
Published at the NeurIPS 2020 CAP workshop

LEARNING TO INFER RUN-TIME INVARIANTS FROM
SOURCE CODE

Vincent J. Hellendoorn
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15238, USA
vhellendoorn@cmu.edu

Premkumar T. Devanbu
UC Davis
1 Shields Ave
Davis, CA 95616, USA
devanbu@ucdavis.edu

Oleksandr Polozov & Mark Marron
Microsoft Research
14820 NE 36th Street
Redmond, WA, 98052
{polozov,marron}@microsoft.com

ABSTRACT

Source code is meant to be executed, as well as read. Developers reason about its
run-time properties by inferring “invariants", which constrain program behavior;
but they rarely encode these explicitly, so machine-learning methods don’t have
much aligned data to learn from. We propose an approach that adapts cues within
existing if-statements regarding explicit run-time expectations to generate aligned
datasets of code and implicit invariants. We also propose a contrastive loss to
inhibit generation of illogical invariants. Our model learns to infer a wide vocab-
ulary of invariants for arbitrary code, which can be used to detect and repair real
bugs. This is complementary to trace-based methods, such as Daikon. Our results
confirm that neural models can learn run-time expectations directly from code.

1 INTRODUCTION

Software developers make many inferences while reading code, about its performance, correctness,
and run-time behavior. The latter is often summarized by program invariants – generic assumptions
about code behavior, e.g. that a list index never escapes its bounds. Automatically inferring these is
hard: predicting run-time behavior is undecidable, thus sound analyses are limited to small programs
such as simple loops (Sharma et al., 2013a; Padhi et al., 2016). Ernst et al. (2007) pioneered learning
them from highly informative execution trace data, but it requires access to realistic program inputs.
Developers also rarely “assert” invariants explicitly, so static learning data is limited.

Yet these obstacles may be largely artificial. For one, practical programs rarely take on an exponen-
tial range of values, and developers reliably infer run-time constraints from a local context, using
their past experience and cues from the code itself. What’s more, developers do encode many run-
time constraints in their code, in the form of if-statements. These guard blocks of code that should
only execute under a given condition, such as that a map contains an element, or a parameter is not
null. Interestingly, programmers rarely guard all possible conditions (e.g. nullity of all parameters),
often rather relying on other (calling or called) methods to ensure them.

Our central claim is that the natural distribution of programs includes many groups of similar func-
tions, some of which assert run-time assumptions explicitly, and with much detail, while others
vary along these dimensions. If true, we can use explicit conditional checks that guard blocks in
functions to teach our models about the implicit invariants of unguarded blocks in similar functions.
Furthermore, we conjecture that in such comparable samples, the condition is both salient (since it
is checked explicitly) and natural (since it is written by humans). Learning from such examples is
thus a very appropriate training signal for inferring practically useful invariants.

1

Published at the NeurIPS 2020 CAP workshop

int ix = getIndex(arr, el);
return arr[ix];

int ix = getIndex(arr, el);
if (ix < 0 || ix >= arr.length) {
return insert(arr, ix, el);

}
else {
return arr[ix];

}

int ix = getIndex(arr, el);
return insert(arr, ix, el);

Condition inverter

Produce
samples

ix < 0 || ix >= arr.length

Condition

Inputs

ix < 0 || ix >= arr.length

ix >= 0 && ix < arr.length

Targets

BodyGuard
Predicted if-invariant

Predicted else-invariant

Methods
Predicted if-invariant

ix < 0 || ix >= arr.length

ix >= 0 && ix < arr.length

Predicted else-invariant

ix < 0 || ix >= arr.length

ix >= 0 && ix < arr.length

ℒ𝐶𝐸

ℒℎ𝑖𝑛𝑔𝑒

ℒ𝐶𝐸

ℒℎ𝑖𝑛𝑔𝑒

Compute
losses

Marked target regions

Training

int highest(int[] a) {
if (a[0] > a[1])
return a[0];

return a[a.length-1];
}

BodyGuard

a != null
a.length > 1
a[0] > a[1] ||
a[a.length-1] > a[1]

...

Usage

Mark whole body as
region of interest
for pre-conditions.

Cross-
entropy

New method

Figure 1: An overview of our learning approach. We extract samples from if-statements in Java
methods by removing the guard and assigning it (or its negation, for the else block) as the target
invariant(s) of the previously-guarded block. We train using the cross-entropy, plus a contrastive
loss of this entropy relative to that of its logical negation (per sample).

Figure 1 shows how we exploit this symmetry between explicitly and implicitly guarded code: we
remove explicit guards to generate the former. By removing these one at the time and filtering out
implausible programs, we generate millions of realistic samples of functions and (now-)implicit run-
time constraints. Our model, BODYGUARD, predicts a rich vocabulary of conditions about arbitrary
code from new projects, and can be used to find & fix real missing-guard bugs with over 69%
(repair) precision at 10% inspection cost. It also predicts more than two-thirds of Daikon’s invariants
that could previously only be inferred with run-time data, and some entirely new ones that can be
validated automatically with trace data. This is a significant next step in learned static analysis,
being the first to reliably produce natural invariants from arbitrary code alone. More generally, we
show that learned models can implicitly represent behavioral semantics, just from code.

2 APPROACH

We train our model using a new loss function on a large corpus of open source data and evaluate it
on two downstream tasks. For conciseness, we provide a high-level overview of our approach here.

2.1 DATASETS

We generate samples following Figure 1 from top-starred Java projects from Github, which we
split by organization into training (920 projects), held-out (19 projects), and test data (61 projects).
We extract all methods from each Java file and generate one sample for each (side-effect free) if-
statement by removing the guard and storing its condition. As Figure 1 shows, this produces one
or two equivalent code fragments for which the statement’s condition (or its negation) is a pre-
condition. The resultant sample contains the entire method (minus conditional check) as context,
with the range of tokens where the invariant condition applies indicated.

Our model generates run-time conditions for an indicated range of code in a method. We evaluate it
in two settings. First, we collect real missing if-guard bugs for our model to repair from 10K Java
Github projects, by parsing their (∼8M) commits for ones that a) introduced exactly one if-guard,
and b) are described as bug-fixing (Ray et al., 2016). We find ca. 3K of these. Second, we use
Daikon (Ernst et al., 2007) to collect execution trace data from a smaller set of eight projects that we
manually instrumented, to compare our predictions to both Daikon’s own and to traces directly. This
helps us both assess the validity of our invariants on real executions, and, more generally, understand
the inference gap between static and dynamic information for source code analysis; i.e., is run-time
data (when present) strictly more useful than code, or are the two information sources orthogonal?

2

Published at the NeurIPS 2020 CAP workshop

Transformer layer

onTargetFound() { … time = calculateTime(); action.update(-dx, -dy, time, interpolator); } time > 0

Masked Self-Attention

Feedforward NN

Biased Input Attention

Transformer layer

Masked Self-Attention

Feedforward NN

Biased Input Attention

Relational Self-Attention

Feedforward NN

Relational Self-Attention

Feedforward NN

⋮ × 6

Relations: parent, computed-from, def-use, next-use, next-token

Transformer layer

Transformer layer

⋮ × 6

Figure 2: Schematic overview of our model: an 8-layer Transformer encoder/decoder, augmented
with relational data (Hellendoorn et al., 2020), and a decoder bias towards the invariant’s range.

2.2 MODEL SETUP

BODYGUARD uses a Transformer encoder-decoder model (Vaswani et al., 2017) to translate meth-
ods to invariants (see Figure 2). Syntactic & semantic code metadata, e.g. the AST and data-flow re-
lations are known to help code understanding (Allamanis et al., 2018), thus we incorporate them us-
ing the relational attention mechanism from Hellendoorn et al. (2020). It adds a relation-specific bias
term brij into the query-key comparison of scaled dot-product attention: eij = (qi + brij)kj

>/
√
N .

The (learned) bias is sensitive to known relations r between tokens i and j (if any, and summed if
multiple), to allow the model to selectively sharpen (or dampen) the significance of each relation.
With 512-dimensional states, 8 heads, and 8 layers on both sides, our model has ∼67M parameters.

We created our own program graph extractor for Java using the Eclipse JDT parser. In following
with prior workAllamanis et al. (2018), we extract five commonly used kinds of edges that represent
different forms of relations in code. This includes lexical dependencies (“next-token” and its reverse,
“prev-token”), syntactic (AST) relations (“parent”/’“child”), and various data-flow relations (“last-
use”, “next-token”, and “computed-from”). As is common, for each of these relations we include a
separate edge for its reverse, yielding 10 edge types total.

Finally, we use the same “leaves-only” representation as Hellendoorn et al. (2020) to limit our inputs
to tokens only, by rerouting edges that connect non-terminal nodes to their representative syntax
token (e.g. from an if-statement node to its “if” code token). We reuse this relational mechanism
between the decoder and encoder, in order to produce only invariants for the relevant range of tokens
(using a unary relation, i.e., “is part of range”) Ding et al. (2020).

2.3 DECODING LOGICAL STATEMENTS

In conditions, small syntactic differences lead to drastic changes in run-time behavior. Removing
esp. if-else statements as we do naturally yields code fragments with very similar, but logically
opposite (e.g. ‘!= null’ vs. ‘== null’) conditions. We supervise our model to encourage its rep-
resentations for syntactically close but semantically opposite statements to be distinct by introducing
a contrastive hinge loss term. For every training sample, we also decode the invariant’s logical nega-
tion, but require it to have a higher entropy than the real target. Concretely, given a statement inv
with tokens ti and a negating function neg, we use the cross-entropy loss LCE:

LCE(inv) = −
∑|inv|

i=1
log Pr(ti | t1 · · · ti−1, context) (1)

to compute the entropy distance w.r.t. its negation:

∆inv = LCE(neg(inv))− LCE(inv) Lhinge(inv) = max (0,∆inv − ε)2 (2)
in which ε is the minimum desired entropy “distance” in bits. In this work, we set ε = 2. For this
hinge-loss model, as we will call it in the rest of this paper, we train with a loss equal to LCE +Lhinge.

3 ANALYSIS

We sample our two models’ held-out performance every 100,000 training steps, which produces the
learning curves in Figure 3a. The hinge loss model saturates slower, as it faces the more challenging

3

Published at the NeurIPS 2020 CAP workshop

(a) Accuracy on held-out data during training. (b) Precision-Recall response of the trained mod-
els to limits on the entropy of generated invariants.

Figure 3: Model performance during and after training, focusing on the high-precision/low-recall
domain for the second (overall test accuracies: 33.8% base, 34.7% hinge-loss).

task of discriminating similar statements. However, after ca. one week of training, both models
converge to approximately the same quality. It speaks to the challenge of this strategically important
task that the models reach just ∼30% accuracy, due in part to the diverse vocabulary of invariants.

Figure 3b shows the evaluation on the test data, namely precision/recall behavior of the two models
when ranking their predictions (from beam search) by entropy. Both models converge to (near) per-
fect precision at a commensurate expense of recall (breaking 80% precision around 20% recall). The
hinge-loss model has a decidedly better precision/recall tradeoff, as well as higher overall accuracy.

We manually analyzed a number of these functions and our models’ prediction on them, to determine
the source of BODYGUARD’s inaccuracies. In short, some of its mistakes are clearly a matter of
modeling capacity: the vocabulary of invariants and code contexts is incredibly diverse, and our
model (< 100M parameters) and dataset (< 1B tokens) may be too small to fully capture this
distribution. Secondly, the scope of our samples poses a substantial challenge: we focus on modeling
at the function level only, as even large functions (spanning in the order of 500 tokens) pose a
challenge to the Transformer-type models that we use in terms of data usage. However, many
invariants require inference at the level of files or even across function calls. Without that context,
the task is inherently ambiguous for those samples. Further research on expanding our modeling
horizon in software engineering is thus needed.

3.1 MISSING IF DETECTION

Table 1: Bug-detection and repair results on finding and pre-
dicting missing if-guards, across two settings: given the cor-
rect location, and across all possible locations, further ana-
lyzed by aspects of the top prediction.

Top-5 Precision
Objective Accuracy Acc. @10% Recall

Location given 29.3% 41.9% 69.1%

All Locations 10.4% 18.8% 39.9%
invariant correct 15.2% 24.2% 48.1%
position correct 19.4% 43.8% 100.0%

We apply our models to predicting miss-
ing if-guards, first given a localized
buggy segment (top row of Table 1). This
most directly relates to our training sig-
nal, where we provided the location of the
guarded code. Our model achieves 29.3%
accuracy (base model: 26.8%), with a fa-
vorable 69.1% precision at 10% – enough
to fix 215 out of 311 bugs once located. It
is likely beneficial that this task is roughly
as challenging as our test one: automat-
ically synthesized training data is often
overly easy compared to real tasks, which harms generalization (Hellendoorn et al., 2019b). The
missing condition in these samples is (arguably) the most salient invariant in the entire method, not
just the indicated code block, which our model should be able to prioritize. The next three rows
of Table 1 show the results of running our invariant generator on every contiguous segment (up to
5 blocks) of code in each buggy method, ranking the top invariants across segments for inspec-
tion. This is substantially harder than the previous task, reducing the overall accuracy threefold
and roughly halving precision. Nevertheless, that is still much better than might be expected if
BODYGUARD had no location-sensitivity: we test over 30 blocks per method on average.

4

Published at the NeurIPS 2020 CAP workshop

(a) Overlap between our invariants and Daikon’s,
on pre- and post-conditions.

(b) Overall validity in relation to varying entropy
thresholds; pre- and post-conditions.

Figure 4: Results of the overlap and validity analysis of our invariants based on Daikon-extracted
trace data. Note the log-scaling on the x-axis.

3.2 VALIDITY AND OVERLAP WITH DAIKON

Many of our emitted invariants are valid statements, even if not the real missing condition. We
analyze this validity on methods for which we have trace data from Daikon (Ernst et al., 2007): as
Figure 4a shows, our tool retrieves more than half of Daikon’s invariants, and over two-thirds at 10%
recall, from static code alone. In addition, many of our pre- and post-condition1 are not generated by
Daikon (those out of its vocabulary, or with too few observations), even at a low entropy threshold.

We assess these using a simple logical engine that compares various kinds of our invariants (e.g.
collection inclusion, array length, nullity) against the recorded traces. We can check ca. 40% (12K)
of our invariants in this way; on these, we find that our invariants are valid ca. 60% of the time at
full recall, and this ratio increases greatly as we sharpen the entropy threshold, to over 80%, at recall
values under 10%, as shown in Figure 4b.

Many of our validated invariants were not produced by Daikon, implying that static and dynamic
data are orthogonal for this task. We manually analyzed 708 pre-conditions that BODYGUARD gen-
erated at an entropy of ≤0.1; 540 of these could be checked with trace data, (449 valid, 91 invalid),
and 122 of the remaining 168 were found valid on inspection. In effect, over 80% of our invariants
at this recall level (3.5%) are correct, and more than two-thirds of the invalid remainder could be
ruled out using trace data, if available, leaving a false positive rate of just 6.5% (46/708) when exe-
cution data is available (while also adding about 200 valid invariants to Daikon’s predictions). This
confirms that our tool is largely synergistic with dynamic, trace-based invariant generators.

4 CONCLUSION

Formal invariant inference with oracles or solvers (Sharma et al., 2013a;b; Padhi et al., 2016; Pham
et al., 2017) does not scale beyond simple arithmetic programs. ML-based inference (Si et al.,
2018; Hellendoorn et al., 2019a; Brockschmidt et al., 2017) scales better but still usually predicts
invariant validity rather than generates them. In contrast, our work makes no assumptions about
the code other than the availability of a parser, and is trained specifically to generate novel, likely
invariants. It succeeds thanks to the observation that typically used invariants are in a sense natural,
like many other aspects of programs (Hindle et al., 2012; Barr et al., 2013; Tsimpourlas et al.,
2020), and therefore predictable from code alone, intentionally standardized for ease of reading and
writing Casalnuovo et al. (2019). Previous approaches may be symbiotic with ours: trace data or
SMT solvers can be used to filter invalid invariants, and possibly guide our invariant generation. Our

1Due to the nature of our training, our tool does not quite have a proper notion of pre- or post-conditions per
se. The best approximation we found was to mark the entire method body for the former, and just the return
statement for the latter; there is no straightforward extension to void methods or ones with multiple returns,
so we omit these. Neither of these methods are quite exact, so some of our predicted invariants are valid, but
not pre/post-conditions. We erred on the side of caution and marked those invalid.

5

Published at the NeurIPS 2020 CAP workshop

approach can also support other code understanding tools that struggle to navigate an exponentially
large program space.

REFERENCES

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=BJOFETxR-.

Earl T Barr, Christian Bird, and Mark Marron. Collecting a heap of shapes. In Proceedings of the
2013 International Symposium on Software Testing and Analysis, pp. 123–133, 2013.

Marc Brockschmidt, Yuxin Chen, Pushmeet Kohli, Siddharth Krishna, and Daniel Tarlow. Learning
shape analysis. In International Static Analysis Symposium, pp. 66–87. Springer, 2017.

Casey Casalnuovo, Kevin Lee, Hulin Wang, Prem Devanbu, and Emily Morgan. Do people prefer
“natural" code? arXiv preprint arXiv:1910.03704, 2019.

Yangruibo Ding, Baishakhi Ray, Premkumar Devanbu, and Vincent J Hellendoorn. Patching as
translation: the data and the metaphor. In Proceedings of the 2020 ACM IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2020.

Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco, Matthew S
Tschantz, and Chen Xiao. The daikon system for dynamic detection of likely invariants. Science
of Computer Programming, 69(1-3):35–45, 2007.

Vincent J Hellendoorn, Premkumar T Devanbu, Oleksandr Polozov, and Mark Marron. Are my
invariants valid? a learning approach. arXiv preprint arXiv:1903.06089, 2019a.

Vincent J Hellendoorn, Sebastian Proksch, Harald C Gall, and Alberto Bacchelli. When code com-
pletion fails: A case study on real-world completions. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pp. 960–970. IEEE, 2019b.

Vincent J Hellendoorn, Petros Maniatis, Rishabh Singh, Charles Sutton, and David Bieber. Global
relational models of source code. In 2020 8th International Conference on Learning Representa-
tions (ICLR), 2020.

Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the natural-
ness of software. In 2012 34th International Conference on Software Engineering (ICSE), pp.
837–847. IEEE, 2012.

Saswat Padhi, Rahul Sharma, and Todd Millstein. Data-driven precondition inference with learned
features. ACM SIGPLAN Notices, 51(6):42–56, 2016.

Long H Pham, Ly Ly Tran Thi, and Jun Sun. Assertion generation through active learning. In
International Conference on Formal Engineering Methods, pp. 174–191. Springer, 2017.

Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto Bacchelli, and
Premkumar Devanbu. On the “naturalness” of buggy code. In 2016 IEEE/ACM 38th Interna-
tional Conference on Software Engineering (ICSE), pp. 428–439. IEEE, 2016.

Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and Aditya V Nori. Verification as
learning geometric concepts. In International Static Analysis Symposium, pp. 388–411. Springer,
2013a.

Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. Data-driven equivalence check-
ing. In ACM SIGPLAN Notices, volume 48, pp. 391–406. ACM, 2013b.

Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. Learning loop invariants
for program verification. In Advances in Neural Information Processing Systems, pp. 7762–7773,
2018.

Foivos Tsimpourlas, Ajitha Rajan, and Miltiadis Allamanis. Learning to encode and classify test
executions. arXiv preprint arXiv:2001.02444, 2020.

6

https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-

Published at the NeurIPS 2020 CAP workshop

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

7

	Introduction
	Approach
	Datasets
	Model Setup
	Decoding Logical Statements

	Analysis
	Missing If Detection
	Validity and Overlap with Daikon

	Conclusion

