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ABSTRACT

We propose SERUM: an intriguingly simple yet highly effective method for mark-
ing images generated by diffusion models (DMs). We only add a unique watermark
noise to the initial diffusion generation noise and train a lightweight detector to
identify the signature of this watermark directly in the images, simplifying and
unifying the strengths of prior approaches. SERUM provides robustness against
any image augmentations or watermark removal attacks and is extremely efficient,
all while maintaining negligible impact on image quality. In contrast to prior
approaches, which are often only resilient to limited perturbations and incur sig-
nificant training, injection, and detection costs, our SERUM achieves remarkable
performance, with the highest true positive rate (TPR) at a 1% false positive rate
(FPR) in most scenarios, along with fast injection and detection and low detector
training overhead. Its decoupled architecture also seamlessly supports multiple
users by embedding individualized watermarks with little interference between the
marks. Overall, our method provides a practical solution to mark outputs from
DMs and to reliably distinguish generated from natural images.

1 INTRODUCTION

In recent years, generative models have attracted significant attention for their ability to synthesize
highly realistic images. Diffusion models (DMs) (Ho et al., [2020), in particular, have emerged
as the leading paradigm, achieving state-of-the-art performance across many tasks. However, this
same capability to produce images that are nearly indistinguishable from real ones has raised
critical concerns: generated content can be misused for malicious purposes, including the creation
of deepfakes and copyright infringement (Mirsky & Leel 2021} |Franceschelli & Musolesi, [2022).
Additionally, when synthetic images are published online and later scraped into future training
datasets, they were shown to degrade the performance of generative models (Alemohammad et al.,
2024; Shumailov et al.| |2024) and amplify existing biases (Wyllie et al., 2024). Together, these
challenges underscore the urgent need for reliable detection of generated content.

Watermarking has emerged as the de facto standard to facilitate such detection. It embeds imper-
ceptible but algorithmically detectable signals into generated images, enabling distinction between
generated and original content. Most watermarking methods consist of two components: an injector
that embeds the watermark into generated images and a detector that retrieves or verifies the wa-
termark signal. A naive approach is to apply classical content watermarking techniques (Kansal
et al., 2012; |Cox et al.| [1997; |Chen & Wornell, [2001) directly to generated images. For example,
the watermark currently used in Stable Diffusion (Cox et al.,|2008)) operates by altering a specific
frequency component in the image’s Fourier domain (Wen et al.,|2023)) after generation. However,
while being computationally fast, these approaches frequently degrade image quality or can easily be
removed, limiting their practical effectiveness.

To overcome this limitation, several recent works have introduced diffusion-specific watermarking
strategies that embed the watermarking process into the generative pipeline itself (Wen et al.||2023;
Ci et al., [2024; Fernandez et al., 2023} [Yang et al.,[2024; L1 et al., 2025). While these approaches
significantly enhance watermark robustness, they often incur substantial computational overhead.
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Figure 1: Overview of SERUM. First, we train a watermark detector to distinguish between
watermarked latents (with/without augmentations) from clean latents. Second, to inject the SERUM
watermark, the watermark noise is added to the initial random Gaussian noise for diffusion generation
and passed through the LDM (Latent Diffusion Model) and decoder to produce a watermarked image.
Finally, in order to detect the watermark, the image is encoded using the LDM’s encoder and passed
through the detector, which outputs a high score for watermarked and a low score for clean images.

This overhead typically arises from extensive parameter tuning (Fernandez et al.,2023)), or from the
reliance on computationally expensive diffusion inversion for watermark detection (L1 et al.| 2025}
Wen et al., 2023} |Ci et al.l 2024)), which in practice leads to delays during the detection process.

As a solution to these drawbacks, we propose SERUM, a new DM watermark that injects additional
Gaussian noise as a watermark directly into the initial diffusion noise. We train a lightweight external
detector to identify the signature of this noise directly in the generated image, effectively eliminating
the need for costly diffusion inversion. Our detector also enables flexible training with arbitrary
perturbations, and we show that by incorporating augmented images during detector training, we
achieve strong watermark robustness to both standard image augmentations and unseen watermark
removal attacks. Consequently, SERUM combines the benefits of fast injection and detection with
the high robustness that results from embedding the watermark into the initial diffusion noise from
which the image is generated.

We thoroughly evaluate SERUM on latent diffusion models (LDMs), including Stable Diffusion
versions 1.4, 2.0, and 2.1 (Rombach et al.,|2022), and compare our results to recent watermarking
methods such as GaussMarker (Li et al.| 2025), Stable Signature (Fernandez et al.l [2023), and
RingID (Ci et al.} 2024). Our experiments demonstrate that SERUM consistently achieves superior
detection rates under a wide range of image perturbations and dedicated watermark removal attacks,
while also maintaining high image generation quality. In addition, we show that the watermark is
radioactive (Sablayrolles et al.|[2020; Meintz et al., 2025} [Kerner et al.,[2025), meaning that it remains
detectable even in outputs from models fine-tuned on watermarked data. Finally, SERUM can be
readily extended for multi-user scenarios by assigning distinct noise patterns as user-specific marks
and training corresponding classifiers. Taken together, these results highlight the practical utility of
SERUM for robust data detection in DM.

In summary, we make the following contributions:

* We introduce a novel and efficient method for watermarking generations from DMs, which adds a
watermark vector to the initial diffusion noise and trains a lightweight watermark detector.

* Our method seamlessly supports many users by simply instantiating many replicas of our approach
per user, while preserving all the desirable properties of the single-instance watermark.

» Extensive experiments on eight perturbations and three leading LDMs show that our method
achieves high robustness at low training cost and extremely fast watermark injection and detection.

* Qur evaluation on seven advanced watermark removal attack settings demonstrates that SERUM
achieves state-of-the-art performance, even without explicit training against these attacks.

* Our marking method is highly radioactive: our watermark signal remains detectable even in outputs
from models trained or fine-tuned on images watermarked with SERUM.
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2 BACKGROUND AND RELATED WORK

Diffusion Models (DMs). DMs (Ho et al.| |2020) have emerged as one of the most powerful classes
of vision generative models, achieving state-of-the-art results in image synthesis. The central idea
of diffusion modeling is to learn the reverse of a gradual noising process that destroys the structure
of the training data. At inference, new samples are generated by iteratively denoising an initial
Gaussian noise map until a clean image is obtained. While this iterative sampling provides high
fidelity, it also incurs significant computational overhead compared to prior models, such as generative
adversarial networks. To improve efficiency, [Song et al.| (2021) introduced the Denoising Diffusion
Implicit Model (DDIM), which enables high-quality image generation with fewer denoising steps by
employing a deterministic sampling process. Further advances were made with the Latent Diffusion
Model (LDM) (Rombach et al., 2022), which integrates a Variational Autoencoder (Kingma &
Wellingl 2014) to project images into a compressed latent space. Our method and evaluation target
LDMs since they represent the state-of-the-art class of image generative models.

Image Watermarking. It is indispensable to watermark outputs from vision generative models since
recent LDMs (Esser et al.| 2024; [Podell et al., [2023)) are capable of generating photorealistic images
and new legislation, for example, the EU Artificial Intelligence (AI) Act (European Parliament and
Council of the European Union), [2024)) requires us to distinguish between synthetic and authentic
content. The existing approaches to watermark LDMs can be broadly categorized into post-processing
and in-processing methods. Post-processing techniques embed watermarks into generated images
after the sampling process (Cox et al.,|2008). While extensively studied and well-established, these
approaches are vulnerable to removal or degradation. In contrast, in-processing methods integrate
watermarking directly into the generation pipeline, yielding watermarks that are harder to remove
and more seamlessly embedded (An et al., 2024bj Wan et al., 2022). Because of their strong, state-of-
the-art performance, we focus on in-processing methods that can be further divided into tuning-based
and tuning-free approaches.

Stable Signature. |[Fernandez et al.[ (2023)) proposed Stable Signature, a state-of-the-art funing-
based technique for LDMs. It leverages HiDDeN (Zhu et al., 2018), a framework composed of an
encoder, decoder, and adversarial discriminator. The encoder hides a binary message in a cover
image, while the discriminator ensures visual indistinguishability. The system is trained to be
robust against distortions like cropping and JPEG compression by including noise layers between
the encoder and decoder. Stable Signature adapts this by fine-tuning a diffusion decoder to create
watermarked images extractable by the HiDDeN decoder. While this allows for fast injection without
computational overhead during generation, it relies on the pre-trained HiDDeN extractor, which
necessitates substantial training time. Additionally, its reliance on pixel space causes it to generalize
poorly to advanced attacks, making it an undesirable choice if robustness is an important metric.

Tuning-free Watermarks. To avoid the costly fine-tuning of LDMs, tuning-free methods add a
watermark directly to the initial diffusion noise. Tree-Ring (Wen et al.,|2023) embeds the watermark
in the frequency space of the initial noise. The method achieves a high level of robustness against
common image transformations, such as cropping, dilation, and rotation. Unlike the Stable Signature
approach, which modifies the decoder, Tree-Ring influences the sampling process itself, allowing for
watermark detection by inverting the diffusion process and analyzing the retrieved noise. RingID (Ci
et al., [2024) extends Tree-Ring by employing multi-channel heterogeneous watermarking, enhancing
its capacity to identify multiple keys, and providing slight improvements in verification performance.
Gaussian Shading (Yang et al.| 2024) is another tuning-free approach that embeds bits directly into
the initial noise of the diffusion model. GaussMarker (Li et al., 2025)) ensembles the techniques of
both Tree-Ring and Gaussian Shading. It introduces a Gaussian Noise Restorer, which is a trained
component designed to improve results against common attacks such as rotation, cropping, and
scaling. Although it offers improved performance, it requires additional training. Additionally, like
most tuning-free methods, its watermark detection relies on the computationally expensive DDIM
inversion. In contrast, our detector operates directly on the generated images. We directly compare
SERUM to the state-of-the-art tuning-based Stable Signature as well as tuning-free RingID and
GaussMarker methods.

TrustMark. To build a more resilient post-processing watermarking method, the authors proposed
training two separate networks: TrustMark (the watermarking model) and TrustMark-RM (the
watermark remover). By jointly training TrustMark to embed watermarks and TrustMark-RM to undo
TrustMark’s transformations, the system embeds a signal that is difficult to remove using standard
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perturbations. While the method performs well against simple transformations, its watermark remains
easy to strip using rotations or static noise, highlighting its fundamental limitations.

3 OUR SERUM WATERMARKING METHOD

SERUM unifies the best elements from both worlds of DM watermarking. On the one hand, it matches
the speed of tuning-based watermarking methods for both injection and detection, while training only
a lightweight external watermark detector, thereby leaving the original model intact and substantially
reducing training costs. On the other hand, similar to tuning-free approaches, our method adds the
watermark to the initial diffusion noise, improving robustness. However, in contrast to prior methods,
our SERUM eliminates the need for computationally expensive DDIM inversion during detection by
relying on an external watermark detector. This significantly improves detection speed and adds the
advantage that the detector can be further fine-tuned to be robust against any image augmentations or
watermark removal attacks.

Watermark Embedding. The injection of SERUM is relatively simple. Let us denote 7 € REXw*"
as the initial diffusion noise drawn from the normal unit distribution every time an image is to be
generated (n ~ N(0, 1)), where c represents the number of channels, and w x h are the spatial
width and height dimensions, respectively. We inject a watermark noise into the spatial domain by
substituting n with n’:
, A —mean(A)
~ std(A)

7 =vV1—an+ad,

where A € R°X"*" is the watermark, A’ is the normalized watermark and « is a hyperparameter
controlling the balance between watermark’s detectability and image diversity. Normalization of
A provides a theoretical guarantee of low Kullback-Leibler divergence between the distribution of
watermarked and non-watermarked noises, as we prove in Appendix [B] This gives our method a
more theoretically grounded justification of high image fidelity. To ensure that the DM generates
high-quality images even after substituting the initial noise with 7', we set A once to values drawn
from a normal unit distribution: A ~ A(0, I) before training the detector. This ensures that most
sampled images lie in a region of high unit Gaussian probabilities.

Watermark Detection. We detect SERUM via a lightweight watermark detector. This module
is designed to avoid computationally expensive DDIM inversion. Our detector is denoted as f :
Rexwxh 5 10,1] and is used to verify whether a particular image is watermarked. Note that the
input x to f for LDMs is in the latent space (after image embedding), thus, its typical dimensions for
SD models are z € R4X & X & (Rombach et al.,[2022)), with W and H being respectively width and
height of the image.

We formulate the loss function £ used to update f at each step as a sum of the loss terms: £,, (for
watermarked images) and £,, (for non-watermarked images), i.e., L = L, + L.

The L,, term of the loss function is responsible for training the model f to produce high confidence
scores when watermark noise is added for image generation:

ﬁw = _IOg f(l'*) _logf(T(x*,m)) —IOg f(x:) )
—_——— —_———

marked clean marked transformed  marked precomputed

where — log f(z*) serves to identify watermarked images z*. The second sub-term — log f (7 (z*.,,,))
is for watermarked images perturbed with a random image transformation 7~ sampled from an aug-
mentation sampler. Only m samples are perturbed to reduce the computational overhead of dynamic
augmentations where m is a hyperparameter. For the sampler’s design, we adapt Prioritized Experi-
ence Replay (Schaul et al.l|2015). The idea is to make the training procedure target perturbations
in which the model performs poorly. This, in turn, strengthens the signal pushing the model into
the region of robustness against these difficult augmentations. Our version of the algorithm uses a
combination of four techniques: (1) adaptive step sizes for quick likelihood adjustments to changes,
(2) probability smoothing to guarantee exploration, (3) a temperature term to balance exploration
with exploitation, and (4) clipping to ensure that priority values stay in numerically stable ranges. For
more details on the sampler, see Appendix The third sub-term — log f(x}) is for precomputed
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augmentations. It allows the model to learn robustness against transformations without much addi-
tional computing power. Overall, £,, is a component of the loss function that trains the model to
assign high scores to watermarked images, both clean and perturbed.

The L,, loss term is analogous to £,,, but designed for samples x generated using a clean random
initial noise (no watermark added):

L, = —log (1 — f(x)) —log (1 = f(T(x::m))) —log (1 — f(z)) -

clean transformed precomputed

To reduce training time, perturbations of both z* and x are precomputed, resulting in zj and z;.
For high-epoch training runs, it is important that, at every training step, m samples be dynamically
transformed, as this prevents the model from overfitting. For more details, see Appendix D]

The injection of the watermark noise through a simple weighted sum is motivated by two factors:
(1) high detectability by the trained watermark detector and (2) a provably lower Kullback-Leibler
Divergence to a unit Gaussian distribution than the method proposed by GaussMarker. Thus, our
watermark injection has a lower effect on the distribution of watermarked images, while providing
high watermark identification performance.

Multiple Users. SERUM supports multiple users seamlessly by assigning to each user ¢ a unique
subset S; C {1,...,m} of k normalized noise patterns { A}, : p € S;} together with a corresponding
user-level detector score D;. The watermark injected for user ¢ is obtained by combining all of the
patterns belonging to that user. More precisely, for a clean noise sample 1 we define

o= +Vi—an+ \/gZA;,

PES;

Each per-pattern detector is trained using the same procedure as described above but with the
corresponding A; used as the injected noise. These lightweight detectors are cached after training,
and the user-specific detector score is constructed as the product

i) = T dole).
PES;

where d,(x) is the detector score for pattern p. Verification for a user 4 then reduces to evaluating
D;(x) on the generated content.

For a set of users {1,...,n} (withn < (7;)) the overall watermark score for a sample x is defined as
S(x) = maxdy(z),
P
where the prediction is labeled as positive when S(x) > 7 and 7 is the lowest threshold such that
S(z) produces a false positive rate of at most 1%.

After verifying that the watermark is embedded within the image, the user associated with the detected
watermark is given by

1(z) = argmax D;(x).
Consequently, the time complexity of training models for multiuser detection is O(¥/n).

4 EMPIRICAL EVALUATION

We evaluate SERUM along three axes: (1) robustness to standard perturbations and watermark
removal attacks, (2) the quality of the generated images, and (3) the impact of watermark strength on
both robustness and image quality. Finally, we also assess the multi-user setup. We begin by detailing
the experimental setup used for our evaluations.

4.1 EXPERIMENTAL SETUP

Models. We evaluate our method and the baselines on three versions of Stable Diffusion (SD): 1.4,
2.0, and 2.1 (Rombach et al., [2022). All models are text-to-image and generate images at a resolution
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Table 1: Watermark robustness against perturbations. Results are calculated on 10,000 samples
(5,000 watermarked and non-watermarked) and TPR @ 1% FPR thresholds are calculated separately
for each perturbation.

Perturbation Robustness (TPR @ 1% FPR)
Average Clean Rotate JPEG C&S R.Drop Blur S.Noise G. Noise Bright

SD 2.1 59.43 100.00  4.30 93.18  99.98 0.42 100.00 14.80 86.96 35.20
TrustMark SD2.0 4822 93.28 1.88 5220  96.00 0.14 93.14 21.14 53.58 22.58
SD1.4 5932 100.00  4.64 93.36  100.00 0.40 100.00 14.92 86.08 34.54

SD 2.1 90.94 99.96 9462 91.14  99.96 99.06 99.40 91.02 49.02 94.24
Stable Signature SD 2.0  91.09 99.96 95776  90.96  99.92 99.18 99.52 90.80 48.36 95.36
SD 1.4  90.98 99.98 9512  89.00  99.98 98.58 99.68 90.26 51.98 94.24

SD 2.1 88.48 100.00  99.88  99.98 5.50 99.96  100.00  100.00 92.30 98.74
RingID SD2.0  88.64 100.00 99.88 100.00 6.02 99.98 100.00  100.00 92.66 99.20
SD14  88.77 100.00 99.88 100.00 5.96 99.96  100.00  100.00 93.32 99.82

SD 2.1 97.87 100.00 9894 9948  88.72 100.00  97.72 99.90 97.80 98.24
GaussMarker  SD2.0  97.78 100.00 99.00 98.92  89.08 100.00  98.02 99.94 96.16 98.86
SD1.4  97.07 100.00 9890 97.70  85.94 99.98 95.32 99.92 96.70 99.14

SD 2.1 99.75  100.00 99.34 9998  99.54 99.86  100.00  100.00 99.30 99.72
SERUM (Ours) SD2.0  99.78 100.00 9942  99.88  99.50 99.84  100.00 100.00 99.54 99.84
SD1.4 9976  100.00 99.26 100.00 99.58 99.90  100.00  99.98 99.46 99.68

Method Model

of 512 x 512 pixels, with a latent space size of 4 x 64 x 64. Sampling is performed using 50 denoising
steps with a guidance scale of 7.5. For CLIP score calculations, we employ the ViT-B/32 model from
OpenAlI’s CLIP framework Radford et al.|(2021)), which utilizes a Vision Transformer (Dosovitskiy:
et al.| 2021) architecture with a patch size of 32 pixels.

Datasets. To train our watermark detector, we use generated images based on the first 40,000 prompts
from the Gustavosta/Stable-Diffusion-Prompts repository, using the same latent diffusion model
(LDM) on which our method is later evaluated. For the TPR@ 1%FPR evaluation, we use a disjoint
test set consisting of 5,000 prompts from the same repository, yielding 10,000 images in total (one
clean and one watermarked image per prompt). To assess the perceptual quality of the clean and
watermarked images, we additionally compute the Fréchet Inception Distance (FID) using 10,000
images from the COCO 2014 validation split (Lin et al., 2014). In both evaluations, the positive
prompt drives the image generation, whereas the negative prompt is kept empty, serving only as a
neutral input that contributes no suppressive guidance.

Baselines. We compare our method primarily against Stable Signature (Fernandez et al., [2023)),
TrustMark (Bui et al.| 2025)), RingID (Ci et al., [2024), and GaussMarker (Li et al., 2025)) as these
methods yield state-of-the-art results in DM watermarking. For Stable Signature, we adapt the SD
decoder using the watermark extractor released in the corresponding repository. This extractor was
trained with a wider range of image augmentations, including blur and rotations, which improves
robustness against such attacks, although at the expense of a slight reduction in image quality. For
our experiments, we fine-tune the decoder on a 2,000-image subset of COCO (Lin et al.| 2014), with
default parameters. GaussMarker combines multiple strategies and reports state-of-the-art robustness
when measured as mean TPR @ 1% FPR across various perturbations, making it a strong reference
point. We trained, generated, and evaluated GaussMarker using a modified version of their open
source pipeline. For more details, see Appendix

Perturbations. To evaluate robustness, we test SERUM under eight different perturbations:

* Rotation: Random rotation in the range of [—90°, 90°] with gray padding for corner filling.

* JPEG Compression: Quality factor of 25.

* Crop & Scale (C&S): Random crop retaining 75% of the original area with an aspect ratio of 1.
* Random Drop (R. Drop): Random removal of 64% of the image pixels.

* Salt & Pepper Noise (S. Noise): Corruption of 5% of the pixels.

* Gaussian Noise (G. Noise): Additive white Gaussian noise with a standard deviation of o = 0.1.

* Brightness: Application of color jitter by adjusting the brightness with a factor of 6.
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Table 2: Robustness against advanced generative removal attacks. We report TPR @ 1% FPR
evaluated on 10,000 samples.

Method Average VAE Regen-12 Rinse-4x8 Regen-30 Rinse-2x25 CtrlRegen 12V
TrustMark 1230  57.62 1.32 0.70 1.06 1.02 1.18 23.20
Stable Signature 1.18 2.70 1.30 0.62 0.42 0.76 0.86 1.60
RingID 65.40  99.98 98.22 84.12 32.58 24.88 77.82 40.20
GaussMarker 58.01 98.36 89.30 65.80 9.72 10.40 91.06 41.40
SERUM (Ours) 90.87  99.88 99.72 99.38 88.50 90.76 99.64 58.20

* Gaussian Blur (Blur): 15 x 15 kernel with standard deviation o sampled uniformly from [0.1, 2.0].

We provide additional visualization of the above perturbations in Figure[7]

Advanced Attacks. For advanced watermark removal attacks, we follow the WAVES (An et al.,
2024a)) benchmark and evaluate five types of attacks: VAE, Regeneration (Zhao et al., 2024), Rinse,
CtrlRegen (Liu et al., 2025)) and Image-to-Video (I2V) (Lu et al., 2025). Details about the exact
experimental setup of the attacks are available in Appendix [C]

Hyperparameters. We train our watermark detector for 50 epochs using Adam (Ir = 1073, 8; =
0.9, B2 = 0.999) and a ReduceLROnP lateau scheduler (factor 0.2, patience 2). The watermark
strength is configured with o = 0.5. Each training batch consists of 32 clean and 32 watermarked
images. The perturbation size m is set to 4. Before training, we generate 15,000 watermarked images
(z*) and their random perturbations.

4.2 ROBUSTNESS TO IMAGE PERTURBATIONS

Table[I] presents the performance of SERUM under various image perturbations, measured as True
Positive Rate (TPR) at a fixed 1% False Positive Rate (FPR). SERUM consistently outperforms prior
approaches across all tested models and perturbations. Across all model versions, SERUM achieves
an average TPR above 99.7%, setting a new state-of-the-art in robustness. Specifically, our method
maintains near-perfect detection on clean images and demonstrates exceptional resilience to a wide
range of augmentations.

In comparison, while TrustMark is resilient to C&S, it exhibits severe vulnerability to rotation,
random drop (dropping below 5% TPR), and noise-based perturbations. Similarly, Stable Signature
performs well on clean images and C&S, but suffers substantial drops under Gaussian noise (e.g.,,
48-52% TPR) and degrades under JPEG compression and rotation. RingID achieves high detection
rates for most perturbations but collapses under C&S (5-6% TPR), indicating a critical limitation.
Finally, GaussMarker obtains the second-highest average TPR but displays variable performance,
specifically lagging in C&S robustness (85-90% TPR). Overall, SERUM achieves the highest average
TPR and the best stability among all evaluated methods.

4.3 ROBUSTNESS TO WATERMARK REMOVAL ATTACKS

Watermark Removal Attacks. We further assess robustness of our SERUM watermark against the
baselines under dedicated watermark removal attacks in Table[2] We report the TPR@ 1%FPR on
10,000 samples (2,000 for I2V) with our watermark detector not trained on these attacks. It maintains
a TPR exceeding 99% across VAE, Regen-12, Rinse-4x8, and CtrlRegen. Even under significantly
more aggressive strategies, SERUM retains robust performance, yielding TPRs of 90.76% on Rinse-
2x25 and 88.50% on Regen-30. Finally, against the most destructive 12V attack, it achieves 58.20%,
substantially outperforming the best available competing methods. This displays SERUM’s strong
ability to generalize to unseen attacks which we further discuss in Appendix [E]

We observe a sharp performance dichotomy in competing methods based on the attack intensity.
While baselines like RingID and GaussMarker remain effective on low-noise reconstructions (e.g.,
VAE, Regen-12), their detection rates collapse on high-noise variants like Regen-30 and Rinse-2x25.
In contrast, SERUM exhibits consistent stability across the entire spectrum of attacks, bridging the gap
between standard robustness and resilience to destructive generative perturbations (further discussed
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Table 4: Quantitative analysis of the generation quality. Adding SERUM has a negligible effect on
the quality of the generated images and comparable to prior approaches.

Method FID ({) CLIP Score (1)
SD14 SD20 SD21 Avg SD14 SD20 SD21 Avg

Clean 17.74 17.53 18.43 17.90 03123  0.3169  0.3137 03143
TrustMark 17.80 17.51 18.45 17.92 0.312 0.3162 0.3135 0.3139
Stable Signature 17.87 17.60 18.44 17.97 03069  0.3159  0.3140 03123
RingID 20.17 18.73 20.19 19.70 0.3103  0.3147 03125 03125
GaussMarker 20.03 19.32 21.13 20.16 03115  0.3157  0.3147 03140
SERUM (Ours) 19.14 18.51 19.24 18.96 03115  0.3164 03135 03138

in Appendix [E)). Overall, these results highlight robustness of our SERUM also against dedicated
attacks.

4.4 RADIOACTIVITY

Watermark radioactivity (Sablayrolles et al.l 2020) refers to the
persistence or transferability of a watermark when watermarked
images are used to train or adapt new generative models. High
radioactivity means that the watermark signal remains detectable

Table 3: Radioactivity.

Model Adaptation TPR @ 1%FPR

in outputs from models trained on watermarked data. Thisisa  SD14  LoRA 52.30%
desirable property to trace data provenance through its lifecycle =~ SD14  FFT 77.12%
where generated data can be used in training of new generative =~ SANA  FFT 96.76 %

models (Sander et al.| [2024; Meintz et al., [2025; Kerner et al.,

2025). We evaluate SERUM'’s radioactivity by adapting diffusion models on images generated by
watermarked SD 2.1 via full fine-tuning (denoted as FFT) and LoRA (Low Rank Adaptation) (Hu
et al., 2022). We present the results in Table [3] For the purpose of this experiment, we train SD 1.4
and SANA-0.6B and report the TPR @ 1% FPR for a checkpoint with the lowest evaluation loss
in Table[3] For more details see Appendix [[} Our results suggest that SERUM is highly radioactive
for both SD models and SANA, displaying large impact on diverse model families adapted with
different methods on watermarked data. To the best of our knowledge, this is the first instance in
which watermarked outputs from diffusion models have been demonstrated to be radioactive.

4.5 QUALITY OF WATERMARKED IMAGES

Table [ reports the impact of watermarking on generation quality, measured by FID and CLIP Score.
Our method demonstrates a negligible impact on visual quality across all evaluated Stable Diffusion
versions. On average, SERUM incurs only a minor increase in FID (17.90 Clean vs. 18.96 Ours)
while preserving semantic consistency, as indicated by the nearly unchanged Average CLIP Score
(0.3143 Clean vs. 0.3138 Ours).

Regarding baselines, TrustMark and Stable Signature achieve the best fidelity retention, with averages
of 17.92 and 17.97 FID, respectively. However, SERUM demonstrates superior quality compared to
the other distribution-based methods, RingID and GaussMarker, which suffer from higher degradation
(19.70 and 20.16 Avg FID, respectively). Overall, these findings highlight that the robustness of
SERUM does not come at the expense of visual generation quality, as qualitatively shown in Figure

4.6 MULTI-USER WATERMARKING

We illustrate the performance of our method in a multi-user setting in Figures [3ajand [3b] We train
m = 135 detectors and evaluate the system with a subset size of k = 2, supporting a total user base
of n = (12’5) = 9,045. Each pattern uses o = 0.3, producing a combined watermark strength of
Qtotal = 0.6. Evaluation is performed on 25,000 images for User Accuracy and 5,000 images for

TPR calculation.

Watermark detection (TPR @ 1% FPR). SERUM proves highly robust at scale. With 9,045 users,
it maintains 99.96% TPR on clean images, 99.76% on Gaussian Blur, and 99.30% on JPEG Com-
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Figure 2: Qualitative analysis of generation quality. We present outputs from the SD 2.1 model
without (Clean) and with our SERUM (denoted as Ours with the parameter o = 0.5) watermark. The
most important image qualities like style and content are preserved while slightly modifying shape or
perspective. More examples can be found in Appendix Figure@
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(a) Watermark detection (TPR @ 1% FPR). (b) User identification accuracy. Identification re-
SERUM scales robustly to 9,045 users, maintaining ~ mains precise at scale, achieving over 90% accuracy
over 95% TPR on most perturbations. on 7 of 8 perturbations for 9,045 users.

Figure 3: Performance of SERUM in a multi-user setting.

pression. Even under challenging geometric perturbations, it retains strong detectability, achieving
88.70% TPR on Crop & Scale and 78.12% on Random Rotation.

User Identification Accuracy. SERUM consistently maps the signal to the correct user. At the full
scale of 9,045 users, the system maintains 99.79% accuracy on clean images and 99.10% on Salt &
Pepper Noise. Even under the most difficult transformations, such as Random Rotation and Crop &
Scale, the system correctly identifies the user in 82.56% and 90.29% of cases, respectively.

These results highlight the practical utility of SERUM: it scales efficiently to thousands of users while
accurately identifying ownership even under significant image perturbations.

4.7 ABLATION STUDIES

To further examine the internal properties of our SERUM watermark, we conduct a series of ablation
studies. We analyze how the watermark strength « affects both Fréchet Inception Distance (FID) and
detection performance. Furthermore, we dissect the contribution of individual training components
(specifically the loss terms and the augmentation sampler temperature) to demonstrate the necessity
of our dynamic training strategy. The results highlight that o = 0.5 strikes the right balance between
fidelity and detection, and that combining precomputed and dynamic augmentations is crucial for
achieving state-of-the-art robustness.
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Table 5: Impact of watermark strength o on image quality (FID) and detection robustness (TPR @
1% FPR) for SD 2.1. We select o = 0.5 as the optimal trade-off.

Perturbation Robustness (TPR @ 1% FPR)
Average Clean Rotate JPEG C&S R.Drop Blur S.Noise G.Noise Bright

o FID

0.0 18.43 - - - - - - - - - -

0.1 1891 78.49 98.64 2392 9460 41.18  90.76 97.30 94.82 76.14 89.02
0.2 1884  91.85 99.74  66.16  97.72 80.08  97.86 99.22 98.90 92.50 94.44
0.3 1895 97.73 99.96 9198 99.74 94.84  98.68 99.74 99.78 97.64 97.24
04 19.05 98.92 99.98 9550 99.78 98.38  99.32 99.92 99.76 98.62 98.98
0.5 1924  99.75 100.00 9934 9998 99.54  99.86 100.00  100.00 99.30 99.72
0.6 1996  99.82 100.00  99.60 99.94 99.58  99.86 99.96 100.00 99.70 99.74
0.7 20.82  99.90 100.00 99.54 9998 99.86  99.94 99.98 100.00 99.84 99.96

Table 6: Impact of watermark components and sampler temperature 7 on robustness (TPR @
1% FPR) for SD 2.1. We compare: clean (training solely on clean images), precompute (adding
precomputed augmentations), and transform (our dynamic sampler). The temperature 7 controls the
sampler’s focus: 7 = 0 strictly prioritizes hard examples, while 7 = oo samples uniformly.

Perturbation Robustness (TPR @ 1% FPR)

Set
ep Average Clean Rotate JPEG C&S R.Drop Blur S.Noise G.Noise Bright
clean 78.68 100.00 1494 99.86 59.80  77.44 100.00  98.52 66.86 88.74
precompute 97.16 100.00  79.72 9990 97.18  99.56 99.96 99.86 99.18 99.06

transform (7 = 0) 99.48 100.00 98.06  99.70 99.24  99.82 99.98 99.92 98.86 99.30
transform (7 = 0.1)  99.60 100.00 99.06  99.88 99.12  99.68 100.00  99.94 99.28 99.42
transform (7 = 0.3)  99.64 100.00  99.00 99.94 99.38  99.66 99.96 99.94 99.44 99.48
transform (7 = 0.5)  99.70 100.00 9930 99.86 99.48  99.86 100.00  99.94 99.50 99.36
transform (7 = 1.0)  99.75 100.00 99.34 9998 99.54  99.86 100.00  100.00 99.30 99.72
transform (7 = 2.0)  99.67 100.00 9834 9990 99.56  99.82 100.00  99.98 99.70 99.76
transform (7 = oco0) 99.34 100.00 95.88 9990 9936  99.84 99.98 99.98 99.58 99.52

We provide additional comprehensive experiments in Appendix [G] covering runtime performance,
FPR evaluation on real-world data, ablation studies on the augmentation sampler batch size, general-
ization to different architectures, and robustness analysis under stricter evaluation protocols.

Impact of Watermark Strength. We analyze the impact of the watermark strength hyperparameter
« on image quality and detection performance. As illustrated in Table[3] there is a distinct trade-off:
increasing « strengthens the watermark signal, which significantly improves the TPR, but comes
at the cost of a higher FID score, indicating a slight reduction in the diversity of generated images.
We select o = 0.5 as the optimal balance between fidelity and robustness for our main evaluations.
However, this parameter is flexible; larger values can be employed for applications where detection
robustness is prioritized over strict fidelity retention.

Impact of Individual Components. We further examine how different training components con-
tribute to robustness. Specifically, we evaluate the effect of loss terms on clean, precomputed, and
transformed samples, alongside the impact of the augmentation sampler’s temperature. Results in
Table [6|demonstrate that incorporating all loss terms is essential for high performance and that setting
the temperature to 7 = 1 yields the best results. We provide a detailed analysis of these sampling
dynamics in Appendix [G.2]

5 CONCLUSIONS

We introduced SERUM, a novel watermarking method for DMs that unifies the strengths of prior
approaches into a simple, efficient, and robust framework. By combining watermark noise insertion
at the initial diffusion stage with the training of a lightweight yet robust watermark detector, SERUM
achieves state-of-the-art performance in watermark detection while preserving both the distribution
and quality of generated images. SERUM delivers stronger robustness to image perturbations and
watermark removal attacks than previous methods while requiring only minimal training and enabling
efficient watermark injection and detection.

10
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A AUGMENTATION SAMPLER

Our method involves drawing perturbations, applied to images during training, from a dynamically
adjusted probability distribution. The implementation of the sampler makes the training prioritize
more difficult transformations improving our method’s robustness. We denote the number of augmen-
tation candidates by n, the per-augmentation priority vector by p € (0, 1)™, and the following scalar
hyperparameters:

€, Esmooth, T, base_lr_pos, base_lr_neg, boost, 3.

For the purpose of our experiments we set
e =1e— 3, Esmooth = le — 3, 7 =1, base_Ir_pos = 0.2, base_Ir_neg = 0.05, boost =3, 5 = 1.
A.1 SAMPLING

The sampling routine (presented in Algorithm[I]) converts priorities into a probability distribution
with smoothing and temperature, then samples a single augmentation index.

Algorithm 1: Sampling from the augmentation distribution

Input: priority vector p € (0,1)", smoothing parameter oo > 0, temperature 7 > 0, integer
k>1

Output: a single index

Compute softened scores: s; < (p; + Egmoom) /" for all i;

Normalize to probabilities: ¢; + s;/ 2?21 s; for all 4;

Sample a single index i ~ Categorical(q, ..., qn);

return ¢;

A.2 UPDATE

The update rule (presented in Algorithm 2) adjusts a chosen augmentation’s priority p; depending on
whether it produced a mistake or not. The algorithm uses adaptive step sizes that depend on the
current priority and a multiplicative boost term. Finally, priorities are clipped to stay away from
exactly O or 1.

Algorithm 2: Updating a sampled augmentation’s priority

Input: chosen index ¢ € {1,...,n}, boolean mistake, current priority p;, scalars
base_lrpes, base_lryeg, boost, 3, €
Qutput: updated p;
if mistake = true then
compute adapt factor: a < (1 — p;)?;
learning rate: 7 < base_lrpo - (1 -+ boost - a);
increase priority: p; < p; + 1+ (1 — p;);
else
compute adapt factor: a < pf ;
learning rate: 7 <— base_lrye, - (1 + boost - a);
decrease priority: p; <— p; — 1 - Pi;

clip priority: p; + clip(p;, e, 1 — ¢€);
return updated p;, e, yrisiake;

B DERIVATION OF KULLBACK—-LEIBLER DIVERGENCE
Letd = c¢-w - h and let
p(z) =N(z|0,I)

be the d-dimensional standard Gaussian distribution.
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B.1 KL DIVERGENCE FOR SERUM
Let gours() be the PDF of the initial watermarked noise distribution 7’ for our method.

n=vV1i—an+vad, n~N(0I)
Thus p’ ~ N (y/a A’, (1 — a)I). Using the closed-form KL divergence between Gaussians

det [

(I = o)) = d b Va AT A tlog g oy

N |

DKL(QOurs ” p) =

1
=3 [(1 —a)d—d+ a|A||3 — dlog(1 — a)]

Since A’ is normalized such that || A’||?

= d, this reduces to:

d
DKL(qours ||p) = _5 log(l - Oé)

In particular, for o = % this evaluates to:

d
DKL(Qours Hp) = 5 10g2

D1 (qours || p) = 5,678 for d = 214

B.2 KL DIVERGENCE FOR GAUSSMARKER

In this work, we focus on the spatial-domain watermarking variant of GaussMarker, where watermark
information is embedded by enforcing specific signs of the initial noise. This restriction naturally
corresponds to selecting an orthant in R?, determined by the watermark signal map.

We define the GaussMarker distribution ggn () as the Gaussian distribution truncated to a fixed
orthant O C R<. Since the Gaussian is symmetric, the probability mass of any orthant is exactly 279,
To obtain a normalized density, we scale by 2¢.

24 p(x) if x €0,
dom () = {0 otherwise.

DMMMNMZAﬁ@W%ggw

I R JCON

=log2¢. / q(x) dzx
o
=dlog?2

‘DKL(QGM lp) = dlog2‘

Dir(gem || p) = 11,357

B.3 KL DIVERGENCE COMPARISON

As such, D, for our method is lower than that of GaussMarker, providing a theoretical explanation
for a lower FID value of our method.

16



Published as a conference paper at ICLR 2026

C ADVANCED ATTACKS DETAILS

VAE. We utilize the factorized prior model from Ballé et al.|(2018)) with a quality level of one. The
attack involves compressing and subsequently resampling the image using the VAE’s encoder-decoder
architecture, effectively regenerating the image content.

Diffusion-based Attacks Setup. For all diffusion-based baselines (Regeneration and Rinse), we
utilize the 256 x 256 unconditional version of Guided Diffusion (Dhariwal & Nicholl, [2021). We
operate on downscaled images using the DDIM sampler and upscale the model outputs afterwards.

Regeneration. In this attack, we perturb the image with noise and then denoise it using the last 12 or
30 steps of a 50-step diffusion schedule, yielding the variants Regen-12 and Regen-30, respectively.

Rinse. This method applies the Regeneration process iteratively. Specifically, Rinse-4x8 runs
Regeneration with 8 DDIM steps four times, and Rinse-2x25 runs Regeneration with 25 DDIM steps
twice.

CtrlRegen. Following the official implementation (Liu et al.| 2025)), we generate images starting from
random Gaussian noise using the pretrained checkpoints provided by the authors. Unlike standard
regeneration attacks that initialize from the watermarked image, CtrlRegen reconstructs the content
solely via semantic and spatial guidance, effectively severing the link to the original watermarked
latent code.

Image-to-Video (I2V). To evaluate robustness against video generation, we employ Stable Video
Diffusion (Blattmann et al., [2023)) to generate video sequences of 19 frames conditioned on the
watermarked image. We perform watermark detection specifically on the final frame (19th frame) to
assess robustness against the temporal accumulation of diffusion and decoding artifacts.

We illustrate these advanced attacks with qualitative examples in Figure [6]

D PREVENTING BINARITY OF CLASSIFIER OUTPUTS

Training on only precomputed transformations and generated data resulted in poor performance when
measured with ROC-AUC after a significant number of epochs. We theorized that at least one of the
reasons for this phenomenon is classifier binarization, a situation in which the model begins to learn
to output class predictions with near-perfect confidence. This causes the output distribution of the
model to be concentrated in two points, which makes TPR @ FPR results suboptimal. To address this
issue, we added an additional regularizing sub-term to both loss terms. This sub-term ensures that the
model outputs correct predictions for randomly transformed training samples. Since this perturbation
is random at each step, the classifier is unable to memorize the outputs for these samples, making the
model’s confidence low for difficult data.

E SERUM’S GENERALIZATION CAPABILITIES

In this section, we investigate the underlying factors contributing to SERUM’s strong generalization
to unseen attacks by analyzing the impact of training augmentations, diffusion inversion, and the
detection space.

Firstly, we check whether the augmenta- aple 7: Robustness to advanced attacks. TPR @

tions used for classifier training improve  j¢;, FpR for a watermark detector trained without any
its robustness to unseen attacks. As perturbations.

such, we train SERUM after removing

the perturbation'related sub-terms from the VAE Regen-12 Rinse-4x8 Regen-30 Rinse-2x25 CtrlRegen 12V
loss formulation. While we do notice a
significant decrease in performance when
evaluated on advanced attacks, the results remain high. This suggests that our method’s robustness to
such attacks is a core feature of the method itself, rather than a consequence of the transformations
used during training. We report these results in Table

98.64  90.62 87.22 52.28 51.90 86.90  47.10

We then verify the impact of DDIM inversion on latents by calculating the Euclidean distance between
latents of the original image and those of the same image perturbed with a random transformation.
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Table 8: Watermark robustness. Results showing TPR @ 1% FPR on each perturbation for a
watermark detector trained without this specific transformation. Evaluated on 5,000 watermarked and
clean samples.

Rotate JPEG C&S R.Drop Blur S.Noise G.Noise Bright
18.46 99.96  56.34 64.02 99.96  99.88 91.70 78.02

We compare this distance to the Euclidean distance between the corresponding initial noises after
performing DDIM inversion. Running this experiment on 1,000 synthetically generated images
with SD 2.1 shows that the Euclidean distance increases from 103.18 to 117.47 after inversion.
This indicates that DDIM inversion amplifies the effect of augmentations on latents, implying that
inversion-free methods possess an inherent advantage.

Lastly, we observe that most perturbations and attacks primarily operate in pixel space and do not
modify the semantics of the image. For instance, noise perturbation distorts the image but does
not change its high-level semantics. This suggests that latent-based watermarks should be naturally
resilient to pixel-space attacks and transformations, giving them a massive advantage.

These deliberations lead us to attribute our method’s success against unseen attacks to two main
factors:

1. SERUM, unlike most other evaluated methods, does not rely on DDIM inversion.

2. The watermark detector operates in latent space rather than pixel space, providing greater robust-
ness than Stable Signature’s watermark extractor.

F FLEXIBILITY OF SERUM

Let 7; denote the i-th perturbation and 7 the full set of augmentations used during training. To
measure how training on transformations affects robustness to an individual transformation 7;, we
train the detector on 7 \ {7;} and then report TPR at 1% FPR measured on 7;. Results are shown
in Table [§] We observe substantial drops in performance for rotations, C&S, and random drop
when those transformations are omitted from training; in particular, rotation is more damaging than
many of the other advanced attacks. The fact that our method can learn near-perfect robustness to
rotation when it is included in training demonstrates high flexibility; the detector can learn to recover
watermarks even under very challenging perturbations.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 RUNTIME

We evaluate the computational efficiency of SERUM against state-of-the-art baselines on an NVIDIA
A100 GPU. The results, summarized in Table 0] demonstrate that SERUM achieves a superior
trade-off between training effort and inference-time latency.

Unlike inversion-based approaches such as RingID and GaussMarker, which suffer from prohibitive
detection costs (>110 min) due to the necessity of reversing the diffusion process (DDIM inversion),
SERUM enables rapid detection (2.5 min per 5,000 images). Additionally, SERUM achieves near-
instantaneous injection (17ms), significantly outperforming baselines that rely on computationally
costlier spectral domain operations (FFT) (~2s). Furthermore, our training phase is significantly
more efficient than other learning-based methods, requiring only 9.48 hours compared to 57.5 hours
for Stable Signature and 336 hours for TrustMark. This efficiency stems from our lightweight detector
design.

G.2 RESULTS ON REAL DATA

While training on synthetic data ensures fair evaluation, it does not guarantee low false positive
rates when applied to real-world images. To assess generalization, we evaluate our model on 5,000
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Table 9: Runtime Performance. Measured on an NVIDIA A100 GPU. Injection and detection times
are reported for a batch of 5,000 images. Training time for SERUM includes the overhead for data
generation and pre-computing augmentations.

Method Training Time  Watermark Injection ~Watermark Detection
TrustMark 336 h 76's 1.34 min
Stable Signature 57.52h 0 ms 1.1 min
RingID - 1922 ms 140.7 min
GaussMarker 093 h 2022 ms 117.0 min
SERUM (Ours) 9.48 h 17 ms 2.5 min

Table 10: Impact of architectures on watermark robustness. Results are calculated on 10,000
samples (5,000 watermarked and non-watermarked) and TPR @ 1% FPR thresholds are calculated
separately for each perturbation. We use SD 3.0 (medium) underpinned by the Diffusion Transformer
(DiT) and compare it against the UNet-based SD 2.1.

Perturbation Robustness (TPR @ 1% FPR)
Average Clean Rotate JPEG C&S R.Drop Blur S.Noise G.Noise Bright

Transformer SD3.0  95.24 99.82  81.18 9950 88.64  98.66 99.60 99.10 91.86 98.76
UNet SD 2.1 99.75 100.00 9934 9998 99.54  99.86 100.00  100.00 99.30 99.72

Architecture Model

randomly sampled images from the LAION-2B and COCO datasets. The model is trained exclusively
on synthetic data, and the decision threshold is fixed to the value computed over clean synthetically
generated images. Under this setting, the FPR (at 100% TPR on clean synthetic data) is only 0.24%
on LAION-2B and 0.00% on COCO, demonstrating that our method transfers effectively to real data.

G.3 GENERALIZATION TO DIFFUSION TRANSFORMERS

We compare the performance of our SERUM watermark for models underpinned by different ar-
chitectures. Concretely, we show that the method generalizes to the Diffusion Transformer (DiT)
architecture which is used in SD 3.0 model and compare its robustness to perturbations against SD
2.1 based on UNet architecture. We think that SERUM’s strong performance with a DiT-based image
generator can be attributed to the detector’s model-specific training. The results are presented in
Table

G.4 ROBUSTNESS TO EXTREME CROP & SCALE

To assess the limits of watermark persistence under severe geometric distortions, we extend our
evaluation of the Crop & Scale perturbation to stricter retention rates, ranging from 75% down to
25%. We present the results in Table[TT]

We observe a sharp divergence in performance as the attack severity increases. While Stable Signature
remains effective at moderate cropping levels (>50%), it degrades rapidly under aggressive conditions,
collapsing to near-zero detection at 25% retention. RingID exhibits the most severe vulnerability,
failing to achieve meaningful detection rates even at the mildest 75% retention setting. Similarly,
TrustMark and GaussMarker exhibit early failure modes, dropping to negligible detection rates as
soon as retention falls below 50%. In stark contrast, SERUM demonstrates exceptional resilience,
maintaining a TPR of 93.54% (at 1% FPR) and 81.52% (at 0% FPR) even when only one-quarter of
the original image content remains.

G.5 EVALUATION AT STRICTER FALSE POSITIVE RATES
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Table 11: Ablations on Crop and Scale. We present a range of retain values for the Crop and Scale
perturbation on SD 2.1. We report both TPR @ 1% FPR and TPR @ 0% FPR.

Method Metric 5%  50%  45% 40% 35% 30% 25%

TPR@1% 9998 0.18 004 006 0.00 0.02 0.04
TPR@0% 99.96 0.04 002 000 000 0.00 0.00

TPR@1% 9996 99.72 87.64 57.76 37.68 580 0.94
TPR@0% 9824 8098 7566 3.10 0.88 0.00 0.00

TPR@1% 5.50 0.01 0.00 0.00 000 0.00 0.00

TrustMark

Stable Signature

RingID

TPR@0% 0.12 0.01 0.00 0.00 0.00 0.00 0.00

TPR@1% 88.72 5.32 3.72 2.68 3.10 2.30 1.82
GaussMarker

TPR@0% 18.26 0.20 0.10 0.02 0.18 0.06 0.04
SERUM TPR@1% 99.54 98.98 99.08 98.86 98.76 97.22 93.54

TPR@0% 9522 9412 9594 89.76 91.00 88.56 81.52

Table 12: Watermark robustness against perturbations. Results are calculated on 10,000 samples
(5,000 watermarked and non-watermarked) and TPR @ 0% FPR thresholds are calculated separately
for each perturbation. Please note that this table is equivalent to Table E]but with decreased FPR.

Perturbation Robustness (TPR @ 0% FPR)

Method Model
Average Clean Rotate JPEG C&S R.Drop Blur S.Noise G.Noise Bright

SD 2.1 59.33 100.00 442 93.18  99.96 0.02 100.00 14.78 87.16 34.46
TrustMark SD2.0  48.12 93.28 1.98 52.18 96.0 0.00 93.02 21.0 54.18 21.44
SD1.4 5923 100.00 342 93.38  100.00 0.76 100.00 15.74 85.24 34.56

SD 2.1 71.37 99.78  81.04 4454  98.24 96.22 95.10 77.62 17.70 86.08
Stable Signature SD 2.0  80.80 99.98 4144 9872  99.88 96.34 97.66 99.90 67.76 25.54
SD1.4  81.87 99.92  88.14 3896  99.54 99.52 95.12 91.34 35.70 88.68

SD 2.1 85.88 100.00 98.14 99.88  0.12 99.92 99.98 99.86 79.00 95.98

RingID SD2.0 8548 100.00 9946 9990  0.48 99.80 100.00  99.98 74.44 95.24
SD1.4 8548 100.00  99.58  99.85 0.02 99.66  100.00  99.75 77.59 92.87

SD 2.1 23.59 12.12 12.64 1138 1826 100.00 3.06 16.78 12.44 37.70

GaussMarker ~ SD2.0 3145 6342  32.08 2.10 1.16 99.98 2.08 66.76 1.01 14.56
SD 1.4 2654 44.38 3.24 17.36 4.62 99.98 8.48 38.78 0.90 21.16

SD 2.1 96.34 99.96  89.38  99.56  95.22 97.12 99.78 99.76 89.96 96.28
SERUM (Ours) SD2.0  97.19 100.00 90.16  99.70  94.32 98.18 99.76 99.46 96.26 96.88
SD1.4 9636  100.00 90.12 99.10 92.84 98.68 99.90 99.48 90.92 96.18

To distinguish performance differences masked at the standard 1% FPR, we evaluate robustness at the
stricter 0% FPR threshold in Table[I2] This analysis reveals substantial fragility in baseline methods:
GaussMarker’s performance collapses (Average TPR drops to 23.59% TPR on SD 2.1), while RingID
exhibits a critical vulnerability to Crop & Scale (0.12% TPR), enabling attackers to easily bypass the
watermark. In contrast, SERUM demonstrates superior stability, maintaining an average TPR over
96% across all models and avoiding the catastrophic failures observed in prior approaches.

G.6 IMPACT OF AUGMENTATION SAMPLER BATCH SIZE.

We analyze the effect of the augmentation sampler batch size m, which determines the number of
dynamic perturbations generated per training step. As detailed in Table [T3] increasing m yields
consistent improvements in robustness, particularly for challenging geometric transformations. For
instance, increasing m from O (precomputed only) to 4 boosts robustness against Rotation from
79.72% to 99.34%. However, this improvement comes with a computational overhead. We observe
diminishing returns beyond m = 4; while scaling to m = 32 marginally increases average TPR
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Table 13: Ablation of the augmentation sampler batch size (m). We report TPR @ 1% FPR for the
SD 2.1 model, evaluated on 10,000 samples. The precompute row denotes the baseline where only
clean and precomputed augmentations are applied (equivalent to m = 0). Increasing m consistently
improves robustness at the cost of training time.

Perturbation Robustness (TPR @ 1% FPR)
Average Clean Rotate JPEG C&S R.Drop Blur S.Noise G.Noise Bright
precompute  2.63 h 97.16 100.00  79.72  99.90 97.18  99.56 99.96 99.86 99.18 99.06
m=2 5.66 h 99.52 100.00 9922 99.84 99.00  99.60 99.96 99.92 99.08 99.04
m=4 9.48 h 99.75 100.00 99.34  99.98 99.54  99.86 100.00  100.00 99.30 99.72
m=38 15.69h  99.80 100.00 99.74  99.90 99.62  99.80 100.00  99.94 99.50 99.74
m =16 28.15h  99.83 100.00 99.76  99.88 99.70  99.92 99.96 99.98 99.60 99.70
m =32 59.35h  99.82 100.00 99.42  99.96 99.68  99.96 100.00  99.96 99.64 99.80

Batch Size Time

to 99.82%, it inflates training time by over 6 times (from 9.5h to 60h). Consequently, we adopt
m = 4 as the optimal operating point, providing a favorable balance between training efficiency and
state-of-the-art robustness.

G.7 ANALYSIS OF AUGMENTATION SAMPLER TEMPERATURE

We analyze the impact of the augmentation sampler’s temperature 7 on detection robustness, with
quantitative results detailed in Table [f] This parameter governs the sharpness of the sampling
distribution, controlling the critical balance between efficient hard-negative mining and optimization
stability.

At low temperatures (7 — 0), the sampler becomes overly greedy, almost exclusively selecting the
perturbation with the highest loss. This introduces optimization instability, as the model sequentially
overfits to the current worst-case distortion instead of learning a generalized representation. Conse-
quently, this lack of batch diversity leads to high-variance updates and causes the model to forget
previously mastered transformations.

Conversely, as 7 — oo, the strategy approaches uniform sampling, which proves inefficient. The
model expends significant training capacity on easy augmentations that are already mastered and
provide negligible learning signal. This prevents the model from focusing sufficiently on the difficult
perturbations required to refine the decision boundary.

Empirically, we find that 7 = 1.0 strikes the optimal balance. This setting biases the detector toward
high-loss samples to maximize gradient utility, while retaining enough batch diversity to prevent
overfitting to specific noise patterns.

H ADDITIONAL INFORMATION ABOUT GAUSSMARKER

H.1 EVALUATION DETAILS

To ensure a fair evaluation of GaussMarker, we modified its training procedure to incorporate our
adjusted version of the C&S augmentation. In the original procedure, crops were always assumed to
be centered in the middle of the image. This is a highly optimistic assumption, as an attacker may
choose to place a crop elsewhere. To account for this, we evaluate all methods using a version of this
transformation where crops occur at random locations.

For other perturbations that differ from those in the original GaussMarker paper, higher Gaussian
Noise and Gaussian Blur instead of the Median Filter; we do not include them in training. These
augmentations change the latent’s variance, invalidating GaussMarker’s approximation used for GNR
training. For the same reason, the original authors also did not train the GNR on both the Gaussian
Noise and the Median Filter.
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(a) Stable Diffusion 1.4 FFT. (b) SANA-0.6B. Loss decreases (c) Stable Diffusion 1.4 LoRA.
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tion loss (3,000 steps) is used for point is used for reporting TPR. tion loss (19,500 steps) is used for
reporting TPR. reporting TPR.

Figure 4: Evaluation of radioactivity.

H.2 IMPACT OF SAMPLE SIZE ON EVALUATION

The authors of GaussMarker report their Fréchet Inception Distance (FID) using only 5,000 samples,
whereas at least 10,000 samples are typically recommended for a statistically reliable estimate. A
more concerning issue arises in their evaluation of TPR at 1% FPR, as this metric was computed on
merely 1,000 samples. In this setting, the threshold at 1% FPR is determined by only 10 negative
examples, which we argue is far too few to yield a reliable estimate. In contrast, we performed this
evaluation on 5,000 samples and found that the resulting performance is slightly worse than what the
original authors report. This suggests that their results may be overly optimistic due to the insufficient
sample size, which may also explain the discrepancies between their reported results and ours.

I RADIOACTIVITY

1.1 EVALUATION SETUP

For both models we perform full fine-tuning (without the text-encoder) and for SD 1.4 we also adapt
it with LoRA on 5,000 training samples, generated by watermarked Stable Diffusion 2.1 with o = %
For every training checkpoint, we report TPR @ 1% FPR and evaluation loss. Specifically, TPR is
evaluated on 5,000 images, while evaluation loss is computed as the MSE of the denoising prediction
at random diffusion timesteps on 1,000 images.

We believe that evaluating loss on unseen images is essential to claim radioactivity. In particular, a
model that has memorized a watermarked image would yield artificially perfect radioactivity results.
For this reason, we expect that most engineers would stop training before the model enters this stage.
We therefore report the TPR at the checkpoint with the lowest evaluation loss, which we consider a
more realistic estimate.

For TPR @ 1% FPR we utilize a threshold calculated over clean images. We choose this particular
metric to have a direct comparison to images generated with a real watermarked model.

For full fine-tuning Stable Diffusion, we chose to use a learning rate equal to Se-6. For LoRA we
utilized rank 4 and learning rate equal to le-5. To train SANA we set the learning rate to 1.8e-5. All
training runs use a batch size of 8.

1.2 RESULTS FOR STABLE DIFFUSION 1.4 FFT

We present the results of this experiment in Figure[da] We observe that SD 1.4 achieves 77.12% TPR
for the checkpoint with minimum evaluation loss. This result demonstrates that SERUM is highly
radioactive for this model.

Continued training results in higher loss, suggesting that the model may be beginning to memorize
its training samples. Therefore, we believe that TPR values at later checkpoints may not accurately
reflect the true radioactivity of the watermark.
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Figure 5: Watermark detector architecture.

1.3 RESULTS FOR SANA-0.6B

For these results, we refer to Figure@ In contrast to Stable Diffusion, we do not observe SANA
overfitting throughout training. Accordingly, we select the final available checkpoint, which achieves
a high TPR of 96.76%. This suggests that SERUM is not only radioactive for SD models, but rather
for a variety of diffusion models.

I.4 RESULTS FOR STABLE DIFFUSION 1.4 LORA
The results for this setting are presented in Figure 4c| At the checkpoint with the lowest evaluation

loss, it attains a TPR of 52.30%. This shows that SERUM remains distinctly radioactive even when
the model is trained using parameter-efficient fine-tuning methods such as LoRA.

J WATERMARK DETECTOR ARCHITECTURE

The watermark detector is a lightweight Convolutional Neural Network with 2,487,841 parameters.
The exact architecture is depicted in Figure 3]

K LLM USAGE DECLARATION

Large language models were used exclusively to enhance readability, specifically for style, grammar,
and spelling, without altering the original meaning of the manuscript.

L ETHICS STATEMENT

Our work does not raise any direct ethical concerns. On the contrary, SERUM is designed as a
defensive tool to promote transparency and accountability by enabling reliable identification of
images generated by diffusion models. Such capabilities can help mitigate risks associated with the
misuse of generative models, including phishing and the spread of misinformation. The method is
computationally lightweight, resulting in a negligible carbon footprint.
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Figure 6: Visualization of advanced attacks. Qualitative examples of advanced watermark removal
attacks.
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Figure 7: Visualization of augmentations. We show qualitative examples of augmentations used to
perturb the watermarked and non-watermarked images.
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Figure 8: More qualitative results. Clean vs Images watermarked with our SERUM.
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