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Abstract

One of the goals of automatic evaluation met-001
rics in grammatical error correction (GEC)002
is to rank GEC systems such that it matches003
human preferences. However, current auto-004
matic evaluations are based on procedures005
that diverge from human evaluation. Specif-006
ically, human evaluation derives rankings by007
aggregating sentence-level relative evaluation008
results, e.g., pairwise comparisons, using a009
rating algorithm, whereas automatic evalua-010
tion averages sentence-level absolute scores011
to obtain corpus-level scores, which are then012
sorted to determine rankings. In this study,013
we propose an aggregation method for exist-014
ing automatic evaluation metrics which aligns015
with human evaluation methods to bridge this016
gap. We conducted experiments using vari-017
ous metrics, including edit-based metrics, n-018
gram based metrics, and sentence-level metrics,019
and show that resolving the gap improves re-020
sults for the most of metrics on the SEEDA021
benchmark. We also found that even BERT-022
based metrics sometimes outperform the met-023
rics of GPT-4. We publish our unified imple-024
mentation of the metrics and meta-evaluations:025
https://anonymized_for_review.026

1 Introduction027

Grammatical error correction (GEC) task aims to028

automatically correct grammatical errors and sur-029

face errors such as spelling and orthographic errors030

in text. Various GEC systems have been proposed031

based on sequence-to-sequence models (Katsumata032

and Komachi, 2020; Rothe et al., 2021), sequence033

tagging (Awasthi et al., 2019; Omelianchuk et al.,034

2020), and language models (Kaneko and Okazaki,035

2023; Loem et al., 2023), and it is crucial to rank036

those systems based on automatic evaluation met-037

rics to select the best system matching user’s de-038

mands. Automatic evaluation is expected to rank039

GEC systems aligning with human preference, as040

evidenced by meta-evaluations of automatic met-041
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Figure 1: An overview of current human and automatic
evaluation when ranking three GEC systems based on a
dataset containing two sentences. Each system output
represents edits for simplicity.

rics that assess their agreement with human evalua- 042

tion (Grundkiewicz et al., 2015; Kobayashi et al., 043

2024b). For example, one can compute Spearman’s 044

rank correlation coefficient between the rankings 045

produced by automatic and human evaluation, con- 046

sidering a metric with a higher correlation as a 047

better metric. 048

However, despite the clear goal of reproduc- 049

ing human evaluation, current automatic evalua- 050

tion is based on procedures that diverge from hu- 051

man evaluation. Figure 1 illustrates the evaluation 052

procedure for ranking three GEC systems using a 053

dataset comprising two sentences. In human evalu- 054

ation, corrected sentences generated for the same 055

input sentence are compared relatively across sys- 056

tem outputs, i.e., pairwise comparison, and the re- 057
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sults are aggregated as rankings using rating algo-058

rithms such as TrueSkill (Herbrich et al., 2006). In059

contrast, automatic evaluation estimates sentence-060

wise scores, then averages them at the corpus level061

and determines rankings by sorting these averaged062

scores. As such, current automatic evaluation fol-063

lows a procedure that deviates from human evalua-064

tion, contradicting the goal of reproducing human065

judgment. Intuitively, it would be desirable for au-066

tomatic evaluation to follow the same procedure as067

human evaluation.068

In this study, we hypothesize that resolving this069

gap will more closely align automatic evaluation070

to human evaluation. Based on this hypothesis, we071

propose computing rankings in automatic evalua-072

tion using the same procedure as human evaluation,073

e.g., using TrueSkill after deriving pairwise esti-074

mates based on sentence-wise scores when human075

evaluation is employing TrueSkill. In our exper-076

iments, we conducted a meta-evaluation on vari-077

ous existing automatic evaluation metrics using the078

SEEDA dataset (Kobayashi et al., 2024b) that is a079

representative meta-evaluation benchmark. The re-080

sults show that bridging the identified gap improves081

ranking capability for many metrics and that BERT-082

based (Devlin et al., 2019) automatic evaluation083

metrics can even outperform large language mod-084

els (LLMs), GPT-4, in evaluation. Furthermore,085

we discuss the use and development of automatic086

evaluation metrics in the future, emphasizing that087

sentence-level relative evaluation is particularly im-088

portant for developing new evaluation metrics.089

2 Gap Between Human and Automatic090

Evaluation091

2.1 Background092

Human evaluation has been conducted by Grund-093

kiewicz et al. (2015), who manually evaluated sys-094

tems submitted to the CoNLL-2014 shared task,095

and by Kobayashi et al. (2024b), who included096

state-of-the-art GEC systems such as LLMs in097

their dataset. In both studies, system rankings098

were derived by applying a rating algorithm to099

sentence-level pairwise comparisons. Commonly100

used rating algorithms include Expected Wins and101

TrueSkill (Herbrich et al., 2006; Sakaguchi et al.,102

2014). Grundkiewicz et al. (2015) adopted Ex-103

pected Wins as their final ranking method, whereas104

Kobayashi et al. (2024b) used TrueSkill to deter-105

mine the final ranking. Kobayashi et al. (2024b)106

also pointed out the importance of aligning the107

granularity of evaluation between automatic evalu- 108

ation and human evaluation but did not mention the 109

procedure for converting sentence-level evaluation 110

into system rankings. 111

Automatic evaluation is conducted using vari- 112

ous evaluation metrics, including reference-based 113

and reference-free approaches, as well as sentence- 114

level and edit-based metrics. Most of these metrics 115

follow a procedure in which each sentence is as- 116

signed an absolute score, which is then aggregated 117

into a corpus-level evaluation score. For example, 118

sentence-level metrics such as SOME (Yoshimura 119

et al., 2020) and IMPARA (Maeda et al., 2022) ag- 120

gregate scores by averaging, while edit-based met- 121

rics such as ERRANT (Felice et al., 2016; Bryant 122

et al., 2017) and GoToScorer, as well as n-gram- 123

based metrics such as GLEU (Napoles et al., 2015, 124

2016) and GREEN (Koyama et al., 2024), aggre- 125

gate scores by accumulating the number of edits or 126

n-grams. The corpus-level scores obtained through 127

these methods can be converted into system rank- 128

ings by sorting. 129

2.2 How to Resolve the Gap? 130

Given that the SEEDA dataset uses TrueSkill as the 131

aggregation method, we will close the gap by using 132

TrueSkill for automated evaluation as well. First, 133

since existing automatic evaluation metrics com- 134

pute sentence-wise scores, we convert these scores 135

into pairwise comparison results. For example, 136

in the case illustrated in Figure 1, the evaluation 137

scores of 0.8, 0.7, and 0.9 for corrected sentences 138

corresponding to the first sentence (“He play a ten- 139

nis”) can be compared to produce pairwise compar- 140

ison results similar to those in human evaluation. 141

Next, we compute system rankings by applying 142

TrueSkill to the transformed pairwise comparison 143

results. In this study, we consider all combinations 144

of pairwise comparisons for system set. That is, 145

given N systems, a total of N(N−1) comparisons 146

are performed per sentence, and system rankings 147

are computed based on these results. 148

The similar method was employed by Kobayashi 149

et al. (2024a), but they did not mention the gap. 150

Also, their experiments used the TrueSkill aggre- 151

gation for their proposed LLM-based metrics, but 152

used conventional aggregation methods, e.g., aver- 153

aging, for other metrics. We discuss and organize 154

the gap between human and automatic evaluation in 155

detail, and then solve the gap by applying TrueSkill 156

to all metrics for fair comparison. 157
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SEEDA-S SEEDA-E
Base +Fluency Base +Fluency

Metrics r (Pearson) ρ (Spearman) r ρ r ρ r ρ

w/o TrueSkill
ERRANT 0.545 0.343 -0.591 -0.156 0.689 0.643 -0.507 0.033
PTERRANT 0.700 0.629 -0.546 0.077 0.788 0.874 -0.470 0.231
GLEU+ 0.886 0.902 0.155 0.543 0.912 0.944 0.232 0.569
GREEN 0.925 0.881 0.185 0.569 0.932 0.965 0.252 0.618
SOME 0.892 0.867 0.931 0.916 0.901 0.951 0.943 0.969
IMPARA 0.916 0.902 0.887 0.938 0.902 0.965 0.900 0.978
Scribendi 0.620 0.636 0.604 0.714 0.825 0.839 0.715 0.842

w/ TrueSkill
ERRANT 0.763 0.706 -0.463 0.095 0.881 0.895 -0.374 0.231
PTERRANT 0.870 0.797 -0.366 0.182 0.924 0.951 -0.288 0.279
GLEU+ 0.863 0.846 0.017 0.393 0.909 0.965 0.102 0.486
GREEN 0.855 0.846 -0.214 0.327 0.912 0.965 -0.135 0.420
SOME 0.932 0.881 0.971 0.925 0.893 0.944 0.965 0.965
IMPARA 0.939 0.923 0.975 0.952 0.901 0.944 0.969 0.965
Scribendi 0.674 0.762 0.745 0.859 0.837 0.888 0.826 0.912

GPT-4-E (fluency) 0.844 0.860 0.793 0.908 0.905 0.986 0.848 0.987
GPT-4-S (fluency) 0.913 0.874 0.952 0.916 0.974 0.979 0.981 0.982
GPT-4-S (meaning) 0.958 0.881 0.952 0.925 0.911 0.960 0.976 0.974

Table 1: Correlation with human evaluation using the SEEDA dataset. w/o TrueSkill refers to the conventional
evaluation procedure, while w/ TrueSkill represents the proposed evaluation procedure. Improvements over the
conventional procedure are underlined, and the highest value in each column is highlighted in bold. The GPT-4
results refer to those reported in Kobayashi et al. (2024b).

3 Experiments158

3.1 Automatic Evaluation Metrics159

We provide more detailed experimental settings for160

each metric in Appendix A.161

Edit-based metrics We use ERRANT (Fe-162

lice et al., 2016; Bryant et al., 2017) and PT-163

ERRANT (Gong et al., 2022). Both are reference-164

based evaluation metrics that assess at the edit level.165

When multiple references are available, the refer-166

ence that yields the highest F0.5 score is selected167

for each sentence.168

n-gram based metrics We use GLEU+ (Napoles169

et al., 2015, 2016) and GREEN (Koyama et al.,170

2024). The n-gram overlap is checked among the171

input sentence, hypothesis sentence, and reference172

sentence. When multiple references are available,173

the average score across all references is used.174

Sentence-level metrics SOME (Yoshimura et al.,175

2020), IMPARA (Maeda et al., 2022), and176

Scribendi Score (Islam and Magnani, 2021) are177

used. All of them are based on small neural mod-178

els such as BERTbase (Devlin et al., 2019) and179

designed as a reference-free metric that considers180

the correction quality estimation score as well as181

the meaning preservation score between the input182

and corrected sentences.183

3.2 Meta-Evaluation Method 184

We use SEEDA dataset (Kobayashi et al., 2024b) 185

for meta-evaluation. Meta-evaluation results are 186

reported based on human evaluation results us- 187

ing TrueSkill for both the sentence-level human- 188

evaluation, SEEDA-S, and the edit-level human- 189

evaluation, SEEDA-E. Additionally, we also report 190

results for both the Base configuration, which ex- 191

cludes reference sentences and GPT-3.5 outputs 192

that allow for larger rewrites, and the +Fluency 193

configuration, which includes them. 194

Furthermore, we evaluate the robustness of 195

the calculated rankings using window analy- 196

sis (Kobayashi et al., 2024a). The window analysis 197

computes correlation coefficients only for consec- 198

utive N systems, after sorting systems based on 199

human evaluation results. This allows us to ana- 200

lyze whether automatic evaluation can correctly 201

assess a set of systems that appear to have sim- 202

ilar performance from the human evaluation. In 203

this study, we perform it with N = 8 for 14 sys- 204

tems corresponding to the +Fluency configuration, 205

and report both Pearson and Spearman correlation 206

coefficients. That is, correlation coefficients are 207

computed for the rankings 1 to 8, 2 to 9, . . ., and 7 208

to 14 from human evaluation. 209
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3.3 Experimental Results210

Table 1 shows the results of the meta-evaluation.211

The upper group presents evaluation results based212

on the conventional method of averaging or sum-213

ming, and the bottom group presents results evalu-214

ated using TrueSkill, which follows the same eval-215

uation method as human evaluation. The bottom216

group includes the evaluation results based on GPT-217

4 reported by Kobayashi et al. (2024a), which cor-218

respond to the state-of-the-art metrics.219

The overall trend indicates that using TrueSkill-220

based evaluation improves the correlation coeffi-221

cients for most of metrics. In particular, the results222

of IMPARA in the SEEDA-S and +Fluency setting223

outperformed those of GPT-4 results. Additionally,224

ERRANT showed an improvement of more than225

0.2 points in many configurations. These results226

show that using automatic evaluation metrics with227

the same evaluation procedure as human evalua-228

tion make the ranking closer to human evaluation.229

In other words, the existing automatic evaluation230

metrics were underestimated in the prior reports231

due to the gap of the meta evaluation procedure.232

On the other hand, no effect was observed in n-233

gram-based metrics such as GLEU+ and GREEN.234

Since human evaluation is not conducted based on235

n-grams, aligning the evaluation procedure likely236

led to negative effects due to differences in the gran-237

ularity of evaluation. This result is consistent with238

Kobayashi et al.’s (2024b) claiming that aligning239

the granularity of evaluation between automatic240

and human evaluation is important.241

Figure 2 shows the results of the window anal-242

ysis for IMPARA and ERRANT measured on243

SEEDA-S and SEEDA-E, respectively. From Fig-244

ure 2a, it can be seen that IMPARA particularly245

aligns with human evaluation in the lower ranks.246

The Pearson correlation coefficient also showed247

an improvement in the evaluation results for the248

top systems as well. Since the top systems include249

GEC systems that are largely rewritten, such as250

GPT-3.5, this characteristic is useful considering251

that LLM-based correction methods will become252

popular in the future. Figure 2b shows that ER-253

RANT consistently showed improved correlation254

coefficients with the proposed method, but still255

struggled with evaluating the top systems. For edit-256

based evaluation metrics, it is still considered diffi-257

cult to assess such GEC systems even with the eval-258

uation method aligned with human evaluation 1.259

1Using more number of references may solve this issue.
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Figure 2: The results of the window analysis for N = 8
are shown. The x-axis represents the starting rank of
human evaluation. For example, x = 2 shows the results
for the systems ranked 2nd to 10th in human evaluation.

4 Conclusion 260

In this study, we focused on the fact that human 261

evaluation aggregates sentence-level scores into 262

system rankings based on TrueSkill, while auto- 263

matic evaluation uses a different evaluation, and 264

we proposed to use TrueSkill in automatic evalua- 265

tion as well. Results with various existing metrics 266

showed improvements of correlations with human 267

evaluation for many of the metrics, indicating that 268

agreement on the aggregation method is important. 269

We also release extensible implementations and 270

expect aggressive development of metrics in the 271

future2. 272

Given the results so far, we recommend tran- 273

sitioning the aggregation method from averaging 274

or summing to using a rating algorithm, such as 275

TrueSkill. We also recommend that evaluation met- 276

rics should be developed that allow for accurate 277

sentence-wise comparisons. This is evidenced by 278

the fact that IMAPARA achieves a higher corre- 279

lation cofficients than SOME in Table 1. In fact, 280

IMAPARA is trained to assess the pairwise compar- 281

ison results, whereas SOME is trained to evaluate 282

sentences absolutely. 283

2In the writing of this paper, we partially used an AI assis-
tant to improve text.
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Limitations284

Use for Purposes Other Than System Ranking285

The proposed method is designed for system rank-286

ing and cannot be used for other types of evaluation,287

such as analyzing the strengths and weaknesses of288

a specific system. For instance, when analyzing289

whether a model excels in precision or recall, it290

is more useful to accumulate the number of edits291

at the corpus level, as done in existing evaluation292

methods.293

Reproducing the Outputs of Compared GEC294

Systems Since the proposed ranking method re-295

quires inputting all GEC outputs being compared, it296

is necessary to reproduce their models. This point297

is different from existing absolute evaluation meth-298

ods, where previously reported scores can be cited.299

While this may seem burdensome for researchers,300

it can also be seen as an important step toward301

promoting the publication of reproducible research302

results.303

Ethical Considerations304

When the metric contains social biases, the pro-305

posed method cannot eliminate that bias and may306

reflect that bias in the rankings. However, we argue307

that this problem should be resolved as a metric308

problem.309
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A Detailed Experimental Settings for 453

Evaluation Metrics 454

For ERRANT, we used the Python module 455

errant=3.0.0 and evaluated it with the Span- 456

based Correction setting. The reference ed- 457

its were manually provided, but these were re- 458

extracted and used by ERRANT. PT-ERRANT per- 459

formed weighting based on BERTScore with the 460

bert-base-uncased model, and the weights were 461

calculated based on the F1 score. At this point, 462

rescaling was performed using the baseline, and 463

no adjustments were made using idf. Similar to 464

ERRANT, reference edits were re-extracted by ER- 465

RANT. GLEU used up to a maximum of 4-grams 466

with 500 iterations. The seed values for sampling 467

reference sentences followed the official implemen- 468

tation settings. For GREEN, up to 4-grams were 469

used, and the evaluation metric F2.0 was applied. 470

SOME used the official pre-trained model with 471

weights for grammaticality, fluency, and meaning 472

preservation set to 0.43, 0.55, and 0.02, respec- 473

tively, following the official implementation3. For 474

IMPARA, since the quality estimation model was 475

not publicly available, we conducted a reproduc- 476

tion implementation and experiment. Following the 477

original paper (Maeda et al., 2022), we generated 478

4,096 training pairs using the CoNLL-2013 corpus 479

as the seed corpus and split them into an 8:1:1 ratio 480

and regards training set, development set, and test 481

set, respectively. We fine-tuned bert-base-cased 482

on the training data. The architecture followed 483

the BertForSequenceClassification model in 484

the transformers library, and the representation cor- 485

responding to the CLS token was linearly trans- 486

formed into a real-valued output. For inference, 487

we also used bert-base-cased for the similarity 488

estimation model, and the threshold for the esti- 489

mated value was set to 0.9. Scribendi Score used 490

the GPT-2 language model4 and performed infer- 491

ence with a threshold of 0.8 for the maximum value 492

of Levenshtein distance ratio and token sort ratio. 493

3https://github.com/kokeman/SOME
4https://huggingface.co/openai-community/gpt2
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