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Abstract

Self-attention is an essential component of001
large language models(LLMs) but a significant002
source of inference latency for long sequences.003
In multi-tenant LLMs serving scenarios, the004
compute and memory operation cost of self-005
attention can be optimized by using the proba-006
bility that multiple LLM requests have shared007
system prompts in prefixes. In this paper,008
we introduce ChunkAttention, a prefix-aware009
self-attention module that can detect matching010
prompt prefixes across multiple requests and011
share their key/value tensors in memory at run-012
time to improve the memory utilization of KV013
cache. This is achieved by breaking mono-014
lithic key/value tensors into smaller chunks015
and structuring them into the auxiliary prefix016
tree. Consequently, on top of the prefix-tree017
based KV cache, we design an efficient self-018
attention kernel, where a two-phase partition019
algorithm is implemented to improve the data020
locality during self-attention computation in021
the presence of shared system prompts. Exper-022
iments show that ChunkAttention can speed023
up the self-attention kernel by 3.2-4.8× com-024
pared to the start-of-the-art implementation,025
with the length of the system prompt ranging026
from 1024 to 4096. 1027

1 Introduction028

Over the last few years, Large Language Models029

(LLMs) have developed various capabilities, from030

in-context learning (Dong et al., 2023, 2022) to031

chain-of-thought reasoning (Chu et al., 2023; Wei032

et al., 2022), and achieved remarkable success in a033

wide range of natural language processing related034

tasks (Chang et al., 2023). Representive models035

are the GPT (Radford et al., 2018, 2019; Brown036

et al., 2020; OpenAI, 2023c), LLaMA (Touvron037

et al., 2023b), PaLM (Anil et al., 2023) and Gem-038

ini (Gemini, 2023) series. Following the success039

1Code will be publicly available on Github after review.

of ChatGPT and GPT store, LLM-based applica- 040

tions start to surge, and the demand to optimize 041

LLM’s inference cost has been a new area of re- 042

search interest (Kim et al., 2023; Sheng et al., 043

2023; Aminabadi et al., 2022). 044

The self-attention module, as one of the criti- 045

cal components in LLMs, has poor performance 046

during inference (Table 1) since it performs inten- 047

sive memory operations on key/value tensors of 048

context tokens (KV cache) and is memory-bound 049

(Williams et al., 2009; Jin et al., 2023). The mem- 050

ory complexity grows linearly with context length. 051

As the demand for more context tokens has been 052

a trend (32K for GPT-4), the performance gets 053

worse (OpenAI, 2023c). KV cache additionally re- 054

stricts the batch size and system throughput. For 055

instance, using FP16, the KV cache for each token 056

in GPT-3(175B) requires 4.5MB of memory. The 057

memory of an inference server with 8*A100 (80G) 058

can only hold 70000 tokens or 35 sequences of 2K 059

context tokens. 060

On the other hand, the system prompt as a 061

common practice in designing LLM based appli- 062

cations, leads to redundancy in KV cache (An- 063

thropic, 2023). Typically, due to high training 064

and inference costs, LLMs are pre-trained and de- 065

ployed in a multi-tenant architecture for multiple 066

applications to share. System prompts are essen- 067

tial for LLMs to gain each application’s domain 068

knowledge and generate better results (White et al., 069

2023; Zhou et al., 2023). Since multiple requests 070

share identical system prompts, there is significant 071

overlap in prompt prefixes (§2.1). 072

An important question is whether we can lever- 073

age the sharing characteristic of system prompts 074

to make the self-attention module faster and more 075

memory efficient. To our knowledge, the only re- 076

lated work is a proposal by Kwon et al. (2023), 077

in which the service provider reserves memory 078

for key/value tensors of a set of predefined sys- 079

tem prompts from application developers. The 080
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proposal has limitations: i) predefined system081

prompts are static and inflexible in frequent re-082

freshes for large-scale deployments since both ap-083

plication developers and the service provider are084

involved in the operation loop; ii) there is memory085

waste in case of long system prompts and low hit086

rate; iii) no work has been done to optimize the087

self-attention kernel in the presence of shared sys-088

tem prompts.089

To fill the gap, we propose ChunkAttention, a090

novel self-attention module featuring the prefix-091

aware KV cache (PAKV) and two-phase parti-092

tion (TPP). KV cache in ChunkAttention is a pre-093

fix tree built with chunked context tokens and094

key/value tensors. Thus, the KV cache is prefix-095

aware and can dynamically detect and remove re-096

dundancy at runtime without human involvement.097

The KV cache only stores key/value tensors of se-098

quences currently in decoding and has zero mem-099

ory waste. In addition, the prefix-tree structure100

provides context for ChunkAttention to redesign101

a highly-optimized self-attention kernel with two-102

phase partition: chunk-first phase and sequence-103

first phase. Query tensors from sequences with104

matching prompt prefixes are batched together to105

perform attention with key/value tensors.106

The main contributions of this paper are as fol-107

lows: i) we reveal that system prompts can be long108

(§2.1), providing opportunities for optimizing self-109

attention; ii) we propose to use prefix tree to im-110

plement KV cache, which is out-of-the-box, scal-111

able and robust in terms of redundancy removal;112

iii) we implement a two-phase partition algorithm113

to speed up self-attention kernel on prefix-aware114

KV cache; iv) we prove the feasibility and empiri-115

cally quantify the gain self-attention can achieve116

from shared system prompts under various sys-117

tem configurations. Our experiments show that118

ChunkAttention can be significantly faster as the119

length of shared system prompts grows and has no120

performance degradation without shared system121

prompts, compared to existing highly optimized122

implementations.123

2 Preliminaries124

2.1 Shared System Prompt125

One paradigm in designing LLM-based applica-126

tions has been the introduction of system prompt127

(Anthropic, 2023). It provides instructions, few-128

shot examples (Dong et al., 2022), and external129

knowledge as context for LLMs to generate bet-130

Batch Size Roofline QKV Projection Self Attention MLP

1
FLOPs(×106) 100.66 33.57 270.53
MOPs(×106) 100.70 33.85 270.62

Arithmetic Intensity 1.00 0.99 1.00
Latency(µs) 88.44 17.82 160.77

32
FLOPs(×106) 3221.23 1074.27 8657.04
MOPs(×106) 101.71 1083.18 273.43

Arithmetic Intensity 31.67 0.99 31.66
Latency(µs) 90.02 687.74 209.82

64
FLOPs(×106) 6442.45 2148.53 17314.09
MOPs(×106) 102.76 2166.36 276.33

Arithmetic Intensity 62.69 0.99 62.66
Latency(µs) 98.04 1358.40 217.79

Table 1: Complexity analysis of key modules in each
decoder layer when decoding one single token. Llama2
7B, 2048 context tokens, FP16, A100 (80G). The self-
attention module has low arithmetic intensity (Williams
et al., 2009) and high latency. FLOPs: floating point op-
erations. MOPs: memory operations or memory bytes
accessed. Arithmetic Intensity: FLOPs/MOPs.

ter results. The final prompt to LLMs is a con- 131

catenation of system prompt and task-specific in- 132

put. The system prompt is shared between multi- 133

ple requests and can be very long. This can be ob- 134

served in various LLM-based applications, from 135

online chatbots to offline experiments. 136

Toolformer or using external tools becomes an 137

essential skill for LLMs to get up-to-date informa- 138

tion or perform precise math calculations (Schick 139

et al., 2023; Li et al., 2023). It is implemented 140

by plugins in ChatGPT-like online chatbot appli- 141

cations (OpenAI, 2023a). Equivalent capability is 142

provided by GPT series models through function 143

calling (OpenAI, 2023b). Under the hood, avail- 144

able function specifications are silently injected 145

into the system prompt (OpenAI, 2023d). Experi- 146

ments indicate that with 6 plugins activated, the to- 147

ken length of the shared system prompt can reach 148

up to 1766 (Appendix A). 149

Another source of shared system prompts is the 150

offline research-focused experiments conducted 151

on LLMs. In these scenarios, researchers fre- 152

quently create a large number of templated re- 153

quests with identical instructions, examples, or ex- 154

ternal knowledge and issue them to LLMs quickly. 155

Example work includes: i) Chameleon (Lu et al., 156

2023) reuses policy planning and tool invocation 157

prompts for compositional reasoning on the Sci- 158

enceQA and TabMWP datasets; ii) CREATOR 159

(Qian et al., 2023) constructs a collection of ques- 160

tions from TabMWP and MATH datasets using a 161

chain-of-thought (CoT) prompt template; iii) PDF- 162

Triage (Saad-Falcon et al., 2023) injects the PDF 163

document metadata into prompt and runs multiple 164

question-answering (QA) tasks over the document; 165
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System Usage of Prompt
#shared prompt tokens

avg max

Chameleon Tools definition and examples 1 1324 2626
CREATOR CoT examples 2 879 2492
PDFTriage PDF document metadata 4257 N.A.
ToolQA Tools definition and examples 3 1432 1432

Table 2: Shared prompt tokens in system prompt, to-
kenized by OpenAI’s tiktoken tokenizer library (Ope-
nAI, 2023e).

iv) ToolQA (Zhuang et al., 2023) further releases a166

QA dateset and reuses the system prompt for eval-167

uations of QA with LLMs. Table 2 shows statistics168

on shared token counts of system prompts.169

2.2 LLM Inferencing170

The typical inference process of LLMs consists171

of two stages: prefilling and decoding (Sheng172

et al., 2023). After receiving a sequence S =173

[t1, ..., tnp ], the server starts to prefill. During pre-174

filling, it feeds all np prompt tokens t1, ..., tnp into175

LLMs, computes the attention key/value tensors,176

and caches them to speed up subsequent computa-177

tions. Then, the server performs decoding. Decod-178

ing is auto-regressive, and the input token to LLMs179

is the completion token(or output token) generated180

from the previous decoding iteration. The process181

continues until the end-of-sequence token or max-182

imum completion tokens are generated.183

When the server is decoding b (batch size) se-184

quences S1, ..., Sb simultaneously, although they185

are in different iterations, the server can still186

perform batching at the granularity of iteration187

and predict the next tokens for all sequences to-188

gether, rather than separately, which is known189

as iteration-based batching (Gao et al., 2018; Yu190

et al., 2022; Silfa et al., 2022). Specifically,191

iteration-based batching concatenates last input192

tokens of multiple sequences (one token per se-193

quence) t(1), ..., t(b)(t(i) ∈ Si) into a single in-194

put T , and computes the QKV projection be-195

fore self-attention, the output projection and mul-196

tilayer perceptron after self-attention. The self-197

attention in the middle has no shared weights198

and needs to be computed independently for199

each sequence. During decoding, new sequences200

1https://github.com/lupantech/chameleon-llm/
blob/main/run_tabmwp/demos/prompt_policy.py

2https://github.com/qiancheng0/CREATOR/blob/
main/MATH/prompt_lib/prompt_cot.md

3https://github.com/night-chen/ToolQA/blob/
main/benchmark/chameleon/run_toolqa/demos/
prompt_policy.py

can join, and completed sequences can leave, 201

significantly increasing the possibility of form- 202

ing big batches. Iteration-based batching has 203

been implemented by vLLM (Kwon et al., 2023) 204

and the text-generation-inference server (Hugging- 205

Face, 2023). The ChunkAttention in this paper as- 206

sumes that iteration-based batching is enabled to 207

form batches for its kernel to run efficiently. 208

3 Our Approach 209

3.1 Prefix Aware KV Cache (PAKV) 210

Traditionally, KV cache is stored in dense tensors 211

of size b×h×n×d where b is the batch size, h is 212

the number of heads, n is the sequence length, and 213

d is the head dimension size. 214

When multiple sequences share common prefix 215

tokens, key/value tensors are the same and thus 216

can be shared in memory. For example, a par- 217

ticular LLM inference server receives sequence 218

Si = [t1, ..., tns , tns+1, ..., tnp ] first, and then re- 219

ceives sequence Sj = [t1, ..., tns , t
′
ns+1, ..., t

′
np
]. 220

KV cache for t1, ..., tns can only have one phys- 221

ical copy in memory. 222

Given the property, we argue that the KV cache 223

should be made prefix-aware, which is to orga- 224

nize the KV cache of all sequences under decoding 225

into a prefix tree. Precisely, we slice monolithic 226

key/value tensors contiguous in memory along the 227

sequence length dimension. Figure 1 shows the 228

structure of the KV cache stored in a prefix tree. 229

Each node defines a chunk C storing three es- 230

sential elements: i) a segment of c context to- 231

kens shared by sequences Si, ..., Sj to enable pre- 232

fix tree operations; ii) a slice of key tensor of size 233

b× h× c× d for the c tokens; iii) the correspond- 234

ing slice of value tensor. Each path in the prefix 235

tree defines a sequence. Multiple trees (a forest) 236

may exist in the server simultaneously. For in- 237

stance, application developers design different sys- 238

tem prompts. 239

There are three possible scenarios during infer- 240

ence: i) new sequence joins, ii) completed se- 241

quence leaves, and iii) all sequences decode one to- 242

ken together. Each scenario can be translated into 243

prefix tree operations. When a new sequence joins, 244

the prefix tree is searched and updated to insert a 245

new path. When a completed sequence leaves, the 246

prefix tree is updated to delete its path. At each de- 247

coding iteration, we append new tokens into leaf 248

chunks or grow a new chunk when the leaf chunk 249

is full. 250
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Prompt:
[Instructions]
You are an AI chatbot. You are having a conversation with a human by following rules:
- You do not have a name.
- You are helpful, creative, clever, and friendly
...
[Examples]
Human: Hello, who are you?
AI: I am an AI chatbot. How can I help you?
...
[Question]
Human: Tell me about the second world war.
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7 8S0
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(1) Insert: new S3 received
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(3) Delete: S0, S1 finished

S3
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S4 S5

(4) Insert: new S4, S5 received

Figure 1: KV cache in prefix tree. The instructions and examples in prompts of S0, S1, S2 are common and
sharable. Questions are different and not sharable. Some memory is unused due to alignment.

Given a fixed chunk size c, memory manage-251

ment is efficient. In ChunkAttention, the pool-252

based memory allocator is adopted by default253

(Hill, 1992; Trebino, 2016). It keeps track of both254

a used and a free chunk list. When a new chunk is255

requested, the allocator returns a chunk from the256

free list or allocates fresh memory from the oper-257

ating system (OS). Unused chunks are returned to258

the allocator once a sequence is completed, but the259

allocator does not release memory to the OS, pre-260

venting unnecessary memory allocations. Some261

memory space for alignment is unused. Given262

that the sequence length is n, the memory loss is263

bounded by (c− 1)/n.264

By sharing common prefixes, the number of se-265

quences that can be processed simultaneously is266

increased by approximately 1/(1 − r). The shar-267

ing ratio r is defined by the percentage of shared268

tokens ns/(np + nc), and nc is the completion to-269

ken count. In memory-limited inference scenarios,270

this helps increase the batch size and thus improve271

throughput.272

The parent-child relationship defines the subset273

of sequences each chunk covers. The root node274

covers all sequences, and the leaf nodes cover only275

one. A key property of the prefix tree is that se-276

quences covered by each chunk in the prefix tree277

are contiguous in the sequence index dimension.278

Therefore, slicing the query tensor in self-attention279

is particularly efficient during kernel computation,280

which will be discussed in more detail in the next281

section.282

3.2 Two-phase Partition (TPP)283

In this section, we dive into the self-attention ker-284

nel implementation on top of the unique prefix-285

aware KV cache storage.286

During prefilling, we perform a prefix lookup 287

to avoid repeated computation of KV projection 288

and position embedding for matched prompt pre- 289

fixes. For mismatched suffix tokens, KV projec- 290

tion and position embedding are still computed, 291

and the key/value tensors are chunked and inserted 292

into the prefix tree. Then we apply existing highly 293

optimized self-attention kernels, e.g., FlashAtten- 294

tion (Dao, 2023), on the entire key/value tensors. 295

During iterative decoding, self-attention is di- 296

vided into chunk-first and sequence-first phases. 297

The two phases focus on different slices of the 298

query tensor, KV cache chunks, and use different 299

parallelization strategies. The process is shown in 300

Figure 2. Since the head dimension is always parti- 301

tioned, it is omitted and implicit in our discussion. 302

Chunk-first Phase. In the chunk-first phase, 303

we only process chunks shared by multiple se- 304

quences. Since GPUs have more streaming mul- 305

tiprocessors (108 for A100) than the number of 306

heads (32 for Llama 7B), and partitioning by heads 307

under-utilizes hardware resources, we perform ad- 308

ditional partition on keys/values. Chunking al- 309

ready provides convenience. The online softmax 310

algorithm is adopted to avoid the synchroniza- 311

tion requirement between partitions (Milakov and 312

Gimelshein, 2018; Dao, 2023). 313

The computation is performed by traversing 314

shared chunks in the prefix tree, executing the par- 315

tial attention kernel partial_attn and saving the 316

partial attention results into memory, as shown in 317

Algorithm 1. The number of sequences (batch 318

size) is denoted by b. Q ∈ Rb×d is the queries 319

formed by concatenating the last token of all b se- 320

quences in the latest decoding iteration. 321

The implementation of partial_attn is given by 322
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C0

C1

C2

C3 C4 C5

C6 C7
S0

S1 S2

Kernel context (CPU → GPU)

Chunk slice of Q covered

Start Idx(i) End Idx(j)

C0 0 2
C1 0 2
C2 0 2
C3 0 0
C4 1 1
C5 2 2
C6 1 1
C7 2 2

a1: partial_attn(Q, i, j), batched
a2: partial_attn(qi)
r: attn_reduce(qi)

Q C0

a1

(O m n)(C0)

Chunk First Phase

Q C1

a1

(O m n)(C1)

Q C2

a1

(O m n)(C2)

q0 C3

a2

o0 m0 n0

Sequence First Phase

q1 C4 C6

a2

o1 m1 n1

O
r

q2 C5 C7

a2

o2 m2 n2

Figure 2: Two-phase partition kernel in ChunkAttention. The server is decoding sequences S0, S1, and S2. They
share chunks C0, C1 and C2. In the chunk-first phase, queries q0, q1 and q2 are batched for self-attention with
C0, C1 and C2. Partial attention result O(C), m(C) and n(C) are saved into memory. In the sequence-first phase,
oi, mi, and ni for each sequence are restored, and we continue processing the remaining chunks with respect to qi
only.

Algorithm 1 Self Attention: Chunk First (partition chunks)

Require: Q ∈ Rb×d (query), T (prefix tree)
Ensure: O ∈ Rb×d (attention output)

function ATTNCHUNKFIRST(Q, T )
Get chunks C1, ..., Ck in T that are shared by multiple sequences
O,m,n← 0, 0, 0
for C← C1 to Ck do

K(C), V (C)← key, value cache stored in C
i, j← start index, end index of sequences covered by C

O(C),m(C),n(C)← partial_attn(Q, K(C), V (C), i, j)
Save partial attention result O(C),m(C),n(C) to memory

end for
end function

Eqn. (1). It computes the partial attention result323

(O,m,n)(C) with respect to each chunk C inde-324

pendently, thus it can be parallelized. Qi:j,: is325

a slice of Q for sequences ranging from i to j326

which share the KV cache stored in chunk C. The327

maximum attention weights vector M (C) is the328

row-wise max over the last dimension of attention329

weights W (C). The softmax normalization term330

n(C) is the row-wise sum over the last dimension331

of E(C). M (C) and n(C) are auxiliary variables332

introduced to further cumulate partial attention re-333

sults of multiple chunks.334

W (C) = Qi:j,:K
(C) ∈ R(j−i)×c

m(C) = max
(
W (C)

)
∈ R(j−i)

E(C) = exp
(
W (C) −m(C) · 1T

)
∈ R(j−i)×c

n(C) = sum
(
E(C)

)
∈ R(j−i)

O(C) = E(C)V (C) ∈ R(j−i)×d

(1)335

The partial_attn efficiently accesses shared KV336

cache memory since self-attentions for multiple337

sequences are batched. The batching happens338

at a granularity of dot-product between queries339

Qi,:, ...,Qj,: of sequences Si, ..., Sj and shared340

K(C)/V (C). In addition to improved data locality,341

another advantage of batching is to turn the query342

from a vector into a matrix, allowing efficient ma-343

trix multiplications with tensor cores (Choquette344

et al., 2021). 345

Sequence-first Phase. In the sequence-first 346

phase, we load partial attention results of shared 347

chunks from the chunk-first phase and continue 348

processing chunks related to one specific sequence. 349

We partition sequences, and each q handled by the 350

sequence-first kernel is a vector by slicing the i-th 351

row of Q, as shown in Algorithm 2. 352

Algorithm 2 Self Attention: Sequence First (partition sequences)

Require: Q ∈ Rb×d (query), T (prefix tree)
Ensure: O ∈ Rb×d (attention output)

function ATTNSEQFIRST(Q, T )
for q← q1 to qb do

o,m, n← 0, 0, 0
Get partial attn results (O,m,n)(C1) , ..., (O,m,n)(Ck)

for (O,m,n)(C)← (O,m,n)(C1) to (O,m,n)(Ck) do
Partial attn of q: (o,m, n)(C)← slicing (O,m,n)(C)

attn_reduce(o(C), m(C), n(C), o, m, n)
end for
Get chunks Ck+1, Ck+2..., Cl in T with respect to q only
for C← Ck+1 to Cl do

K(C), V (C)← key, value cache stored in C
i← sequence index of q
(o,m, n)(C)← partial_attn(q, K(C), V (C), i, i + 1)
attn_reduce(o(C), m(C), n(C), o, m, n)

end for
end for

end function

The attn_reduce repeatly merges partial atten- 353

tion result of one chunk (o,m, n)(C) produced by 354

the partial_attn into the cumulative attention re- 355

sult (o,m, n) by scaling them with x(C) and y(C) 356

respectively. Eqn. (2) shows the process. Oi,:, mi 357

and ni are slices for sequence of index i. The final 358

attention output is given by O/n element-wise. 359

The sequence-first phase is efficient in concur- 360

rency since partial_attn and attn_reduce are per- 361

formed locally, without communication between 362

thread blocks. However, without the partial atten- 363

tion results generated by the chunk-first phase, it 364

needs to load shared chunks from RAM b times, 365

which adds significant MOPs. The two-phase par- 366

tition algorithm balances parallelization and cache 367
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locality.368

x(C) = exp
(
m(C) − max

(
m(C),mi

))
∈ R

y(C) = exp
(
mi − max

(
m(C),mi

))
∈ R

Oi,: = x(C)o(C) + y(C)Oi,: ∈ Rd

ni = x(C)n(C) + y(C)ni ∈ R

mi = max
(
m(C),mi

)
∈ R

(2)369

3.3 Further Optimizations370

The prefix tree structure is maintained in CPU371

memory. To run the two-phase patation kernel on372

GPU, we must generate certain context from the373

prefix tree, including the chunk C, the start index i374

and end index j of its covered sequences, and copy375

the context (C, i, j) from CPU to GPU memory.376

For example, in Figure 2, we need to generate and377

copy (C0/C1/C2, 0, 2), (C3, 0, 0), (C4/C6, 1, 1),378

and (C5/C7, 2, 2). ChunkAttention manages the379

overhead in two ways: i) latency hiding. The con-380

text generation step on CPU can be overlapped381

with other kernels on GPU prior to self-attention.382

ii) lazy context copy. The prefix tree does not383

change at every decoding iteration. We can cache384

the context in GPU memory and only trigger mem-385

ory copy when the tree structure changes. Trig-386

gers are chunk full for every c iterations, new se-387

quence joining, and completed sequence leaving.388

The overhead is amortized.389

The temporary memory allocated for partial at-390

tention results in the chunk-first phase can be391

eliminated by executing attn_reduce right after392

partial_attn to directly merge partial attention re-393

sults into the final result. Since multiple shared394

chunks with a parent-child relationship in the pre-395

fix tree write into the same slice of (O,m,n),396

attn_reduce needs to be serialized. On GPU de-397

vices, atomic operations are heavy, and we do not398

use this approach. However, on CPU devices, the399

overhead of serializing is insignificant, and reduc-400

tion can be implemented using spin locks.401

4 Experiments402

The evaluations are conducted at both the self-403

attention microkernel level and the end-to-end404

GPT-style model level. The microkernel level405

evaluations only capture time spent in the self-406

attention CUDA kernel. The side effects of PAKV407

and TPP, e.g., prefix tree operations, are captured408

in end-to-end evaluations. We run all experiments409

with NVIDIA A100 GPU (80G) and CUDA 11.8.410

4.1 Microkernel Evaluation 411

Baselines. We select four self-attention imple- 412

mentations as baselines: Naive PyTorch imple- 413

mentation by the formula softmax(QKT /
√
d)V , 414

the memory-efficient self-attention implemented 415

in xformers (Lefaudeux et al., 2022), FlashAtten- 416

tion integrated in PyTorch (Dao et al., 2022), and 417

PagedAttention in vLLM (Kwon et al., 2023). 418

Since Naive, xformers, and FlashAttn are all 419

built on monolithic KV tensors, they cannot be 420

prefix-aware by partially sharing KV cache of 421

prompt prefixes. PagedAttn does not implement 422

PAKV either. However, its paging design enables 423

us to manually create a fixed page table, mapping 424

virtually non-shared memory to the same physi- 425

cal memory. It simulates the KV cache sharing 426

scenario and helps us observe the performance of 427

PagedAttn’s CUDA kernel, which is denoted as 428

PagedAttn*. None of the kernels support the TPP 429

algorithm. 430

Workload. Sequences are processed in batch 431

mode, and the batch size is b. All sequences 432

within the same batch start and finish simultane- 433

ously. Each sequence is prefilled with np prompt 434

tokens, and the leading ns tokens are common 435

prefixes. The task is to decode the next nc com- 436

pletion tokens iteratively. We measure the decod- 437

ing latency t and the throughput defined by token 438

rate(tokens per second or TPS, nc∗b/t). For all ex- 439

periments, the head dimension d is 128, the num- 440

ber of heads h is 32, and the chunk size c is 64. All 441

tensors are in FP16. 442

Results. We run experiments to observe the per- 443

formance gain brought by PAKV and TPP by vary- 444

ing the following system hyperparameters: prompt 445

and shared token count, completion token count, 446

and batch size. 447

Table 3 shows the latency of self-attention im- 448

plementations given various prompt and shared to- 449

ken counts. ChunkAttn and PagedAttn* outper- 450

form Naive, xformers, FlashAttn, and PagedAttn, 451

which are agnostic to shared token count. The 452

Naive is 6.6× and 2.1× slower than ChunkAttn 453

and PagedAttn*, respectively (ns=4096). By com- 454

paring PagedAttn* and PagedAttn, we observe the 455

performance gain brought by sharing KV cache 456

memory physically. Although PagedAttn* does 457

not implement PAKV or TPP, the hardware cache 458

helps reduce its latency by up to 52% compared 459

to PagedAttn (ns=4096): repeatedly accessing 460

the same physical memory blocks provides sig- 461
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np ns
Latency (ms)

Naive xformers FlashAttn PagedAttn PagedAttn* ChunkAttn

1024 0 363.35 378.19 1586.73 356.17 355.82 332.50
1024 512 364.73 385.79 1587.14 355.88 257.74 198.87
1024 768 362.43 378.50 1591.61 356.02 215.18 131.21
1024 1024 361.76 379.36 1586.90 355.44 154.46 56.00

2048 0 686.40 816.44 3175.25 702.98 703.50 655.44
2048 1024 687.52 828.76 3173.53 703.35 505.32 384.37
2048 1536 685.78 820.19 3174.96 702.90 421.25 247.14
2048 2048 688.41 823.60 3152.25 703.72 338.41 110.48

4096 0 1369.52 1720.00 6289.55 1400.61 1400.17 1301.78
4096 2048 1370.47 1722.42 6303.21 1400.99 998.78 747.56
4096 3072 1369.74 1725.57 6301.41 1400.30 828.98 477.66
4096 4096 1370.41 1713.13 6300.65 1399.51 663.84 206.22

Table 3: Latency (ms) of self-attention kernel given np

context tokens and ns prefix tokens are shared. Chunk
size c=64, batch size b=32.

nificant performance gain. The benefit of TPP462

can be further seen by comparing PagedAttn* and463

ChunkAttn. ChunkAttn outperforms PagedAttn*464

by 2.8-3.2×, with a range of ns from 1024 to 4096.465

TPP does not cause performance regression when466

no token is shared (ns=0, ChunkAttn vs. Page-467

dAttn* in Table 3). As a result, TPP should always468

be enabled.469

As the decoding proceeds, sequences start to470

diverge, and the performance gain of ChunkAttn471

gradually decreases, as shown in Figure 3. Given472

2048 shared tokens, ChunkAttn yields 3.6× token473

rate improvement compared to PagedAttn when474

nc reaches 512, and the speedup drops to 2.3×475

when nc reaches 2048. However, it is still a476

significant improvement. The improvement of477

ChunkAttn over PagedAttn* is lower since Page-478

dAttn* benefits from physically shared KV cache479

memory, and only TPP makes a difference here.480

However, given ns=2048, ChunkAttn is still 2.0×481

(145K against 73K) and 1.5× (70K against 46K)482

faster than PagedAttn* when nc reaches 512 and483

2048 respectively.484

ns nc
Token Rate(×103) (toks/s)

Paged Chunk Speedup

1024

256 76.35 241.93 3.2 ×
512 69.15 186.44 2.7 ×
1024 58.12 127.85 2.2 ×

2048

512 39.85 145.41 3.6 ×
1024 36.18 107.37 3.0 ×
2048 30.17 70.33 2.3 ×

4096

512 21.04 101.69 4.8 ×
1024 19.85 81.69 4.1 ×
2048 17.98 58.33 3.2 ×
4096 15.12 37.05 2.4 ×

Figure 3: Throughput in token rate when generating
up to nc completion tokens, given ns prefix tokens are
shared. Chunk size c=64, batch size b=32.

Figure 4 focuses on varying the batch size. For485

all implementations except ChunkAttn and Page-486

dAttn*, the throughput peaks when the batch size487

reaches 16 due to memory-bound. Given ns is 488

2048, ChunkAttn’s throughput continues to grow 489

from 155k to 224k toks/s for the batch size rang- 490

ing from 16 to 96 due to better data locality and 491

improved arithmetic intensity. 492

(a) ns=1024 (b) ns=2048

Figure 4: Token rate when decoding up to nc=64 com-
pletion tokens given various batch sizes. Chunk size
c=64.

4.2 End-to-end Evaluation 493

ChunkLlama is built on top of Huggingface Llama 494

and vLLM’s optimized kernels (layer normaliza- 495

tion and rotary embedding) under Apache-2.0 li- 496

cense, but the attention module is substituted by 497

ChunkAttn. We run all experiments on the Open 498

Llama2 7B model in FP16 (Geng and Liu, 2023; 499

Computer, 2023; Touvron et al., 2023a). 500

Baselines. We select two widely used and op- 501

timized LLMs serving toolkits with proven pro- 502

duction usages: the start-of-the-art vLLM 0.2.7 503

(Kwon et al., 2023) and Huggingface’s Text Gener- 504

ation Inference (TGI) 1.3.4 (HuggingFace, 2023). 505

Workload. Requests arrive at the server randomly 506

following the Poisson arrival process (Hill, 1992) 507

parameterized by λ, which is the average requests 508

per second (RPS). The actual batch size is adjusted 509

dynamically by each system during decoding, and 510

we configure its maximum to 32 equally. Appli- 511

cation developers provide no information about 512

the shared prompt prefix for the service provider 513

to pre-configure. We measure the normalized la- 514

tency (ms/tok or 1/TPS) as in vLLM, which is the 515

mean of each request’s end-to-end latency t (in- 516

cluding queuing time) divided by the completion 517

token count nc, and the peak memory bytes used 518

by KV cache. 519

Results. ChunkLlama yields the fastest infer- 520

ence speed, as shown in Figure 5. ChunkLlama 521

can achieve 1.6× (2.9 against 1.8) and 2.3× (2.3 522

against 1.0) higher throughput compared to vLLM 523

when 1024 and 2048 prefix tokens are shared 524

while maintaining a normalized latency of less 525
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than 40 ms/token. Table 4 compares the latency526

and KV cache memory usage of our ChunkLlama527

to vLLM. No performance regression is observed528

in ChunkLlama without shared prefix tokens. The529

KV cache memory usage is reduced by 70%-90%530

with long shared prefixes. The peak batch size is531

also reduced by 20%-40% since ChunkLlama can532

decode faster.533

(a) np=1024

(b) np=2048

Figure 5: Normalized latency given different request
arrival rates (RPS). Each line is marked by the system
and shared prompt token count: system(ns).

np ns nc RPS
Latency (ms/tok) Peak KV Cache (GB) Peak Batch Size

vLLM ChunkLlama vLLM ChunkLlama vLLM ChunkLlama

1024 0 512 1.0 19.92 19.11 14.73 11.90 23 18
1024 1024 512 1.0 20.80 14.07 14.79 3.28 23 14

2048 0 512 0.6 21.90 19.43 21.70 22.41 19 20
2048 2048 512 0.6 21.61 15.20 21.09 3.40 19 12

4096 0 512 0.4 26.23 26.88 34.59 35.13 16 16
4096 4096 512 0.4 27.62 17.16 35.42 4.00 16 11

Table 4: Normalized latency, peak KV cache memory,
and batch size reached during decoding.

5 Related Work534

The most relevant work on optimizing the mem-535

ory utilization of KV cache is PagedAttention in536

vLLM (Kwon et al., 2023). It introduces the pag-537

ing technique in OS to solve the problem of mem-538

ory waste caused by dynamic and unknown se-539

quence lengths during decoding. However, only540

a proposal on service providers to pre-configure541

shared prompts is mentioned, and it is not imple-542

mented in vLLM releases (up to 0.2.7). Our so-543

lution, which differs from the paging one, uses544

the prefix tree to manage memory and aims to545

discover redundancy in KV cache across user re-546

quests at runtime automatically. The solution is547

more practical for multi-tenant deployment scenar- 548

ios where service providers centrally host models 549

and have requirements on scalability. According 550

to vLLM, the shared KV cache is similar to the 551

dynamic link library shared by multiple processes. 552

vLLM’s strategy is to compile before publishing 553

(AoT). We expect to compile in real-time (JIT). 554

Based on the context captured in the prefix tree, 555

our work further proposes a two-phase partition al- 556

gorithm to explore the optimization opportunities 557

shared system prompts bring to the self-attention 558

kernel, which is another difference between our 559

work and the existing work. 560

Partition strategies in ChunkAttention are built 561

on online softmax (Milakov and Gimelshein, 562

2018) and inspired by FlashAttention (Dao et al., 563

2022; Dao, 2023), which adopted the same al- 564

gorithm. FlashAttention thoroughly researched 565

and implemented various tiling techniques, accel- 566

erating self-attention by 2-4× while cutting mem- 567

ory operations by 10-20×. FlashAttention-2 al- 568

tered tiling strategies and additionally doubled the 569

speed. However, FlashAttention is inflexible re- 570

garding non-contiguous memory or variable se- 571

quence lengths, making it more suitable for model 572

training than inference. There is little gain when 573

the query token count is always one during decod- 574

ing. ChunkAttention handles variable sequence 575

lengths during decoding and batches attention op- 576

erations of several sequences to reduce memory 577

operations. As a result, our work and FlashAtten- 578

tion are complementary. 579

6 Conclusion 580

In this paper, we propose ChunkAttention, a novel 581

self-attention module, to efficiently manage KV 582

cache and accelerate the self-attention kernel for 583

LLMs inference. We successfully adopt the pre- 584

fix tree to create a prefix-aware KV cache. It 585

addresses the challenge of detecting and remov- 586

ing redundant KV cache at runtime. We evaluate 587

ChunkAttention in various configurations and at 588

different levels, proving its feasibility and the side 589

effects can be managed. Experiments show that 590

the ChunkAttention kernel can achieve compara- 591

ble throughput with SOTA PagedAttention kernel 592

without shared system prompts and can outper- 593

form it by 3.2-4.8× with a shared system prompt 594

of 1024 to 4096 tokens on A100 (80G) by apply- 595

ing prefix-aware KV cache and two-phase parti- 596

tion. 597
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7 Limitations598

The Position of System Prompt. To share the599

key/value tensors in memory, the shared system600

prompt must appear at the beginning of the se-601

quence. Although this is the most common prac-602

tice in many works and systems (Lu et al., 2023;603

Qian et al., 2023; Saad-Falcon et al., 2023; Zhuang604

et al., 2023), it is not mandatory. Liu et al. (2023)605

reveals that language model performance degrades606

significantly when changing the position of rele-607

vant information, indicating that models struggle608

to access and use information in long input con-609

texts robustly. In particular, performance is of-610

ten lowest when models must use information in611

the middle of long input contexts. As a result,612

when application developers do not put the sys-613

tem prompt at the beginning for performance con-614

cerns after evaluations or unintentional mistakes,615

KV caches of the entire sequences are different,616

and PAKV cannot save memory in this case, al-617

though they have a large number of tokens in com-618

mon.619

Fine Tuning. In addition to using system prompts,620

fine-tuning is another promising way to infuse do-621

main knowledge into LLMs (Houlsby et al., 2019;622

Hu et al., 2023). Due to the high training and de-623

ployment cost, LLMs are typically pre-trained and624

centrally hosted for multiple applications to share.625

It is not cost-efficient for each application to fine-626

tune models and deploy private instances. How-627

ever, fine-tuning may become more practical and628

popular as hardware and software environments629

evolve. In this case, we no longer need to de-630

sign long system prompts for each application, and631

the sharing opportunities of system prompts are re-632

duced. As of today, we have not seen promising633

and cost-efficient fine-tuning and hosting solutions634

in this direction than using system prompts.635

Model and Hardware Compatibility. To achieve636

the best performance, ChunkAttention imple-637

ments the two-phase partition kernel with the low-638

level CUDA programming instead of leveraging639

high-level primitives in cuDNN (oneDNN Con-640

tributors, 2023) or PyTorch. We tune its perfor-641

mance for the most common LLM configurations,642

e.g., 128 head dimension size, and hardware, e.g.,643

NVIDIA A100, GeForce RTX 4090, and Intel644

Xeon CPU. For other configurations and hardware,645

we need to tune and verify the performance case646

by case, which adds significant development costs.647

We believe community efforts are needed to gener-648

alize the two-phase partition algorithm and make 649

it compatible with more model configurations and 650

hardware. 651
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A System Prompt for Chatbot Applications with Plugins864

The following system prompt teaches the chatbot to use Bing Search, Expedia, OpenTable, and Spotify865

APIs to answer user queries. The token count is 1766.866

System Prompt and User Query
Instructions: Given the following list of API specifications and user query, you will choose the most appropriate API
to invoke and try to parse the corresponding parameters from the user query.

• If none of the API descriptions match the user query intent, you will return not_found().
• If a parameter is required but not included in the user query, then return not_found().
• Your response must strictly follow the syntax of: api_chosen(param1=PARSED_PARAM1, ...).

Following are the list of API definitions and their parameters:

• bing_web_search(count, offset, q, safe_search, set_lang): The Web search API lets you send a search
query to Bing and get back search results that include links to webpages, images, and more. If the user explicitly or
implicitly wants to find the latest information from the web, you must use this API.
Parameters:

- count: [optional] The number of search results to return in the response. The default is 10 and the maximum value
is 50.

- offset: [optional] The zero-based offset that indicates the number of search results to skip before returning results.
- q: [required] The user search query term. The term may not be empty.
- safe_search: [optional] A filter used to filter results for adult content. “Off”: Return webpages with adult text,

images, or videos. “Moderate”: Return webpages with adult text, but not adult images or videos. “Strict”: Do not
return webpages with adult text, images, or videos. The default is “Moderate”.

- set_lang: [optional] The language to use for user interface strings. You may specify the language using either a
2-letter or 4-letter code. Using 4-letter codes is preferred.

• bing_images_search(count, offset, q, safe_search, set_lang): The Image Search API lets you send a
search query to Bing and get back a list of relevant images.
Parameters:

- count: [optional] The number of image results to return in the response. The actual number delivered may be less
than requested. The default is 35. The maximum is 150.

- offset: [optional] The zero-based offset that indicates the number of image results to skip before returning results.
- q: [required] The user’s search query term. The term may not be empty. The term may contain Bing Advanced

Operators. For example, to limit images to a specific domain, use the “site:” operator.
- safe_search: [optional] A filter used to filter results for adult content. “Off”: Return webpages with adult text,

images, or videos. “Moderate”: Return webpages with adult text, but not adult images or videos. “Strict”: Do not
return webpages with adult text, images, or videos. The default is “Moderate”.

- set_lang: [optional] The language to use for user interface strings. You may specify the language using either a
2-letter or 4-letter code. Using 4-letter codes is preferred.

• expedia_search_hotel(city, hotel_name, price_buckets, star_ratings, guest_ratings): Search for a
hotel based on the user query.
Parameters:

- city: [required] A string to identify the city to search for.
- hotel_name: [optional] Hotel name used to filter the search results.
- price_buckets: [optional] Used to define custom price filter buckets. If not provided then the default price filter

buckets for the POS will be used.
- star_ratings: [optional] Used to filter by star rating. Must be in increments of 5 and separated by commas

(minStarRating=0 and maxStarRating=50). Ex. “0,5,10” means 0, 0.5 and 1 star hotels.
- guest_ratings: [optional] Used to filter by amenities. Must be as a list of amenity ids separated by commas.

Please note that there is no way at this time to validate the ids are actually valid.

• expedia_search_flights(departure_date, return_date, departure_airport, arrival_airport,
number_of_adult_travelers, child_traveler_age, non_stop_flight, airline_preference): Flight
search for one-way and round-trip scenarios.
Parameters:

- departure_date: [required] Date the customer wants to leave for their flight on, in ISO format.
- return_date: [optional] Date the customer wants to return on. If present, indicates a round trip search. If not

supplied, then it’s a one-way search.
- departure_airport: [required] The three-letter airport code for where the customer is leaving from.

867
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- arrival_airport: [optional] The three-letter airport code to where the customer is going.
- number_of_adult_travelers: [optional] Number of Adult Travelers (Default: 1).
- child_traveler_age: [optional] “childTravelerAge” represents the age of a single child traveler. You are re-

quired to specify the age of all child travelers. That means you must specify this parameter for each child that
will be flying. Valid values are 0-17 (0 for an infant under the age of one year). If you would like to spec-
ify 3 child travelers with the ages of 1, 3 and 8 years, then your query string should contain: “childTraveler-
Age=1&childTravelerAge=3&childTravelerAge=8”

- non_stop_flight: [optional] Set to true to return only nonstop flights in the search response (Default: False).
- airline_preference: [optional] Optional parameter to get specific airline carrier information. By default, the

preference is all.

• opentable_search_restaurants(name, category, city, day): Returns a list of restaurants.
Parameters:

- name: [optional] Name of the restaurant to search for.
- category: [optional] Category of the restaurant to search for.
- city: [optional] City to search in.
- day: [optional] Date to search for.

• spotify_search_catalog(q, type, limit, offset): Get Spotify Catalog information about albums, artists,
playlists, tracks, shows or episodes that match a keyword string.
Parameters:

- q: [required] Search query. Keywords and optional field filters and operators.
- type: [required] A comma-separated list of item types to search across. Valid types are: album, artist,

playlist, track, show and episode. Search results include hits from all the specified item types. For example:
“q=name:abacab&type=album,track” returns both albums and tracks with “abacab” included in their name.

- limit: [optional] Maximum number of results to return. Default: 20 Minimum: 1 Maximum: 50. Note: The
limit is applied within each type, not on the total response. For example, if the limit value is 3 and the type is
“artist,album”, the response contains 3 artists and 3 albums.

- offset: [optional] The index of the first result to return. Default: 0 (the first result). Maximum offset (including
limit): 1,000. Use with limit to get the next page of search results.

Below are some examples of choosing the API that matches the user query:

datetime_now=2023-11-17T10:45:07+08:00
user_query=Do you believe in God?
api_call=not_found()

datetime_now=2023-11-17T10:50:00+08:00
user_query=What is the price of the iPhone 15 Pro Max?
api_call=bing_web_search(q=“price of iPhone 15 Pro Max”, set_lang=“en”)

datetime_now=2023-11-17T11:09:10+08:00
user_query=OpenAI’s logo
api_call=bing_images_search(q=“OpenAI logo”, set_lang=“zh”)

datetime_now=2023-11-17T13:21:30+08:00
user_query=What is Taylor Swift’s latest album?
api_call=spotify_search_catalog(q=“Taylor Swift”, type=“album”, limit=1)

datetime_now=2023-11-17T11:21:42+08:00

user_query=Looking to eat vegan food in San Francisco this weekend, could you get me one great restaurant suggestion

for Saturday?

api_call=
868

13


	Introduction
	Preliminaries
	Shared System Prompt
	LLM Inferencing

	Our Approach
	Prefix Aware KV Cache (PAKV)
	Two-phase Partition (TPP)
	Further Optimizations

	Experiments
	Microkernel Evaluation
	End-to-end Evaluation

	Related Work
	Conclusion
	Limitations
	System Prompt for Chatbot Applications with Plugins

