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Abstract

The success of deep active learning hinges on the choice of an effective acquisition function,
which ranks not yet labeled data points according to their expected informativeness. Many
acquisition functions are (partly) based on the uncertainty that the current model has about
the class label of a point, yet there is no generally agreed upon strategy for computing such
uncertainty. This paper proposes a new and very simple approach to computing uncertainty
in deep active learning with a Convolutional Neural Network (CNN). The main idea is to
use the feature representation extracted by the CNN as data for training a Sum-Product
Network (SPN). Since SPNs are typically used for estimating the distribution of a dataset,
they are well suited to the task of estimating class probabilities that can be used directly by
standard acquisition functions such as max entropy and variational ratio. The effectiveness
of our method is demonstrated in an experimental study on several standard benchmark
datasets for image classification, where we compare it to various state-of-the-art methods
for assessing uncertainty in deep active learning.

1 Introduction

The large amount of data required for training deep neural networks motivates the use of active learning
(Settles, 2009), in which the learning method actively selects unlabeled data points whose labels are then
acquired. Selecting particularly informative data points reduces the number of data points required for
producing an accurate predictor. Uncertainty-based approaches consider a point informative if its class label
is highly uncertain given the current training data (Lewis & Gale, 1994). To reduce the risk of sampling
many redundant points, active learning often uses mixed selection criteria, combining uncertainty with
distribution-based or diversity-based strategies. In deep active learning, be it with purely uncertainty-based
or mixed approaches, one challenge is to estimate uncertainty. MC Dropout (Gal & Ghahramani, 2016)
estimates the uncertainty of the label of a point x, for a CNN trained on a given dataset. It uses random
dropout to create many (similar but not identical) variants of the CNN and then averages the probabilities
output by these variants on point x, in order to get a robust estimate of the posterior probability of any
given class label for x. This probability estimate can then be fed into a standard uncertainty function like
entropy, variational ratio, or mutual information, in order to assess uncertainty. MC Dropout showed very
good performance on some image datasets, but it was recently reported to be of little effect on more complex
datasets like CIFAR-10 (Pinsler et al., 2019).

The main contribution of this paper is a new method for estimating posterior probabilities of class labels,
using an approach that is conceptually very simple, yet more effective than MC Dropout on complex data. We
deploy the probabilistic nature of Sum-Product Networks (SPNs (Poon & Domingos, 2011))—deep graphical
models that handle probabilities by design, typically with the purpose to estimate the data distribution. Their
structure carries more intuitive semantics than that of neural networks. Due to their probabilistic nature,
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SPNs are particularly suited to the task of deriving probabilities needed for uncertainty-based deep active
learning. In a nutshell, our method trains a CNN and then uses its extracted data representation in order
to train an SPN which is used to assess the probabilities with which the training data allows us to assign
unseen data points to classes. As with MC Dropout, these probability estimates are then fed into standard
functions to calculate uncertainty.

Due to its simplicity, our method is widely applicable, both in a standalone uncertainty-based active learning
method (which we call SPN-CNN), and in the uncertainty component of mixed deep active learning methods.
For example, BatchBALD (Kirsch et al., 2019) is a method that combines uncertainty (assessed via MC
Dropout) with a diversity-based criterion. One can replace the MC Dropout component in BatchBALD
with our method to assess uncertainty, resulting in a method we call SPN-BatchBALD. In a similar vein,
our method can be plugged into various deep active learning tools.

One limitation is that our method only works well when the number of classes in the underlying classification
problem is not too large. In our experiments, it performed well for standard datasets with 10 classes, but
not for datasets with 100 or more classes. This, however, is not a limitation of specifically our method, but
a limitation of uncertainty assessment as such (and thus of all methods trying to assess uncertainty), as we
explain in the beginning of Section 5.

We empirically evaluate the accuracy of our method both in standalone uncertainty-based sampling, and in a
mixed setting, on standard benchmark datasets for image processing. In the standalone setting, we compare
SPN-CNN to MC Dropout, using two standard uncertainty-based acquisition functions (max entropy and
variational ratio). The mixed setting compares SPN-BatchBALD to BatchBALD, using mutual information
for acquisition. It turns out that SPN-CNN outperforms MC Dropout in all cases except when deployed with
Max Entropy on the least complex tested dataset. In our experiments, it even outperforms the state-of-the-
art method Bayesian Batch (Pinsler et al., 2019) (which aims to counteract redundancy), except in one case
when a very large initial training data set was provided. (Arguably though, active learning is more critical
when initial training datasets are not very large.) When compared to BatchBALD, again SPN-BatchBALD
is significantly more accurate.

Further, we mimic the experimental setup from a study that proposes a standalone method for assessing
uncertainty in CNNs (Lakshminarayanan et al., 2017) (devoid of a concrete application such as active learn-
ing). Our results strongly suggest that our assessment of uncertainty alleviates the well-known problem of
overly confident predictions made by deep neural networks. The SPN component detects that the trained
CNN is uncertain on test data points that differ substantially from the training data, while the CNN itself
expresses overly high confidence in its predictions. MC Dropout, by contrast, does not detect the predictive
uncertainty of the CNN to a comparable extent. In addition, an analysis of the expected calibration error is
included, which shows that the confidence estimates of SPN-CNN are well calibrated with the accuracy of
the predictions, i.e., SPN-CNN has a low risk of being too confident in its predictions.

In sum, training an SPN on the features extracted by a CNN is simple, easy to implement, and yet highly
effective in estimating probabilities for assessing uncertainty in active learning.

2 Related Work

The two main approaches by which an active learner selects data points are uncertainty sampling (choosing
a point for which the class label is most uncertain in the current model) (Lewis & Gale, 1994; Nguyen et al.,
2022) and diversity sampling (choosing points to reflect the underlying distribution of the data) (Brinker,
2003). In uncertainty sampling, standard measures of uncertainty are, e.g., Shannon Entropy (Shannon,
1948) and Variational Ratio (Freeman, 1965); both of these measures need estimates of the probability that
a data point x has class label c, given the training data. Such “class probability” estimates can be derived
in various ways, e.g., from the output of a neural network after applying softmax, or from the proximity of
a point to the decision boundary when using a linear separator like an SVM (Brinker, 2003).

Deep active learning has become a very active branch of research (Ren et al., 2021; Zhan et al., 2022), driven
mostly by the need to reduce the typically large amounts of data required to train deep classification models.
Deep model structures to which active learning has been applied include stacked Restricted Boltzmann
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Machines (Wang & Shang, 2014), variational adversarial networks (Sinha et al., 2019), as well as CNNs
(Wang et al., 2016; Gal et al., 2017). Uncertainty sampling is a popular approach here as well (Gal et al.,
2017; Yi et al., 2022; Ren et al., 2021; Zhan et al., 2022), with MC Dropout (Gal et al., 2017) as a well-known
state-of-the-art method. One criticism of uncertainty sampling is that it tends to result in highly correlated
queries (Sener & Savarese, 2017), which may prevent methods like MC Dropout from scaling well to large
datasets. In fact, it was noted that MC Dropout works very well on the MNIST dataset, but has a poor
performance on the more complex CIFAR-10 data (Pinsler et al., 2019). This problem can be addressed
with alternate selection principles or with the combination of uncertainty-based and alternate principles.

Several deep active learning methods use coresets in sample selection, instead of uncertainty. When opti-
mizing an objective function on sets of points, a coreset of a set P of points is a subset of P whose optimal
solution approximates that for P . For actively training CNNs, this kind of sparse approximation is done by
computing geometric center points for clusters of labeled points and then selecting unlabeled points whose
distance to the nearest center is maximal (Sener & Savarese, 2017). Bayesian Batch (Pinsler et al., 2019)
also uses coresets for actively training CNNs, but in a Bayesian rather than a geometric setting.

Other methods use uncertainty in different ways, to create more cost-efficient methods. One example of such
an approach for training CNNs assigns pseudo-labels for large batches of data points with high classification
confidence (Wang et al., 2016). These pseudo-labels are used for re-training the model, which can result
in a more effective process of selecting from the remaining unlabeled data points. Some methods combine
self- or semi-supervised methods with standard active learning methods. For instance, the method by Yi
et al. (2022) performs a pretext task (like rotation prediction) over the pool of unlabeled data points, which
is then divided into batches based on the performance on the pretext task. Then, uncertainty-based active
sampling is performed over one batch. By comparison, the method by Siméoni et al. (2021) performs first
an unsupervised feature learning task and then semi-supervised tasks in cycles.

Assessing the uncertainty of deep neural network predictions is of interest also outside the context of active
learning (Abdar et al., 2021). Overly confident predictions of CNNs are a common problem that negatively
impacts their real-world applicability (Lakshminarayanan et al., 2017). Therefore, not all methods for assess-
ing uncertainty are suitable for active learning. For example, the method proposed by Lakshminarayanan
et al. (2017) uses ensembles of deep neural networks, combined with adversarial training, in order to evalu-
ate the uncertainty of model predictions. This method was shown to be effective when the ensemble size is
sufficiently large, which likely makes it infeasible in terms of runtime in a deep active learning setting.

In light of this related work, the novelty of our method lies in its way of estimating class probabilities: they
are entirely derived from the probabilistic estimates produced by an SPN (Poon & Domingos, 2011) trained
on the data representation extracted by the CNN model. SPNs are often used for density estimation and
have, to the best of our knowledge, not been applied to derive class probabilities for uncertainty sampling. An
alternative method for assessing uncertainty could be a Gaussian Process, but it would have to be deployed
with a deep kernel, which results in a cubic runtime complexity for inference (compared to linear inference
time for SPN) as well as a cubic training time. Hence, we consider SPNs better suited to the efficient and
effective assessment of uncertainty in deep active learning.

3 Preliminaries

We assume an initial training dataset Dtrain = {(xi, yi)}N
i=0 of pairs (xi, yi), where xi is a data point and

yi ∈ C = {c1, . . . , c|C|} is the corresponding class label from a fixed set C of labels. Active learning means
that, in addition, the learning algorithm has access to a pool Dpool of unlabeled data points. After processing
the initial training dataset, the learning algorithm selects a small set of points from the pool, which will then
be labeled by an oracle. The newly labeled set is added to the training set, and the model is retrained.

The goal of active learning is to train a high quality predictive model with less data than would be required
for passively learning a model of similar predictive performance. The criterion for selecting points from the
pool is usually given via an acquisition function a(x, M), which takes as input the current model M and a
point x from the pool, and assigns an informativeness value to x. The acquisition strategy is then to select
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a maximally informative pool point:

x∗ = argmaxx∈Dpool
a(x, M) (1)

Acquisition functions can be based on various aspects, e.g., the distribution of the pool or the uncertainty
with which the model makes predictions on individual pool data points. Here we focus on the latter type of
acquisition function; in our experimental study, we work with three of the most popular uncertainty-based
acquisition functions, namely Max Entropy, Variational Ratio, and BALD.

Max Entropy expresses uncertainty as predictive entropy (Shannon, 1948).

H[x, Dtrain] = −
∑

y
p(y | x, Dtrain) log p(y | x, Dtrain)

Variational Ratio models certainty as the confidence in predicting the most likely class y for x (Freeman,
1965).

varra[x, Dtrain] = 1 − maxy p(y | x, Dtrain)

BALD (Houlsby et al., 2011) uses mutual information to measure uncertainty.

I[x, Dtrain] = H[x, Dtrain] − Ep(ω|Dtrain)H[x, ω, Dtrain]

The effectiveness of acquisition functions largely depends on how accurately the probability p(y | x, Dtrain)
can be approximated. Some common types of models, like logistic regression or deep neural networks, provide
a probability value p(y | x, ω) (where ω refers to the model) as their output when making a prediction for x;
this could be directly used as a surrogate for p(y | x, Dtrain) in an acquisition function. While this method is
simple and straightforward to implement, it may be highly susceptible to individual model parameters and
thus not yield a good approximation of p(y | x, Dtrain). In the neural network case, this problem has been
addressed by the MC Dropout approach (Gal & Ghahramani, 2016) explained below. Our main contribution
is an alternate approach to approximating p(y | x, Dtrain) for deep active learning, based on SPNs.

MC Dropout Dropout is a regularization method in deep learning, usually applied during training (Srivas-
tava et al., 2014). MC Dropout (Gal & Ghahramani, 2016) repeatedly uses dropout at test time, to create T
versions ωt, t = 1, . . . , T of the network model ω, and then estimates p(y | x, Dtrain) by averaging the values
of p(y | x, ωt). This average is less reliant on individual parameters of ω than the probabilities p(y | x, ω)
directly output by the model ω when it makes predictions.

SPNs An SPN is a directed acyclic graph with layers of nodes of different types (leaf, sum, and product
nodes) (Poon & Domingos, 2011). Leaf nodes take as input values of random variables X1, . . . , Xd; in our
context, each random variable refers to one component of a d-dimensional data point xi. The value of a sum
node is a weighted sum of the values of its children, where the weights assigned to the children sum up to
1. The value of a product node is the product of its children’s values. The value of the root can then be
interpreted as the SPN’s prediction of the probability with which data point xi belongs to a specific class
c ∈ C. (For classification problems with |C| classes, one has to deploy |C| such DAGs.) Similar to a neural
network, an SPN is determined by (a) its graphical structure, and (b) its parameters, which are the weights
of the children of sum nodes. However, their interpretation is purely probabilistic.

SPNs can be learned in various ways. Random SPN (Peharz et al., 2018) constructs a random region graph,
which is then populated with tensors of SPN nodes. Other methods construct SPNs based on convolutional
product layers (Wolfshaar & Pronobis, 2020; Butz et al., 2019). (In our experiments, we use the structure
chosen by Wolfshaar & Pronobis (2020).) In order to learn the weights, standard optimization procedures
for minimizing a loss function given the training data are used, see, e.g., (Peharz et al., 2018).

In an SPN, each node in a product layer represents a distribution over a disjoint set of variables, while each
node in a sum layer corresponds to a mixture of distributions. The root represents the joint distribution of
the leaves. Thus, an SPN is suitable for modeling real-world phenomena of a probabilistic nature.

SPNs lend themselves to performing inference tasks, such as marginal or conditional queries, for multiple
reasons. First, SPNs perform inference in linear time (Zhao et al., 2015), while competing probabilistic
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Figure 1: SPN-CNN deep active learning approach.

models, such as Bayesian networks and Markov networks, have an inference time exponential in the model
size. Second, unlike typical deep neural networks, SPNs can handle variable input and output sizes for
marginal and conditional queries (Kalra et al., 2018).

4 SPN-Based Uncertainty Sampling

SPNs are deep probabilistic models, which are mostly used for the purpose of density estimation. Therefore,
they are an apt model for extracting the distribution of a dataset. The main idea of our deep active learning
approach is to use SPNs for extracting probability estimates that can be used in standard uncertainty-based
acquisition functions when actively learning a deep neural network classifier. To this end, we introduce a
novel technique for applying SPNs.

Suppose one has trained a different type of model (e.g., a CNN) on the observed data, and extracted a
new feature representation of the data. If the observed data is complex, or contains redundancies or noise,
then the representation extracted from the data is expected to better capture the distribution of the data.
Thus, if an SPN is trained in order to capture the true data distribution, it might be more useful to train
it on previously extracted features than to train it on the original data. Formally, instead of approximating
p(y | x, Dtrain), we use an SPN to approximate p(y | z, Dtrain), where z is the representation of x. In
practice, we take the output of the final dense layer (before the output layer) of a trained CNN and consider
it as a feature representation of the input data, on which the SPN is trained. The probability estimates
computed by the SPN can then be used as p(y | x, Dtrain) values in a specific acquisition function a, such as
max entropy, variational ratio, or BALD, which then results in the acquisiton strategy as shown in (1).

This SPN-based technique is the basis for our proposed model architecture for deep active learning, called
SPN-CNN. As depicted in Figure 1, the three main components of our architecture are (i) a CNN, (ii) an
SPN, and (iii) an uncertainty-based acquisition function (like variational ratio or max entropy). The training
process works as follows.

1. An initial CNN model is trained on a given set of initial training data points.

2. An initial SPN is trained on the output of the final dense layer of the obtained CNN. Specifically,
for each initial training data point x0, the output of the dense layer is fed to the SPN, together with
the class label of x0. The data x0 itself is not fed to the SPN.
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3. The SPN makes predictions on pool points, which allows us to calculate estimates of p(y | x, Dtrain)
values as needed in uncertainty-based acquisition functions.

4. A new datum x′ is selected via the acquisition strategy in (1), and the class label y′ of x′ is obtained
from the oracle. (This step may be repeated a predefined number of times to collect a batch of new
labeled data points.)

5. The CNN block is retrained using the (batch of) newly acquired training data (x′, y′); the corre-
sponding outputs of the dense layer are used to retrain the SPN.

6. If the sample budget is used up then stop, else go to 3.

The output of the SPN (obtained from applying softmax to the vector of prediction values of the individual
DAGs; depicted as “O” in Figure 1) is needed when training the SPN, but it is not used by the acquisition
function itself. (However, it is used in selecting data points, in order to calculate the weights by which the
acquisition function are multiplied.)

Our model has two classifiers: a CNN trained over observed data, and an SPN trained over the CNN’s
representation of data. Both of them can be used for predicting class labels, as indicated by the two
triangles labeled “O” in Figure 1. When evaluating our approach empirically, we consider only the option,
in which the final prediction is the output of the SPN. The other option turned out worse in our empirical
study and is not reported here.

Training the SPN over the feature representation rather than the original data has advantages that we have
tested empirically. In the literature, the highest reported accuracy of an SPN model, trained on the full
predefined MNIST training set of size 50K, is around 98% (Peharz et al., 2018; Wolfshaar & Pronobis, 2020).
By comparison, SPN-CNN obtained an accuracy of 97.6% (std deviation 0.045%), trained on only 1000 data
points—a promising result.

5 Experimental Analysis

We tested our approach both for pure uncertainty-based sampling (SPN-CNN) and for mixed sampling. For
the latter case, we use BatchBALD (Kirsch et al., 2019), which is a mixed sampling method that uses the
BALD acquisition function but iteratively selects data points to be sampled in a batch, in a way so as to
avoid redundancy and ensure sufficient diversity. By SPN-BatchBALD we denote a variant obtained when
replacing BatchBALD’s component for assessing class probabilities p(y | x, Dtrain) (which is based on MC
Dropout) by our SPN-based method.

Our evaluation uses four standard benchmark datasets: MNIST (Deng, 2012), CIFAR-10 (Krizhevsky et al.,
accessed May 2022), Fashion-MNIST (Xiao et al., 2017) and SVHN (Netzer et al., 2011). All our experiments
used the same SPN structure, but a different CNN structure for each dataset. Details on the experimental
setup, such as the SPN and CNN architectures, hyperparameters, off-the-shelf tools used, dropout proce-
dures, etc., are provided in Appendix A.

Choice of datasets We deliberately exclude datasets like CIFAR-100 and ImageNet, which target clas-
sification into 100 or more classes. They do not seem suited to a study on assessing uncertainty of class
labels, since label uncertainty arguably becomes very hard to distinguish when the number of object classes
becomes very high. When assigning a confidence value for an individual data point x to each of |C| classes,
the maximum such confidence value will typically be smaller when |C| is larger. This gives uncertainty
estimators a smaller range to operate in, and thus will intuitively make uncertainty estimators harder to
distinguish in terms of their effectiveness. In a small study on CIFAR-100, none of the uncertainty sampling
approaches that we tested performed better than random selection of samples. To the best of our knowl-
edge, all publications focusing on uncertainty in CNNs use datasets with many classes only as binary class
datasets. For example, Lakshminarayanan et al. (2017) use ImageNet but convert it into a two-class dataset.
Variational Adversarial Active Learning (Sinha et al., 2019) is also tested on datasets with many classes, yet
its uncertainty component does not relate to the class probabilities of these classes, but to the uncertainty
of an internal binary prediction problem (classifying data points as “labeled” or “unlabeled”).
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5.1 Pure Uncertainty-Based Sampling

We compared our method to four others, which differ in the way data points are actively sampled. Two
simple baselines train the same initial CNN as our method but actively sample as follows: (i) Random
samples uniformly at random without replacement from the pool; (ii) Deterministic uses standard acquisition
functions, where class probabilities are simply the outputs of the CNN before applying softmax. Two state-
of-the-art competitors that we tested are (iii) MC Dropout (Gal et al., 2017) and (iv) Bayesian Batch
(Pinsler et al., 2019); this way, we compare SPN-CNN to another uncertainty sampling method as well as
to a method using an entirely different approach. Note that SPN-CNN, as well as Deterministic and MC
Dropout, compute class probabilities to be used in acquisition functions; we tested both Max Entropy and
Variational Ratio as acquisition functions.

How to read our plots Plots in Figures 2 through 4 have the number of training data points (initial
training set size plus actively sampled points) on the x-axis and accuracy on the y-axis. The y-intercept
of a curve equals the accuracy of a model trained only on the initial training data; each subsequent point
represents the accuracy after processing one additional batch of acquired points. Each curve is the average
over five runs (std dev is shown in Appendix B), with randomly chosen training, validation, and pool sets per
run and per method. Note that the curves for SPN-CNN and for Bayesian Batch often have substantially
different y-intercepts than the other pure uncertainty-based methods, since they correspond to outputs from
other model structures; the remaining methods produce outputs based on the same CNN structure and thus
have similar y-intercepts.

MNIST All competing methods were given the same test data, which is the predefined test set consisting
of 10K data points. For each run and each method, we sample other data sets from the predefined 50K
training data points as follows: the 50K points are shuffled at random, 40K points are randomly chosen for
the pool, 5K points for the validation set, and from the remaining 5K points we randomly choose an initial
training set of only 20 points. Acquisition was performed 98 times, each time picking 10 points (for a total
of 1K training points in the end), following the respective acquisition strategy and then updating the model.
Figure 6 shows the resulting accuracy, averaged over five runs. For both acquisition functions, SPN-CNN
performs better than the two baselines and than Bayesian Batch. After five batch acquisitions with Max
Entropy, MC Dropout surpasses SPN-CNN, but with Variational Ratio it is as bad as the Random baseline.
Note that, in the first few acquisitions, Random performs as well as the other methods (even better than
Deterministic), but it cannot keep up later on. One possible explanation is that in the first steps active
learning gains little to no advantage over passive learning, but when the model becomes more refined, active
sample selection makes a bigger difference.

This experiment also demonstrates the potential strength of an SPN when trained over the feature rep-
resentation of data. In the literature, the highest reported accuracy of an SPN model, trained on the full
predefined MNIST training set of size 50K, is around 98% (Peharz et al., 2018; Wolfshaar & Pronobis, 2020).
By comparison, SPN-CNN obtained an accuracy of 97.6% (std deviation 0.045% ), trained on only 1000 data
points. Hence, training SPNs on the representation of data seems promising.

CIFAR-10 CIFAR-10 requires a more complex CNN structure (we used VGG (Simonyan & Zisserman,
2014)) and larger training set sizes than MNIST. The predefined test set of 10K points was used in all
evaluations. We performed two tests. The first one is similar to the setups used by Siméoni et al. (2021) and
Yi et al. (2022), with 1K initial training data points and nine acquisitions in batches of size 1K. The second
one (performed only for Max Entropy) used 5K initial training data points and four acquisition batches of
5K points each. In both cases and for each method tested, we shuffle the predefined training set of 40K
points, then randomly choose a pool of size 30K and a validation set of size 5K; the initial training set is
sampled at random from the remaining 5K points. The result for the first setting is in Figure 2(a–b). Here
SPN-CNN is the winner, followed by Determinisitic. Neither MC Dropout nor Bayesian Batch can compete;
they behave similarly to Random. Figure 2(c) shows the result for the second setting, with larger initial
training data sets and larger step sizes. Here, MC Dropout and Deterministic are better than Random,
but the winners are SPN-CNN and Bayesian Batch. Interestingly, Bayesian Batch needs the larger initial
training data set/batch sizes to be competitive with SPN-CNN. This suggests that SPN-CNN is particularly
effective when data is less abundant.
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(a) Max Entropy (b) Variational Ratio

(c) Max Entropy

Figure 2: Accuracy on CIFAR-10, with an initial training set size and acquisition batch size of 1000, for (a)
and (b), and with initial training set and batch size of 5000 for (c). Note that plot (c) has a different scale
on the y-axis than the other two plots.

Fashion-MNIST Here, we use VGG as the CNN structure. The predefined test set has 10K points;
from the 50K given training data points, we randomly sample 40K for the pool, 5K for validation, and
then 1K from the remaining ones as initial training data. We performed 9 acquisitions of 1K points each.
Figure 3(a–b) shows the results averaged over five runs. SPN-CNN outperforms all other methods for both
Max Entropy and Variational Ratio. Bayesian Batch is still doing fairly well after the first batch acquisition,
but overall both Bayesian Batch and MC Dropout here seem no better than the Deterministic baseline.

SVHN This dataset has 73, 257 and 26, 032 data points for training and testing, respectively. 63, 257 data
points were chosen randomly as pool set, 5, 000 for validation and 1, 000 as initial training set. All settings
for the experiment (model structure, hyperparameters, . . . ) were the same as for CIFAR-10. SPN-CNN
outperforms the baselines and MC Dropout in all acquisition steps, see Figure 3(c–d). Again, in the initial
steps Bayesian Batch has better performance, but is surpassed by SPN-CNN in the fifth acquisition.

Run-time comparison Table 1 shows run-times in seconds on a local ubuntu Server 20.04.1 with 6-core,
64GB RAM, 128 GB SSD disk drive, GPU NVIDIA Corporation GP100GL [Tesla P100 PCIe 16GB]. For
MNIST, we acquired 98 batches of 10 points each plus the training time for initial set with 20 points; for
CIFAR-10, Fashion-MNIST, and SVHN, we report the time needed for the acquisition of 9 batches of 1000
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(a) Fashion-MNIST, Max Entropy (b) Fashion-MNIST, Var. Ratio

(c) SVHN, Max Entropy (d) SVHN, Var. Ratio

Figure 3: Accuracy on Fashion-MNIST (a–b) and SVHN (c–d).

Table 1: Run-time (in seconds). “Max” is for Max Entropy, “Var” for Variational Ratio.

Deterministic Bayesian MC Dropout SPN-CNN
Dataset Random Max Var Batch Max Var Max Var
MNIST 1,527 1,633 1,617 10,603 2,111 2,277 5,321 5,288

CIFAR-10 4,072 4,058 4,062 16,709 5,800 6,231 6,539 6,404
Fashion-MNIST 3,920 3,952 3,984 32,447 6,254 6,997 10,241 10,242

SVHN 3,980 3,992 4,020 28,445 5,552 5,506 8,871 8,358

points each plus the training time for an initial set with 1000 points. In all run-time experiments, we trained
the SPN in 650 epochs. Not surprisingly, random acquisition requires the least time. Overall, SPN-CNN’s
run-time is up to 2.5 times that of MC Dropout, yet only around 30%–50% of that for Bayesian Batch.

Statistical tests We applied paired z-tests, where each pair in the comparison is a pair of mean accuracy
values for a test data set of 10,000 points, averaged over 5 runs. We collected p-values for each of ten
acquisition steps with batch size 1000. On the CIFAR-10 data, both when using variational ratio and when
using max entropy, SPN-CNN beat MC Dropout with p = 0.05 after 5 batch acquisitions, with p = 0.01 after
6 and after 8 batch acquisitions, and p < 0.01 after all other batches. Further, SPN-CNN with variational
ratio beats Bayesian Batch on CIFAR-10 with p = 0.05 after 1 batch, p = 0.01 after batches 2 and 6,
and p < 0.01 for all other batches. With max entropy, SPN-CNN beats Bayesian Batch on CIFAR-10 with
p = 0.04 after 1 batch, p = 0.01 after batches 2 and 6, and p < 0.01 for all other batches. For FashionMNIST,
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(a) CIFAR-10 (b) Fashion-MNIST (c) SVHN

Figure 4: Accuracy on various datasets. Note that the scales on the y-axes differ.

the results are similar. SPN-CNN max entropy beats MC Dropout always with p < 0.01; with variational
ratio, batches 1 and 10 had p-values of 0.02 and 0.01, respectively, all other batches had p < 0.01. Compared
to Bayesian Batch, SPN-CNN cannot win for the first batch, but wins highly significantly from batch 2
onwards: with variational ratio, the p-value at batch 2 is 0.1, and it is smaller than that from batch 3
onwards; with max entropy, we get p = 0.04 at batch 2, p = 0.01 at batch 3, and p < 0.01 with every
batch afterwards. These results confirm our claim that SPN-CNN significantly beats both MC Dropout and
Bayesian Batch on CIFAR-10 and Fashion-MNIST. (Note that our p-values, listed in Appendix D, are small
enough to withstand Holm-Bonferroni corrections for multiple tests on the same data.)

5.2 Mixed Sampling Methods

In terms of running time, BatchBALD does not scale very well to large batch sizes. Therefore, we used an
initial training set size and acquisition budget size of 200 in all our experiments on SPN-BatchBALD and
BatchBALD. We compared these two methods on CIFAR-10, SVHN and Fashion-MNIST, with the same
Random baseline as in the previous experiments. All other setup details are identical to those reported for
the pure uncertainty sampling case. Again, we report averages from five runs, see Figure 4. In all cases,
SPN-BatchBALD is the clear winner. We confirmed the significance of our results with statistical tests;
details on standard deviation and statistical tests are reported in Appendix D.

5.3 Assessing Overconfidence Via Out-of-Distribution Examples

Lakshminarayanan et al. (2017) proposed a line of research focusing on only uncertainty assessment, outside
the context of any specific application like active learning. Their method is not practical for deep active
learning, as it requires training a whole ensemble of CNNs; empirically, it seems that at least five CNNs in the
ensemble are required for satisfactory performance. We therefore do not evaluate this method, but use the
experimental setting from (Lakshminarayanan et al., 2017) in order to compare SPN-CNN to MC-Dropout
and Deterministic. In this setup, uncertainty is assessed on out-of-distribution examples from unseen classes.
Thus, an uncertainty estimator is considered good if its predicted uncertainty values increase substantially
when the test data differs significantly from the training data (Lakshminarayanan et al., 2017).
All three tested approaches estimate class probabilities, which can then be plugged into an uncertainty
function. Like Lakshminarayanan et al. (2017), we use entropy as the uncertainty function. For each
approach separately, we train a model on SVHN and then test it on two test data sets: (i) the usual
SVHN test data, (ii) the usual CIFAR-10 test data. Finally, Figure 5 shows density curves for the entropy
values resulting from the class probability predictions on these two test sets. For SPN-CNN, a substantial
difference in entropy between the two test sets is observed: on SVHN data, predictions have consistently very
low uncertainty, while the uncertainty is overall much larger and more spread when it comes to the unfamiliar
CIFAR-10 test set. MC Dropout and Deterministic, by contrast, seem overly confident even when making
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(a) SPN-CNN

(b) MC Dropout (c) Deterministic

Figure 5: Density of entropy values on SVHN test data (orange) and CIFAR-10 test data (blue) after training
on SVHN. Note that the scales on the y-axes differ.

predictions on CIFAR-10 data. Lakshminarayanan et al. (2017) noted that overly confident predictions are
a major drawback in most deep learning methods, and are problematic in real world applications. Our
experiment suggests that the SPN-CNN approach can alleviate this problem for CNNs much better than
MC Dropout can; experiments with more data sets would be helpful to further confirm this observation.

5.4 Assessing Overconfidence Via Expected Calibration Error

In deep learning, another way to assess overconfidence of predictors is the Expected Calibration Error
(ECE), which measures the expected difference between the accuracy and confidence of the trained model.
The lower ECE, the better calibrated a model is. Various methods have been proposed to reduce ECE,
with temperature scaling being among the most prominent ones (Guo et al., 2017). However, such methods
to reduce ECE can only be applied after training the model. This means, they cannot directly be used
to calibrate uncertainty estimates during the course of uncertainty-based active learning, since the active
training of the model requires uncertainty estimates at every acquisition step.

Our proposed way of assessing uncertainty can be used as a standalone method for uncertainty estimation, but
also within deep active learning. Therefore, it is important for our method to be well calibrated even without
calibration methods like temperature scaling. We hence computed ECE of our uncertainty estimates in
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Table 2: ECE (%) on CIFAR-10 with three different networks.

Uncalibrated CNN Uncalibrated SPN-CNN Calibrated CNN Calibrated SPN-CNN
VGG 8.21 5.13 1.73 2.00
LeNet 4.33 4.50 1.55 3.01

ResNet 7.60 5.54 1.78 2.86

comparison to the uncertainty estimates of a standard neural network model (without the SPN component).
In addition, we compared ECE for both models after applying temperature scaling.

We conducted this experiment with three different model architectures (VGG, LeNet, and ResNet) on the
CIFAR-10 data. The models were trained on a random subset of 45,000 data points out of the standard
training set of 50,000 points. For calibration with temperature scaling, the remaining 5,000 data points from
the standard training set were used as validation set. Finally, ECE was calculated with 15 bins on the 10,000
test data points. This setup is identical to the one used by Kull et al. (2019).

The results are reported in Table 2, demonstrating that SPN-CNN does not produce highly uncalibrated
uncertainty estimates, compared to the corresponding CNN alone. After applying temperature scaling, our
method (SPN-CNN) is not quite as well calibrated as the method without SPN. However, of importance
for applications in active learning, ECE values for the uncalibrated SPN-CNN tend to be lower than for
the uncalibrated CNN. This suggests that, in settings where calibration through temperature scaling is not
possible since uncertainty estimates are required during model training, the risk of overconfidence is lower
for SPN-CNN than for CNN.

6 Conclusions

We proposed an appealingly simple method for uncertainty sampling in active learning with CNNs, which
estimates class probabilities with an SPN trained over the representation extracted by the CNN. It can be
used both as a standalone sampling approach (SPN-CNN) and in combination with other sampling techniques
(e.g., SPN-BatchBALD).

In our experimental study, in terms of accuracy, SPN-BatchBALD outperforms BatchBALD, and SPN-CNN
is not outperformed by any of the tested competitors, with two exceptions: (i) MC Dropout outperforms
SPN-CNN on MNIST when using Max Entropy, and (ii) Bayesian Batch, while mostly worse than SPN-CNN,
performs slightly better or comparable for the large training data set and batch sizes we tested on CIFAR-10;
large initial training sets however are a less likely situation in the context of active learning. Empirically,
there are some weaknesses of MC Dropout from which SPN-CNN does not suffer: Firstly, MC Dropout is
sensitive to the dropout rate. If the dropout rate is too small, the model is close to deterministic overall and
we will not get useful posterior probability estimates. If the dropout rate is too high, the model will tend to
suffer from underfitting. Secondly, our empirical analysis suggests that MC Dropout is more sensitive to the
batch size than SPN-CNN (see experiments with batch size 1000 vs. batch size 5000.) Thirdly, empirically
in our study, it appears that MC Dropout does not perform well on complex datasets (it performs well on
MNIST, but poorly on FashionMNIST and close to randomly on CIFAR-10). This confirms previous reports
that MC Dropout is not very effective on more complex data. Apparently, Bayesian Batch requires large
initial training sets to compete with SPN-CNN. In sum, our method to estimate class probabilities with an
SPN trained on a CNN’s feature representation appears to be very effective, at a reasonable run-time cost
compared to state-of-the-art methods, and with a simple and easy to implement design.

More experiments should be performed to test our method in other applications of deep learning, e.g., NLP,
and with other network architectures, e.g., autoencoders. As discussed above, like other methods for assessing
uncertainty in multi-class prediction, our method is not useful when the number of classes becomes too large.
In deep active learning with uncertainty sampling, all uncertainty estimators that we tested (including ours)
were worse than random acquisition on the CIFAR-100 dataset, which has 100 classes. For the 10-class
version, uncertainty-based methods turned out to be suited very well.
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A Details on Experimental Setup

This section provides details on the setup of the experiments described in Section 5 of the main paper.

A.1 SPN

For implementing the SPN, we use the lib-spn keras library which is inherited from keras. The SPN structure
used in all our experiments is Deep Convolutional SPN (Wolfshaar & Pronobis, 2020). In addition, we
employed a dropout layer. We always trained our SPN model over 650 epochs, using the Adam optimizer,
and with sparse categorical entropy as loss function.

All parameters except dropout rate were tuned on CIFAR-10 only, and simply adopted for the other datasets
in our experiments. The dropout rate was tuned for each dataset separately. Our general tuning procedure
was to first fix the learning rate to .005 and the dropout rate to .1, and then perform the following two steps:

• Number of components: We tried 16, 32 and 64, and finally selected 16.

• Number of sum nodes: We tried the following sequences [16, 32, 32, 128, 128], [16, 32, 32, 64, 64],
[16, 32, 32, 64, 64], [64, 64, 128, 128, 256], [32, 32, 64, 64, 128], and picked [16, 32, 32, 64, 64].

This resulted in the following structure (from leaf layer to root layer): leaf layer (with 16 components for
each variable) to which we apply dropout, followed by a product layer, sum layer (with 16 sum nodes),
product layer, sum layer (with 32 sum nodes), product layer, sum layer (with 32 sum nodes), product layer,
sum layer (with 64 sum nodes), product layer, sum layer (with 64 sum nodes), root layers (one for each
class). Since the values returned by the root layers were very small, we additionally applied softmax at the
last step. We also tried to add a normalization layer before the last sum layer, but did not adopt it since it
did not affect the performance substantially.

After fixing structural parameters, the learning rate was manually tuned to .08. To this end, we tried out
learning rate values from .005 to .1 in steps of size .01, with a fixed dropout rate of .1. We chose the learning
rate that maximized average accuracy on the validation set over two runs.

Finally, we tuned the dropout rate for each dataset separately, trying values from .05 to .5 in steps of size .05.
Again, we chose the value that maximized average accuracy on the validation set over two runs. Moreover,
we tried dropout in layers other than the leaf layer but this always decreased the accuracy; our reported
results were obtained with dropout applied only in the leaf layer. The final value for dropout rate was .3 for
Fashion-MNIST and CIFAR-10, and .05 for MNIST.

A.2 CNN for MNIST

For all methods except Bayesian Batch, we use a structure similar to LeNet (LeCun et al., 1998): two
convolutional layers (filter size 32), maxpool layer, two convolutional layers (filter size 64), dropout layer
(dropout rate .5), flatten layer, dense layer (128 neurons), dropout layer (dropout rate .5), dense layer with
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softmax activation. The output of the dense layer is reshaped (16 × 8) to use as input for the SPN. We used
the SGD optimizer with a learning rate of .001 and as loss function we chose categorical cross entropy. The
number of epochs was set to 100, with a batch size of 120.

We set hyperparameters by assessing accuracy on the validation set for several values of the hyperparameters.
For the learning rate we tried .001 to .1 with step size of .001, each with a dropout rate of .25 and a dropout
rate of .5. After fixing the learning rate and the dropout rate, we tested three different numbers of neurons
for the dense layer (128, 256, and 512) but since this did not seem to affect the accuracy, we chose the
smallest of the tested sizes.

For Bayesian Batch, we directly used the authors’ code (Pinsler et al., 2019), since their architecture is
totally different from the ones used by the other tested methods.

A.3 CNN for CIFAR-10

For all methods except Bayesian Batch, the CNN structure used for our CIFAR-10 experiments is VGG
(Simonyan & Zisserman, 2014), and consists of a convolutional layer (filter size 64), batchNormalization
layer, convolutional layer (filter size 64), batchNormalization layer, maxpool layer, dropout layer (dropout
rate .2), convolutional layer (filter size 128), batchNormalization layer, convolutional layer (filter size 128),
batchNormalization layer, maxpool layer, dropout layer (dropout rate .3), convolutional layer (filter size 256),
batchNormalization layer, convolutional layer (filter size 256), batchNormalization layer, convolutional layer
(filter size 256), batchNormalization layer, maxpool layer, dropout layer (dropout rate .4), convolutional
layer (filter size 512), batchNormalization layer, convolutional layer (filter size 512), batchNormalization
layer, convolutional layer (filter size 512), batchNormalization layer, maxpool layer, dropout layer (dropout
rate .5), flatten layer, dense layer (with 512 neurons), batchNormalization layer, dropout layer (dropout rate
.5), softmax layer with 10 neurons.

The output of the dense layer was reshaped (16 × 32) as input for the SPN. We used SGD with learning rate
.001 as optimizer and categorical cross entropy as loss function. The number of epochs was set to 250, with
a batch size of 100.

We took the VGG model directly from (Brownlee, 2016). Since the structure was established, we did not
attempt hyperparameter tuning as much as with the model used for MNIST. We only tried the learning
rates .01 and .001, as well as the dropout rates .25, .3 and .5 for the two last dropout layers. For the number
of neurons in the dense layer we tried 256 and 512.

For Bayesian Batch, we directly used the authors’ code (Pinsler et al., 2019), since their architecture is
totally different from the ones used by the other tested methods.

For BatchBALD, we used the authors’ code (Kirsch et al., 2019) for computing the BatchBALD acquisition
function. The rest of the code was the same as in our other experiments.

A.4 CNN for Fashion-MNIST

For all methods apart from Bayesian Batch, the structure and hyperparameter settings were the same as for
the CIFAR-10 experiments, except that the learning rate was .0005.

We did not attempt to tune the dropout rate at all (keeping it the same as for the CIFAR-10 data), and
tried only three different values for the learning rate (.1, .001, and .0005), picking .0005 as it performed best
on the validation set.

For Bayesian Batch, we directly used the authors’ code (Pinsler et al., 2019), since their architecture is
totally different from the ones used by the other tested methods.

For BatchBALD, we used the authors’ code (Kirsch et al., 2019) for computing the BatchBALD acquisition
function. The rest of the code was the same as in our other experiments.
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Table 3: Accuracy and standard deviation for MNIST over five runs, for 10 selected (equidistant) acquisition
steps. This table corresponds to Figure 6.

Method 100 200 300 400 500
SPN-CNN (max ent) 74.29 ± 1.65 86.67 ± .98 92.23 ± 1.46 94.34 ± 0.63 95.31 ± 0.39

Deterministic (max ent) 60.25± 5.09 80.77± 3.08 88.28± 2.06 91.29± 0.64 93.49± 1.28
MC Dropout (max ent) 76.62± 4.77 87.37± 1.93 92.58± 1.12 94.2± 1.12 95.94± 0.50
SPN-CNN (var ratio) 74.29± 3.64 86.67± 1.89 92.23± 0.53 94.34± 0.57 95.31± 0.49

Deterministic (var ratio) 63.64± 6.80 81.25± 2.99 87.49± 3.00 92.7± 0.96 93.62± 0.44
MC Dropout (var ratio) 74.4±2.97 85.26±2.07 89.31±2.22 92.68± 0.71 93.43± 0.36

Bayesian Batch 9.86±0.69 10.20±0.73 90.79±1.27 93.19±0.76 94.46±0.65
Random 80.06±2.47 87.5± 2.06 91.14±0.39 92.4±0.83 93.13± 0.41
Method 600 700 800 900 1000

SPN-CNN (max ent) 95.51 ± 0.27 96.524 ± 0.34 96.92 ± 0.34 97.13 ± 0.26 97.77 ± 0.32
Deterministic (max ent) 93.47± 1.05 95.50± 0.29 96.07± 0.45 96.61± 0.43 97.15 ± 0.18
MC Dropout (max ent) 96.42± 0.44 97.30± 0.25 97.77± 0.27 97.97± 0.13 98.09± 0.16
SPN-CNN (var ratio) 95.51± 0.31 96.52± 0.34 96.92± 0.24 97.13± 0.18 97.77± 0.06

Deterministic (var ratio) 94.63± 0.98 95.57±0.53 96.48±0.15 97.24±0.27 97.52±0.2
MC Dropout (var ratio) 93.59±0.71 94.57±0.24 95.03±0.27 95.64± 0.40 95.75±0.29

Bayesian Batch 95.28±0.61 95.57±0.49 96.03±0.26 96.33±0.16 96.73±0.35
Random 93.62± 0.28 94.52±0.15 94.93±0.13 95.17± 0.18 95.62±0.36

A.5 CNN for SVHN

With the exception of Bayesian Batch, the structure and hyperparameter configurations for the experiments
were identical to those used for the Fashion-MNIST experiments. The learning rate was set at .0005.

Again, we directly used the authors’ code (Pinsler et al., 2019) for Bayesian Batch, since their architecture
is totally different from the ones used by the other tested methods. As in the Fashion-MNIST experiment,
we used the authors’ code (Kirsch et al., 2019) for computing the BatchBALD acquisition function.

A.6 Settings for “Uncertainty Alone” Experiment

The CNN and SPN structures and settings for the “uncertainty alone” experiment were identical to those
used for the active learning experiment on SVHN, as described in Subsection A.5 in this document. The
optimizer was SGD with the learning rate of 0.0005. The only difference compared to the active learning
experiment was that the model was trained on the whole training data set.

B Result Plots with Standard Deviation

This section presents the same plots as in Section 5 of the main paper, but with standard deviation indicated
in addition. For the sake of readability, we did not show standard deviation in the plots in Section 5 of the
main paper. As one can see here, Figures 6, 7, 10 and 9 are not as easy to analyze as the corresponding
figures in the main paper. Therefore, for each of these three figures, we here added a table showing the
numerical values of accuracy and standard deviation plotted in the figures. For MNIST, Figure 6 plots
accuracy at 100 different x-values; here we chose 10 equidistant values for the corresponding table (Table 3).
Note that, in accordance with the results reported in the main paper, the standard deviation was calculated
over five runs for each dataset.

C Code

Code that we used off the web is the following

• For MC Dropout we used the code by Gal et al. (2017). We modified the CNN in their code to be
the same as the CNN that we use in SPN-CNN, Random and Deterministic.

• For Bayesian Batch, we used the code by Pinsler et al. (2019).
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(a) Max Entropy (b) Variational Ratio

Figure 6: Accuracy results and error bars on the MNIST data, averaged over five runs, with std dev indicated.

Table 4: Accuracy and standard deviation for CIFAR-10 over five runs, after processing 1000, 2000, . . . ,
10,000 data points (i.e., for the initial training data set and the subsequent 9 batch acquisitions). This table
corresponds to Figure 7.

Method 1000 2000 3000 4000 5000
SPN-CNN (max ent) 48.65 ± 0.66 56.09 ± 0.42 61.79 ± 0.56 65.59 ± 0.35 68.25 ± 0.92

Deterministic (max ent) 45.39 ± 0.83 53.65 ± 1.71 60.37± 0.74 64.52± 0.97 66.48± 0.94
MC Dropout (max ent) 44.19 ± 2.03 53.87 ± 0.9 59.28± 1.41 62.85± 0.65 65.17± 1.04

SPN-CNN (var ra) 47.62 ± 1.36 57.18± 1.06 61.69± 0.73 65.92± 0.27 69.27± 0.79
Deterministic (var ratio) 45.84± 1.01 54.98± 1.61 60.74± 1.35 63.92± 1.13 67.76± 1.23
MC Dropout (var ratio) 45.45±1.31 53.75±0.84 58.33±0.57 62.49± 0.55 65.26± 1.6

Bayesian Batch 46.25±0.65 54.63±0.5 58.76±0.98 62.07±1.11 64.53±0.84
Random 45.92±2.1 53.07± 0.6 58.28±1.5 62.02±1.8 66.47± 0.45
Method 6000 7000 8000 9000 10000

SPN-CNN (max ent) 70.79 ± 0.65 72.58 ± 0.54 74.96 ± 0.42 75.92 ± 0.49 77.17 ± 0.69
Deterministic (max ent) 69.67± 1.02 72.09± 1.35 72.92± 0.62 74.95± 1.1 76.16 ± 0.52
MC Dropout (max ent) 66.54± 1.38 69.75± 0.54 71.74± 0.62 72.59± 0.99 74.13± .7
SPN-CNN (var ratio) 71.18± 1.12 73.04± 0.38 74.9± 0.7 76.28± 0.64 77.32± 0.48

Deterministic (var ratio) 70.06± 0.96 71.96±0.72 73.4±0.87 74.5±0.53 76.34±0.55
MC Dropout (var ratio) 67.55±1.03 68.83±0.7 70.33±0.84 71.76± 0.45 72.94±1.02

Bayesian Batch 66.5±0.62 68.5±1.11 70.38±1.00 71.99±0.96 73.71±0.73
Random 67.45± 1.74 69.92±1.13 71.08±.99 72.6± 1.42 74.15±0.72
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(a) Max Entropy (b) Variational Ratio

Figure 7: Accuracy results and error bars on the CIFAR-10 data, averaged over five runs, with std dev
indicated.

Figure 8: As in Figure 7, but with initial training set size and acquisition batch size of 5000.
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Table 5: Accuracy and standard deviation for Fashion-MNIST over five runs, after processing 1000, 2000,
. . . , 10,000 data points (i.e., for the initial training data set and the subsequent 9 batch acquisitions). This
table corresponds to Figure 9.

Method 1000 2000 3000 4000 5000
SPN-CNN (max ent) 82.38 ± 0.56 88.2 ± 0.26 90.2 ± 0.11 91.07 ± 0.16 91.83 ± 0.51

Deterministic (max ent) 78.68± 0.98 85.74± 0.54 87.67± 0.56 88.85± 0.97 89.81± 0.39
MC Dropout (max ent) 81.29± 0.56 85.54± .04 87.39± 0.39 88.71± 0.63 89.66± 0.83

SPN-CNN (SPN, var ratio) 83.3± 0.2 88.06± 0.14 90.08± 0.25 90.87± 0.29 91.51± 0.33
Deterministic (var ratio) 79.03± 1.92 85.24± 0.63 87.86± 0.27 88.78± 0.39 90.22± 0.8
MC Dropout (var ratio) 80.40±1.23 83.85±0.73 87.24±0.32 88.67± 0.33 89.71± 0.46

Bayesian Batch 83.67±0.28 87.35±0.13 88.78±0.24 89.65±0.30 90.23±0.21
Random 80.25±1.14 84.43± 0.40 86.23±0.74 87.87±0.52 88.31± 0.17
Method 6000 7000 8000 9000 10000

SPN-CNN (max ent) 92.27 ± 0.13 92.7 ± 0.16 92.9 ± 0.13 93.13 ± 0.17 93.46 ± 0.12
Deterministic (max ent) 90.93± 0.11 91.57± 0.32 92± 0.18 91.9± 0.14 92.81 ± 0.05
MC Dropout (max ent) 90.3± 0.51 90.57± 0.16 90.96± 0.36 91.5± 0.12 91.54± 0.45
SPN-CNN (var ratio) 91.66± 0.35 92.48± 0.17 92.78± 0.27 92.84± 0.30 93.22± 0.15

Deterministic (var ratio) 90.47± 0.91 90.91±0.40 91.67±0.66 91.81±0.40 92.3±0.37
MC Dropout (var ratio) 90.58±0.1 90.92±0.18 91.26±0.11 91.53± 0.03 92.04±0.18

Bayesian Batch 90.54±0.1 91.03±0.1 91.12±0.10 91.60±0.17 91.84±0.23
Random 89.16± 0.14 89.54±0.80 90.05±0.04 90.26± 0.99 90.71±0.23

Table 6: Accuracy and standard deviation for SVHN over five runs, after processing 1000, 2000, . . . , 10,000
data points (i.e., for the initial training data set and the subsequent 9 batch acquisitions). This table
corresponds to Figure 10.

Method 1000 2000 3000 4000 5000
SPN-CNN (max ent) 65.15 ± 2.92 80.47 ± 2.29 84.9 ± 00.93 87.70 ± 00.73 89.92 ± 00.82

Deterministic (max ent) 54.86± 6.16 73.02± 00.95 71.52± 5.50 82.78± 00.94 84.80± 1.85
MC Dropout (max ent) 61.46± 2.3 75.95± 00.6 83.23± 00.78 85.92± 00.90 86.99± 1.16
SPN-CNN ( var ratio) 66.13±1.88 81.7±1.53 85.02±00.84 87.41± 00.68 90.25± 00.22

Deterministic (var ratio) 57.48± 2.97 70.72± 2.53 76.7± 2.57 83.81± 1.23 87.42± 00.73
MC Dropout (var ratio) 53.19±4.16 76.13±1.89 81.45±1.49 84.22± 00.56 86.18± 00.44

Bayesian Batch 77.80±00.86 85.44±00.25 88.74±39 89.41±00.19 90.34±00.12
Random 56.34±01.77 75.98± 00.87 81.65±01.13 84.33±00.54 86.33± 00.54
Method 6000 7000 8000 9000 10000

SPN-CNN (max ent) 91.06 ± 00.35 91.50 ± 00.38 92.37 ± 00.45 92.67 ± 00.30 93.29 ± 00.30
Deterministic (max ent) 87.26± 00.6 88.72± 1.73 91.51± 00.43 91.70± 00.59 92.69 ± 00.24
MC Dropout (max ent) 89.12± 00.57 90.04± 00.4 91.61± 00.08 92.03± 00.32 92.67± 00.21
SPN-CNN (var ratio) 91.25± 00.25 91.6± 00.32 92.00± 00.20 92.67± 0.38 92.35± 00.27

Deterministic (var ratio) 88.58± 00.87 90.66±00.19 91.48±00.30 91.96±00.33 92.77±00.39
MC Dropout (var ratio) 87.23±00.52 87.84±00.52 89.03±00.37 89.43± 00.29 89.84±00.31

Bayesian Batch 90.92±00.12 91.25±00.14 91.50±00.17 91.53±14 91.44±00.00
Random 87.54± 00.35 88.48±00.23 89.58±00.30 89.9± 00.30 90.34±00.30

Table 7: Accuracy and standard deviation for CIFAR-10 over five runs, after processing 200, 400, . . . ,
2000 data points (i.e., for the initial training data set and the subsequent 9 batch acquisitions). This table
corresponds to Figure 11.

Method 200 400 600 800 1000
SPN-BatchBALD 29.33 ± 1.63 38.33 ± 1.22 42.40 ± 1.18 45.37 ± 0.78 48.37 ± 1.07

BatchBALD 27.09 ± 1.83 36.36 ± 0.67 40.06 ± 0.68 42.91 ± 1.43 45.90 ± 2.07
Random 26.69 ± 3.10 34.36 ± 1.74 38.79 ± 1.77 42.28 ± 1.62 45.19 ± 1.46
Method 1200 1400 1600 1800 2000

SPN-BatchBALD 50.23 ± 1.25 51.68 ± 0.78 53.50 ± 0.62 54.55 ± 0.94 56.00 ± 0.87
BatchBALD 47.41 ± 0.71 50.22 ± 1.26 52.01 ± 0.91 53.89 ± 0.19 54.44 ± 0.96

Random 47.70 ± 1.14 48.71 ± 1.24 50.01 ± 1.13 51.84 ± 0.82 53.70 ± 0.85
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Table 8: Accuracy and standard deviation for Fashion-MNIST over five runs, after processing 200, 400, . . . ,
2000 data points (i.e., for the initial training data set and the subsequent 9 batch acquisitions). This table
corresponds to Figure 12.

Method 200 400 600 800 1000
SPN-BatchBALD 67.66 ± 1.55 75.44 ± 1.73 78.78 ± 1.34 80.48 ± 1.30 82.03 ± 0.47

BatchBALD 65.66 ± 4.08 74.75 ± 1.15 77.56 ± 1.81 77.25 ± 1.24 80.17 ± 1.91
Random 66.04 ± 2.78 74.79 ± 1.40 77.93 ± 0.82 79.41 ± 0.08 80.81 ± 0.55
Method 1200 1400 1600 1800 2000

SPN-BatchBALD 83.12 ± 0.69 83.84 ± 0.39 84.56 ± 0.49 85.30 ± 0.13 85.77 ± 0.34
BatchBALD 81.31 ± 1.18 83.20 ± 0.81 83.60 ± 0.33 84.07 ± 1.05 84.54 ± 1.08

Random 81.67 ± 0.80 82.63 ± 0.80 82.34 ± 0.70 83.44 ± 0.98 84.07 ± 0.82

Table 9: Accuracy and standard deviation for SVHN over five runs, after processing 200, 400, . . . , 2000 data
points (i.e., for the initial training data set and the subsequent 9 batch acquisitions). This table corresponds
to Figure 13.

Method 200 400 600 800 1000
SPN-BatchBALD 18.89 ± 1.25 33.90 ± 3.09 49.64 ± 4.04 56.89 ± 3.41 64.91 ± 00.75

BatchBALD 16.65 ± 2.28 33.61 ± 4.7 44.15 ± 5.23 55.36 ± 1.01 61.82 ± 2.37
Random 15.89 ± 00.37 34.18 ± 1.87 48.04 ± 1.47 55.86 ± 00.20 61.72 ± 1.00
Method 1200 1400 1600 1800 2000

SPN-BatchBALD 70.15 ± 1.12 72.82 ± 1.19 75.51 ± 1.46 76.81 ± 1.13 78.46 ± 00.36
BatchBALD 68.15 ± 2.38 71.78 ± 00.51 78.85 ± 2.02 75.92 ± 1.67 77.53 ± 00.89

Random 67.67 ± 00.38 71.83 ± 00.76 73.38 ± 1.88 75.61 ± 1.74 77.86 ± 00.86

(a) Max Entropy (b) Variational Ratio

Figure 9: Accuracy results and error bars on the Fashion-MNIST data, averaged over five runs, with std dev
indicated.
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(a) Max Entropy (b) Variational Ratio

Figure 10: Accuracy results and error bars on the SVHN data, averaged over five runs, with std dev indicated.

Figure 11: Accuracy on CIFAR-10 with error bars.

• In our code we used part of the code by Gal et al. (2017) for preparing the initial set and new
training set in each acquisition.

• We used the code by Kirsch et al. (2019) for computing BatchBALD.

D Statistical Tests for CIFAR-10, Fashion-MNIST, and SVHN

Tables 10 through 17 present the p values from our z-tests as explained in the main paper.

Regarding the experiments on pure uncertainty-based sampling, we here give two tables for each of the six
combinations of dataset (CIFAR-10, Fashion-MNIST, SVHN) and acquisition function (variational ratio,
max entropy). In one table, we compare SPN-CNN to MC-Dropout, on the chosen dataset when using the
chosen acquisition function; in the other table, we compare SPN-CNN to Bayesian Batch.

Regarding the experiments on mixed-criteria sampling, using SPN-BatchBALD, we provide two tables each
for the three datasets (CIFAR-10, Fashion-MNIST, SVHN). In one table, we compare SPN-BatchBALD to
BatchBALD on the chosen dataset; in the other table, we compare SPN-BatchBALD to Random.

Each table shows p-values from paired z-tests over all 10,000 test data points. Since we performed five runs
of the experiments, each time with a different initial training set, we here report statistical test results for
each of these five runs (initial sets 0 through 4), but we mainly focus on the bottom row of each table, labeled
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Figure 12: Accuracy on Fashion-MNIST with error bars.

Figure 13: Accuracy on SVHN with error bars.

“mean result”. To obtain the p values in this bottom row, we averaged the accuracy values of a method over
the five runs. This way, we obtained two mean values (one for SPN-CNN or SPN-BatchBALD, and one for
its competitor) that were compared.

initial dataset 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
initial set 0 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 1 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 3 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00
initial set 4 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00
mean result 0.00 0.00 0.00 0.00 0.05 0.01 0.00 0.01 0.00 0.00

Table 10: p values for five runs on CIFAR-10 (SPN-CNN var ratio vs. MC-Dropout var ratio)
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initial dataset 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
initial set 0 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 1 0.02 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
initial set 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 3 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
initial set 4 0.00 0.03 0.06 0.05 0.00 0.00 0.00 0.00 0.00 0.00
mean result 0.00 0.00 0.00 0.00 0.05 0.01 0.00 0.00 0.00 0.00

Table 11: p values for five runs on CIFAR-10 (SPN-CNN max entropy vs. MC-Dropout max entropy)

initial dataset 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
initial set 0 0.08 0.03 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00
initial set 1 0.36 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 2 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 3 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 4 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00
mean result 0.04 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Table 12: p values for five runs on CIFAR-10 (SPN-CNN max entropy vs. Bayesian Batch)

initial dataset 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
initial set 0 0.06 0.02 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 1 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 3 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean result 0.05 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Table 13: p values for five runs on CIFAR-10 (SPN-CNN var ratio vs. Bayesian Batch)

initial dataset 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
initial set 0 0.36 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.09
initial set 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
initial set 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 3 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
initial set 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean result 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Table 14: p values for five runs on Fashion-MNIST (SPN-CNN var ratio vs. MC-Dropout var ratio)
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initial dataset 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
initial set 0 0.36 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
initial set 1 0.04 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01
initial set 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean result 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 15: p values for five runs on Fashion-MNIST (SPN-CNN max entropy vs. MC-Dropout max entropy)

initial dataset 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
initial set 0 0.92 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
initial set 1 0.99 0.24 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00
initial set 2 0.45 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 3 0.95 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 4 0.99 0.01 0.37 0.02 0.00 0.00 0.00 0.00 0.00 0.00
mean result 0.96 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 16: p values for five runs on Fashion-MNIST (SPN-CNN max entropy vs. Bayesian Batch)

initial dataset 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
initial set 0 0.99 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
initial set 1 0.76 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 2 0.66 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
initial set 3 0.99 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 4 0.99 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean result 0.98 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 17: p values for five runs on Fashion-MNIST (SPN-CNN var ratio vs. Bayesian Batch)

initial dataset 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
initial set 0 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00
initial set 1 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 3 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 4 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean result 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 18: p values for five runs on SVHN (SPN-CNN var ratio vs. MC Dropout var ratio)
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initial dataset 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
initial set 0 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00
initial set 1 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 3 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
initial set 4 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean result 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 19: p values for five runs on SVHN (SPN-CNN max entropy vs. MC Dropout max entropy)

initial dataset 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
initial set 0 1.00 0.90 0.90 0.84 0.64 0.22 0.13 0.01 0.00 0.00
initial set 1 1.00 0.90 1.00 0.90 0.51 0.03 0.01 0.13 0.00 0.00
initial set 2 1.00 0.90 1.00 0.90 0.82 0.18 0.25 0.04 0.00 0.00
initial set 3 1.00 1.00 0.9 0.45 0.27 0.50 0.04 0.00 0.00 0.00
initial set 4 1.00 1.00 0.90 0.90 0.44 0.50 0.36 0.07 0.10 0.00
mean result 1.00 0.90 0.90 0.90 0.58 0.20 0.12 0.00 0.00 0.00

Table 20: p values for five runs on SVHN (SPN-CNN var ratio vs. Bayesian Batch)

initial dataset 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
initial set 0 1.00 1.00 1.00 1.00 0.90 0.91 0.52 0.00 0.00 0.00
initial set 1 1.00 1.00 1.00 0.99 0.99 0.81 0.05 0.00 0.00 0.00
initial set 2 1.00 1.00 1.00 0.99 0.99 0.35 0.40 0.00 0.00 0.00
initial set 3 1.00 1.00 0.99 0.99 0.99 0.80 0.36 0.00 0.00 0.00
initial set 4 1.00 1.00 0.99 0.99 0.98 0.72 0.80 0.00 0.00 0.00
mean result 1.00 1.00 1.00 0.99 0.99 0.85 0.42 0.01 0.00 0.00

Table 21: p values for five runs on SVHN (SPN-CNN max entropy vs. Bayesian Batch)

initial dataset 200 400 600 800 1000 1200 1400 1600 1800 2000
initial set 0 0.00 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.16 0.00
initial set 1 0.75 0.00 0.00 0.02 0.27 0.00 0.10 0.05 0.11 0.03
initial set 2 0.00 0.02 0.00 0.43 0.00 0.00 0.35 0.00 0.00 0.44
initial set 3 0.02 0.00 0.05 0.00 0.01 0.00 0.30 0.52 0.12 0.02
initial set 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00
mean result 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.17 0.01

Table 22: p values for five runs on CIFAR-10 (SPN-BatchBALD vs. BatchBALD)

26



Published in Transactions on Machine Learning Research (02/2024)

initial dataset 200 400 600 800 1000 1200 1400 1600 1800 2000
initial set 0 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
initial set 1 0.96 0.00 0.02 0.01 0.06 0.00 0.01 0.01 0.00 0.00
initial set 2 0.20 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
initial set 3 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00
initial set 4 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.03
mean result 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.17 0.01

Table 23: p values for five runs on CIFAR-10 (SPN-BatchBALD vs. Random)

initial dataset 200 400 600 800 1000 1200 1400 1600 1800 2000
initial set 0 0.00 0.00 0.44 0.00 0.09 0.00 0.50 0.01 0.00 0.03
initial set 1 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.24 0.01 0.00
initial set 2 0.00 0.20 0.15 0.00 0.00 0.70 0.23 0.16 0.02 0.02
initial set 3 0.00 0.99 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00
initial set 4 0.00 0.90 0.00 0.00 0.00 0.06 0.43 0.16 0.07 0.01
mean result 0.00 0.16 0.02 0.00 0.00 0.00 0.15 0.03 0.00 0.01

Table 24: p values for five runs on Fashion-MNIST (SPN-BatchBALD vs. BatchBALD)

initial dataset 200 400 600 800 1000 1200 1400 1600 1800 2000
initial set 0 0.00 0.00 0.92 0.97 0.07 0.62 0.00 0.00 0.00 0.00
initial set 1 0.06 0.04 0.04 0.03 0.09 0.00 0.00 0.00 0.00 0.01
initial set 2 0.00 0.38 0.15 0.01 0.00 0.00 0.25 0.02 0.00 0.35
initial set 3 0.00 0.90 0.00 0.11 0.00 0.00 0.34 0.17 0.00 0.00
initial set 4 0.00 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean result 0.00 0.18 0.06 0.03 0.00 0.02 0.00 0.00 0.00 0.00

Table 25: p values for five runs on Fashion-MNIST (SPN-BatchBALD vs. Random)

initial dataset 200 400 600 800 1000 1200 1400 1600 1800 2000
initial set 0 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.12 0.04 0.00
initial set 1 0.99 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51
initial set 2 0.00 1.00 1.00 0.99 0.99 0.35 0.40 0.00 0.00 0.00
initial set 3 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
initial set 4 0.00 0.80 0.00 0.00 0.00 0.08 0.09 0.22 0.00 0.09
mean result 0.00 0.50 0.00 0.00 0.00 0.00 0.42 0.04 0.00 0.05

Table 26: p values for five runs on SVHN (SPN-BatchBALD vs. BatchBALD)
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initial dataset 200 400 600 800 1000 1200 1400 1600 1800 2000
initial set 0 0.00 0.93 0.00 0.00 0.00 0.01 0.50 0.12 0.04 0.00
initial set 1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.20 0.13 0.00
initial set 2 0.00 0.99 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.77
initial set 3 0.00 0.55 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00
initial set 4 0.00 0.99 0.00 0.00 0.00 0.00 0.28 0.22 0.00 0.00
mean result 0.00 0.46 0.00 0.00 0.00 0.00 0.42 0.04 0.00 0.07

Table 27: p values for five runs on SVHN (SPN-BatchBALD vs. Random)
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