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Abstract

Efficient temperature monitoring and accurate pre-
diction significantly enhance the management of
smart building systems by optimizing energy con-
sumption and improving occupant comfort. This
study presents a systematic approach to predict-
ing zone air temperatures in smart buildings using
advanced machine learning techniques, with a fo-
cus on the LightGBM algorithm. Leveraging the
Smart Buildings Dataset, we trained individual
prediction models for zone-specific sensors, utiliz-
ing historical data and exogenous variables. The
models exhibited exceptional predictive accuracy,
achieving an average Mean Absolute Error (MAE)
of 1.093°F, Root Mean Squared Error (RMSE) of
1.586°F, and an R2 value of 0.994. This research
underscores the applicability of machine learn-
ing for smart building systems and introduces a
reproducible pipeline tailored for sensor-specific
temperature prediction.
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1. Introduction

The advent of smart buildings has revolutionized energy
management by integrating advanced monitoring systems
that enhance efficiency, reduce operational costs, and elevate
occupant comfort. Central to these systems are temperature
sensors, which provide real-time thermal data to regulate
HVAC systems intelligently. The ability to predict zone air
temperatures accurately using historical data and environ-
mental factors represents a transformative step forward in
optimizing heating, cooling, and overall energy usage.

This study explored the use of LightGBM, a cutting-edge
gradient boosting algorithm, to establish predictive models
for multiple temperature sensors distributed across building
zones. The principal contributions of this research include:

* A comprehensive methodology for processing, model-
ing, and evaluating smart building data.

* Performance evaluation of sensor-specific predictive
models across key metrics.

* Practical insights into the scalability and reliability of
machine learning techniques in building management
systems.

The subsequent sections detail the dataset characteristics,
methodological framework, experimental setup, results anal-
ysis, and key conclusions drawn from this research.

2. Dataset Description

The dataset utilized in this study, the Smart Buildings
Dataset, encompasses segmented data from the building
labeled “sb1,” spanning 2022-2024. Data partitions include
observational values, HVAC actions, and metadata, enabling
a robust analysis of environmental dynamics.

Key Dataset Features:

* Observation Data: Contains measurements such as
zone air temperatures and exogenous variables.

* Action Data: Records HVAC commands, adjustments,
and related system activities.

* Metadata: Includes device specifications, observation
timestamps, and spatial zone information.

For model training, data from the first half of 2022 were
employed, while validation utilized data from the second
half of the same year. The predictors (exogenous variables)
and targets (zone air temperatures) were carefully selected
for each sensor.

3. Methodology

3.1. Data Preprocessing

Preprocessing involved extracting relevant features and cat-
egorizing data into target variables (zone air temperatures)
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and predictors (exogenous variables). Zone-specific ther-
mal sensors were identified through metadata, and non-
temperature features were included to account for environ-
mental dependencies.

3.2. Model Selection

LightGBM was chosen for its efficiency in processing large-
scale tabular data and its strong performance in regression
tasks. To capture zone-specific thermal dynamics, separate
regression models were trained for each temperature sensor.

The model was instantiated using the LGBMRegressor class
with the following parameters:

* n_estimators: 100 — specifying the number of boost-
ing iterations.

* random state: 42 — ensuring reproducibility across
experiments.

All other hyperparameters were retained at their default
values. This configuration was determined to provide an
optimal balance between predictive accuracy and computa-
tional efficiency during model training.

3.3. Training and Validation

The training phase utilized data from January to June 2022,
while the validation phase covered July to December 2022.
The input features comprised exogenous variables, and the
target variable was the zone air temperature. Hyperparame-
ters were optimized using default settings, and models were
trained with 100 estimators.

It is crucial to emphasize that no data from the validation
temperature time series was utilized during the model train-
ing process, ensuring strict adherence to the competition
guidelines.

For the validation phase, a complete and uninterrupted time
window spanning July to December 2022 was selected to
predict the temperature time series, ensuring the evaluation
framework is both scientifically rigorous and practically
applicable.

3.4. Evaluation Metrics
Model performance was assessed using the following met-

rics:

* Mean Absolute Error (MAE): Captures the average
absolute deviation from true values.

* Root Mean Squared Error (RMSE): Measures the
quadratic mean of prediction errors.

* R2: Reflects the proportion of variance explained by
the model.

3.5. Training Process Visualization

To gain insight into the model’s learning behavior, we
visualized the training RMSE across iterations during
model fitting. Instead of using the high-level pipeline in
pybuildingcluster, we directly employed the Light-
GBM API to enable step-by-step monitoring of model per-
formance.

We trained a sample model on one temperature sensor us-
ing only exogenous variables as features. The training loss
(RMSE) was recorded and plotted for each boosting itera-
tion. Early stopping was applied to prevent overfitting, with
a patience of 10 rounds.

Figure 1 shows the RMSE curve over 100 boosting rounds.
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Figure 1. Training RMSE plotted over 100 boosting iterations.

The steady decline in RMSE indicates stable learning, and
the early stopping mechanism effectively prevented unnec-
essary iterations. This visualization confirms the model’s
capacity to fit the training data without overfitting.

4. Results
4.1. Individual Sensor Performance

Models were developed for all temperature sensors, achiev-
ing consistent and high predictive accuracy. Performance
metrics for representative sensors are summarized in Table
1.

4.2. Aggregate Performance

Across all sensor models, the following averages were
recorded:
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Sensor Index MAE (°F) RMSE (°F) R?

Sensor 1 1.35 2.06 0.99
Sensor 2 0.88 1.59 0.99
Sensor 3 1.40 1.96 0.99

Table 1. Performance metrics for individual sensors.

* MAE: 1.093°F
* RMSE: 1.587°F
* R2:0.994

These results indicate excellent predictive accuracy for zone
air temperature.

4.3. Visualization

For the first three sensors, we plotted predicted tempera-
ture values against actual values to visually evaluate model
performance. The graphs showed close alignment, demon-
strating the model’s reliability.

5. Discussion
5.1. Key Insights

Training individual models per sensor allowed deeper in-
sights into zone-specific thermal dynamics. Exogenous vari-
ables, such as non-temperature observations, significantly
enhanced model performance, highlighting the importance
of environmental interdependencies.

5.2. Challenges

Scalability: Extending this approach to buildings with hun-
dreds of sensors necessitates significant computational re-
sources.

Temporal Generalization: Models trained on specific tem-
poral datasets may face challenges in adapting to new con-
ditions or long-term changes.

5.3. Comparison with Prior Work

The achieved performance aligns with or surpasses bench-
marks established in related studies. The efficiency of Light-
GBM further highlights its suitability for predictive model-
ing in smart building contexts.

6. Conclusion

This study effectively demonstrated the application of Light-
GBM for zone air temperature prediction in smart build-
ings. The high predictive accuracy (average MAE: 1.093°F,

RMSE: 1.587°F, R2: 0.994) underscores the potential of
machine learning in enhancing smart building operations.

6.1. Future Work

Future research should explore:

* Ensemble models for further accuracy gains.
* Multi-sensor joint modeling strategies.

» Techniques for seasonal and temporal generalization.

References

[1]

Judah Goldfeder, Victoria Dean, Zixin Jiang, Xuezheng
Wang, Bing Dong, Hod Lipson, and John Sipple.

The Smart Buildings Control Suite: A Diverse Open
Source Benchmark to Evaluate and Scale HVAC
Control Policies for Sustainability.

arXiv preprint arXiv:2410.03756v2 [cs.Al], 2025.
https://doi.org/10.48550/arXiv.2410.
03756.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan Liu, Light-
GBM: A Highly Efficient Gradient Boosting Deci-
sion Tree, Advances in Neural Information Processing
Systems, vol. 30, 2017, https://github.com/
microsoft/LightGBM.

Google Research, Smart Buildings Dataset Documen-
tation, https://storage.googleapis.com/
gresearch/smart_buildings_dataset/
index.html.

EURAC-EEBgroup, PyBuildingCluster: ~ Python
library for analyzing and clustering building data,
https://github.com/EURAC-EEBgroup/
pybuildingcluster.


https://doi.org/10.48550/arXiv.2410.03756
https://doi.org/10.48550/arXiv.2410.03756
https://github.com/microsoft/LightGBM
https://github.com/microsoft/LightGBM
https://storage.googleapis.com/gresearch/smart_buildings_dataset/index.html
https://storage.googleapis.com/gresearch/smart_buildings_dataset/index.html
https://storage.googleapis.com/gresearch/smart_buildings_dataset/index.html
https://github.com/EURAC-EEBgroup/pybuildingcluster
https://github.com/EURAC-EEBgroup/pybuildingcluster

Predicting Zone Air Temperature in Smart Buildings Using LightGBM Models

Temperature (°C)

Temperature (°C)

Temperature (°C)

@
=]

-
o

o
o

&

3

<1

~
o

=
o

o

80

60

20

80

60

20

Sensor 1 - Predicted vs True

7 |

— True
——- Predicted
0 10000 20000 30000 40000 50000
Time Step
Figure 2. Predicted vs Actual temperature for Sensor 1.
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Figure 3. Predicted vs Actual temperature for Sensor 2.
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Figure 4. Predicted vs Actual temperature for Sensor 3.



