
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FLOE: FISHER-BASED LAYER SELECTION FOR EFFI-
CIENT SPARSE ADAPTATION OF LOW-RANK EXPERTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-Efficient Fine-Tuning (PEFT) methods have emerged as a widely
adopted strategy for adapting pre-trained Large Language Models (LLMs) to
downstream tasks, significantly reducing memory and computational costs. How-
ever, most existing PEFT techniques uniformly deploy LoRA adapters across all
layers, disregarding the intrinsic heterogeneity of layer contributions and task-
specific rank requirements. This uniform paradigm leads to redundant parameter
allocation and suboptimal adaptation efficiency. To address these limitations, we
propose FLoE, a novel PEFT framework that introduces two key innovations: (i) a
Fisher information-guided importance scoring mechanism to dynamically identify
task-critical transformer layers for MoE-based low-rank adaptation, enabling sparse
adapter deployment; and (ii) a Bayesian optimization-driven rank allocator that
automatically determines optimal LoRA ranks on specific datasets without exhaus-
tive grid search. Extensive experiments across diverse LLMs and benchmarks
reveal that FLoE achieves impressive efficiency-accuracy trade-offs, making FLoE
particularly advantageous in resource-constrained environments that necessitate
rapid adaptation.

1 INTRODUCTION

Adapting Large Language Models (LLMs) for multiple downstream tasks traditionally relies on
full fine-tuning (FFT), which requires retraining all model parameters. To reduce the training
cost, parameter-efficient fine-tuning (PEFT) techniques [35; 13; 7] have been developed, which
can be broadly categorized into LoRA-based [13; 7; 29], Adapter-based [48; 24] and Prompt-
based [26; 30; 25] approaches. While tuning a limited set of parameters is effective for domain
adaptation, PEFT methods like LoRA [15] often exhibit a performance gap compared to the FFT
baseline. This gap widens further when tuning on complex datasets [33] with diverse sub-domains
and task types, which requires models to distinguish subtle, non-overlapping features while avoiding
redundancy.

Recent studies explore a hybrid solution [11; 8; 16], showing that combining LoRA with the Mixture-
of-Experts (MoE) [17; 41] is a promising recipe. Among these solutions, HydraLoRA [44] stands out
by discovering the asymmetric property of LoRA and implementing B matrices as domain-specific
experts, achieving impressive adaptation performance. However, existing methods [44; 52; 29; 8]
adopt a uniform placement strategy that indiscriminately deploys fixed-rank LoRA adapters across
all transformer layers. Our investigation yields two critical observations that challenge the premise of
current implementations:

• Indiscriminate deployment of MoE-based LoRA adapters leads to unnecessary computational
overhead as shown in Fig. 1b, revealing a paradoxical trade-off between the number of trainable
parameters and overall performance gains.

• LoRA-based tuning is highly sensitive to the choice of rank [52; 19; 46; 32]. Since models
trained with one rank do not generalize to others, it is crucial to identify the optimal rank in
advance to avoid costly retraining for each possible rank.

Based on these observations, the key to improve MoE-based LoRA tuning is to identify and adapt
a small number of critical layers. To quantify the concept of "critical", our motivation is that: if a
layer is important for task-specific adaptation, the parameters of its residual trainable adapter should

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Layer.01

Layer.05

Layer.03

𝐵3 Router𝐵1 𝐵2

𝐴MHA

LayerNorm

LayerNorm

FFN

Layer.02

Layer.04

𝑤1

𝑤2
𝑤3

(a)

8 12 16 20 22 24 26 28 32

Number of Layers
45

50

55

60

65

70

75

80

GP
U

M
em

or
y

(G
B)

Memory Consumption
Memory Trend
Accuracy Trend

49.85GB

54.24GB

58.14GB

63.16GB

66.38GB

68.01GB

71.45GB
73.12GB

78.01GB

45.00

45.25

45.50

45.75

46.00

46.25

46.50

46.75

47.00

Ac
cu

ra
cy

 (%
)

46.48%

46.29%

45.61% 45.59%

45.41%

46.24%

46.05%

45.61%

45.83%

(b)

Figure 1: (a) Architecture of our MoE-based LoRA implementation. We adopt the asymmetric archi-
tecture of HydraLoRA [44]: a shared A matrix captures general features of the dataset, and multiple
distinct low-rank experts Bi learn task-specific patterns. The router takes in an intermediate token
representation and generates gating scores wi over experts. (b) Experimental evidence supporting
our motivation: we evaluate GPU memory consumption and adaptation performance of the FLoE
layer selection algorithm on LLaMA2-7B fine-tuned with Databricks-Dolly-15K. As the number of
adapted layers increases, GPU memory usage grows linearly, yet model accuracy does not improve
and even underperforms compared to few-layer adaptation.

exhibit high sensitivity to the adaptation loss, while the corresponding pre-trained weights remain
relatively insensitive. From a mathematical view, we can use the variation of gradients to quantify this
property, which can be measured with Fisher Information. Another question is how to determine the
optimal rank before training. To address these questions, we propose FLoE, a sparse layer adaptation
framework that provides a unified selection of layer and LoRA rank. The overall pipeline includes:
first fine-tune a full-layer model on a sampled dataset using MoE-based LoRA shown in Figure 1a,
then applies FLoE to determine critical layers and optimal ranks. During final adaptation on the target
dataset, all pre-trained weights are frozen while only the adapters on the critical layers are updated.

Our contributions can be summarized as follow:

• We introduce a Fisher-based importance scoring algorithm that dynamically identifies critical
transformer layers for MoE-based low-rank adaptation, enabling sparse, context-aware adapter
deployment.

• We incorporate a Bayesian optimization step to estimate the optimal LoRA rank before training
on the target dataset, avoiding exhaustive grid search and retraining.

• Experiments show that FLoE achieves comparable or even better performance than prior PEFT
methods across diverse datasets and model families, with notable advantages in low-resource
and fast-adaptation scenarios. By adapting only 25% of layers, FLoE retains 93.1% of full
fine-tuning accuracy on MMLU benchmarks, and achieves a 7.0% relative improvement over
the best-performing full-layer methods in mixed-domain adaptation, demonstrating its superior
capability in mitigating domain interference while maintaining parameter efficiency.

2 RELATED WORK

Parameter-Efficient Fine-tuning. Parameter Efficient Fine-Tuning (PEFT) techniques aim to
reduce the training costs of the LLMs. Previous PEFT approaches can be broadly classified into
the following categories: i) Prefix-tuning [26] and prompt-tuning [25]: prominent approaches that
fine-tune continuous prompts rather than discrete ones. ii) Adapter-based tuning: inserts additional
adapters into the model or scales activations with learned vectors, including AdaMix [48] and
(IA)3 [28]. iii) Low-rank adaptation: introduces trainable low-rank matrices to LLMs, keeping the
original weights frozen for efficiency, including LoRA [15] and its variants, such as AdaLoRA [52],
HydraLoRA [44] and others [51; 21; 39; 5; 29; 29]. Extensions to multi-LoRA architectures include
Multi-Head Routing [37] for Mixture-of-Experts and LoraHub [16] for task composability.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

AdapterFFN

MHA (8 heads)

FFN

unmasked head/neuron

MHA (8 heads)

masked head/neuron

Smaller Cumulative Fisher
Information (on pre-trained weights)

Larger Cumulative Fisher
Information (on pre-trained weights)

Densely Masked Sparsely Masked

Figure 2: Mechanism of FLoE layer selection. A densely masked layer intends to have higher
importance for low-rank adaptation, so we add a residual trainable adapter to the FFN component.
The adaptation process only updates the adapter.

Layer-wise Selective Fine-tuning. Recent studies [9; 40; 50] have raised the issue of layer redun-
dancy in pre-trained models. Surgical fine-tuning [23] updates only a subset of layers based on
domain shift, while SubTuning [20] employs a greedy search to identify the most suitable layers,
requiring significant computational resources. LISA [38] bridges the gap between full-parameter
tuning and LoRA, introduces a layer-wise importance sampling mechanism during training.

3 METHODOLOGY

Let F denote a pre-trained L-layer Transformer model. Given a dataset D = {(xi, yi)}Ni=1, where
xi denotes the input data and yi the corresponding label. For layer k ∈ {1, . . . , L}, let θk denote its
pre-trained weights. LoRA introduces trainable low-rank matrices Ak ∈ Rd×r and Bk ∈ Rr×d to
approximate weight updates ϕk = BkAk. Here we follow HydraLoRA [44] to use an MoE-based
architecture, extending LoRA by employing a shared A matrix and M parallel low-rank experts
{B(i)

k }Mi=1 alongside a router network (implemented as a dense layer followed by a softmax function).
Suppose the router outputs a vector of contribution weights {ω(i)

k }Mi=1 based on the intermediate
token representation. The weight updates are formulated as:

ϕk =

M∑
i=1

ω
(i)
k B

(i)
k Ak (1)

The final merged weights are Wk = θk + ϕk.

3.1 PROBLEM FORMULATION

As our goal is to find a subset of layers S ⊆ {1, 2, . . . , L} to add trainable adapters, we quantify
the contribution of each layer to the model adaptation performance via an importance score sk. To
achieve this, we introduce a binary mask variable mk ∈ {0, 1}|θk| as an intermediate to calculate sk
during adaptation. The adapted weight θ̃k is then computed as:

θ̃k = mk ⊙ θk + ϕk, (2)

As shown in Figure 2, the mask variable mk is applied to the pre-trained weights θk, based on
the principle that mask sparsity reflects the necessity of adaptation. If a pre-trained weight θk,i is
masked (mk,i = 0), the adapter weights must compensate for its removal to maintain performance.
If θk,i is retained (mk,i = 1), then ϕk,i only serves as a residual correction. Thus, the sparsity
of mk directly correlates with the contribution of ϕk. Let Z(mk) denote the number of masked
weights. Higher sparsity (Z(mk)≪ Z(mk)) indicates that θk are poorly aligned with the dataset,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

requiring significant adapter intervention. Lower sparsity (Z(mk) ≪ Z(mk)) suggests the pre-
trained knowledge in layer k remains largely valid, requiring minimal adaptation. This explicitly
disentangles pre-trained knowledge retention from task-driven adaptation.

Let θ ≜ [θ1, . . . , θL] and ϕ ≜ [ϕ1, . . . , ϕL]. The fine-tuning process only updates ϕ while keeping θ
frozen. After obtaining θ and ϕ, we optimize the mask variable m to find the optimal S under the
following constrained objective:

argmin
m

L(m;θ + ϕ) s.t. Cost(m;θ) ≤ C (3)

3.2 FISHER INFORMATION-AWARE ESTIMATION

To enable gradient-based optimization for the constrained problem Eq. 3, the cost function should be
differentiable with respect to the mask m. Here, we use Taylor importance [34] as the cost function,
which measures the sensitivity of the next-token prediction (NTP) loss to parameter perturbations.
This allows us to identify parameters that have minimal influence on the base model prediction, as
indicated by the deviation in the next-token prediction loss. For layer k, its element-wise Taylor
Importance Tk is defined as:

Tk =
∑
i

∣∣∣∣∂LNTP

∂θk,i
θk,i

∣∣∣∣ , (4)

For simplicity we deonte the cost function as Cost(m). By constraining the total cost
∑

k∈S Tk, we
prioritize adapting layers with lower Tk (i.e., those less critical to the pre-trained knowledge). This
ensures that adaptation focuses on "safe" regions of the network, reducing the risk of overwriting
crucial pre-trained features. Therefore, the cost function can be formulated as:

Cost(m) =
∑
k∈S

∑
i

Tk,i ·mk,i. (5)

Taylor Approximation of the Task-Specific Loss Function. We start by analyzing the sensitivity of
the loss function L to the mask variable m. Assuming we have local smoothness around m = 1,
then the loss can be approximated using a second-order Taylor expansion:

L(m; θ̃) ≈ L(1; θ̃) + 1

2
(1−m)⊤H(1−m), (6)

where θ̃ = θ + ϕ denotes the merged weights. Here, the first-order term ∇L(1; θ̃)⊤(m− 1) = 0
due to the assumption that the model has converged to a local minima, where the gradient term is
close to 0 [10; 47; 22]. As L(1; θ̃) is a constant, we can rewrite the optimization objective in Eq. 6 as
follows:

argmin
m

L(m) ≈ argmin
m

(1−m)⊤H(1−m). (7)

Eq. 7 shows that the optimal mask is determined by the Hessian of the loss with respect to the mask
variables, i.e. H = Ex∼D[∇2

mL(1; θ̃)]. Since computing the exact Hessian matrix is infeasible, we
approximate the Hessian H with the empirical Fisher Information Matrix (FIM), which is defined as:

I(m) = Ex∼D
[
∇mL(1)∇mL(1)⊤

]
. (8)

Diagonal Approximation of the FIM. Assuming each layer k contains |θk| parameters (including the
weight parameters of both MHA and FFN components), then mk can be seen as a vector of length |θk|.
As m is applied across all L layers, the full FIM I has L2|θk|2 elements, making its computation
and storage intractable for large values of |θk|. To address this challenge, we adopt a diagonal
approximation of I, reducing its complexity from O(L2|θk|2) to O(L|θk|). This approximation is
based on an assumption that cross-layer interactions can be neglected, since the off-diagonal terms
Ik,l (k ̸= l) are ignored. Under this assumption, only the diagonal elements Ik,k are computed for
each layer k, where:

Ik,k = Ex∼D

[
∂L
∂mk

]2
. (9)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This further simplifies Eq. 7 as follows:

argmin
m

L(m) ≈ argmin
m

L∑
k=1

(1−mk)
2Ik,k

= argmin
m

L∑
k=1

|θk|∑
i=1

(1−mk,i)
2Ik,k,i.

(10)

Let Zk(m) = {i : mk,i = 0}. Since we restrict the possible mask values to either 0 or 1, the
following can be derived from Eq. 10:

argmin
m

L(m) ≈ argmin
m

∑
k

∑
i∈Zk(m)

Ik,k,i. (11)

Then the optimization objective in Eq. 3 is equivalent to minimizing the sum of layer-wise Fisher
information of the masked parameters:

argmin
m

∑
k

∑
i∈Zk(m)

Ik,k,i s.t.
∑
k

∑
i∈Zk(m)

Tk,i ≤ C. (12)

3.3 SOLVING THE CONTRAINED OPTIMIZATION PROBLEM

Determination Stage. Within each transformer layer, the architecture consists of two primary
components: a multi-head attention (MHA) module and a feed-forward network (FFN). We denote
the mask variables for these components in layer k as mMHA

k and mFFN
k , respectively. Suppose there

are NMHA head mask variables and NFFN neuron mask variables.

The optimization problem in Eq. 12 can be interpreted as follows: For each layer k, we seek a subset
of unmasked parametersMk that minimizes their total Fisher information on the adapted model
F(θ̃)), while constraining their total Taylor importance (computed on the base model F(θ)) under a
global budget C.

As the Fisher information and Taylor importance vary across individual parameters, Eq. 12 becomes
a dynamic programming problem which is memory inefficient. To reduce the 2-dimensional search
space into a linear form, we employ a component-wise approximation within the same layer. Specifi-
cally, we compute the scores for MHA and FFN respectively, and then average these values to yield
a single importance estimate per parameter. This allows us to use a greedy solution (described in
Algorithm. 1). The algorithm iteratively excludes the parameters with smallest Taylor importance
until the budget C is reached, while maximizing the cumulative Fisher information of the included
parameters.

Refinement Stage. The component-wise approximation in determination stage decouples the se-
lection of MHA heads and FFN neurons within each layer, thereby ignoring potential interactions
between them. While efficient, this approximation may lead to suboptimal trade-offs between Taylor
importance and Fisher information. To mitigate this, we propose a post-hoc refinement stage that
jointly optimizes the masks for both components under the same global budget constraint. This
refinement operates on the initial greedy solution as a warm start, enabling recovery of near-optimal
masks with minimal computational overhead.

The refinement process is designed to iteratively adjust the selected MHA heads and FFN neurons
while respecting the budget constraint. LetM∗

h andM∗
f denote the sets of unmasked MHA heads

and FFN neurons from the greedy solution. We define the refinement loss for a candidate mask pair
(Mh,Mf) as:

L(Mh,Mf) =
∑

i/∈Mh

τhi +
∑

j /∈Mf

τfj , s.t.
∑

i/∈Mh

th +
∑

j /∈Mf

tf ≤ C. (13)

The goal is to perturb (M∗
h,M∗

f) to minimize L under the constraint. Let C denote a joint candidate
set containing all parameters (both masked and unmasked) at the same layer:

C =
{
(i, j) | i ∈M∗

h, j ∈ QFFN \M∗
f

}
∪
{
(i, j) | i ∈M∗

f , j ∈ QMHA \M∗
h

}
. (14)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Greedy Mask Search

1: Input: Budget C, Fisher score per-head {τhi }N
MHA

i=1 , Fisher score per-neuron (for FFN) {τfj }N
FFN

j=1 ,
Taylor score per-head th, Taylor score per-neuron tf .

2: Initialize optimal Fisher loss L∗ ←∞, optimal sets of unmasked indices (M∗
h,M∗

f)← (∅, ∅),
mask variables (mMHA,mFFN)← (1,1)

3: for n = 0 to NMHA do
4: Compute cost for MHA module: Ĉh = n · th
5: if Ĉh > C then
6: continue ▷ Exceeds budget
7: end if
8: Remaining budget: Cr = C − Ĉh

9: Retained neurons: f = min

(
max

(
0,

⌊
Cr

tf

⌋)
, NFFN

)
10: Select n heads with smallest τhi : indices Ph

11: Select f neurons with smallest τfj : indices Pf

12: Compute total loss: L =
∑

i∈Ph
τhi +

∑
j∈Pf

τfj
13: if L < L∗ then
14: L∗ ← L, (M∗

h,M∗
f)← (Ph,Pf)

15: end if
16: end for
17: Apply masks: Set mMHA[M∗

h] = 0, mFFN[M∗
f] = 0

18: Output: Optimal mask m∗ = (mMHA,mFFN)

where QMHA and QFFN represent the complete sets of parameters in MHA and FFN modules,
respectively. For each candidate parameter p ∈ C, compute the swap gain if p is masked and another
parameter q (of any component) is unmasked to compensate for the budget:

∆Lp→q = τp − τq, ∆Cp→q = tp − tq. (15)

A valid swap satisfies ∆Cp→q ≥ 0 to preserve the budget constraint. Then we select the swap
with the largest ∆Lp→q (i.e., maximal reduction in total Fisher loss) to updateM∗

h,M∗
f and the

remaining budget. Repeat this process until no improving swaps exist. The algorithm is implemented
in Algorithm. 2.

The refinement stage approximates a single iteration of the Lagrange multiplier method, where
swaps implicitly adjust the balance between Taylor importance (constraint) and Fisher information
(objective). By restricting swaps to the vicinity of the initial greedy solution, it avoids the O(|θ̃||θ|)
complexity of full dynamic programming while recovering Pareto-improved solutions.

Tuning Stage. Since our goal is to use mask values to measure parameter importance, the initial
binary masks are insufficient, as they fail to capture parameters that contribute marginally on their
own but are collectively important. To address this limitation, we introduce a differentiable tuning
stage that relaxes the binary masks into continuous values. The layer-wise reconstruction objective is
formulated as the residual activation difference:

argmin
mk

∥O(x;1)−O(x′;mk)∥
2
2 (16)

where x′ and x are inputs to the layer with or without mask, O(x;mk) = x+ lk(x;mk) denotes the
residual output of a mask-scaled layer, and lk indicates a MHA or FFN layer. A detailed derivation is
provided in Appendix H.

3.4 DYNAMIC RANK SELECTION FOR LORA-BASED PEFT

We employ Bayesian optimization primarily to determine the optimal LoRA rank r across layers,
while also adjusting the number of experts in MoE-LoRA as a secondary objective. Bayesian opti-
mization is particularly advantageous in multi-dimensional hyperparameter spaces, as it constructs a
probabilistic surrogate model to approximate the relationship between hyperparameters and validation

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

performance. Using an acquisition function, BO iteratively proposes new candidate configurations by
leveraging past evaluation results, thereby focusing computational resources on regions most likely
to yield improved performance. Compared to grid or random search, BO significantly reduces the
number of expensive fine-tuning trials and enables early elimination of suboptimal configurations.
This makes it especially suitable for tuning costly PEFT setups with multiple hyperparameters.
Table 8 highlights the efficiency gains of BO when tuning LoRA rank r ∈ [4, 64] (for rank allocation)
and the number of experts ∈ [2, 10].

0 5 10 15 20 25 30
Transformer Layer

Sa
lie

nc
e

** ***

Single Domain (Law)

0

2000

4000

0 5 10 15 20 25 30
Transformer Layer

Sa
lie

nc
e

** * **

Mixed Domain

2000

4000

Figure 3: Saliency maps illustrating the importance of layers on the single-domain (Lawyer-Instruct) and
mixed-domain/task (FLANv2) datasets. The base model is LLaMA2-7B. Black dots indicates the top-5 critical
layers for the given task.

Table 1: Performance comparison of PEFT methods on LLaMA2-7B. Performance metrics include the accuracy
on MMLU (5-shot) and GSM8K, and Pass@1/Pass@10 on HumanEval. LoRA and its variants (AdaLoRA,
DoRA and HydraLoRA) adopt a single A matrix, but differ in the rank and the number of B matrices, which are
determined by Bayesian optimization.

HumanEvalSchemes MMLU Medical Law
P@1 P@10

GSM8K Avg. Rank Avg. #B

LLaMA2-7B [45] 38.79 36.05 33.64 13.17 20.41 10.44 - -
Full Fine-Tuning 49.91 46.76 46.22 20.24 32.93 25.69 - -

Prompt Tuning [25] 39.97 37.46 34.88 13.59 21.62 13.25 - -
P-Tuning(256) [31] 41.02 39.85 36.64 13.53 21.20 15.50 - -
Prefix Tuning [26] 41.86 40.28 36.30 13.15 22.48 16.83 - -

LoRA [15] 45.88 46.76 37.16 14.57 29.88 18.24 16 1
AdaLoRA [52] 44.26 42.39 39.36 14.74 23.85 19.44 12 → 4 1

DoRA [29] 44.57 44.23 38.74 14.65 24.20 19.50 10 1
HydraLoRA [44] 45.83 46.90 37.76 14.39 28.66 19.66 8 4

Ours 46.48 49.15 39.14 14.82 31.71 20.09 8 4

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Benchmarks. To investigate the effectiveness of our layer selection policy, we
conduct experiments on both single- and multi-domain datasets. Single domain includes: General,
Medical, Legal, Code Generation, Mathematics. Multi domain includes FLANv2 and we evaluate
the performance on BBH benchmark [42]. Detailed descriptions of the datasets and benchmarks are
provided in Appendix D.

Baselines. To evaluate the adaptation performance on FLoE-selected layers, we compare it with differ-
ent PEFT methods: Full Fine-Tuning, Prompt Tuning [25], P-Tuning [31], LoRA [15], AdaLoRA [52],
DoRA [29], HydraLoRA [44]. To evaluate the layer selection policy, we compare FLoE with Ran-
dom Selection and LISA [38] (fine-tuned with MoE-LoRA). We further compare FLoE with two
LoRA derivatives, LoraHub [16] and LoRAMoE [8], which also utilize a routing mechanism to
coordinate multiple LoRA experts. Detailed descriptions of these baseline methods are provided in
Appendix D.2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

12 20 24 26 32
Layer

4

6

8

Ra
nk

48.87 49.15 48.87 48.59 47.89

48.17 48.03 48.03 48.59 47.46

48.31 48.45 47.46 47.75 46.90
47.00

47.25

47.50

47.75

48.00

48.25

48.50

48.75

49.00

Figure 4: Dynamic rank selection results for the
medical task on LLaMA2-7B. The optimal rank (r =
4) is determined using Bayesian optimization on a
full-layer adapted model (1A/4B).

Base LoRA LoraHub LoRAMoE HydraLoRA FLoE
25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Ex
ac

t M
at

ch
 (E

M
) S

co
re

31.1
(0.0%)

35.4
(0.062%)

39.7
(1.24%)

40.3
(2.976%)

41.5
(0.205%)

42.7
(0.051%)

0/0 1/1 48/48 48/48 1/6 1/6

Proposed Model
Baseline Methods

Figure 5: Mixed domain results evaluated on
the BBH benchmark (3-shot) using LLaMA2-
7B. FLoE achieves the highest Exact Match
(EM) score with the lowest training parameter
size.

Table 2: Performance comparison of different layer selection policies, including random selection (with seed
42), LISA + MoE-LoRA and our proposed FLoE training for 1 epoch with LLaMA2-7B.

Random LISA + MoE-LoRA Ours (FLoE)

General 46.15 46.39 46.48
Medical 47.46 48.17 49.15

4.2 MAIN RESULTS

Implementation Details. For single-domain adaptation, we first fine-tune a fully adapted model on
50% of the target dataset (i.e. the warm-up phase). The LoRA rank and the number of B matrices
are optimized via Bayesian optimization, where the rank is searched within [2, 32] (step size 2), and
the number of B matrices within [2, 4] (step size 1). We then apply the layer selection algorithm to
identify critical layers, followed by fine-tuning a sparsely adapted model on the full target dataset.
For mixed-domain adaptation, we sample 1.25% of the FLANv2 dataset for the warm-up phase.
Bayesian optimization is applied with the same search range for the rank, while the number of B
matrices is searched within [6, 10] (step size 2). The model is then fine-tuned on a larger subset of
FLANv2 comprising 3% of the data.

Results on Single/Mixed Domain dataset. The experimental results are presented in Table 1 for
fine-tuning performance evaluation and Table 2 for layer selection policy evaluation. These results
demonstrate that FLoE consistently outperforms all competing approaches while reducing a large
portion of trainable parameters. Results in Table 3 show that the optimal number of layers varies
depending on the specific domain, with fewer layers generally performing better on MMLU and
Medical benchmarks, while a moderate number of layers might be more effective for Law and
GSM8K benchmarks. Figure 5 shows the results of mixed tasks and domains. The A/B configuration
is 48/48 for LoraHub and LoRAMoE, 1/1 for LoRA, 1/6 for FLoE and HydraLoRA. Detailed results
for each task in BBH evaluation are provided in the Appendix 9. The visualizations of the layer
importance on single and mixed domain dataset is represented in Figure 3.

Hyperparameter Tuning via Bayesian Optimization. We employ Bayesian optimization via
Optuna [1], searching in 30 trials for the combination of r and NB . We implement with the Tree-
structured Parzen Estimator (TPE) surrogate model and the Expected Improvement (EI) acquisition
function. Table 8 shows the efficiency of using Bayesian optimization compared with random search
and grid search over a substantially larger search space. Figure 4 compares the performance of
fine-tuning different subsets of layers under different ranks (r = 4, 6, 8). Here we fix the number
of B matrices to 4, since the search space for NB is very small and the optimal value consistently
remains 4 when the validation loss reaches its minimum at r = 4, 6, 8. We visualize the convergence
of Bayesian optimization process in Figure 8.

Results on Other Models Families. To validate the generalization of FLoE, we extend experiments
to Gemma2-2B [43], Mistral-7B [18] and LLaMA3.1-8B [12]. As shown in Table 4, both models
achieve optimal task performance when adapting 8 layers. Figure 10 visualizes layer importance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Layer-specific fine-tuning using FLoE on LLaMA2-7B. We apply a 1A/4B adapter for each selected
layer. Best results per column are bolded.

HumanEvalLayers MMLU Medical Law
P@1 P@10

GSM8K % Param

32 45.83 46.90 37.76 14.39 28.66 17.66 0.124
26 46.05 47.75 38.07 14.45 27.44 19.94 0.101
24 46.24 47.46 37.76 14.76 31.71 20.09 0.093
20 45.59 47.75 39.14 14.82 31.10 18.62 0.078
16 45.61 48.03 38.00 13.90 31.71 18.65 0.062
12 46.29 48.45 37.89 13.78 29.27 19.11 0.047
8 46.48 49.15 36.80 13.48 29.88 17.91 0.031

Table 4: End-to-end inference latency by running the full MMLU benchmark (including 14,042 examples) on
the fine-tuned Gemma2-2B and Mistral-7B models, the configuration for multi LoRA head is 1A/4B. Models
are fine-tuned with Dolly-15K. Layer selection is performed using FLoE.

Models Metrics Single LoRA Head Multi LoRA Heads
32 28 24 20 16 12 8

Gemma2-2B % Performance (Acc) 51.25 - 51.56 51.73 51.67 51.12 51.30 51.99↑0.74

Inference Lat. (s) 1717.90 - 3832.37 3670.04 3368.81 3123.01 2777.69 2516.51↑798.61

Mistral-7B % Performance (Acc) 60.95 53.18 61.42 61.04 60.40 61.10 61.52 62.14↑1.19

Inference Lat. (s) 1462.27 4022.30 2055.37 1917.85 1758.16 1666.58 1636.02 1519.14↑56.87

LLaMA3.1-8B % Performance (Acc) 62.03 61.54 62.46↑0.43 62.36 62.25 62.45 61.88 62.02
Inference Lat. (s) 1333.49 1900.04 1796.27↑462.78 1706.96 1611.51 1525.08 1432.32 1145.19

Table 5: Training runtime for full-layer and selected-layer adaptation. The FLoE(Total) is the sum of Selected-
Layer Adaptation and FLoE Layer Selection.

Dolly-15K Clinic-10K Lawyer-Instruct CodeAlpaca

Full-Layer Adaptation (Baseline) 20105.08 20105.08 10137.51 45092.51
Selected-Layer Adaptation 16455.04 6697.16 6895.77 16197.23

FLoE Layer Selection 122.86 125.45 123.13 127.39

FLoE (Total) 16577.90 (-3527.18) 6822.61 (-7281.19) 7018.90 (-3118.61) 16324.62 (-28767.89)

distributions, showing that FLoE identifies middle layers for Mistral-7B and deep layers for Gemma2-
2B as critical for adaptation.

Inference Latency. As MoE-LoRA inherently has more parameters than vanilla LoRA, we compare
the latency of running inference on full-layer adapted models with single LoRA head (per adapter)
and selected-layer adapted models with multiple LoRA heads (per adapter). Experiments are running
with a batch size of 16. While the full-layer LoRA-adapted models achieve minimal inference time,
our FLoE layer selection strategy significantly optimizes latency for multi-head configurations. As
shown in Table 4, FLoE reduces inference latency by strategically limiting the number of adapted
layers.

Trade-off bewteen Training and Layer Selection. Table 5 shows the runtime of FLoE layer
selection process. The results show that the overall runtime including FLoE layer selection process
and selected-layer adaptation is still lower than full-layer adaptation.

5 CONCLUSION

In this work, we first discuss the limitations of deploying MoE-based LoRA modules on all trans-
former layers indiscriminately, where domain interference significantly degrades performance across
diverse tasks. To address this, we propose FLoE, a novel PEFT method that introduces two key
innovations: Fisher information-aware layer selection and Bayesian optimization-driven dynamic
rank allocation. Our experiments demonstrate that FLoE offers a scalable and resource-efficient
way for adapting LLMs to specialized domains, advancing the practical deployment of LLMs under
constrained computational budgets.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Op-
tuna: A next-generation hyperparameter optimization framework. In The 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 2623–2631, 2019.

[2] Alignment-Lab-AI. Lawyer-instruct, 2024.

[3] Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation.
https://github.com/sahil280114/codealpaca, 2023.

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[5] Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya
Jia. Longlora: Efficient fine-tuning of long-context large language models. arXiv preprint
arXiv:2309.12307, 2023.

[6] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

[7] Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and
Maosong Sun. Sparse low-rank adaptation of pre-trained language models. arXiv preprint
arXiv:2311.11696, 2023.

[8] Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun Zhao, Wei Shen, Yuhao Zhou, Zhiheng
Xi, Xiao Wang, Xiaoran Fan, et al. Loramoe: Alleviate world knowledge forgetting in large
language models via moe-style plugin. arXiv preprint arXiv:2312.09979, 2023.

[9] Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layer skip: Enabling
early exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

[10] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

[11] Chongyang Gao, Kezhen Chen, Jinmeng Rao, Ruibo Liu, Baochen Sun, Yawen Zhang, Daiyi
Peng, Xiaoyuan Guo, and Vs Subrahmanian. MoLA: MoE LoRA with layer-wise expert
allocation. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Findings of the Association
for Computational Linguistics: NAACL 2025, pp. 5097–5112, Albuquerque, New Mexico,
April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7. URL
https://aclanthology.org/2025.findings-naacl.284/.

[12] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[13] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large
models. arXiv preprint arXiv:2402.12354, 2024.

[14] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

[15] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[16] Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lo-
rahub: Efficient cross-task generalization via dynamic lora composition. arXiv preprint
arXiv:2307.13269, 2023.

10

https://github.com/sahil280114/codealpaca
https://aclanthology.org/2025.findings-naacl.284/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[17] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures
of local experts. Neural computation, 3(1):79–87, 1991.

[18] Fengqing Jiang. Identifying and mitigating vulnerabilities in llm-integrated applications. Mas-
ter’s thesis, University of Washington, 2024.

[19] Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei
Deng, Feng Sun, Qi Zhang, Deqing Wang, et al. Mora: High-rank updating for parameter-
efficient fine-tuning. arXiv preprint arXiv:2405.12130, 2024.

[20] Gal Kaplun, Andrey Gurevich, Tal Swisa, Mazor David, Shai Shalev-Shwartz, and Eran Malach.
Less is more: Selective layer finetuning with subtuning. arXiv preprint arXiv:2302.06354,
2023.

[21] Dawid J Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix
adaptation. arXiv preprint arXiv:2310.11454, 2023.

[22] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky (ed.),
Advances in Neural Information Processing Systems, volume 2. Morgan-Kaufmann, 1989.
URL https://proceedings.neurips.cc/paper_files/paper/1989/file/
6c9882bbac1c7093bd25041881277658-Paper.pdf.

[23] Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and
Chelsea Finn. Surgical fine-tuning improves adaptation to distribution shifts. arXiv preprint
arXiv:2210.11466, 2022.

[24] Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan Du,
Vincent Zhao, Yuexin Wu, Bo Li, et al. Conditional adapters: Parameter-efficient transfer
learning with fast inference. Advances in Neural Information Processing Systems, 36:8152–
8172, 2023.

[25] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

[26] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

[27] Yunxiang Li, Zihan Li, Kai Zhang, Ruilong Dan, Steve Jiang, and You Zhang. Chatdoctor: A
medical chat model fine-tuned on a large language model meta-ai (llama) using medical domain
knowledge. Cureus, 15(6), 2023.

[28] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

[29] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation.
arXiv preprint arXiv:2402.09353, 2024.

[30] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
arXiv preprint arXiv:2110.07602, 2021.

[31] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. AI Open, 5:208–215, 2024.

[32] Zequan Liu, Jiawen Lyn, Wei Zhu, Xing Tian, and Yvette Graham. Alora: Allocating low-rank
adaptation for fine-tuning large language models. arXiv preprint arXiv:2403.16187, 2024.

[33] Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou,
Quoc V Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods
for effective instruction tuning. In International Conference on Machine Learning, pp. 22631–
22648. PMLR, 2023.

11

https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[34] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

[35] Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: principal singular values and singular
vectors adaptation of large language models. arXiv preprint arXiv:2404.02948, 2024.

[36] C Mike, H Matt, M Ankit, X Jianwei, W Jun, S Sam, G Ali, W Patrick, Z Matei, and X Reynold.
Free dolly: Introducing the world’s first truly open instruction-tuned llm, 2023.

[37] Lucas Page-Caccia, Edoardo Maria Ponti, Zhan Su, Matheus Pereira, Nicolas Le Roux, and
Alessandro Sordoni. Multi-head adapter routing for cross-task generalization. Advances in
Neural Information Processing Systems, 36, 2024.

[38] Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa:
Layerwise importance sampling for memory-efficient large language model fine-tuning. arXiv
preprint arXiv:2403.17919, 2024.

[39] Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-lora: Enhacing parameter
efficiency of lora with weight tying. arXiv preprint arXiv:2311.09578, 2023.

[40] Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers
of pre-trained transformer models. Computer Speech & Language, 77:101429, 2023.

[41] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv preprint arXiv:1701.06538, 2017.

[42] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei.
Challenging big-bench tasks and whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

[43] Gemma Team. Gemma. 2024. doi: 10.34740/KAGGLE/M/3301. URL https://www.
kaggle.com/m/3301.

[44] Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Chengzhong Xu. Hydralora: An asymmetric
lora architecture for efficient fine-tuning. arXiv preprint arXiv:2404.19245, 2024.

[45] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[46] Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv
preprint arXiv:2210.07558, 2022.

[47] Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured
pruning in the kronecker-factored eigenbasis. In International conference on machine learning,
pp. 6566–6575. PMLR, 2019.

[48] Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, and
Jianfeng Gao. Adamix: Mixture-of-adapter for parameter-efficient tuning of large language
models. arXiv preprint arXiv:2205.12410, 1(2):4, 2022.

[49] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In
The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?
id=gEZrGCozdqR.

[50] Kaiyan Zhang, Ning Ding, Biqing Qi, Xuekai Zhu, Xinwei Long, and Bowen Zhou. Crash:
Clustering, removing, and sharing enhance fine-tuning without full large language model. arXiv
preprint arXiv:2310.15477, 2023.

12

https://www.kaggle.com/m/3301
https://www.kaggle.com/m/3301
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[51] Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,
2023.

[52] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

In this work, LLMs are not involved in any core aspects of the research, including data collection,
experimental design, model development, result analysis, or conclusion formulation. LLMs are
only used for language polishing. Their role are limited to improving textual clarity, enhancing
logical coherence, refining the precision of academic terminology, and increasing the readability
of experimental results. All text refined with the assistance of LLMs was carefully reviewed by
the authors to ensure full alignment with the original research intentions and to maintain academic
integrity, without introducing inaccuracies or misleading content.

B REPRODUCIBILITY STATEMENT

We provide code in the supplementary material and implementation details in the appendix, covering
batch size, learning rate schedules, and optimizer configurations. The models are publicly available,
and all external datasets used in our work are either publicly released or cited with appropriate
references.

C LIMITATION

While our proposed FLoE algorithm effectively identifies critical layers for MoE-based LoRA fine-
tuing, its current implementation limits each LoRA module with a fixed number of low-rank experts.
Future work can explore dynamic expert allocation mechanisms, where both the selection of critical
layers and the number of experts per layer are jointly optimized, enabling more granular control over
model capacity allocation and better computational resource utilization.

D DATASETS AND BASELINES

D.1 DATASETS

Single domain includes:

• General: we fine-tune with Databricks-Dolly-15K dataset [36] for general knowledge mastering
and evaluate with all tasks in MMLU [14].

• Medical: we fine-tune with GenMedGPT and Clinic-10K [27] for medical applications and
evaluate with 3 medical tasks in MMLU, including clinical knowledge, professional medicine
and college medicine.

• Legal: we fine-tune with Lawyer-Instruct [2] for legal applications and evaluate with 3 legal
tasks in MMLU, including jurisprudence, international law and professional law.

• Code Generation: we fine-tuned with CodeAlpaca [3] and evaluate with HumanEval [4].
• Mathematics: we fine-tune with the training split of GSM8K [6] for mathematical reasoning and

evaluate with the test split.

Multi domain includes:

• FLANv2: we construct the training dataset by sampling equal-proportion subsets from each of
the 46 tasks in FLANv2 [49] and evaluate on BBH benchmark [42].

D.2 BASELINES

Baselines for PEFT:

• Full Fine-Tuning: the default adaptation strategy involves initializing the model with pre-trained
weights and updating all parameters via gradient descent. The number of trainable parameters
equals the number of pretrained parameters.

• Prompt Tuning [25]: adds manually-designed task-specific prompts to the input. The fine-tuning
process only updates the prompt parameters while keeping the pre-trained parameters frozen.

• P-Tuning [31]: a prompt adds learnable prompt tokens to the input, optimized by a prompt
encoder to find a better prompt. The prompt tokens can be added anywhere in the input sequence.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• LoRA [15]: decomposes weight updates into low-rank matrices, enabling efficient adaptation
with significantly fewer trainable parameters while preserving model performance.

• AdaLoRA [52]: dynamically allocates trainable parameters across weight matrices and layers,
prioritizing important components instead of uniformly distributing resources as in LoRA.

• DoRA [29]: decomposes pre-trained weights into magnitude and direction components, and
apply LoRA on the direction component.

• HydraLoRA [44]: incorporating asymmetric LoRA adapters across all layers.

Baselines for layer selection policy:

• Random Selection: layers are chosen uniformly at random during training (with a fixed random
seed 42), serving as a naive baseline to assess the necessity of structured selection.

• LISA + MoE-LoRA [38]: LISA freezes most intermediate layers and selectively updates only the
embedding layer, the language modeling head layer, and a small number of randomly sampled
intermediate layers in each optimization step. We update the weights of MoE-LoRA modules
on these layers instead of updating the pre-trained weights. The rank and the number of experts
are determined by Bayesian optimization.

Baselines for multi-LoRA architecture:

• LoRAMoE[8]: combines lightweight experts (LoRA) with MoE architecture for high efficiency,
generalizing to new tasks without prior knowledge.

• LoraHub[16]: employs black-box optimization to learn weights of 20 randomly selected LoRAs
for new tasks, using weighted averaging without needing gradient calculations.

E HYPERPARAMETER SETTINGS

Table 6: Hyperparameter settings for our experiments and LoRA-based baseline methods. MSL indicates the
max sequence length, BSZ indicates the batch size. All methods use the AdamW optimizer. The weight decay is
set to 0.

α Dropout MSL Warmup Ratio BSZ Epochs LR Seed Where

Hyperparameter 32 0.05 1024 0.03 1 1 2e-4 41 Up,Down,Gate

F ABLATION STUDY

The FLoE layer selection algorithm comprises three steps: (i) determination stage for coarse-grained
binary mask value initialization, (ii) refinement stage implementing a swapping protocol that ex-
changes mask values between each pair of masked and unmasked parameters within the same layer,
and (iii) tuning stage to relax the binary mask values into continuous values using a reconstruc-
tion objective. To validate the necessity of refinement stage, we compare the model performance
with and without the refinement stage. We first fine-tune a full-layer LLaMA2-7B model with
Databricks-Dolly-15K, and using FLoE to get the layer importance rankings which is shown in
Figure 9. Empirical results reveal that disabling this stage leads to a performance degradation as
shown in Table 7.

Table 7: Evaluation results on MMLU with the former 15, 16, 21, 24, 25 layers fine-tuned (in the ranking
order).

Fine-tuned Layers 15 16 21 24 25

w/o refinement 45.11 45.14 45.52 45.48 45.61
w/ refinement 45.36↑0.25 45.33↑0.19 45.56↑0.04 45.43↓0.05 45.66↑0.05

G ANALYSIS FOR LAYER SELECTION

As FLoE layer selection algorithm need to run on an already fine-tuned model, we decrease the
preparation overhead via reducing the size and category of training data. For single domain fine-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 4 8 12 16 20 24 28

Transformer Layer Index

0

5

10

15

20

25

30

Im
po

rta
nc

e
R

an
ki

ng
(H

ig
he

r V
al

ue
 =

 M
or

e
Im

po
rta

nt
) =2

=1 =3

=1 =1

=12

=1

=13

w/ refinement w/o refinement

Figure 6: Layer importance rankings with or without refinement stage. The difference starts at the rank 14 (i.e.
the former 15 layers. The 14-th layer is layer 10 in the w/o refinement rankings and layer 8 in the w/ refinement
rankings) and ends at the rank 16 (i.e. the former 17 layers has the same set of layer indexes). Similarly, we only
need to evaluate the former 21, 24 and 25 layers in the subsequent rankings. Both rankings and layer indexes
start at 0. The range is 0-31.

tuning, we first fine-tune a model on a general knowledge dataset, then run FLoE on that model. If
this general dataset is too large, we reduce its size by randomly selecting a partial of the training data.
Note that we can use the selection results for other single domain fine-tuning including medical, law,
code and mathematics.

Different Size of Sample Dataset. To investigate the impact of training data quantity on layer
selection, we conduct a comparative study using MoE-based LoRA for LLaMA2-7B fine-tuning.
We evaluate layer importance rankings across three training scenarios: full-data (100%), moderately
reduced (70%), and substantially reduced (30%) subsets of the Databricks-Dolly-15K dataset.

Figure 7 illustrates the stability of layer rankings under these varying data regimes. Our analysis
reveals that the refinement stage exhibits minimal sensitivity to training data quantity in terms of
rank consistency. Across all three configurations, layers 0-2 and layers 10-14 demonstrate strong
agreement in stability rankings. However, notable discrepancies emerge in the final layers (22-28),
suggesting that deeper layers show higher variability in importance assessment when trained with
reduced data. This observation indicates that for a safe consideration, we should choose at least 50%
layers for subsequent fine-tuning on the target dataset. For a more careful layer selection, we should
enlarge the sample dataset size.

0 5 10 15 20 25 30
Layer Index

0

5

10

15

20

25

30

R
an

k
(0

 =
 M

os
t I

m
po

rta
nt

)

w/ refinement

Min-Max Range Mean ± SD

0 5 10 15 20 25 30
Layer Index

0

5

10

15

20

25

30

R
an

k
(0

 =
 M

os
t I

m
po

rta
nt

)

w/o refinement

Min-Max Range Mean ± SD

Figure 7: Rank stability comparison of layers with (left) and without (right) refinement stage. The plots show
layer importance rankings (lower rank indicate higher importance) across three training data ratios (100%, 70%,
30%). The shaded regions depict min-max ranges of the rank on different ratios.

Fine-tune on Different Target Datasets. After ranking layers on the sample dataset, we apply
the ranking results to selectively fine-tune the base model on the target datasets. Note that the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

target dataset can be different from the sample dataset. To evaluate the generalization capability of
FLoE, we compare its fine-tuning performance with two single domain datasets (Clinic-10K and
CodeAlpaca). For each dataset, we implement two layer selection strategies: one using the general
knowledge dataset (Databricks-Dolly-15K) as the sample dataset, and the other using the target
dataset itself as the sample dataset. Figure 8 shows that although the misalignment between the
sample and target datasets has little impact on the best achievable performance, it may affect the
number of layers required to reach that performance.

81216202426
Number of Layers

45.5

46.0

46.5

47.0

47.5

48.0

48.5

49.0

Pe
rfo

rm
an

ce
 (%

)

Medical

81216202426
Number of Layers

13.50

13.75

14.00

14.25

14.50

14.75

15.00

15.25

Pe
rfo

rm
an

ce
 (%

)

Code (Pass@1)

81216202426
Number of Layers

28

29

30

31

Pe
rfo

rm
an

ce
 (%

)

Code (Pass@10)

Data Type
Sample Target

Figure 8: Illustration of performance under different layer importance rankings.

H PROOF OF EQ. 16

The tuning stage is designed to minimize the layer-wise reconstruction error between the masked and
unmasked versions of the adapted model. The goal is to optimize mk such that the squared L2-norm
of the residual activation difference is minimized:

argmin
m̃k

∥x′ + lk(x
′;mk)− (x+ lk(x;1))∥

2
2 s.t. Z(mk) = Z(m̄k). (17)

where Z(m) denotes the indices of zero entries in m. We use m̄ to indicate the fixed binary mask
values obtained from the refinement stage, and m indicates the mask variables to be optimized,
reconstructed from the binary masks. Let Wi represent the i-th head or neuron weight of layer lk.
The output of lk(·;mk) is:

lk(x;mk) =

N∑
i=1

mk,iWix, (18)

where N denote the number of heads (for MHA) or neurons (for FFN). Let ∆x = x′ − x, then the
residual difference in Eq. 17 becomes:

x′ +

N∑
i=1

mk,iWix
′ − x−

N∑
i=1

1iWix =

N∑
i=1

mk,iWi(x+∆x) + ∆x−
N∑
i=1

1iWix (19)

=

N∑
i=1

m̄k,imk,iWi(x+∆x) + ∆x−
N∑
i=1

1iWix

Let A =
∑N

i=1 m̄k,iWi(x+∆x), b = ∆x−
∑N

i=1 1iWix. Then Eq. 17 can be transformed into
a linear least-square problem:

argmin
uk

∥Amk − b∥22 . (20)

Assume A⊤A is invertible. The closed-form solution to Eq. 20 is given by:

m∗
k = (A⊤A)−1A⊤b. (21)

I MORE RESULTS

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2 Joint Mask Refinement

1: Input: Initial masksM∗
h,M∗

f , budget C, Fisher/Taylor scores.

2: Compute initial loss L∗ and used budget Cused = C −
(∑

i/∈M∗
h
th +

∑
j /∈M∗

f
tf

)
3: while improvement do
4: Generate all valid swaps (p, q) where ∆Cp→q ≥ 0
5: Select swap (p∗, q∗) = argmax(p,q) ∆Lp→q

6: if ∆Lp∗→q∗ > 0 then
7: UpdateM∗

h,M∗
f , L∗ ← L∗ −∆Lp∗→q∗

8: Update Cused ← Cused +∆Cp∗→q∗

9: else
10: break
11: end if
12: end while
13: Output: Refined masksM∗

h,M∗
f

Table 8: Search efficiency of different hyperparameter tuning strategies on r ∈ [4, 64] (with step of 4)
and number of experts ∈ [2, 10].

Method Search Space Size Trials Required Relative Cost

Grid Search 16× 9 = 144 144 100%

Random Search 16× 9 = 144 ∼80 ∼55%
Bayesian Opt. 16× 9 = 144 ∼30 ∼21%

0 10 20 30 40 50 60 70 80 90

Trial ID

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Va
lu

e

Global Best
Trial ID: 78
Value: 0.5531

Trial Performance: ID vs. Value (with Best Value Tracking)

Trial Value
Cumulative Best Value
Global Best Value

Figure 9: Bayesian optimization process for LLaMA3.2-3b. The validation loss converges between 30–70 trials.
Although the global best value achieved at trial 78, convergence is already evident by trial 40.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 9: Detailed results of BBH evaluation with LLaMA2-7B as the base LLM (3-shot).

HydraLoRA Ours (FLoE)Task Base LoRA L=32 L=28 L=24 L=20 L=16 L=12 L=8

Boolean Expressions 73.60 74.40 75.20 77.20 76.01 76.40 77.60 74.07 71.35
Causal Judgement 47.06 54.90 57.22 56.15 50.72 57.14 50.27 55.08 59.89

Date Understanding 37.60 40.00 44.80 55.60 54.77 56.40 57.20 59.60 60.80
Disambiguation QA 34.80 45.20 56.80 60.00 65.60 64.00 64.40 53.17 66.00

Dyck Languages 10.80 13.20 14.40 15.60 13.20 14.06 14.92 14.49 14.00
Formal Fallacies 44.80 46.00 46.80 46.40 46.80 47.60 48.00 47.15 49.20

Geometric Shapes 9.70 10.20 15.20 14.40 25.60 19.60 12.40 12.77 12.00
Hyperbaton 30.80 40.00 48.40 48.80 48.40 52.00 53.20 48.40 49.20

Logical Deduction (five objects) 22.80 33.30 45.60 46.80 45.13 45.53 46.34 43.10 46.00
Logical Deduction (seven objects) 16.00 22.40 32.00 31.60 30.80 32.40 30.40 30.00 29.60
Logical Deduction (three objects) 35.20 41.40 44.40 68.40 59.60 61.20 52.00 56.40 69.60

Movie Recommendation 53.50 63.05 68.67 69.88 66.51 69.08 68.27 65.72 65.72
Multistep Arithmetic 0.80 0.80 1.20 1.60 1.36 1.26 1.26 1.26 1.20

Navigate 42.40 52.70 57.10 54.40 54.40 62.80 62.80 58.40 65.20
Object Counting 40.10 44.00 42.40 44.00 45.20 46.00 44.80 46.00 50.00

Penguins in a Table 21.70 22.60 26.03 28.08 33.56 28.08 28.77 33.56 48.63
Reasoning about Colored Objects 19.40 27.20 35.60 40.00 36.59 42.00 41.60 42.40 37.60

Ruin Names 25.40 28.70 30.65 33.47 31.92 37.90 34.68 34.27 29.03
Salient Translation Error Detection 11.20 25.20 26.80 26.00 27.95 32.40 32.00 32.00 30.40

Snarks 44.00 44.00 46.63 48.31 46.63 46.63 47.19 46.63 46.63
Sports Understanding 50.00 57.20 65.60 67.20 58.00 57.60 54.80 55.20 58.00
Temporal Sequences 21.10 32.60 33.20 33.60 34.80 32.90 32.90 33.60 36.40

Tracking Shuffled Objects (five objects) 21.90 31.20 37.20 37.60 38.40 40.00 38.80 38.40 39.20
Tracking Shuffled Objects (seven objects) 14.80 14.00 26.00 27.60 29.60 26.40 28.80 28.40 27.60
Tracking Shuffled Objects (three objects) 41.20 51.20 71.20 71.60 72.80 70.00 69.20 67.60 65.60

Web of Lies 48.80 51.20 50.80 50.00 51.97 52.80 51.20 53.20 50.40
Word Sorting 22.00 21.20 22.40 20.40 22.00 22.40 24.40 23.60 22.00

Avg Performance (EM) 31.17 36.59 41.57 43.51 42.73 44.24 43.27 42.76 44.49
of A/B for training/inference 0/0 1/1 1/6 1/6 1/6 1/6 1/6 1/6 1/6

% Params - 0.062 0.205 0.179 0.153 0.128 0.102 0.077 0.051

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Transformer Layer

Sa
lie

nc
e

* ** **

Gemma Layer Importance Heatmap

0

500

1000

1500

2000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Transformer Layer

Sa
lie

nc
e

*** * *

Mistral Layer Importance Heatmap

0

1000

2000

3000

4000

Figure 10: Layer importance heatmaps for Gemma2-2B (top) and Mistral-7B (bottom), highlighting critical
adaptation layers (8-17 for Gemma2-2B; 27-31 for Mistral-7B). Saliency values reflect the contribution of each
layer, with darker hues indicating higher importance.

19

	Introduction
	Related Work
	Methodology
	Problem Formulation
	Fisher Information-Aware Estimation
	Solving the Contrained Optimization Problem
	Dynamic Rank Selection for LoRA-Based PEFT

	Experiments
	Experimental Setup
	Main Results

	Conclusion
	LLM Usage Statement
	Reproducibility Statement
	Limitation
	Datasets and Baselines
	Datasets
	Baselines

	Hyperparameter Settings
	Ablation Study
	Analysis for Layer Selection
	Proof of Eq. 16
	More Results

