm) to denote the
features in S and y = (y1, . . . , ym) to denote the corresponding labels. We will sometimes abuse the
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notation in the math, and write for brevity (x,y) instead of (x1, y1), . . . , (xm, ym). Consistent with
this notation abuse, we will often use Xm ×Ym and (X ×Y)m interchangeably—no ambiguity will
arise.

In order to unify the study of privacy enhancing technologies, for the rest of the paper we model
PETs as (possibly randomized) functions M : (X × Y)m → Z . These functions map a collection of
m labeled examples to a privacy protected representation in the domain Z . The domain Z depends
on the PET but, throughout the paper, it will be clear from the context.

In our setting, we consider PETs that protect labels and release features in the clear (so, strictly
speaking, the output of a PET should also include x itself; we leave implicit in our notation). Despite
this, our reconstruction advantage measures can be applied to any PET, we recall below two standard
(and very basic) PETs that have been proposed for various Ads metrics APIs: one which satisfies
label differential privacy, and one which relies on random aggregation. These are the two PETs on
which we will also be able to give theoretical guarantees. We formulate them for binary classification.

Definition 2.1. Given ϵ ≥ 0, we say that a (randomized) algorithm A that takes as input S is ϵ-Label
Differentially Private (ϵ-Label DP) if for any two datasets S and S′ that differ in the label of a single
sample we have P(A(S) ∈ B) ≤ eϵ P(A(S′) ∈ B), where B is any subset of the output space of A.

Randomized Response (RR) is a classical [30] way of achieving ϵ-Label DP. In the binary classifica-
tion case, RR with privacy parameter π = 1/(1 + eϵ) simply works by randomly flipping each label
yj in the dataset with independent probability π before revealing it to the learning algorithm. For
a fixed ϵ > 0, RR corresponds to the function MRR(x,y) = ỹ = (ỹ1, . . . , ỹm) ∈ {0, 1}m, where
ỹi = 1− yi with probability π = 1/(1 + eϵ) and equal to yi with probability 1− π, independently
for each i ∈ [m].

A completely different label privacy mechanism, still very utilized in practice (see, e.g., the Privacy
Sandbox API in Google [1] and the Apple SKAN initiative [2]) is one based on (random) label
aggregation, whereby the dataset S gets partitioned uniformly at random into bags of a given
size k, S = ⟨(x11, y11), . . . , (x1k, y1k), . . . , (xn1, yn1), . . . , (xnk, ynk)⟩, and only feature vectors
and the fraction of positive labels in each bag are revealed to the attacker/learning algorithm. In
other words, the attacker has access to S via a collection {(Bi, αi), i ∈ [n]} of n labeled bags
of size k, with m = nk, where Bi = {xij : j ∈ [k]}, αi = 1

k

∑k
j=1 yij is the label proportion

(fraction of labels “1") in the i-th bag, and all the involved samples (xij , yij) are drawn i.i.d. from
D. Thus, the attacker receives information about the m labels yij of the m instances xij from
dataset S only in the aggregate form determined by the n label proportions αi. Note, however,
that the feature vectors xij are individually observed. From an attacker viewpoint, this setting is
sometimes called Learning from Label Proportions (LLP). Hence, LLP corresponds to the function
MLLP(x,y) = (α1, . . . , αn) ∈ [0, 1]n.

Learning from privatized labels. Randomized response is especially appealing from a practical
point of view, since privatized data with label flipping can be handled by many prominent learning
algorithms as is, with some tuning of their hyper-parameters. Often the theoretical guarantees of
these learners in terms of sample complexity are only deteriorated by some constant that depends
on the label noise level, see, for example [27]. To improve accuracy, we debias the gradients in a
post-processing step similar to Equation (7) in [19]; we discuss the debiasing details in Appendix C.

On the other hand, a simple and very well-known method for learning from aggregate labels is the
one that of [33] call Empirical Proportion Risk Minimization. In fact, different versions of this
algorithm are discussed in the literature without a clear reference to its origin. In [12], the authors
simply call this algorithm the Proportion Matching algorithm (PROPMATCH), and we shall adopt
their terminology here. Given a loss function ℓ : R × R → R+, a hypothesis set of functions
H ⊂ RX , mapping X to a (convex) prediction space Ŷ ⊆ R, and a collection {(Bi, αi), i ∈ [n]}
of n labeled bags of size k, PROPMATCH minimizes the empirical proportion matching loss, i.e., it
solves the following optimization problem: minh∈H

∑n
i=1 ℓ

(
1
k

∑k
j=1 h(xij), αi

)
. It is known that

the above method is consistent (see for instance [12]). That is, training a model this way – under
some mild conditions on ℓ and H and for a large enough sample – results in learning a model h that
minimizes the expected event level loss E(x,y)∼D[ℓ(h(x), y)]. Finally, for our baselines, it will be
helpful to consider a PET that reveals no label information at all: M⊥(x,y) = ⊥.
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3 Auditing Large-Scale Label Inference

In this section, we propose a number of auditing metrics to measure the risk of large-scale label
reconstruction. Unlike DP auditing techniques which focus on worst-case guarantees, we will focus
here on distributional guarantees. In doing so, we extend the (additive) reconstruction advantage
definition introduced in [31] to the LLP setting and propose meaningful variants of it.

Our reconstruction advantage measures can be applied to virtually any PET for auditing purposes.
For concreteness, we will also provide analytical bounds on such measures when applied to PETs like
RR and label aggregation. On one hand, these bounds help illustrate the precise dependence on the
data distribution D. On the other, they will pave the way for our experimental findings in Section 4.

A reconstruction advantage metric is grounded in the following natural privacy question: How much
does releasing the output of a PET increase the risk of label inference compared to not releasing
anything? This corresponds naturally to measuring an attacker’s prior over a target person’s label
compared to the attacker’s posterior after viewing the mechanism output.

We model the attacker (often called ‘adversary’ later on) as a function A : Xm ×Z → Ym that maps
the features x and the output of a PET M(x,y) to a vector of predicted labels, one for each example.
We compare this attacker’s success to the the uninformed or prior attacker that gets x and the PET
that reveals no label information M⊥(x,y) = ⊥. To measure the efficacy of an attacker compared
to its prior, we define a number of attack utility variants.

The Expected Attack Utility of adversary A using information from PET M on a collection of m
examples drawn i.i.d. from a distribution D is defined as:

EAU(A,M,D) = P
(x,y)∼Dm, i∼Uniform([m]), coins of M

(
A(x,M(x,y))i = yi

)
,

where A(·, ·)i is the i-th component of vector A(·, ·). In words, the expected attack utility of adversary
A is the probability that A correctly guesses the label of a randomly chosen example when provided
the features and the output of M. Equivalently, this is the expected fraction of the m examples that the
adversary predicts the correct label for. The adversary’s success rate may depend on the distribution
over features and labels. For example, if labels are entirely determined by features, then our metric
should reflect that privatized labels (for any mechanism M) reveal no additional information about
the true labels. To control for the information that features inherently reveal about labels, we assume
that the adversary has knowledge of the data distribution D over X × Y , either completely (e.g.,
Definition 3.1) or approximately through learning on disjoint data (as in our experiments in Section
4).

Further, we define the Individual Expected Attack Utility on input data xi as

IEAUi(A,M,D, xi) = P
yi∼DY|xi

(x(−i),y(−i))∼Dm−1, coins of M

(
A(x,M(x,y))i = yi

∣∣∣xi

)
,

where x(−i) is x with the i-th item xi dropped, and likewise for y(−i). The quantity
IEAUi(A,M,D, xi) emphasizes the (expected) attack utility on a specific piece of data xi

when the associated label yi is drawn from the conditional distribution DY|xi
. For instance,

IEAUi(A,MLLP,D, xi) measures, for a given xi, the chance that an attacker is able to recon-
struct the associated label yi, if yi generated from DY|xi

and, by virtue of mechanism MLLP, yi
becomes part of a bag (of some size k), only the bag label proportion α being revealed to the attacker.

In order to measure the increase in risk incurred by releasing the output of a PET, we consider the
attack utility of an optimal adversary in two scenarios: one in which the adversary gets the features, x,
together with the output of the PET, M(x,y), and an alternate setting where the adversary gets only
the features (which is equivalent to using M⊥). We call the difference in attack utility between the
informed and uninformed adversary the attack advantage. Intuitively, the attack advantage measures
the label reidentification risk that can be attributed to the PET rather than to correlations between the
features x and labels y which are inherent in the distribution D. Since we have given two notions of
attack utility above, we have two corresponding notions of attack advantage. Below is an additive
version, based on utility differences, later on (Section 3.2) we will also consider a multiplicative
version, based on utility ratios.
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Definition 3.1. Given a PET M for a set of m examples drawn from a data distribution D, the
(additive) Expected attack Advantage is defined as

EAdv(M,D) = sup
Ainformed

EAU(Ainformed,M,D) − sup
Auninformed

EAU(Auninformed,M⊥,D) .

Similarly, when the i-th item xi is kept frozen, the Individual Expected attack Advantage is defined as
IEAdv(M,D, xi) = sup

Ainformed

IEAU(Ainformed,M,D, xi)− sup
Auninformed

IEAU(Auninformed,M⊥,D, xi).

Note that RR is generally described in terms of its behavior on a single example (x, y), rather than a
collection of m i.i.d. samples. Likewise, label aggregation operates on each bag of size k << m
independently. However, since the data is i.i.d., it is easy to see that the attack advantage for RR is
independent of the number of examples m, while the attack advantage for (random) label aggregation
will only depend on k, rather than m.

Appendix A.5 contains further variants of attack advantage, like one that accounts for the tail of the
attack advantage distribution, as well as associated bounds. These can be stretched to the point where
the feature vector x = (x1, . . . , xm) is arbitrary, and only the properties of the condition distribution
DY|x is factored in.

3.1 Bounding the Additive Attack Advantage
As a warm up, we begin by studying the additive expected attack advantage for LLP when the labels
are independent of the features. Note that, since the features x do not play any role in this simplified
setting, the notions of advantage coincide. We recall again that all results involving MLLP (Theorems
3.2, 3.3 and 3.4 below) deal with a single bag when computing advantage measures (hence we will
write α instead of αi). This is because distribution D is known to the adversary, and the bags the
adversary observes are independent of one another, hence there is no extra advantage from operating
on an entire dataset of bags at once. All proofs are given in the appendix.
Theorem 3.2. Fix a data distribution D, let p = P(x,y)∼D(y = 1), and fix an arbitrary threshold
β ∈ [0, 1/2]. If labels are independent of features (i.e., D is a product of distributions over X and Y),
then for all bag sizes k ≥ 1 we have:

EAdv(MLLP,D) = min{p, 1− p} − Eα[min{α, 1− α}] ≤

{√
p(1−p)

k if p ∈ [0, 1]

e−Ω(β2k) if |p− 1/2| ≥ β,

where Ω(·) hides constants independent of β and k.

A couple of remarks are in order. First, observe that, as expected, the advantage EAdv(MLLP,D)
is always non-negative. This can be easily derived by noting that E[α] = p and then applying
Jensen’s inequality to the concave function x 7→ min{x, 1−x}, for x ∈ [0, 1]. Second, despite being
non-negative, Theorem 3.2 also proves the desirable property that EAdv(MLLP,D) goes to zero
as the bag size k increases. The convergence rate is in general of the form 1/

√
k, but it becomes

negative exponential in k when p is bounded away from 1/2.

We now investigate general distributions over features and labels and consider in turn EAdv and
IEAdv.
Theorem 3.3. Let D be an arbitrary distribution on X ×Y , p = E[η(x)], and µ = E[η(x)(1−η(x))].
Then, for all bag sizes k ≥ 2 we have:

EAdv(MLLP,D) = Õ

(
µ1/4(p(1− p))1/4√

k
+

µ1/4

k

)
,

where Õ hides logarithmic factors in k.

Hence, also in this more general case of LLP, the advantage converges to zero as the bag size k grows
large. Compared to the rate in Theorem 3.2, we are only losing the log k factors implicit in the Õ
notation. This is because, when applied to the scenario where labels and features are independent,

η(x) = p is constant with x, so that µ = p(1− p), and the first term becomes
√

p(1−p)
k , while the

second one reads (p(1−p))1/4

k , which is lower order when k is large. We strongly believe that the
tighter gap-dependent analysis we carried out for Theorem 3.2 extends to the more general scenario
of Theorem 3.3, but we leave this as an open question.

The corresponding bound for the individual expected attack advantage is given next.
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Theorem 3.4. Under the same assumptions and notation as in Theorem 3.3, we have, for µ > 0, and
k ≥ 2

µ log(1/µ),

IEAdv(MLLP,D, xi) = µi Õ

(
(p(1− p))1/4

√
µ

k
+

1

µ3/2k
+

√
µ

k2
+

1

µ3/2k2

)
,

where µi = η(xi)(1− η(xi)), and Õ hides logarithmic factors in k.

In the bounds of Theorems 3.2, 3.3 and 3.4 the dependence on the data distribution D is encoded in
p(1− p) and µ; as p(1− p) and/or µ gets smaller we should naturally expect a smaller advantage, as
the adversary is facing an easier label prediction problem. Appendix A.5 contains further distribution-
dependent results, like a bound on the advantage that, conditioned on x = (x1, . . . , xm), is of the
form 1

k

∑k
i=1

µi√∑
j:j ̸=i µj

, where µi = η(xi)(1− η(xi)).

We now provide the corresponding expression for the additive attack advantage for RR (at a given
level ϵ ≥ 0). We recall that the results of [31] imply that every ϵ-label-DP PET M has advantage
bounded as EAdv(M,D) ≤ 1− 2

1+eϵ . However, one drawback of this bound is that it is distribution
independent (or, rather, worst case over distribution D). Yet, the attack advantage depends heavily on
D. For an extreme example, if we have P(x,y)∼D(y = 1) = 1, the attack advantage is zero for every
PET, which is not directly captured by only relying on the properties of ϵ-DP.

Recall that, since RR operates on each example independently, the advantage is independent of the
number of examples m (a formal proof is given in Appendix A.6). Hence we derive a bound for
IEAdv(MRR,D, x1), and an expression for the optimal adversary under RR (see Appendix A.7).
Theorem 3.5. For any data distribution D, the individual expected attack advantage
IEAdv(MRR,D, x1) for randomized response with privacy parameter π = 1

1+eϵ is equal to(
min{η(x1), 1− η(x1)} − π

)
·I{η(x1) ∈ [π, 1− π]} .

We use the above expression in our experiments (Section 4) to estimate the attack advantage of RR
for various values of ϵ. Being distribution dependent, this expression leads to much tighter bounds on
the attack advantage. For example at ϵ = 1, the bound from [31] is 1− 2

1+ϵ ≈ 0.46, while for one
dataset used in our experiments we see that the attack advantage for RR at ϵ = 1 is only 0.00095.

3.2 Multiplicative Attack Advantage

The definitions of attack advantage given so far measure the absolute change in successful reconstruc-
tion, not the relative change. Moreover, they do not fully capture the different levels of confidence in
the reconstruction, since they involve an expectation over either (x,y) or y given x. Next, we give
an additional set of definitions that capture these important nuances. For the sake of brevity, in this
section we directly instantiate the adversaries Ainformed and Auninformed to Bayes optimal predictors.
Definition 3.6. Given data distribution D, mechanism M, index i, and pair of labels a, b ∈ Y , the
multiplicative advantage is the difference of log odds ratios:

Ia,b(M,D,x, z, i) = log
πi(x, z, a)

πi(x, z, b)
− log

η(xi, a)

η(xi, b)

where η(xi, a) = P(yi = a |xi) and πi(x, z, a) = Py∼Dm
Y|x

(yi = a | x,M(x,y) = z) is the
probability of yi = a after observing the output z of M. We denote the binary case by I1,0(·) = I(·)
and shorten η(xi) := η(xi, 1) and πi(x, z) := πi(x, z, 1).

This particular formulation has the advantage that Ia,b(M,D,x, z, i) is large in absolute value when-
ever there is a large relative change in either label probability. This also entails that a multiplicative-
style advantage metric is generally stronger than an additive one.

When η(xi) and πi(x, z) are both less than 1/2 (in the binary setting), we have I(M,D,x, z, i) =

Θ(log πi(x,z)
η(xi)

), with a symmetric expression for the case that both are close to 1. Because we assume

i.i.d. sampling, one can easily see that Ia,b(M,D,x, z, i) = log
P(M(x,y) = z | yi = a,x)

P(M(x,y) = z | yi = b,x)
, which

makes it clear that for ϵ-label DP mechanisms like MRR (at level ϵ) the above log ratio is at most ϵ
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in absolute value for all x and y. On the other hand, for MLLP, there is always a small chance that
all the examples in the bag will have the same label making the above log ratio infinite. However,
for large k and distributions D in which the η(x, a) values are not too close to 0 or 1, the leakage
Ia,b(M,D,x, z, i) might be small in most cases.

What values of multiplicative advantage should be considered acceptable? We argue that this
probability should be viewed as a probability of system failure and set appropriately small. (For
example, when running with MLLP on modern-scale data sets, we might create billions of bags;
even a tiny probability of failure can lead to many bags whose individuals have their labels revealed
exactly). The next theorem gives high probability bounds for MLLP in the simple case when the
distribution D is a product distribution.
Theorem 3.7. Fix a data distribution D over features and binary labels, let p = P(x,y)∼D(y = 1),
and assume the labels are independent of features (i.e., D is a product of distributions over X and Y).
Then there are universal constants c1, c2 > 0 such that for p ∈ (0, 1), all bag sizes k ≥ c1 ln(1/δ)

p(1−p) ,
and all i ∈ [k] we have

P
(x,y)∼Dm

Y|xi

(∣∣∣I1,0(MLLP,D,x,MLLP(x,y), i)
∣∣∣> c2

√
ln(1/δ)

p(1− p)k

)
≤ δ.

Then, when k is sufficiently large and the conditional label probabilities η(xi) are all equal to some
constant p ∈ (0, 1), the probability of failure drops off exponentially as k increases. When working
with a data set of size m, we can substitute δ = δ′ · k

m to get a bound on the probability that any
bag in the dataset exhibits extreme values of leakage Ia,b. For the setting covered by Theorem 3.7,
one gets that the bags must be of size k ≈ log(n)/(p(1− p)) for the probability of extreme bags to
converge towards 0. In the experiments in Section 4, we report results on both the additive and the
multiplicative reconstruction advantage criteria.

3.3 Connection to prior work on auditing and membership inference, and distributional DP

Our approach on quantifying attack advantage can be viewed as fitting into a recent line of work on
auditing learning algorithms via membership inference attacks. This class of attacks was introduced
by [21] and subsequently studied in theory [11, 18] and practice [29]. Whether used as attacks or
empirical lower bounds on differential privacy parameters [22], these approaches set up a hypothesis
test for the presence or absence of a particular target record in the training data [15]. They diverge in
whether they consider an adversary with access to all the rest of the training data (“fully informed”),
or with only distributional knowledge of the rest of the training data (usually made available to the
attacker as an independent sample drawn from the same distribution).

In our setting, testing for the presence of an individual makes no sense, since individual records’
features are known. In the binary case, our measures are success metrics for testing the hypothesis that
a particular individual’s label is 1 as opposed to 0: Multiplicative advantage bounds the ratio of true-
to false-positive rates of the Bayes’ optimal test, while additive advantage measures the difference of
true- and false-positive rates. This perspective was also taken in previous work: for example, [26]
use such a test to lower-bound the differential privacy parameters of label-DP algorithms. However,
their modeling assumes a fully informed adversary (that knows all labels). In contrast, we posit a
reasonable model of adversarial uncertainty in order to to look at the risks of mechanisms such as
label aggregation. In this respect, our approach follows more in the line of membership inference
attacks that use only distributional knowledge, or to variants of differential privacy that assume
adversarial uncertainty such as [9, 7, 16].

Further relevant references include [25, 32], which have been developed more in the Cryptography
literature. Like here, those papers propose to measure prediction advantage by comparing the
information status of an agent before and after seen the obfuscated data. Yet, they do not consider
the public features/private label mixed setting we study here, which is clearly necessary when
investigating, for instance, the LLP mechanism. As a result, the measures proposed in [25, 32]
generally fail to distinguish between the information gained as a result of: (1) correlation to the public
features, and (2) the mechanism output. Hence, they overestimate the revelation of the mechanism,
at times to the extreme. Consider, for clarity, the case where η(x) is either 0 or 1 for all x. In this
case the adversary’s inference advantage is zero for any reasonable measure of advantage, since the
adversary has perfect knowledge of the labels without the mechanism output.
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4 Experiments

In this section, we demonstrate how our advantage measures can be used to quantify and compare the
potential privacy leakage of RR, LLP, and two additional PETs with a range of privacy parameters.
See Appendix C for full details on our PETs, experimental setup, and additional results.
Mechanisms. We empirically evaluate a number of proposed mechanisms for label privacy: random-
ized response (RR), Label Proportions (LLP), and two further PETs: LLP+Lap, where (zero-mean)
Laplace noise is added to the label aggregate in each bag, and LLP+Geom, where geometric noise is
added and then clipped so the estimated proportion lies in [0, 1]. The noise scale for both LLP+Lap
and LLP+Geom is chosen so that the PETs satisfy ϵ label differential privacy. Postprocessed clipped
geometric noise is the mechanism for releasing a binary sum that is optimal among all differentially
private mechanisms for several loss measures [20]. To minimize squared error, the optimal post-
processing is to correct for the bias introduced by clipping. We empirically study these advantage
measures on a variety of synthetic and benchmark datasets, reporting either the AUC vs. advantage
trade-off or the prior-vs-posterior scatter plots, that help shed light on the distribution of our advantage
measures on different points in the dataset for the various PETs.
Estimating class conditionals for advantage and PET Utility. The advantage measures for
all PETs we consider can all be computed as a function of the class conditional probabilities
η(x) = P(y = 1|x). In our synthetic datasets we compute the advantage measures for different
distributions on η(x); however, for non-synthetic data sets, the value of η(x) is not explicitly
known. Instead, we estimate η(x) for each x by training a classifier h (without any PETs) and use
the prediction probability h(x) as a proxy for η(x). We compute the figure of merit (additive or
multiplicative advantage) for the optimal informed and uninformed attackers using these estimates.

Figure 1: Prior-posterior
scatter plots for LLP, RR,
and LLP+Geom from two
synthetic datasets (where
the prior η(x) is drawn)
and the two real-world
datasets (where η(x) is
approximated). The colors
of the dots correspond to
different parameter values
for the PETs. For each bag
size k and distribution, we
did 1000 independent runs.
The further a point is from
the y = x dotted line, the
more is revealed about its
label as a result of the PET.

We also measure the utility of each PET for trained models. For each dataset, PET, and privacy
parameters, we apply the PET to the training labels to produce a privatized version. We then train
a model on the privatized data using minibatch gradient descent with the Adam optimizer [24] and
a loss function designed for the PET. For RR, the loss debiases the binary crossentropy loss when
evaluated on the RR labels, and for LLP, LLP+Laplace, and LLP+Geom, we minimize the Empirical
Proportion Risk defined in Section 2. For each dataset, PET, and privacy parameters, we perform a
grid search over the learning rate parameter and report the test AUC of the best performing learning
rate. All utility results are averaged over multiple runs. The maximum standard error in the mean for
the reported AUCs is 0.0076 and the vast majority are less than 0.002.

Computing posterior distributions for each PET. Given a list of priors (or estimated priors) for
each data point {η(xi)}ni=1, we analytically compute the posterior probabilities for each of the PETs
we consider.

First, we apply Bayes’ theorem and use the fact that the xi’s are independent:

P(yi = 1|x,M(x, y) = z) =
P(M(x, y) = z|x, yi = 1) · P(yi = 1|xi)

P(M(x, y) = z|x)
. (1)
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For RR with flipping probability p, Equation 1 evaluates to pη(xi)
pη(xi)−(1−p)(1−η(xi)

if the outcome of

MRR(yi) = 0, and to (1−p)η(xi)
(1−p)η(xi)−p(1−η(xi)

if the outcome is 1.

For label aggregation (LLP), the bags are independent, so we consider only a single bag
at a time. MLLP is deterministic, so in the numerator P(MLLP(x, y) = z |x, yi = 1)
is the probability density at z of a Poisson binomial distribution with flipping probabilities
(η(x1), . . . , η(xi−1), 1, η(xi+1), . . . , η(xk)). Similarly, the denominator is the probability density at
z of a Poisson binomial distribution with flipping probabilities (η(x1), . . . , η(xk)).

For MLap-LLP and MGeom-LLP, the terms in Equation 1 are convolutions of the posterior for LLP and
the Laplace or Geometric distributions, respectively.

Results. Our results are reported in Figures 1, 2, and 3, as well as in Appendix C. We used two
synthentic datasets and two real-world datasets (Higgs and KDD12). Notice that Higgs is a relatively
balanced dataset, while KDD12 is a quite imbalanced one.

Figure 1 give scatter plots of prior P(y = 1 |x) vs. posterior P(y = 1 |x,M(x,y) = z) distribution
on the four datasets for LLP, RR and LLP+Geom with different colors for each value of parameters k
(for LLP and LLP+Geom) and ϵ (for RR and LLP+Geom). The behavior of LLP+Lap is reported in
Appendix C for completeness, but it turned out to be similar to that of LLP+Geom.

It is instructive to observe how the points spread w.r.t. the main diagonal y = x. Points that are on
the diagonal have no label privacy loss as a result of the PET, because the posterior is identical to
the prior. On the other hand, points with a posterior of 0 or 1 have complete privacy loss, since the
posterior on the private label is deterministic. In general, a wider spread away from y = x indicates
more privacy loss. The scatter plots tend to form spindle shapes whose width is determined by the
privacy parameters of the PETs. Yet, there is a substantial difference between LLP and RR. While
RR generates points on the boundaries of the spindles (middle row), LLP tends to spread such points
more uniformly. Moreover, some of the points for LLP lie on the edges of the square [0, 1]2, which
correspond to an infinite multiplicative advantage. LLP+Lap (bottom row) is somewhere in between,
in that the points are also located inside the spindles, but never on the edges of the square. Note that a
spindle boundary is the set of points having the same multiplicative advantage measure. Moreover,
these differences become more pronounced on skewed datasets like KDD12 as the probability of
homogenous bags (bags of all 0 labels or 1 labels) become much more likely.

Figure 2: Top: Prior-posterior
scatter plots for RR (grey), LLP
(blue), and LLP+Geom (or-
ange) with ϵ = 1 and k = 8
on the same datasets as in Fig-
ure 1. With these choice of pa-
rameters, the three mechanisms
roughly achieve the same AUC
on Higgs. Middle: Empiri-
cal CDFs of (the absolute value
of) the multiplicative advantage
for the three PETs on the four
datasets. Bottom: CDFs of the
additive advantage.

These scatter plots are already suggestive of the expected behavior of the utility-privacy tradeoff
curves that will come next in Figure 3. Given an allowed level of privacy (as measured by either
additive or multiplicative advantage) each point in the interior of the spindle associated with that
privacy level will also lie in the boundary of a smaller (thus higher privacy) spindle. This will make
inference harder, thereby reducing (average) utility at that level of privacy. Following this intuition,
we expect RR to achieve a higher utility-privacy curve than LLP, with LLP+Geom somewhere in
between. A more detailed comparison between RR and LLP+Geom (or LLP+Lap) is in Appendix D.

Figure 2 helps further illustrate the different behavior of the considered PETs vis-à-vis the advantage
measure. On the four datasets, we pick here a set of parameters that make the PETs AUC-comparable
on Higgs. We then plot the empirical Cumulative Distribution Functions (CDFs) on the four datasets
for both multiplicative (middle row) and additive (last row) measures. While the CDFs of additive
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measures are roughly similar across the three PETs, this is not the case for the highly skewed
Beta(2,30) and KDD12 datasets, where one can easily spot for LLP (blue line) the presence of a
significant mass of points with large multiplicative advantage. Note that in the middle row, the CDF
of RR (grey line) is just a vertical line (x = 1) while the CDF of LLP+Geom (orange line) first
follows the blue line and then the grey one. These high multiplicative advantage points cannot be
detected when only relying on the CDFs of the additive measure.
Utility vs. advantage tradeoff on benchmark datasets. The experiments so far have compared the
distribution of individual additive and multiplicative advantage induced by RR, LLP, and LLP+Geom
for various parameter settings and datasets. However, the use of PETs is always a tradeoff between
utility and privacy, since if we cared about privacy alone, the best strategy would be to release no
information at all. Figure 3 plots the AUC vs advantage for each PET as we vary the PET’s privacy
parameters. Note that, since the x-axis is advantage, we are able to put the normally incomparable
privacy parameters of the PETs on equal footing. For RR and LLP, the single privacy parameter (ϵ
and k, respectively) traces out an AUC vs Advantage curve. Since LLP+Lap and LLP+Geom have
two parameters, there is an area of achievable AUC vs Advantage pairs. For these mechanisms, we
plot a separate curve for each bag size k showing the tradeoff when varying ϵ for that k.

Figure 3: Privacy vs utility tradeoff curves for the various PETs
on the Higgs and KDD12 datasets. Utility is measured by AUC
on test set, while privacy is either the additive measure (bottom
row) or the 98th-percentile of the multiplicative measure (so
as to rule out the infinite multiplicative advantage cases that
can occur for LLP). Each point corresponds to a setting of the
privacy parameter for the PET (ϵ for RR, k for LLP, and both for
LLP+Geom). The x-coordinate is the advantage (either additive
or multiplicative) value for that PET, while the y-coordinate is
the test AUC of a model trained from the output of that PET. The
AUC of the model trained without a PET roughly corresponds
to the top value achieved by these curves.

When measuring privacy loss via
multiplicative advantage, RR has
the best privacy vs. accuracy trade-
off compared to all other PETs.
This is consistent with the obser-
vations in Fig. 2. In particular, the
three mechanisms (with the given
parameters) have almost the same
AUC on Higgs. Yet when looking
at the CDFs of the multiplicative
measure one sees that the two DP
mechanisms have bounded MAs
whereas LLP has a significant num-
ber of extreme values. This trend is
more pronounced for KDD12 than
Higgs. Thus, for the same AUC,
LLP has a higher multiplicative ad-
vantage, with a more pronounced
gap for KDD12 than for Higgs. On
the other hand, Fig. 2 also shows
that the CDFs of the additive ad-
vantage are roughly the same for
all three mechanisms (again, at the
same AUC). Thus, in Fig. 3 the
mechanisms have similar AUC vs
advantage tradeoffs.

5 Discussion and Conclusions

We study ways to audit label privatization mechanisms for commonly used PETs: randomized re-
sponse, random label aggregation, and combinations thereof. Together, the additive and multiplicative
advantage measures we introduced paint a richer picture of the reconstruction risks posed by different
parameter settings, and for the first time allow us to compare their privacy-accuracy trade-off curves.

The measures we propose are tailored to settings where the data are sampled i.i.d. from a distribution,
and each record consists of public features together with one sensitive binary feature. Computing
these measures empirically requires estimates of the adversary’s label uncertainty, which won’t
be correct if the adversary has significant side information or, crucially, if the same data are re-
used in multiple mechanisms. Handling such complex settings requires more general concepts like
differential privacy. Another complexity emerges when we consider settings like click prediction,
where a minority label (a click) is viewed as qualitatively more revelatory than the majority one
(no click). While the measures we consider are agnostic to the label semantics, principled ways to
incorporate complex semantics might be valuable and shed light on heuristics used in practice.

10



References
[1] Chrome privacy sandbox. https://developers.google.com/privacy-sandbox/relevance/

attribution-reporting.

[2] Skadnetwork 4 release notes. https://developer.apple.com/documentation/storekit/
skadnetwork/skadnetwork_release_notes/skadnetwork_4_release_notes.

[3] Y. W. Aden. Kdd cup 2012, track 2. https://kaggle.com/competitions/kddcup2012-track2,
2012.

[4] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy physics with deep
learning. Nature Communications, 5(1):4308, 2014.

[5] B. Balle, G. Cherubin, and J. Hayes. Reconstructing training data with informed adversaries. In 43rd
IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022, pages
1138–1156. IEEE, 2022.

[6] A. D. Barbour and T. Lindvall. Translated poisson approximation for markov chains. Journal of Theoretical
Probability, 19(3):609–630, 2006.

[7] R. Bassily, A. Groce, J. Katz, and A. Smith. Coupled-worlds privacy: Exploiting adversarial uncertainty in
statistical data privacy. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages
439–448. IEEE, 2013.

[8] J. J. Benedetto. Harmonic analysis and applications. CRC Press, 2020.

[9] R. Bhaskar, A. Bhowmick, V. Goyal, S. Laxman, and A. Thakurta. Noiseless database privacy. In
Advances in Cryptology–ASIACRYPT 2011: 17th International Conference on the Theory and Application
of Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings 17, pages
215–232. Springer, 2011.

[10] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: the sulq framework. In Proceedings of
the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
128–138, 2005.

[11] M. Bun, J. Ullman, and S. Vadhan. Fingerprinting codes and the price of approximate differential privacy.
In Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages 1–10, 2014.

[12] R. Busa-Fekete, H. Choi, T. Dick, C. Gentile, and A. Munos Medina. Easy learning from label proportions.
In Neurips 2023, 2023.

[13] R. I. Busa-Fekete, A. M. Medina, U. Syed, and S. Vassilvitskii. Label differential privacy and private
training data release. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors,
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA,
volume 202 of Proceedings of Machine Learning Research, pages 3233–3251. PMLR, 2023.

[14] C. Carey, T. Dick, A. Epasto, A. Javanmard, J. Karlin, S. Kumar, A. Muñoz Medina, V. Mirrokni, G. H.
Nunes, S. Vassilvitskii, et al. Measuring re-identification risk. Proceedings of the ACM on Management of
Data, 1(2):1–26, 2023.

[15] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramèr. Membership inference attacks from first
principles. In 2022 IEEE Symposium on Security and Privacy (SP), pages 1897–1914, 2022.

[16] D. Desfontaines and B. Pejó. Sok: Differential privacies. Proceedings on Privacy Enhancing Technologies,
2020.

[17] I. Dinur and K. Nissim. Revealing information while preserving privacy. In Proceedings of the Twenty-
Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’03, pages
202–210. ACM, 2003.

[18] C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan. Robust traceability from trace amounts. In
2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 650–669. IEEE, 2015.

[19] B. Ghazi, N. Golowich, R. Kumar, P. Manurangsi, and C. Zhang. Deep learning with label differential
privacy. Advances in neural information processing systems, 34:27131–27145, 2021.

[20] A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally utility-maximizing privacy mechanisms. In
arXiv:0811.2841, 2009.

11

https://developers.google.com/privacy-sandbox/relevance/attribution-reporting
https://developers.google.com/privacy-sandbox/relevance/attribution-reporting
https://developer.apple.com/documentation/storekit/skadnetwork/skadnetwork_release_notes/skadnetwork_4_release_notes
https://developer.apple.com/documentation/storekit/skadnetwork/skadnetwork_release_notes/skadnetwork_4_release_notes
https://kaggle.com/competitions/kddcup2012-track2


[21] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V. Pearson, D. A. Stephan,
S. F. Nelson, and D. W. Craig. Resolving individuals contributing trace amounts of DNA to highly complex
mixtures using high-density SNP genotyping microarrays. PLoS genetics, 4(8):e1000167, 2008.

[22] M. Jagielski, J. Ullman, and A. Oprea. Auditing differentially private machine learning: how private
is private sgd? In Proceedings of the 34th International Conference on Neural Information Processing
Systems, 2020.

[23] Y. Juan, Y. Zhuang, W.-S. Chin, and C.-J. Lin. Field-aware factorization machines for ctr prediction. In
Proceedings of the 10th ACM conference on recommender systems, pages 43–50, 2016.

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and Y. LeCun, editors,
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

[25] A. Makhdoumi, S. Salamatian, N. Fawaz, and M. Médard. From the information bottleneck to the privacy
funnel. In 2014 IEEE Information Theory Workshop, ITW 2014, pages 501–505. IEEE, 2014.

[26] M. Malek, I. Mironov, K. Prasad, I. Shilov, and F. Tramer. Antipodes of label differential privacy: Pate and
alibi. In Advances in Neural Information Processing Systems, volume 34, pages 6934–6945, 2021.

[27] H. Reeve and Kabán. Classification with unknown class-conditional label noise on non-compact feature
spaces. In Proceedings of the Thirty-Second Conference on Learning Theory, volume 99 of Proceedings of
Machine Learning Research, pages 2624–2651. PMLR, 25–28 Jun 2019.

[28] A. Röllin. Translated Poisson approximation using exchangeable pair couplings. The Annals of Applied
Probability, 17(5-6):1596 – 1614, 2007.

[29] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine learning
models. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26,
2017, pages 3–18. IEEE Computer Society, 2017.

[30] S. L. Warner. Randomized response: A survey technique for eliminating evasive answer bias. JASA, pages
63–69, 1965.

[31] R. Wu, J. P. Zhou, K. Q. Weinberger, and C. Guo. Does label differential privacy prevent label inference
attacks? In International Conference on Artificial Intelligence and Statistics, pages 4336–4347. PMLR,
2023.

[32] H. Xiao and S. Devadas. Automatic privacy measurement and control of data processing. In Advances in
Cryptology - CRYPTO 2023 - 43rd Annual Inter- national Cryptology Conference, CRYPTO 2023, volume
14082 of Lecture Notes in Computer Science, pages 611–644, 2023.

[33] F. Yu, D. Liu, S. Kumar, T. Jebara, and S. Chang. α-svm for learning with label proportions. In ICML,
Proceedings of the 30th International Conference on Machine Learning, pages 504–512, 2013.

12



A Proofs for Section 3

We start off by providing a preliminary result that will be useful throughout all proofs.

A.1 Preliminary results

Consider, for a specific i ∈ [m], the random variables
f1i(x) = sup

Ainformed

P
y∼Dk

Y|x

(Ainformed(x,M(x,y))i = yi |x)

(2)
f2i(x) = sup

Aunininformed

P
y∼Dk

Y|x

(Auninformed(x,M⊥(x,y))i = yi |x) .

The relevance of f1i and f2i stems from the fact that for the mechanisms M we consider in this
paper, the advantages EAdv, IEAdv, and HPAdv will be defined in terms of f1i and f2i.
Lemma A.1. For any PET M, any x ∈ X , any conditional data distribution DY|x, number of
examples k, and i ∈ [m], we have

f1i(x)− f2i(x) = min{η(xi), 1− η(xi)} − E
y∼DY|x

[
min

b∈{0,1}

{
P(yi = b | x,M(x,y))

}
|x
]
,

where η : x 7→ P(y = 1 | x). Moreover, the optimal (informed) adversary A∗ is:

A∗(x,M(x,y))i :=

{
1 if P(yi = 1 | x,M(x,y)) ≥ 1/2

0 otherwise .

Proof. Set for brevity z = M⊥(x,y). Since M⊥ outputs null, and the (xj , yj) pairs for j ∈ [m]
are independent, we have

P(yi = 1 | x, z) = P(yi = 1 | xi) = η(xi),

It immediately follows that the best attacker Aunininformed involved in the computation of f2i(x) is the
Bayes optimal predictor

ŷi = arg max
b∈{0,1}

P(yi = b | xi)

so that
f2i(x) = 1−min{η(xi), 1− η(xi)} .

Let us now turn to f1i and fix any adversary Ainformed. We lower bound the probability that the
adversary makes a mistake on yi. Let z = M(x,y) be the output of the PET, and (ŷ1, . . . , ŷm) =
Ainformed(x, z) be the output of the adversary. Since ŷi is (x, z)-measurable, we have

P(ŷi = yi | x, z) = P(ŷi = 1 | yi = 1,x, z)P(yi = 1 | x, z)
+ P(ŷi = 0 | yi = 0,x, z)P(yi = 0 | x, z)

= 1{ŷi = 1}P(yi = 1 | x, z) + 1{ŷi = 0}P(yi = 0 | x, z) .
Hence

P(ŷi = yi |x) = Ez|x

[
1{ŷi = 1}P(yi = 1 | x, z) + 1{ŷi = 0}P(yi = 0 | x, z) |x

]
≤ Ez|x

[
max{P(yi = 1 | x, z),P(yi = 0 | x, z)} |x

]
= Ey∼DY|x

[
max{P(yi = 1 | x,M(x,y)),P(yi = 0 | x,M(x,y))} |x

]
= 1− Ey∼DY|x

[
min{P(yi = 1 | x,M(x,y)),P(yi = 0 | x,M(x,y))} |x

]
= f1i(x) ,

where the inequality holds because the maximum probability term is never smaller than the probability
term selected by the indicator variables. Incidentally, the above also shows that the optimal informed
adversary is the one that selects the larger of the two probability terms with probability one, which
makes the inequality above hold with equality.

At this point, we use the fact that
EAdv(MLLP,D) = Ex[f1i(x)− f2i(x)] (3)

holds for all i ∈ [m] since the data sequence (x1, y1), . . . , (xk, yk) is i.i.d.
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A.2 Proof of Theorem 3.2

Theorem 3.2. Fix a data distribution D, let p = P(x,y)∼D(y = 1), and fix an arbitrary threshold
β ∈ [0, 1/2]. If labels are independent of features (i.e., D is a product of distributions over X and Y),
then for all bag sizes k ≥ 1 we have:

EAdv(MLLP,D) = min{p, 1− p} − Eα[min{α, 1− α}] ≤

{√
p(1−p)

k if p ∈ [0, 1]

e−Ω(β2k) if |p− 1/2| ≥ β,

where Ω(·) hides constants independent of β and k.

Proof. For a given (xj , yj) in the dataset, we can consider without loss of generality only the size-k
bag that xj falls into, and then refer the indexing to this bag only.

Then set for brevity Σ = kα =
∑k

i=1 yi. From (3), we can write

EAdv(MLLP,D) = Ex [min{η(xi), 1− η(xi)}]− EΣ

[
min

b∈{0,1}

{
P(yi = b | Σ)

}]
= min{p, 1− p} − EΣ

[
min

b∈{0,1}

{
P(yi = b | Σ)

}]
.

Since P(yi = 1 |Σ) = α independent of i and p, the minimum value in the second expectation is

Eα[min{α, 1− α}] ,

and the claimed equality for EAdv(MLLP,D) follows.

As for the inequality with general p ∈ [0, 1], note that, when a, b ∈ [0, 1],

min{a, 1− a} −min{b, 1− b} ≤ |a− b| . (4)

If applied to the expression

min{p, 1− p} − Eα[min{α, 1− α}]

this gives

EAdv(MLLP,D) ≤ Eα[|α− p|] ≤
√
Eα[(α− p)2] =

√
p(1− p)

k
,

where the second inequality is Jensen’s.

Finally, in the case where |p− 1/2| ≥ β, for some gap β > 0, we can proceed through a more direct
analysis. Assume p ≤ 1/2− β. We can write

min{α, 1− α} = min{α, 1− α}I{α ≤ 1/2}+min{α, 1− α}I{α > 1/2}
+ αI{α > 1/2} − αI{α > 1/2}

= αI{α ≤ 1/2}+ (1− α)I{α > 1/2}+ αI{α > 1/2} − αI{α > 1/2}
= α− (2α− 1)I{α > 1/2}
≥ α− I{α > 1/2} .

Hence
Eα[min{α, 1− α}] ≥ p− P(α > 1/2) .

Now, p < 1/2 implies min{p, 1− p} = p, which leads us to

min{p, 1− p} − Eα[min{α, 1− α}] ≤ P(α > 1/2) .

Finally, by the standard Bernstein inequality we have

P(α > 1/2) ≤ exp

(
− k(1/2− p)2

2p(1− p) + (1− 2p)/3

)
= e−Ω(kβ2) ,

which gives the second inequality.

A similar argument holds if we reverse the assumption on p to p ≥ 1/2 + β.
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A.3 Proof of Theorem 3.3

Again, as in the proof of Theorem 3.2, for a given (xj , yj) in the dataset, we can consider with no
loss of generality only the size-k bag that xj falls into, and then refer the indexing to this bag only.

Recall that, for a general distribution D over X×Y the distribution of random variable kα =
∑k

j=1 yj
conditioned on x = (x1, . . . , xk) is Poisson Binomial (PBin) with parameters {η(xj)}kj=1, that is,
the distribution of the sum of k independent Bernoulli random variables yj , each with its own bias
η(xj), where η(x) = P(y = 1 |x).

Notation. For simplicity of notation we let ηi = η(xi) be the conditional positive probability of a
label given feature vector x and let p = E[ηi]. For fixed feature vectors x = (x1, . . . , xk, xk+1), let
Ai denote a Bernoulli random variable with mean ηi, and let Zk =

∑k
j=1 Aj

We recall the statement of the theorem we want to prove.
Theorem 3.3. Let D be an arbitrary distribution on X ×Y , p = E[η(x)], and µ = E[η(x)(1−η(x))].
Then, for all bag sizes k ≥ 2 we have:

EAdv(MLLP,D) = Õ

(
µ1/4(p(1− p))1/4√

k
+

µ1/4

k

)
,

where Õ hides logarithmic factors in k.

The above theorem is a direct consequence of the following Lemma.
Lemma A.2. Let B denote a bag with k + 1 elements. Let

ck =
1√
k

(
1

3
log 8k +

1

6

√
2 log 8k + 12kp(1− p) log 8k

)
= Õ

(√
p(1− p) +

1√
k

)
.

Then

EAdv(MLLP,D) ≤ k1/4
√
2ck

√(
1

e3/2
+

π

4
+

π

e

)
E[η1(1− η1)]1/2

k3/2
+

E[η1(1− η1)]

k
.

Proof. Set for brevity M = MLLP(x,y). From (3) we have
EAdv(MLLP,D)

= E
xk+1

[min{η(xk+1), 1− η(xk+1)}]− E
(x,y)

[min {P(yk+1 = 1|x,M),P(yk+1 = 0|x,M)}]

≤ E
(x,y)

[|η(xk+1)− P(yk+1 = 1|x,M)|] ,

where we have again used (4). We now focus on calculating P(yk+1 = 1|x,M). Let Σ =
∑k+1

j=1 yj .
Note that for a given realization of feature vector x, yk+1 is distributed like Ak+1 and the output M
is distributed like Zk+1. Therefore:

P(yk+1 = 1 |x,M) = P(Ak+1 = 1 |x, Zk+1 = Σ)

=
P(Ak+1 = 1, Zk+1 = Σ |x)

P(Zk+1 = Σ |x)

= ηk+1
P(Zk = Σ− 1 |x)
P(Zk+1 = Σ |x)

.

Using this expression in the original expectation we see that we can bound the advantage as

E(x,y)

[
ηk+1

∣∣∣∣1− P(Zk = Σ− 1 |x)
P(Zk+1 = Σ |x)

∣∣∣∣]
Again, note that for a fixed x, the variable Σ is distributed like Zk+1. Therefore. taking expectation
over y the above expression can be rewritten as

Ex

[
ηk+1

k+1∑
s=0

P(Zk+1 = s |x)×
∣∣∣∣1− P(Zk = s− 1 |x)

P(Zk+1 = s|x)

∣∣∣∣
]
=

Ex

[
ηk+1

k+1∑
s=0

∣∣∣P(Zk+1 = s |x)− P(Zk = s− 1 |x)
∣∣∣]
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Finally, note that since Zk+1 = Zk +Ak+1 we also have
P(Zk+1 = s |x) = P(Ak+1 = 1 |x)P(Zk = s− 1 |x) + P(Ak+1 = 0 |x)P(Zk = s |x)

= ηk+1 P(Zk = s− 1 |x) + (1− ηk+1)P(Zk = s |x) .
Therefore, we conclude that the advantage can be bounded by

Ex

[
ηk+1(1− ηk+1)

k+1∑
s=0

∣∣∣P(Zk = s |x)− P(Zk = s− 1 |x)
∣∣∣] =

Ex [ηk+1(1− ηk+1)] E

[
k+1∑
s=0

∣∣∣P(Zk = s |x)− P(Zk = s− 1 |x)
∣∣∣] , (5)

where we have used the fact that the random variables ηi are independent from each other. Using also
the fact that ηk+1 has the same distribution as η1 combined with Lemma A.3 below, we have that the
above quantity is bounded by:

k1/4
√
2ck

√
E[η1(1− η1)]2 E[η21 + (1− η1)2]k +

π E[η1(1− η1)]1/2

4k3/2
+

π E[η1(1− η1)]

ek2

+
E[η1(1− η1)]

k
. (6)

Moreover, notice that E[η21 + (1 − η1)
2] + 2E[η1(1 − η1)] = 1. Therefore E[η21 + (1 − η1)

2] =
1− 2E[η1(1− η1)], and using the fact that η1(1− η1) ≤ 1

4 we have

E[η1(1− η1)]
2 E[η21 + (1− η1)

2]k = E[η1(1− η1)]
2(1− 2E[η1(1− η1)])

k

≤ max
1
4≥x≥0

x2(1− 2x)k .

But a simple calculation shows that the above function is maximized at x⋆
k = min{ 1

k+2 , 1/4}, thus
we must have

E[η1(1− η1)]
2 E[η21 + (1− η1)

2]k ≤ (x⋆
k)

2(1− 2x⋆
k)

k ≤ 1

(ek)2

the last inequality holding for all k ≥ 1. In addition, we have the trivial bound E[η1(1− η1)]
2 E[η21 +

(1− η1)
2] ≤ E[η1(1− η1)]

2, so that

E[η1(1− η1)]
2 E[η21 + (1− η1)

2]k ≤ min

{
E[η1(1− η1)]

2,
1

e2k2

}
≤ E[η1(1− η1)]

2

E[η1(1− η1)]2 e2 k2 + 1

(using min{a, b} ≤ ab
a+b , with a = E[η1(1− η1)]

2 and b = 1
e2k2 )

≤
√
E[η1(1− η1)]

e3/2k3/2

(using x2 − x3/2 + 1 ≥ 0, with x = ekE[η1(1− η1)]) .

Replacing this bound in (6) we obtain the following upper bound on the advantage:

k1/4
√
2ck

√(
1

e3/2
+

π

4

)
E[η1(1− η1)]1/2

k3/2
+

π E[η1(1− η1)]

ek2
+

E[η1(1− η1)]

k

≤ k1/4
√
2ck

√(
1

e3/2
+

π

4
+

π

e

)
E[η1(1− η1)]1/2

k3/2
+

E[η1(1− η1)]

k
,

as claimed.

Lemma A.3. Let ck be as in Lemma A.2. Then the following bound holds:

Ex

[
k+1∑
s=0

|P(Zk = s |x)− P(Zk = s− 1 |x)|

]
≤

1

k
+ k1/4

√
2ck

√
E[η21 + (1− η1)2]k +

π

(4E[η1(1− η)1)k)3/2
+

π

eE[η1(1− η1)]k2
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Proof. Let a > 0 and b < k, and let [a, b] = {j ∈ N|a ≤ j ≤ b}. For any x we then have

k+1∑
s=0

|P(Zk = s |x)− P(Zk = s− 1 |x)|

=
∑

s∈[a,b]

|P(Zk = s |x)− P(Zk = s− 1 |x)|+
∑

s/∈[a,b]

|P(Zk = s |x)− P(Zk = s− 1)|

≤
∑

s∈[a,b]

|P(Zk = s |x)− P(Zk = s− 1 |x)|+
∑

s/∈[a,b]

P(Zk = s |x) + P(Zk = s− 1 |x)

≤
∑

s∈[a,b]

|P(Zk = s |x)− P(Zk = s− 1 |x)|+ 2P(Zk /∈ [a, b] |x)

Taking expectation over both sides with respect to x we have

Ex

[
k+1∑
s=0

|P(Zk = s |x)− P(Zk = s− 1 |x)|

]

≤ Ex

 ∑
s∈[a,b]

|P(Zk = s |x)− P(Zk = s− 1 |x)|

+ 2Ex[P(Zk /∈ [a, b] |x)] (7)

Let now Qk denote the probability measure associated with a binomial random variable with parame-
ters (k, p). Since Zk is a Poisson-Binomial random variable with parameters η1, . . . , ηk, the prob-
ability P(Zk /∈ [a, b] |x) is a linear function in each individual ηi, so that Ex[P(Zk /∈ [a, b] |x)] =
Qk([a, b]

c). We now proceed to bound the first expectation in (7). By Cauchy-Schwartz inequality
we have

Ex

 ∑
s∈[a,b]

|P(Zk = s |x)− P(Zk = s− 1 |x)|


≤ Ex

√(b− a)
∑

s∈[a,b]

(P(Zk = s |x)− P(Zk = s− 1 |x))2


≤ Ex


√√√√(b− a)

k+1∑
s=0

(P(Zk = s |x)− P(Zk = s− 1 |x))2


≤

√√√√Ex

[
(b− a)

k+1∑
s=0

(P(Zk = s |x)− P(Zk = s− 1 |x))2
]
,

where the last inequality holds by Jensen’s inequality. Let

A = E[η21 + (1− η1)
2] and B = 2E[η1(1− η1)] .

By Lemma A.4 below we have that the above term is bounded by√
(b− a)

(
Ak +

π

(4Bk)3/2
+

π

eBk2

)
,

so that (7) gives

Ex

[
k+1∑
s=0

|P(Zk = s |x)− P(Zk = s− 1 |x)|

]
≤ 2Qk([a, b]

c)+

√
(b− a)

(
Ak +

π

(4Bk)3/2
+

π

eBk2

)
.

Let a = max{kp −
√
kck, 0} and b = min{kp +

√
kck, 1}. By Bernstein’s inequality applied to

binomial random variables we have that Qk([a, b]
c) = 1

2k . Hence, with this choice of a and b we
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obtain

Ex

[
k+1∑
s=0

|P(Zk = s |x)− P(Zk = s− 1 |x)|

]
≤ 1

k
+

√
2
√
kck

√
Ak +

π

(4Bk)3/2
+

π

eBk2
.

The lemma follows by replacing the values of A and B.

Lemma A.4. The following inequality holds

Ex

[
k+1∑
s=0

(P(Zk = s |x)− P(Zk = s− 1 |x))2
]

≤ E[η21 + (1− η1)
2]k +

π

(8E[η1(1− η1)]k)3/2
+

π

2eE[η1(1− η1)]k2
.

Proof. Let ps(x) = P(Zk = s |x) − P(Zk = s − 1 |x), for s = 0, . . . , k + 1. Further, for
k + 1 ≥ u ≥ 0 let gu(x) = 1√

k+2

∑k+1
s=0 ps(x)e

2πi us
k+2 denote the discrete Fourier transform. Since,

for any x, the mapping

p(x) := (p0(x), . . . , pk+1(x)) 7→ (g1(x), . . . , gk+1(x) := g(x)

is a unitary linear transformation [8] we can write:
k+1∑
s=0

(P(Zk = s |x)− P(Zk = s− 1 |x))2 = ∥p(x)∥2 = ∥g(x)∥2 =

k+1∑
u=0

|gu(x)|2.

Moreover, by Lemma A.5 below we have that

gu(x) = (1− e
2πiu
k+2 )

1√
k + 2

k∏
j=1

(1− ηj + ηje
2πiu
k+2 )

and therefore

|gu(x)|2 = gu(x)gu(x) =
1

k + 2

(
1− cos

2πu

k + 2

) k∏
j=1

(
(1− ηj)

2 + η2j + 2ηj(1− ηj) cos
2πu

k + 2

)
.

Therefore we can write

Ex

[
k+1∑
s=0

(P(Zk = s |x)− P(Zk = s− 1 |x))2
]

=
1

k + 2
Ex

k+1∑
u=0

(
1− cos

2πu

k + 2

) k∏
j=1

(
(1− ηj)

2 + η2j + 2ηj(1− ηj) cos
2πu

k + 2

)
=

1

k + 2

k+1∑
u=0

(
1− cos

2πu

k + 2

) k∏
j=1

Ex

[(
(1− ηj)

2 + η2j + 2ηj(1− ηj) cos
2πu

k + 2

)]
, (8)

Where we have used the fact that the random variables ηj are independent. Finally by linearity of
expectation and the fact that ηj is distributed as η1 for all j, we have

Ex

[
k+1∑
s=0

(P(Zk = s |x)− P(Zk = s− 1 |x))2
]

1

k + 2

k+1∑
u=0

(
1− cos

2πu

k + 2

)(
E[η21 + (1− η1)

2] + 2E[η1(1− η1)] cos
2πu

k + 2

)k

. (9)

Applying Proposition A.6 below with a = E[η21 + (1− η1)
2] and b = 2E[η1(1− η1)] we have that

the above expression is bounded by

E[η21 + (1− η1)
2]k +

π

(8E[η1(1− η1)]k)3/2
+

π

2eE[η1(1− η1)]k2

which gives the claimed result.
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Lemma A.5. Let ps(x) = P(Zk = s |x) − P(Zk = s − 1 |x) and let gu(x) =
1√
k+2

∑k+1
s=0 ps(x)e

2πius
k+2 denote the discrete Fourier transform of p(x) = (p1(x), . . . , ps(x)). Then

gu(x) =
1√
k + 2

(1− e
2πiu
k+2 )

k∏
j=1

(1− ηj + ηje
2πiu
k+2 )

Proof. By definition of gu(x) we have:

1√
k + 2

(
k+1∑
s=0

e
2πius
k+2 P(Zk = s |x)−

k+1∑
s=0

e
2πius
k+2 P(Zk = s− 1 |x)

)

=
1√
k + 2

(
k+1∑
s=0

e
2πius
k+2 P(Zk = s |x)− e

2πiu
k+2

k+1∑
s=0

e
2πiu(s−1)

k+2 P(Zk = s− 1 |x)

)

=
1√
k + 2

(1− e
2πiu
k+2 )EZk

[e
2πiu
k+2 Zk |x]

=
1√
k + 2

(1− e
2πiu
k+2 )ϕZk |x

(
2πu

k + 2

)
where ϕZk |x denotes the characteristic function of Zk conditioned on x. Using the fact that Zk =∑k

j=1 Aj and that A1, . . . , Ak are independent given x, we have ϕZk |x =
∏k

j=1 ϕAj | xj
. The

result follows from the fact that Aj is a Bernoulli random variable and therefore ϕAj | xj
(z) =

(1− ηj + ηje
iz).

Proposition A.6. For any a, b, k > 0 such that a+ b = 1 we have

1

k + 2

k+1∑
u=0

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

≤ ak +
π

(4kb)3/2
+

π

ebk2

Proof. Using the fact that cos 2πu
k+2 ≤ 0 for u ∈ [(k + 2)/4, 3(k + 2)/4] we have that

k+1∑
u=0

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

=

k+2/4∑
u=0

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

+

3(k+2)/4∑
u=(k+2)/4+1

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

+

k+1∑
u=3(k+2)/4+1

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

≤ (k + 2)ak +

(k+2)/4∑
u=0

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

+

k+1∑
u=3(k+2)/4+1

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

= (k + 2)ak + 2

(k+2)/4∑
u=0

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

,

where we used the fact that (1− cos t) ≤ 2 for the first inequality and the symmetry of the cosine
function for the last equality. We now apply the result of Proposition A.8 to the above expression to
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see that

(k+2)/4∑
u=0

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

≤ 2π2

(k+2)/4∑
u=0

u2

(k + 2)2

(
1− 4πb

u2

(k + 2)2
)

)k

≤ 2π2

(k+2)/4∑
u=0

u2

(k + 2)2
e
−4πkb u2

(k+2)2

Therefore we conclude that

1

k + 2

k+1∑
u=0

(
1− cos

2πu

k + 2

)(
a+ b cos

2πu

k + 2

)k

≤ ak+4π2

(k+2)/4∑
u=0

u2

(k + 2)2
e
−4πkb u2

(k+2)2
1

k + 2
.

Finally, applying Proposition A.7 with m = k + 2 and α = 4πkb we can upper bound the above
quantity by:

ak + 4π2

( √
π

4(4πkb)3/2
+

1

4eπbk(k + 2)

)
≤ ak +

π

(4kb)3/2
+

π

ebk2
,

which concludes the proof.

Proposition A.7. Let m > 0 and α > 0. Then

m/4∑
u=0

u2

m2
e−α u2

m2
1

m
≤

√
π

4α3/2
+

1

eαm

Proof. Let f : R → R be given by x 7→ x2e−αx2

. Note that the sum we are attempting to bound is
then given by:

m/4∑
u=0

f
( u

m

) 1

m

Note also that f has a maximum at x0 = 1√
α

. Thus f is increasing for x < x0 and decreasing
otherwise. In particular if

m/4∑
u=0

f
( u

m

) 1

m
=

⌊x0⌋∑
u=0

f
( u

m

) 1

m
+

m/4∑
u=⌈x0⌉

f
( u

m

) 1

m
:= L+ U,

then L corresponds to a lower Riemman sum for f and L ≤
∫ ⌊x0⌋+1

m

0
f(x)dx. Similarly U is an

upper Riemman sum for f and U ≤
∫ 1/4− 1

m
⌈x0⌉−1

m

f(x)dx. Therefore we have

m/4∑
u=0

f
( u

m

) 1

m
≤
∫ 1/4−1/m

0

x2e−αx2

dx+

∫ ⌊x0⌋+1
m

⌈x0⌉−1
m

f(x)dx

≤
∫ ∞

0

x2e−αx2

+
1

m
max

x
f(x)

=

√
π

4α3/2
+

1

eαm
,

as claimed.

Proposition A.8. The following inequality holds for any t ∈ [0, 1/4]:

1− 2(πt)2 ≤ cos 2πt ≤ 1− 4πt2

20



Proof. For the lower bound we start from the fact that for any x ≥ 0 it is well known that

sin 2πx ≤ 2πx.

Integrating this inequality from [0, t] we have that
∫ t

0
sin 2πx ≤ πt2. Since

∫ t

0
sin 2πx = 1

2π (1 −
cos 2πt) the lower bound follows.

For the upper bound we proceed in a similar fashion. By the fact that sin 2πx is concave for
x ∈ [0, 1/4] we have that

sin 2πx = sin 2π((1− 4x) · 0 + 4x · 1
4
) ≥ (1− 4x) sin 0 + 4x sin

π

2
= 4x.

Again integrating the above inequality from 0 to t we have 1−cos 2πt
2π ≥ 2t2.

A.4 Proof of Theorem 3.4

Proof. The proof follows the same argument of the proof used in 3.3, where we see that, in view of
the factorization in Equation 5 we may bound the individual expected advantage as:

IEAdv(M,D, xk+1) ≤ η(xk+1)(1−η(xk+1) E
x1,...,xk

[
k∑

s=0

|P (Zk = s|x)− P (Zk = s− 1|x)|

]
.

But from Lemma A.3 it follows that this can be bounded by

µi O

(
(p(1− p))1/4

√
(1− 2µ)kk1/2 +

1

µ3/2k
+

√
(1− 2µ)k

k1/2
+

1

µ3/2k2

)
.

Now, since (1 − 2µ)kk1/2 < µ
k for k ≥ 2

µ log
(

1
µ

)
, we upper bound accordingly the two terms

involving (1− 2µ)k, and the result follows.

A.5 Tail distribution of the attack advatange

We are also interested in the tail of the distribution of the attack advantage, that is, the tail of the
difference between

f1(x) = sup
Ainformed

P
y∼Dm

Y|x
i∼Uniform([m])

coins of M

(Ainformed(x,M(x,y))i = yi |x)

and
f2(x) = sup

Auninformed

P
y∼Dm

Y|x
i∼Uniform([m])

coins of M

(Auninformed(x,M⊥(x,y))i = yi |x)

Specifically, we define

HPAdv(M,D, θ) = P
x∼Dm

X

(f1(x)− f2(x)) > θ) ,

viewed as a function of θ ∈ [0, 1], which we call the High Probability attack Advantage (at level θ).
This is simply a high-probability version of EAdv(A,M,D) over the generation of x. A similar
high-probability version can be defined for the individual version of the attack advantage.

We begin by observing that in the special case of MRR, we have IEAdv1(MRR,D, x1) = f1(x)−
f2(x), so that the high probability bound involved in the computation of HPAdv(MRR,D, θ) is
a direct consequence of the tail properties of the function η(x1) = P(y1 = 1 |x1) as applied to
the expression for IEAdv1,1(MRR,D, x1) in Theorem A.17. Thus, for MRR, the connection from
IEAdv to HPAdv is immediate.

We continue with studying HPAdv for MLLP. We have the following bound.
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Theorem A.9. Under the same assumptions and notation as in Theorem 3.3 (main body) there are
universal constants c1, c2 > 0 such that, for k = Ω(1/µ),

HPAdv

(
MLLP,D, c1

√
µ

k

)
≤ (k + 1) e−c2 kµ .

In order to prove this theorem, we first need ancillary results related to Poisson Binomial distributions.

We denote a Poisson Binomial distribution with parameters {η1, . . . , ηk} by PBin(η1, . . . , ηk).

Lemma A.10. Let s,Σ ∼ PBin(η1, . . . , ηk), Σ(1) ∼ PBin(η2, . . . , ηk), where η1, . . . , ηk ∈ [0, 1]
are such that

k∑
i=1

ηi(1− ηi) ≥ 1 .

Then

Es

[∣∣∣∣∣P(Σ(1) = s)− P(Σ(1) = s− 1)

P(Σ = s)

∣∣∣∣∣
]
≤ 9√∑k

i=2 ηi(1− ηi)
.

Proof. We will use the following distribution to approximate Poisson Binomial distributions.

Definition A.11. [28] We say that an integer random variable Y is distributed according to the
translated Poisson distribution with parameters µ and σ2, denoted TP(µ, σ2), if and only if Y can be
written as

Y = ⌊µ+ σ2⌋+ Z,

where Z is a random variable distributed according to Poisson(σ2 + {µ− σ2}), being {µ− σ2} the
fractional part of µ− σ2, and ⌊µ+ σ2⌋ the integer part of µ+ σ2.

Let us then define two random variables Γ and Γ(1). Variable Γ is TP(µ, σ2) with µ =
∑k

i=1 ηi and
σ2 =

∑k
i=1 ηi(1− ηi), while Γ(1) is TP(µ1, σ

2
1), where µ1 =

∑k
i=2 ηi and σ2

1 =
∑k

i=2 ηi(1− ηi).

Let dTV denote the total variation distance. We can write

Es

[∣∣∣∣∣P(Σ(1) = s)− P(Σ(1) = s− 1)

P(Σ = s)

∣∣∣∣∣
]
=

k∑
s=0

P(Σ = s)×

[∣∣∣∣∣P(Σ(1) = s)− P(Σ(1) = s− 1)

P(Σ = s)

∣∣∣∣∣
]

=

k∑
s=0

∣∣∣∣∣P(Σ(1) = s)− P(Σ(1) = s− 1)

∣∣∣∣∣
≤

k∑
s=0

∣∣∣∣∣P(Σ(1) = s)− P(Γ = s)

∣∣∣∣∣+
k∑

s=0

∣∣∣∣∣P(Γ = s)− P(Γ(1) = s− 1)

∣∣∣∣∣
+

k∑
s=0

∣∣∣∣∣P(Γ(1) = s− 1)− P(Σ(1) = s− 1)

∣∣∣∣∣ (10)

≤ dTV(Σ,Γ) +

k∑
s=0

∣∣∣∣∣P(Γ = s)− P(Γ(1) = s− 1)

∣∣∣∣∣+dTV(Σ
(1),Γ(1))

≤

√∑k
i=1 η

3
i (1− ηi) + 2∑k

i=1 ηi(1− ηi)
+

√∑k
i=2 η

3
i (1− ηi) + 2∑k

i=2 ηi(1− ηi)
(11)

+

k∑
s=0

∣∣∣∣∣P(Γ = s)− P(Γ(1) = s− 1)

∣∣∣∣∣
≤ 3√

σ
+

3
√
σ1

+

k∑
s=0

∣∣∣∣∣P(Γ = s)− P(Γ(1) = s− 1)

∣∣∣∣∣ ,
(12)
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where (10) follows from the triangle inequality, (11) follows from Lemma A.12 below, and (12)
follows from the overapproximation√∑k

i=1 η
3
i (1− ηi) + 2∑k

i=1 ηi(1− ηi)
≤

√∑k
i=1 ηi(1− ηi) + 2∑k
i=1 ηi(1− ηi)

≤ 3√∑k
i=1 ηi(1− ηi)

,

the latter inequality exploiting the condition
∑k

i=1 ηi(1− ηi) ≥ 1.

Lemma A.12. [[28], see (3.4) therein] Let J1, . . . , Jk be independent random Bernoulli with
parameters p1, . . . , pk. Then

dTV

(
k∑

i=1

Ji,TP(µ, σ2)

)
≤

√∑k
i=1 p

3
i (1− pi) + 2∑k

i=1 pi(1− pi)

where µ =
∑k

i=1 pi and σ2 =
∑k

i=1 pi(1− pi).

We recall a lemma which will be useful to upper bound the last term in (12).

Lemma A.13. [6] For µ1, µ2 ∈ R and σ2
1 , σ

2
2 ∈ R+ such that ⌊µ1 − σ2

1⌋ ≤ ⌊µ2 − σ2
2⌋, it holds that

dTV

(
TP(µ1, σ

2
1),TP(µ2, σ

2
2)
)
≤ |µ1 − µ2|

σ1
+

|σ2
1 − σ2

2 |+ 1

σ2
1

.

We will need the following technical lemma as well.

Lemma A.14. For µ ∈ R and σ2
1 , σ

2
2 ∈ R+, let us define X1 ∼ TP(µ, σ2

1) and X2 ∼ TP(µ+1, σ2
2).

Then
P(X1 = ℓ− 1) = P(X2 = ℓ)

for all ℓ ∈ Z.

Proof of Lemma A.14. One has to observe that Translated Poisson distribution is equivalent to a
Poisson distribution with parameter δ where δ = µ − γ and γ = ⌊µ − σ2⌋, but it is shifted by γ.
Moreover, note that γ + 1 = ⌊µ+ 1− σ2⌋, thus δ + 1 = µ− γ + 1. This observation implies the
claim with µ+ 1.

We continue by using both Lemma A.13 and Lemma A.14. Define Γ(2) ∼ TP(µ1 + 1, σ2
1). We can

write
k∑

s=0

∣∣∣∣∣P(Γ = s)− P(Γ(1) = s− 1)

∣∣∣∣∣ =
k∑

s=0

∣∣∣∣∣P(Γ = s)− P(Γ(2) = s)

∣∣∣∣∣
= dTV

(
TP(µ, σ2),TP(µ1 + 1, σ2

1)
)

≤ |µ− µ1 − 1|
σ

+
|σ2 − σ2

1 |+ 1

σ2

(from Lemma A.13)

=
1− η1

σ
+

η1(1− η1) + 1

σ2

≤ 3√
σ
,

the latter inequality using again the condition
∑k

i=1 ηi(1− ηi) ≥ 1.

Piecing together gives

Es

[∣∣∣∣∣1− P(Σ(1) = s− 1)

P(Σ = s)

∣∣∣∣∣
]
≤ 6√

σ
+

3
√
σ1

≤ 9
√
σ1

.

This concludes the proof.
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With these results handy, we are ready to prove Theorem A.9. Recall the functions f1(x) and f2(x)
defined in the main body.

Proof of Theorem A.9. Let Σ =
∑k

j=1 yj . From Lemma A.1, we see that

f1(x) = 1− 1

k

k∑
i=1

Ey∼DY|x

[
min

b∈{0,1}

{
P(yi = b | x,Σ

}
|x
]

and

f2(x) = 1− 1

k

k∑
i=1

min{η(xi), 1− η(xi)}

so that

f1(x)− f2(x) =
1

k

k∑
i=1

(
min{η(xi), 1− η(xi)} − Ey∼DY|x

[
min

b∈{0,1}

{
P(yi = b | x,Σ

}
|x
])

≤ 1

k

k∑
i=1

∣∣η(xi)− PΣ|x(yi = 1 | Σ,x)
∣∣ ,

where in the inequality we have again used (4).

But, for any given s ∈ {0, 1, . . . , k},

P(yi = 1 |Σ = s,x) = P(yi = 1 |x) P(Σ = s | yi = 1,x)

P(Σ = s |x)

= η(xi)
P(Σ(−i) = s− 1 |x)

P(Σ = s |x)

= η(xi)
P(Σ(−i) = s− 1 |x)

η(xi)P(Σ(−i) = s− 1 |x) + (1− η(xi))P(Σ(−i) = s |x)

where Σ(−i) =
∑k

j:j=1,j ̸=i yj .

Hence

f1(x)− f2(x) ≤
1

k

k∑
i=1

η(xi)(1− η(xi))Es

[∣∣∣P(Σ(−i) = s |x)− P(Σ(−i) = s− 1 |x)
P(Σ = s |x)

∣∣∣ |x] , (13)

where s (conditioned on x) is distributed as PBin(η(x1), . . . , η(xk)). Set for brevity µ = E[η(x)(1−
η(x)], and introduce the short-hand notation

Cβ,i = Cβ(x
(−i)) = I

{ k∑
j:j=1,j ̸=i

η(xj)(1− η(xj)) ≤ (k − 1)µ− β
}
,

for some β ∈ [0, (k−1)µ) to be specified. In the above x(−i) denotes x with its i-th item xi removed.

We have

η(xi)(1− η(xi))Es

[∣∣∣P(Σ(−i) = s |x)− P(Σ(−i) = s− 1 |x)
P(Σ = s |x)

∣∣∣ |x]
= Cβ,iη(xi)(1− η(xi))Es

[∣∣∣P(Σ(−i) = s |x)− P(Σ(−i) = s− 1 |x)
P(Σ = s |x)

∣∣∣ |x]
+ (1− Cβ,i)η(xi)(1− η(xi))Es

[∣∣∣P(Σ(−i) = s |x)− P(Σ(−i) = s− 1 |x)
P(Σ = s |x)

∣∣∣ |x]
≤ Cβ,i + (1− Cβ,i)η(xi)(1− η(xi))Es

[∣∣∣P(Σ(−i) = s |x)− P(Σ(−i) = s− 1 |x)
P(Σ = s |x)

∣∣∣ |x] ,
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since

η(xi)(1− η(xi))Es

[∣∣∣P(Σ(−i) = s |x)− P(Σ(−i) = s− 1 |x)
P(Σ = s |x)

∣∣∣ |x]≤ 1 .

for every i and every realization x.

On the other hand, a closer look at term

(1− Cβ,i)Es

[∣∣∣P(Σ(−i) = s |x)− P(Σ(−i) = s− 1 |x)
P(Σ = s |x)

∣∣∣ |x]
reveals that we are in a position to apply Lemma A.10. This allows us to conclude that this expectation
is upper bounded by1

9(1− Cβ,i)√∑k
j:j ̸=i,j=1 η(xj)(1− η(xj))

for every realization of x. Using the definition of Cβ,i the above can be further upper bounded by
9√

(k − 1)µ− β
.

Putting together, we have obtained

f1(x)− f2(x) ≤
1

k

k∑
i=1

(
Cβ,i +

9η(xi)(1− η(xi))√
(k − 1)µ− β

)

=
1

k

k∑
i=1

Cβ,i +
9
∑k

i=1 η(xi)(1− η(xi))

k
√
(k − 1)µ− β

for every x. Now, from the standard Bernstein inequality,2

Px∼DX (Cβ,i = 0 ∀ i) ≥ 1− k e−
β2

2kµ+β/6

and

Px∼DX

(
k∑

i=1

η(xi)(1− η(xi)) ≤ kµ+ β

)
≥ 1− e−

β2

2kµ+β/6

for every β > 0. This yields

Px∼DX

(
f1(x)− f2(x) >

9(kµ+ β)

k
√
(k − 1)µ− β

)
≤ (k + 1) e−

β2

2kµ+β/6 (14)

holding for 0 ≤ β < (k − 1)µ.

One can easily see that choosing β = (k − 1)µ/2 yields, when k = Ω(1/µ),

Px∼DX

(
f1(x)− f2(x) = Ω

(√
µ

k

))
≤ k e−Θ(kµ) ,

which concludes the proof.

Remark A.15. The analysis contained above also allows us to provide bounds on the additive
advantage that are fully conditional on x = (x1, . . . , xm). For instance, combining Lemma A.10
with Eq. (13), one can easily derive a bound of the form

f1(x)− f2(x) = O

1

k

k∑
i=1

η(xi)(1− η(xi))√∑
j:j ̸=i η(xj)(1− η(xj))

 .

Then, in order for this bound to be of the form 1/
√
k, we need to make further assumptions on the

function x → P(y = 1|x), the most obvious one being P(y = 1|x) ∈ (0, 1) (bounded away from 0
and 1) for all x.

1The condition
∑k

i=1 ηi(1 − ηi) ≥ 1 therein is implied by Cβ,i(x
(−i)) = 0, which is equivalent to

(k − 1)µ ≥ 1 + β. This, in turn, given our choice of β, will read as k = Ω(1/µ).
2Note that we are upper bounding the second moments of the random variables η(xi)(1− η(xi)) with their

first moment µ, since the variables η(xi)(1− η(xi)) are in [0, 1/4].
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A.6 The advantage of RR is independent of the number of examples

Lemma A.16. For all data distributions D, all xi, and all datasets S of size m, IEAdv(MRR,D, xi)
is independent of m, and so is EAdv(MRR,D).

Proof. Fix any m, any xi, and any data distribution D. Then, by Lemma A.1,

IEAdv(MRR,D, xi) = min{η(xi), 1− η(xi)} (15)

− E
yi∼DY|xi

[
min

{
P

(x(−i),y(−i))
(yi = 1 | x,MRR(x,y)), P

(x(−i),y(−i))
(yi = 0 | x,MRR(x,y))

}∣∣∣xi

]
.

The first term already has no dependence on m. We focus on the second term.

The key to this proof is that a noisy label RR(yi) = ỹi is independent of the other true labels yj , j ̸= i.
Thus, we have

P(yi = 1 | x,MRR(x,y)) = P(yi = 1 | x,MRR(x,y)i) = P(yi = 1 | xi,MRR(xi, yi)) .

Applying this to (15), we have

E
yi∼DY|xi

[
min

{
P

(x(−i),y(−i))
(yi = 1 | x,MRR(x,y)), P

(x(−i),y(−i))
(yi = 0 | x,MRR(x,y))

}
| xi

]
= E

yi∼DY|xi

[
min

{
P(yi = 1 | xi,MRR(xi, yi)),P(yi = 0 | xi,MRR(xi, yi))

}
| xi

]
.

Plugging this back into (15) gives us EAdv1(MRR,D) as desired. Taking the expectation over
xi ∼ DX completes the proof of the second claim.

A.7 Proof of Theorem 3.5

We prove a more verbose version of Theorem 3.5 which includes the optimal adversary:
Theorem A.17. For any data distribution D, the individual expected attack advantage for randomized
response with privacy parameter π = 1

1+eϵ is

IEAdv(MRR,D, x1) =
(
min{η(x1), 1− η(x1)} − π

)
·I{η(x1) ∈ [π, 1− π]}.

The optimal adversary maximizing IEAdv1(MRR,D, x1) is

A∗(x1, ỹ1) =


1, if η(x1) > 1− π

0, if η(x1) < π

ỹ1, otherwise .

In words, upon receiving x1, the optimal attacker A∗ predicts the associated label y1 as the noisy
label ỹ1 if the distribution D contains enough uncertainty about y1 (the condition η(x1) ∈ [π, 1− π]
holds) given the extra noise level π injected. Otherwise, it predicts deterministically (as y1 is indeed
close to being deterministic when η(x1) /∈ [π, 1− π]).

Proof. First we characterize the optimal attacker for which the individual expected advantage is
maximal. The Bayes optimal decision which minimizes the loss I{A(x1, ỹ1) ̸= y} conditioned on x1

and ỹ1 is
A′(x1, ỹ1) = I{P(y1 = 1|x1, ỹ1) > P(y1 = 0|x1, ỹ1)}

which can be written as

1 <
P(y1 = 1|x1, ỹ1)

P(y1 = 0|x1, ỹ1)
=

P(ỹ1|y1 = 1, x1)P(y1 = 1|x1)

P(ỹ1|y1 = 0, x1)P(y1 = 0|x1)
(16)

Assume that ỹ1 = 1, in which case (16) becomes

π

1− π
<

η(x1)

1− η(x1)
(17)
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which is true whenever η(x1) > π, and on the other hand, if η(x1) < π then (17) does not hold
anymore, thus A′(x1, ỹ1) = 0. A similar argument holds for ỹ1 = 0: The Bayes optimal decision
A′(x1, ỹ1) = 1 if and only if η(x1) > 1− π. Putting together, and noting that π ≤ 1/2, this implies
that the optimal attack is

A∗(x1, ỹ1) =


1, if η(x1) > 1− π

0, if η(x1) < π

ỹ1, otherwise .

To compute the reconstruction advantage of optimal attacker A∗, we may decompose the feature set
into parts as

G(π) = {x1 : η(x1) ∈ [π, 1− π]}
and its complement set GC(π). It is clear the advantage of the optimal attacker A∗ restricted to GC(π)
is 0 since ỹ1 gives no extra information on y1 when x1 ∈ GC(π), that is, the value of A∗(x1, ỹ1) is
independent of ỹ1 when x1 ∈ GC(π). On the other hand, the advantage of A∗ for any x1 ∈ G(π) is

(1− π)− (1−min{η(x1), 1− η(x1)}) = min{η(x1), 1− η(x1)} − π ,

since MRR reveals the true label with probability 1− π, while the attack utility (conditioned on x1)
of the uninformed attacker 1−min{η(x1), 1− η(x1)}. This concludes the proof.

B Proofs for Section 3.2

B.1 Proof of Theorem 3.7

Proof. Consider the difference of log-odds ratio Ik,i(M,D,x, z, i), where z = MLLP(x,y) =
1
k

∑k
i=1 yi is the output of the aggregation PET. Since y is independent of x, we can write

I1,0(M,D,x, z, i) = I(z) = ln
P(y1 = 1 | z)
P(y1 = 0 | z)

− ln
P(y1 = 1)

P(y1 = 0)

= ln
z

1− z
− ln

p

1− p

= ln
z(1− p)

(1− z)p
,

where we used the fact that, since kz is a binomial random variable, P(y1 = 1 | z) = z, independent
of p. From the standard Bernstein inequality we have, with probability ≥ 1− δ,

p−B ≤ z ≤ p+B ,

where

B = B(k, p, δ) =

√
2p(1− p) ln(1/δ)

k
+

2

3k
ln(1/δ) .

Since z → ln z
1−z is monotonically increasing in z ∈ [0, 1], this yields

ln

(
1− B

(1− p+B)p

)
= ln

(p−B)(1− p)

(1− p+B)p
≤ I(z) ≤ ln

(p+B)(1− p)

(1− p−B)p
= ln

(
1 +

B

(1− p−B)p

)
with the same probability. The condition k ≥ 32 ln(1/δ)

p(1−p) implies 2B ≤ p − p2, which in turn
implies B

(1−p+B)p ≤ 1
2 , as well as B

(1−p−B)p > 0. We further bound the right-most side through
ln(1 + x) ≤ x for all x ≥ 0, and the left-most side via ln(1− x) ≥ −x(ln 2) for x ∈ [0, 1/2]. This
gives

− B ln 2

(1− p+B)p
≤ I(z) ≤ B

(1− p−B)p
,

which, after further overapproximations, allows us to write

|I(z)| ≤ B ln 2

(1− p−B)p
.

Next, the condition 2B ≤ p− p2 implies (1− p−B) ≥ (1− p)/2 so that, overall,

|I(z)| ≤ 2B(k, p, δ)(ln 2)

p(1− p)
= O

(√
ln(1/δ)

p(1− p)k

)
with probability at least 1− δ. This concludes the proof.
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C Experimental Setup for Section 4 and Further Experimental Results

Datasets. We conduct our experiments on the following datasets:

KDD2012: We use the click prediction data from the KDD Cup 2012, Track 2 [3] with the feature
processing performed in [23]. The learning task for this data is to predict the click through rate for an
advertisement based on a number of features related to the advertisement, the page that it appears on,
and the user viewing it. There are 11 categorical features that are each one-hot encoded, resulting in
a sparse feature vector with 11 non-zero entries in 54,686,452 dimensions. The label for the example
is 1 if the ad was clicked, and 0 otherwise.

Higgs: We also use the Higgs dataset [4], which is a binary classification dataset where the goal is to
distinguish between a signal process that produces Higgs bosons, and a background process which
does not. The dataset has 28 real-valued features, which are a mix of kinematic properties measured
by particle detectors and hand-crafted high level features designed by physicists. The dataset consists
of 11,000,000 examples produced via Monte Carlo simulation. We use the first 10,000 examples as
our testing data, and the remaining examples for training.

Model Architectures. Next, we describe the models we use for each dataset. We use the same
model architecture regardless of which PET has been used to privatize the labels.

KDD2012 Model: The model we use for KDD2012 is a deep embedding network. We reduce the
dimension of each example from 54,686,452 dimensions to 500,000 dimensions by hashing feature
indices. Each hashed feature index is associated with a learned embedding vector in R50, and the
representation vector for an example is the sum of the learned embeddings for each of its non-zero
hashed feature indices. This representation vector is passed through two dense layers with 100 and
50 units, respectively, and ReLU activation functions. The final output is a single unit with sigmoid
activation that is interpreted as the click probability for each example.

Higgs Model: For the Higgs data, we do no feature pre-processing. We use a fully connected feed
forward neural network with 4 hidden layers all with 300 units and ReLU activation. The final output
is a single unit with sigmoid activation that is interpreted as the probability that the example has the
positive class.

Training Setup. When training a model on the output of any PET, we always use minibatch
gradient descent together with the Adam optimizer [24]. PET-specific training details are presented
in the following paragraphs.

Training with Randomized Response. In our experiments we found that the bias in randomized
response can affect prediction accuracy for the model trained on these labels, so we post-process the
RR output to remove the bias introduced (see for example [19], Equation (7) therein).

Let f : Y → R be any function (for example the gradient) of a label, and let y ∈ {0, 1}. For plain
RR,

E[f(RR(y))] =
eϵ − 1

eϵ + 1
· f(y) + 1

eϵ + 1
· (f(0) + f(1)).

Thus,

f(y) = E
[
eϵ + 1

eϵ − 1
· f(RR(y))− 1

eϵ − 1
· (f(0) + f(1))

]
.

Therefore, we can post-process the output of RR to obtain an unbiased estimate of f(y) for any
function f . This has no effect on the advantage, however it does help the accuracy substantially. We
use this debiasing procedure to obtain an unbiased estimate of the binary cross-entropy loss of the
model, and perform minibatch gradient descent on the estimated loss. In all of our figures, we use
“RR” to denote this debiased version of the mechanism.

Training with LLP. For LLP we use minibatch gradient descent to optimize the Empirical Pro-
portion Risk defined in Section 2. We use the binary cross-entropy loss to compare the predicted
label proportion against the observed label proportion. As discussed in Appendix D, since the
binary cross-entropy loss is a proper loss, the minimizer of the population-level proportion risk for
cross-entropy loss is also a minimizer of the population-level cross-entropy loss, as long as the Bayes
optimal classifier can be represented by the model architecture.

28



Training with LLP+Lap. LLP+Lap is parametrized by two parameters, k ∈ {1, 2, . . .} and ϵ > 0.
For each bag Bi the mechanism discloses αi + Zi, where αi is the label proportion in that bag, and
Zi ∼ Lap( 1

kϵ ), is an independent zero-mean Laplace random variable with parameter 1
kϵ , that is,

with variance 2
k2ϵ2 . Theorem D.2 shows that for any minibatch of data, the expected gradient of the

proportion matching risk is unaffected by adding mean-zero noise to the label proportion. Therefore,
using Proportion Matching to train with LLP+Lap is similar to training with LLP, except the variance
of each gradient step is increased.

Training with LLP+Geom. LLP+Geom also has parameters, k ∈ {1, 2, . . .} and ϵ > 0, but Zi

is replaced by a two-sided Geometric random variable, where Zi =
Z+

i −Z−
i

k , and Z+
i and Z−

i are
geometric distribution with probability of success 1− e−ϵ. The value αi +Zi is then clipped to [0, 1].
It is not hard to see that, for every given ϵ, LLP+Geom with parameters k = 1 and ϵ coincides with
RR with parameter ϵ.

Unlike LLP+Laplace, the clipped noisy label proportion is not an unbiased estimate of the bag’s true
label proportion. We post-process the output of LLP+Geom to obtain unbiased estimates of the bag’s
label proportion. In particular, let αi be the true label proportion for a bag, α(noise)

i = αi + Zi be the
unclipped noisy proportion, and α(clip)

i = clip(α(noise)
i , [0, 1]) be the clipped noisy proportion. Then,

using the memoryless property of the Geometric distribution, we have that

E[α(noise)
i | α(clip)

i ] =


α(clip)
i if α(clip)

i ∈ (0, 1)

− 1
k

(
1

1−e−ϵ − 1
)

if α(clip)
i = 0

1 + 1
k

(
1

1−e−ϵ − 1
)

if α(clip)
i = 1.

When training with LLP+Geom, we replace the clipped label proportion by E[α(noise)
i | α(clip)

i ] before
computing the proportion matching loss. Since α(noise)

i is an unbiased estimate of αi, so is the
conditional expectation. After this debiasing, Theorem D.2 guarantees that the expected gradient of
the proportion matching risk is the same as if the true label proportion had been used. It follows that
using Proportion Matching to train with LLP+Geom with proportion debiasing is similar to training
with LLP except with higher variance.

AUC vs Advantage Experimental Setup. For all PETs, we train models to minimize the binary
cross-entropy loss. For RR, we use privacy parameters ϵ in {2−4, 2−3, . . . , 25}, for LLP we use bag
sizes k in {20, 21, . . . , 29}, and for LLP+Laplace and LLP+Geom we use all combinations of ϵ and
k from the same sets. For every PET and every value of their privacy parameters, we train the model
with each learning rate in {10−6, 5 · 10−6, 10−5, 10−4, 5 · 10−4, 10−3, 5 · 10−3, 10−2}. Finally, for
each combination of privacy parameter and learning rate, we train the model 10 times (each trial
corresponds to different model initialization and data shuffling, and RR noise). For each privacy
parameter, we report the mean AUC of the learning rate with the highest mean AUC.

Estimating Attack Advantage. The attack advantage of the optimal attacker is estimated and
reported for every PET with various parameters. The optimal attacker and its advantage have been
characterized for RR as well as for LLP, in Lemma A.1 and Theorem A.17, respectively. Crucially,
notice that the advantage can be easily calculated with knowledge of the parameters of each PET
(label flipping probability or the bag size), and the class conditional distribution η(x) — or at least an
accurate estimate of it. We considered two estimates of the class conditionals: one based on Deep
Neural Networks (DNN) as described above, and one based of k-Nearest Neighbors (kNN). The
kNN estimator can produce accurate estimates for class conditional distributions in the large-scale
data regimes, due to its strong consistency properties that has been studied in the 70s and 80s, and
that became the part of Machine Learning folklore. DNNs can also produce accurate estimates if
the training process and architecture is tuned carefully enough. We found that these two approaches
result in very similar results on our large scale benchmark datasets, therefore we relied on the estimate
provided by the DNN, and we estimated the attack advantage of the optimal attacker based on the
output score of the DNN.

Remark. It is known that when trained with event-level (i.e., non-private) labels, DNNs are not
guaranteed to give rise to calibrated classifiers, which is important for estimating the probabilities
involved in the definition of attack advantage, while a kNN is typically calibrated. Yet, since we
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Figure 4: Prior-posterior scatter plots for LLP+Geom and LLP+Lap on two synthetic datasets and
the two real-world datasets. The two synthetic datasets have been generated by drawing η(x) from
a Beta(2,30) distribution and a uniform distribution on [0, 1]. The colors of the dots correspond
to different parameter values for the PETs. For each bag size k and distribution, we did 1000
independent runs. The further a point is from the y = x dotted line, the more is revealed about its
label as a result of the PET.

Figure 5: Privacy vs utility tradeoff curves for the various PETs on the Higgs (left) and KDD12 (right)
datasets. Utility is measured by AUC on test set, while privacy is either the additive measure (bottom
row) or the 98th-percentile of the multiplicative measure (so as to rule out the infinite multiplicative
advantage cases that can occur for LLP). Each point corresponds to a setting of the privacy parameter
for the PET (ϵ for RR, k for LLP, and both for LLP+Geom). The x-coordinate is the advantage
(either additive or multiplicative) value for that PET, while the y-coordinate is the test AUC of a
model trained from the output of that PET. The AUC of the model trained without a PET roughly
corresponds to the top value achieved by these curves. This plot is similar to Figure 3 except that the
curves for the LLP+Geom PET correspond to a fixed value of ϵ, rather than a fixed value of k.

observed in our initial experiments that the two learning methods resulted in similar overall outcomes,
we decided go with DNNs as the underlying classifier for estimating the behavior of the optimal
attacker.

Further experimental results omitted from the main text. Figure 4 contains scatter plots for
LLP+Lap in addition to LLP+Geom for comparison. The two groups of scatter plots look very similar
on each dataset. Figure 5 shows the privacy-vs-utility plots (the data is identical to Figure 3) except
in this case, the curves for the LLP+Geom PET correspond to a fixed value of ϵ with the bag size k
varying.

Computational Resources. We conduct our experiments on a cluster of virtual machines each
equipped with a p100 GPU, 16 core CPU, and 16GB of memory. Each training run on Higgs takes
approximately 10 minutes, and each training run on KDD12 takes approximately 20 hours.
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D PROPMATCH with Noisy Label Proportions

In this appendix we argue that the standard PROPMATCH algorithm is still an effective learning
algorithm for the LLP+Lap PET (henceforth denoted MLap-LLP). Recall that PROPMATCH generally
learns by using stochastic gradient descent (SGD) to minimize the empirical proportion matching
loss. Our result below shows that the expected value of the gradient of proportion matching loss is
the same whether Laplace noise is added to the label proportion or not. In other words, the expected
trajectory of SGD for PROPMATCH when using MLap-LLP is the same for all values of ϵ, including
ϵ = ∞, which corresponds to the special case of MLLP. In fact, the main way that decreasing the
value of ϵ (resulting in stronger differential privacy guarantees) affects utility is the increased variance
of the gradients. The following result characterizes how much the variance increases compared to the
case where ϵ = ∞ (or equivalently, compared to PROPMATCH run with MLLP).

To analyze PROPMATCH, we require a few properties of the loss ℓ : R × R → R and the noise
distribution. First, the loss is proper, which means that for every real-valued random variable A, the
function f(p) = E(ℓ(p,A)) has a unique minimizer at µ = E(A). We also assume that ℓ(p, y) is
differentiable in p, and that its derivative is affine in y, that is ∂

∂pℓ(p, y) = apy + bp, where ap, bp
may depend on p but not y. These conditions are satisfied by the cross entropy (or logistic) loss
ℓ(p, y) = −y log(p)− (1− y) log(1− p) (where p ∈ [0, 1]) and the squared error ℓ(p, y) = (p− y)2.

Finally, we assume that the noise mechanism operates on a bag of k examples for some k ∈ N
(possibly k = 1). Given the proportion α of positive examples in the bag, it releases α̃ = α+ Zα,
where E[Zα|α] = 0 for every fixed α ∈ {0, 1/k, . . . , 1}. This condition is satisfied by LLP (since it
adds no noise), LLP+Lap (since Laplace noise is mean 0), and the debiased versions of randomized
response and LLP+Geom, described in Appendix C.

Given a class of predictors H of predictors h that map feature vectors to [0, 1], we can define the
problem of minimizing the population-level noisy proportion-matching loss for a distribution D,
defined via the choice of a bag B of k labeled examples drawn from D:

min
h∈H

E
B,α,α̃

[
ℓ

(
1

k

∑
x∈B

h(x), α̃

)]

This differs from the loss studied in [13] only in that we allow the label proportion to be perturbed.
The PROPMATCH algorithm essentially minimizes this loss.

Theorem D.1. Let B be a random bag of size k, ℓ : R×R → R+ ∪{∞} be a loss function, and M
be a mechanism for releasing the label proportions with M(α) = α̃ = α+ Zα, where E[Zα|α] = 0
for all α. Suppose H contains a predictor h∗ that matches the true label probabilities in D (i.e.
h∗(x) = PD(y = 1|x). If ℓ is proper (defined above), then h∗ is a minimizer of the population-level
noisy proportion-matching loss on D. It is essentially unique, in that any other minimizer h′ must
satisfy P(x,y)∼D(h

′(x) = h∗(x)) = 1.

Theorem D.2. Let B be a random bag of size k, ℓ : R×R → R+ ∪{∞} be a loss function, and M
be a mechanism for releasing the label proportions with M(α) = α̃ = α+ Zα, where E[Zα|α] = 0
for all α. Suppose that ∂

∂pℓ(p, y) is affine in y.

For a predictor hθ ∈ H (parametrized by θ) denote by hθ(B) = 1
k

∑
x∈B hθ(x) its average prediction

over B. We have
E [∇θℓ (hθ(B), α̃)] = E [∇θℓ (hθ(B), α)] , (18)

and furthermore

E
[
∥∇θℓ (hθ(B), α̃)|22

]
= E

[
∥∇θℓ(hθ(B), α)∥2

]
+ E

(
Z2
α ·
∥∥ ∂
∂α∇θℓ(hθ(B), α)

∥∥2)
≤ E

[
∥∇θℓ(hθ(B), α)∥2

]
+
(
max
α

Var(Zα)
)
· E
[∥∥ ∂

∂α∇θℓ(hθ(B), α)
∥∥2] .
(19)

That is, for nice loss functions like the logistic and square loss, we can write the variance of the noisy
LLP gradient as the sum of two terms: the variance of the LLP-based estimate of the proportion-
matching loss, and a noise term that scales roughly as the variance of Z. For Laplace noise, this
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variance is 2
k2ϵ2 . For Geometric noise, the variance is upper bounded above by 2e−ϵ

k2(1−e−ϵ)2 (which is
always smaller than the Laplace variance, most noticeably for large ϵ). For small values of k, this
upper bound is loose (because clipping and debiasing reduces the overall variance). For example,
with randomized response (which is the same as LLP+Geom with k = 1), the variance is just eϵ

eϵ+1 .

Analyzing this formula helps us understand the performance of the noisy variants of LLP. Let us
compare LLP+Geom with bag size k to averaging randomized response estimates over k separate
examples. Suppose we fix ϵ and let k increase. There are three effects in play: (1) the noise added for
privacy is lower for LLP+Geom (variance 1/k2 versus 1/k); (2) the bias of the gradient estimator is
higher for LLP+Geom, since we are estimating the gradient of the proportion-matching loss and not
necessarily the true gradient; (3) the variance due to sampling is about the same in both cases, about
1/k.

We thus get a classic bias-variance tradeoff. As a thought experiment, consider what happens when ϵ
is very small, and almost all the error comes from the added noise. In that case, setting k a bit larger
than 1 will help, since the bias introduced will be smaller than the reduction in noise. However, there
is a point of diminishing returns, at least when the proportion-matching optimum is different from the
true optimum (that is, when the model cannot express the Bayes-optimal predictor). Looking at the
experiments with the Higgs data set, we see a muted version of this effect: for small values of ϵ, there
is no real difference in the performance of LLP+Geom for k ∈ {1, 2, 4}, but larger k introduce a real
penalty. For larger values of ϵ (over 1) on Higgs, and all values of ϵ on KDD12, the dropoff occurs
already for k = 2.

This analysis suggests that the advantages of LLP+Geom over RR will be dataset-dependent, and
noticeable only for small values of ϵ.

Proof of Theorem D.1. This proof is the same as the argument in [12, Thm 3.2]. Fix some bag B of
examples, and take expectation over the sampling of their labels to get a label proportion α and its
noisy variant α̃. Because the loss is proper, the unique minimizer of the proportion matching loss is
given by the predictions of h∗.

argmin
p

E
α,α̃

ℓ(p, α̃) = E(α̃) = E(α) = 1
kh

∗(x) .

This is true for every bag B, and thus in expectation over the choice of B. Furthermore, this loss is
unique since the indicator functions of bags form a spanning set for the indicators for the support of
D. If h ̸= h∗ with nonzero probability, then the bag-level predictions of h will differ from those of
h∗ with nonzero probability.

Proof of Theorem D.2. Let ℓ′(p, y) = ∂
∂pℓ(p, y) = apy + bp, where ap = ∂

∂y ℓ
′(p, y). Using the

chain rule and the fact that ℓ′ is affine, we get:

∇θℓ (hθ(B), α̃)
= ℓ′(hθ(B), α̃)∇θhθ(B)
=

(
ℓ′(hθ(B), α) + Zαahθ(B)

)
∇θhθ(B)

= ∇θℓ(hθ(B), α) + Zαahθ(B)∇θhθ(B)
= ∇θℓ(hθ(B), α) + Zα · ∂

∂α∇θℓ(hθ(B), α) .

Since the noise is unbiased for every α, the second term above is 0 in expectation for every pair
(B, α). This proves that the estimator is unbiased (Equation (18)). To analyze its variance, note that
the unbiasedness of α̃ means that the two terms are decorrelated, and we can sum their convariances:

Covar
(
∇θℓ(hθ(B), α) + Zα · ∂

∂α∇θℓ(hθ(B), α)
)

= Covar (∇θℓ(hθ(B), α)) + Covar
(
Zα · ∂

∂α∇θℓ(hθ(B), α)
)

+ E
(〈
∇θℓ(hθ(B), α) , ∂

∂α∇θℓ(hθ(B), α))
〉)

= Covar (∇θℓ(hθ(B), α)) + Covar
(
Zα · ∂

∂α∇θℓ(hθ(B), α)
)
.

The expected squared norm of a random vector is the trace of its covariance. Thus, the expres-
sion above gives us the equality in Equation (18). The final inequality follows again from decor-
relation: by conditioning on the pair (B, α), we can pull out E[Z2

α] from the outer product of
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Zα · ∂
∂α∇θℓ(hθ(B), α) with itself. Taking the trace (to get the expected square norm), we can use

the fact that ∥∇θℓ(hθ(B), α)∥2 is nonegative, to replace E[Z2
α] with an upper bound that holds for all

α. This yields the final inequality in Equation (19), as desired.

We have analyzed PROPMATCH in this section since it is the algorithm used in our experiments.
Similar results hold for other LLP algorithms, like EASYLLP [12], though we do not work those out
here.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main contribution of the paper is clearly stated in the abstract and introduc-
tion, and reflected in the technical and experimental sections (Section 3, 4, and associated
appendices).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Full proofs of all our theoretical results are given in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All our experimental results are reproducible. Details on our experimental
setting (model architecture, hyperparameter tuning, etc.) which are omitted from the main
body of the paper are given in Appendix C. The datasets which we experimented with are
publicly available and we have released the code we used to run experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets we operated on are publicly available. We released the code
and made available instructions on how to run our experiments at https://github.com/
google-research/google-research/tree/master/auditing_privacy_via_lia.

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Such details are partly given in Section 4 and partly in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We mention in Section 4 and in Appendix C that all our results are averaged
across 5 or 10 repetitions (depending on the dataset). The associated standard errors are
quite small, and still allow us to statistically tell apart the different curves when they are
not overlapping. We discuss the standard errors in Section 4, paragraph “Estimating Class
conditionals for advantage and PET utility”.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We mention computational resources and associated wall-clock running times
in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We reviewed the three main categories of concerns in the Code of Ethics
(harms of the process, societal impact, and impact mitigation). We believe we have complied
with the spirit and letter of the requirements in each category. In particular, no human
subjects research was involved in this project, and the data sets we use are both open-source,
standard ML data sets which do not come with privacy or intellectual property concerns.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [No] .
Justification: This work aims to advance the science of privacy-aware machine learning. As
such, its goal is to get the benefits of training models on sensitive data sets while measuring
and mitigating harmful effects on individuals. Putting protections such as the ones we
develop into real-world use is delicate since privacy protections can, in addition to helping
data contributors, have side effects such as limiting data access and model quality for sparse
sub-populations. These issues, while important, are not specific to our work and lie outside
the scope of the paper. That is the main reason why we do not explicitly discuss in the paper
the societal impact of this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: We don’t see any such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA] .
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Justification: We don’t rely on such assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: No new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: No such experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA] .
Justification: No such experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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