

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FLOE: FISHER-BASED LAYER SELECTION FOR EFFICIENT SPARSE ADAPTATION OF LOW-RANK EXPERTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Parameter-Efficient Fine-Tuning (PEFT) methods have emerged as a widely adopted strategy for adapting pre-trained Large Language Models (LLMs) to downstream tasks, significantly reducing memory and computational costs. However, most existing PEFT techniques uniformly deploy LoRA adapters across all layers, disregarding the intrinsic heterogeneity of layer contributions and task-specific rank requirements. This uniform paradigm leads to redundant parameter allocation and suboptimal adaptation efficiency. To address these limitations, we propose FLoE, a novel PEFT framework that introduces two key innovations: (i) a Fisher information-guided importance scoring mechanism to dynamically identify task-critical transformer layers for MoE-based low-rank adaptation, enabling sparse adapter deployment; and (ii) a Bayesian optimization-driven rank allocator that automatically determines optimal LoRA ranks on specific datasets without exhaustive grid search. Extensive experiments across diverse LLMs and benchmarks reveal that FLoE achieves impressive efficiency-accuracy trade-offs, making FLoE particularly advantageous in resource-constrained environments that necessitate rapid adaptation.

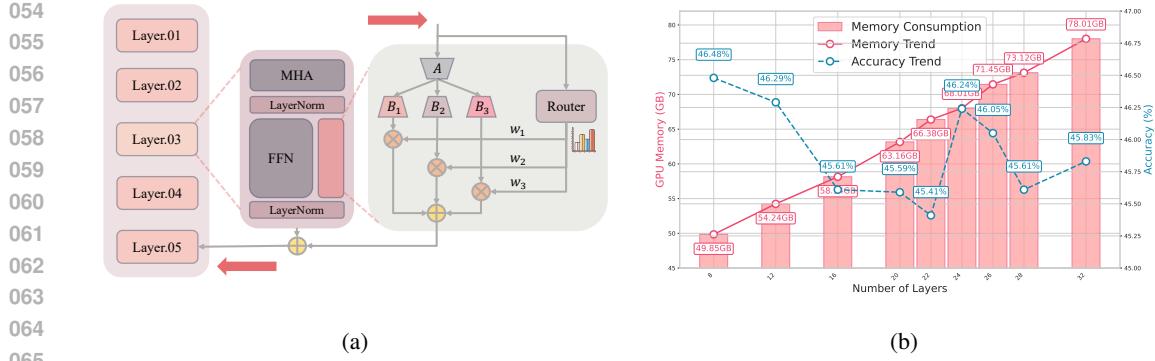
1 INTRODUCTION

Adapting Large Language Models (LLMs) for multiple downstream tasks traditionally relies on full fine-tuning (FFT), which requires retraining all model parameters. To reduce the training cost, parameter-efficient fine-tuning (PEFT) techniques [35; 13; 7] have been developed, which can be broadly categorized into LoRA-based [13; 7; 29], Adapter-based [48; 24] and Prompt-based [26; 30; 25] approaches. While tuning a limited set of parameters is effective for domain adaptation, PEFT methods like LoRA [15] often exhibit a performance gap compared to the FFT baseline. This gap widens further when tuning on complex datasets [33] with diverse sub-domains and task types, which requires models to distinguish subtle, non-overlapping features while avoiding redundancy.

Recent studies explore a hybrid solution [11; 8; 16], showing that combining LoRA with the Mixture-of-Experts (MoE) [17; 41] is a promising recipe. Among these solutions, HydraLoRA [44] stands out by discovering the asymmetric property of LoRA and implementing B matrices as domain-specific experts, achieving impressive adaptation performance. However, existing methods [44; 52; 29; 8] adopt a uniform placement strategy that indiscriminately deploys fixed-rank LoRA adapters across all transformer layers. Our investigation yields two critical observations that challenge the premise of current implementations:

- Indiscriminate deployment of MoE-based LoRA adapters leads to unnecessary computational overhead as shown in Fig. 1b, revealing a paradoxical trade-off between the number of trainable parameters and overall performance gains.
- LoRA-based tuning is highly sensitive to the choice of rank [52; 19; 46; 32]. Since models trained with one rank do not generalize to others, it is crucial to identify the optimal rank in advance to avoid costly retraining for each possible rank.

Based on these observations, the key to improve MoE-based LoRA tuning is to identify and adapt a small number of critical layers. To quantify the concept of "critical", our motivation is that: if a layer is important for task-specific adaptation, the parameters of its residual trainable adapter should



066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: (a) Architecture of our MoE-based LoRA implementation. We adopt the asymmetric architecture of HydraLoRA [44]: a shared A matrix captures general features of the dataset, and multiple distinct low-rank experts B_i learn task-specific patterns. The router takes in an intermediate token representation and generates gating scores w_i over experts. (b) Experimental evidence supporting our motivation: we evaluate GPU memory consumption and adaptation performance of the FLoE layer selection algorithm on LLaMA2-7B fine-tuned with Databricks-Dolly-15K. As the number of adapted layers increases, GPU memory usage grows linearly, yet model accuracy does not improve and even underperforms compared to few-layer adaptation.

exhibit high sensitivity to the adaptation loss, while the corresponding pre-trained weights remain relatively insensitive. From a mathematical view, we can use the variation of gradients to quantify this property, which can be measured with Fisher Information. Another question is how to determine the optimal rank before training. To address these questions, we propose FLoE, a sparse layer adaptation framework that provides a unified selection of layer and LoRA rank. The overall *pipeline* includes: first fine-tune a full-layer model on a sampled dataset using MoE-based LoRA shown in Figure 1a, then applies FLoE to determine critical layers and optimal ranks. During final adaptation on the target dataset, all pre-trained weights are frozen while only the adapters on the critical layers are updated.

Our contributions can be summarized as follow:

- We introduce a Fisher-based importance scoring algorithm that dynamically identifies critical transformer layers for MoE-based low-rank adaptation, enabling sparse, context-aware adapter deployment.
- We incorporate a Bayesian optimization step to estimate the optimal LoRA rank before training on the target dataset, avoiding exhaustive grid search and retraining.
- Experiments show that FLoE achieves comparable or even better performance than prior PEFT methods across diverse datasets and model families, with notable advantages in low-resource and fast-adaptation scenarios. By adapting only 25% of layers, FLoE retains 93.1% of full fine-tuning accuracy on MMLU benchmarks, and achieves a 7.0% relative improvement over the best-performing full-layer methods in mixed-domain adaptation, demonstrating its superior capability in mitigating domain interference while maintaining parameter efficiency.

2 RELATED WORK

Parameter-Efficient Fine-tuning. Parameter Efficient Fine-Tuning (PEFT) techniques aim to reduce the training costs of the LLMs. Previous PEFT approaches can be broadly classified into the following categories: i) Prefix-tuning [26] and prompt-tuning [25]: prominent approaches that fine-tune continuous prompts rather than discrete ones. ii) Adapter-based tuning: inserts additional adapters into the model or scales activations with learned vectors, including AdaMix [48] and (IA)³ [28]. iii) Low-rank adaptation: introduces trainable low-rank matrices to LLMs, keeping the original weights frozen for efficiency, including LoRA [15] and its variants, such as AdaLoRA [52], HydraLoRA [44] and others [51; 21; 39; 5; 29; 29]. Extensions to multi-LoRA architectures include Multi-Head Routing [37] for Mixture-of-Experts and LoraHub [16] for task composability.

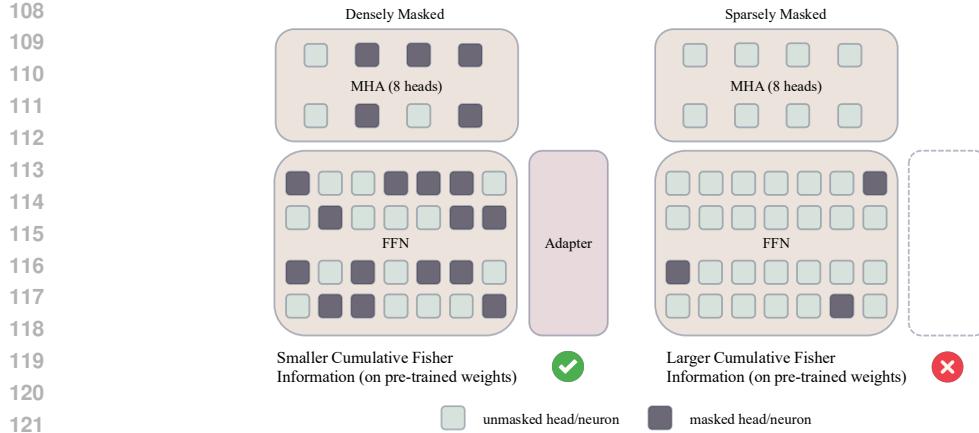


Figure 2: Mechanism of FLoE layer selection. A densely masked layer intends to have higher importance for low-rank adaptation, so we add a residual trainable adapter to the FFN component. The adaptation process only updates the adapter.

Layer-wise Selective Fine-tuning. Recent studies [9; 40; 50] have raised the issue of layer redundancy in pre-trained models. Surgical fine-tuning [23] updates only a subset of layers based on domain shift, while SubTuning [20] employs a greedy search to identify the most suitable layers, requiring significant computational resources. LISA [38] bridges the gap between full-parameter tuning and LoRA, introduces a layer-wise importance sampling mechanism during training.

3 METHODOLOGY

Let \mathcal{F} denote a pre-trained L -layer Transformer model. Given a dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$, where x_i denotes the input data and y_i the corresponding label. For layer $k \in \{1, \dots, L\}$, let θ_k denote its pre-trained weights. LoRA introduces trainable low-rank matrices $A_k \in \mathbb{R}^{d \times r}$ and $B_k \in \mathbb{R}^{r \times d}$ to approximate weight updates $\phi_k = B_k A_k$. Here we follow HydraLoRA [44] to use an MoE-based architecture, extending LoRA by employing a shared A matrix and M parallel low-rank experts $\{B_k^{(i)}\}_{i=1}^M$ alongside a router network (implemented as a dense layer followed by a softmax function). Suppose the router outputs a vector of contribution weights $\{\omega_k^{(i)}\}_{i=1}^M$ based on the intermediate token representation. The weight updates are formulated as:

$$\phi_k = \sum_{i=1}^M \omega_k^{(i)} B_k^{(i)} A_k \quad (1)$$

The final merged weights are $W_k = \theta_k + \phi_k$.

3.1 PROBLEM FORMULATION

As our goal is to find a subset of layers $\mathcal{S} \subseteq \{1, 2, \dots, L\}$ to add trainable adapters, we quantify the contribution of each layer to the model adaptation performance via an importance score s_k . To achieve this, we introduce a binary mask variable $\mathbf{m}_k \in \{0, 1\}^{|\theta_k|}$ as an intermediate to calculate s_k during adaptation. The adapted weight $\tilde{\theta}_k$ is then computed as:

$$\tilde{\theta}_k = \mathbf{m}_k \odot \theta_k + \phi_k, \quad (2)$$

As shown in Figure 2, the mask variable \mathbf{m}_k is applied to the pre-trained weights θ_k , based on the principle that mask sparsity reflects the necessity of adaptation. If a pre-trained weight $\theta_{k,i}$ is masked ($\mathbf{m}_{k,i} = 0$), the adapter weights must compensate for its removal to maintain performance. If $\theta_{k,i}$ is retained ($\mathbf{m}_{k,i} = 1$), then $\phi_{k,i}$ only serves as a residual correction. Thus, the sparsity of \mathbf{m}_k directly correlates with the contribution of ϕ_k . Let $Z(\mathbf{m}_k)$ denote the number of masked weights. Higher sparsity ($Z(\mathbf{m}_k) \ll Z(\theta_k)$) indicates that θ_k are poorly aligned with the dataset,

requiring significant adapter intervention. Lower sparsity ($Z(\mathbf{m}_k) \ll Z(\mathbf{m}_k)$) suggests the pre-trained knowledge in layer k remains largely valid, requiring minimal adaptation. This explicitly disentangles pre-trained knowledge retention from task-driven adaptation.

Let $\boldsymbol{\theta} \triangleq [\theta_1, \dots, \theta_L]$ and $\boldsymbol{\phi} \triangleq [\phi_1, \dots, \phi_L]$. The fine-tuning process only updates $\boldsymbol{\phi}$ while keeping $\boldsymbol{\theta}$ frozen. After obtaining $\boldsymbol{\theta}$ and $\boldsymbol{\phi}$, we optimize the mask variable \mathbf{m} to find the optimal \mathcal{S} under the following constrained objective:

$$\arg \min_{\mathbf{m}} \mathcal{L}(\mathbf{m}; \boldsymbol{\theta} + \boldsymbol{\phi}) \quad \text{s.t.} \quad \text{Cost}(\mathbf{m}; \boldsymbol{\theta}) \leq C \quad (3)$$

3.2 FISHER INFORMATION-AWARE ESTIMATION

To enable gradient-based optimization for the constrained problem Eq. 3, the cost function should be differentiable with respect to the mask \mathbf{m} . Here, we use Taylor importance [34] as the cost function, which measures the sensitivity of the next-token prediction (NTP) loss to parameter perturbations. This allows us to identify parameters that have minimal influence on the base model prediction, as indicated by the deviation in the next-token prediction loss. For layer k , its element-wise Taylor Importance T_k is defined as:

$$T_k = \sum_i \left| \frac{\partial \mathcal{L}_{\text{NTP}}}{\partial \theta_{k,i}} \theta_{k,i} \right|, \quad (4)$$

For simplicity we denote the cost function as $\text{Cost}(\mathbf{m})$. By constraining the total cost $\sum_{k \in \mathcal{S}} T_k$, we prioritize adapting layers with lower T_k (i.e., those less critical to the pre-trained knowledge). This ensures that adaptation focuses on "safe" regions of the network, reducing the risk of overwriting crucial pre-trained features. Therefore, the cost function can be formulated as:

$$\text{Cost}(\mathbf{m}) = \sum_{k \in \mathcal{S}} \sum_i T_{k,i} \cdot \mathbf{m}_{k,i}. \quad (5)$$

Taylor Approximation of the Task-Specific Loss Function. We start by analyzing the sensitivity of the loss function \mathcal{L} to the mask variable \mathbf{m} . Assuming we have local smoothness around $\mathbf{m} = \mathbb{1}$, then the loss can be approximated using a second-order Taylor expansion:

$$\mathcal{L}(\mathbf{m}; \tilde{\boldsymbol{\theta}}) \approx \mathcal{L}(\mathbb{1}; \tilde{\boldsymbol{\theta}}) + \frac{1}{2} (\mathbb{1} - \mathbf{m})^\top \mathbf{H} (\mathbb{1} - \mathbf{m}), \quad (6)$$

where $\tilde{\boldsymbol{\theta}} = \boldsymbol{\theta} + \boldsymbol{\phi}$ denotes the merged weights. Here, the first-order term $\nabla \mathcal{L}(\mathbb{1}; \tilde{\boldsymbol{\theta}})^\top (\mathbb{1} - \mathbf{m}) = 0$ due to the assumption that the model has converged to a local minima, where the gradient term is close to 0 [10; 47; 22]. As $\mathcal{L}(\mathbb{1}; \tilde{\boldsymbol{\theta}})$ is a constant, we can rewrite the optimization objective in Eq. 6 as follows:

$$\arg \min_{\mathbf{m}} \mathcal{L}(\mathbf{m}) \approx \arg \min_{\mathbf{m}} (\mathbb{1} - \mathbf{m})^\top \mathbf{H} (\mathbb{1} - \mathbf{m}). \quad (7)$$

Eq. 7 shows that the optimal mask is determined by the Hessian of the loss with respect to the mask variables, i.e. $\mathbf{H} = \mathbb{E}_{x \sim \mathcal{D}} [\nabla_{\mathbf{m}}^2 \mathcal{L}(\mathbb{1}; \tilde{\boldsymbol{\theta}})]$. Since computing the exact Hessian matrix is infeasible, we approximate the Hessian \mathbf{H} with the empirical Fisher Information Matrix (FIM), which is defined as:

$$\mathcal{I}(\mathbf{m}) = \mathbb{E}_{x \sim \mathcal{D}} [\nabla_{\mathbf{m}} \mathcal{L}(\mathbb{1}) \nabla_{\mathbf{m}} \mathcal{L}(\mathbb{1})^\top]. \quad (8)$$

Diagonal Approximation of the FIM. Assuming each layer k contains $|\theta_k|$ parameters (including the weight parameters of both MHA and FFN components), then \mathbf{m}_k can be seen as a vector of length $|\theta_k|$. As \mathbf{m} is applied across all L layers, the full FIM \mathcal{I} has $L^2 |\theta_k|^2$ elements, making its computation and storage intractable for large values of $|\theta_k|$. To address this challenge, we adopt a diagonal approximation of \mathcal{I} , reducing its complexity from $O(L^2 |\theta_k|^2)$ to $O(L |\theta_k|)$. This approximation is based on an assumption that cross-layer interactions can be neglected, since the off-diagonal terms $\mathcal{I}_{k,l}$ ($k \neq l$) are ignored. Under this assumption, only the diagonal elements $\mathcal{I}_{k,k}$ are computed for each layer k , where:

$$\mathcal{I}_{k,k} = \mathbb{E}_{x \sim \mathcal{D}} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{m}_k} \right]^2. \quad (9)$$

216 This further simplifies Eq. 7 as follows:
 217

$$\begin{aligned} 218 \quad \arg \min_{\mathbf{m}} \mathcal{L}(\mathbf{m}) &\approx \arg \min_{\mathbf{m}} \sum_{k=1}^L (1 - \mathbf{m}_k)^2 \mathcal{I}_{k,k} \\ 219 \quad &= \arg \min_{\mathbf{m}} \sum_{k=1}^L \sum_{i=1}^{|\theta_k|} (1 - \mathbf{m}_{k,i})^2 \mathcal{I}_{k,k,i}. \\ 220 \quad & \\ 221 \quad & \\ 222 \quad & \\ 223 \quad & \end{aligned} \tag{10}$$

224 Let $Z_k(\mathbf{m}) = \{i : \mathbf{m}_{k,i} = 0\}$. Since we restrict the possible mask values to either 0 or 1, the
 225 following can be derived from Eq. 10:

$$\begin{aligned} 226 \quad \arg \min_{\mathbf{m}} \mathcal{L}(\mathbf{m}) &\approx \arg \min_{\mathbf{m}} \sum_k \sum_{i \in Z_k(\mathbf{m})} \mathcal{I}_{k,k,i}. \\ 227 \quad & \\ 228 \quad & \end{aligned} \tag{11}$$

229 Then the optimization objective in Eq. 3 is equivalent to minimizing the sum of layer-wise Fisher
 230 information of the masked parameters:
 231

$$\begin{aligned} 232 \quad \arg \min_{\mathbf{m}} \sum_k \sum_{i \in Z_k(\mathbf{m})} \mathcal{I}_{k,k,i} \quad \text{s.t.} \quad \sum_k \sum_{i \in Z_k(\mathbf{m})} T_{k,i} \leq C. \\ 233 \quad & \\ 234 \quad & \end{aligned} \tag{12}$$

235 3.3 SOLVING THE CONTRAINED OPTIMIZATION PROBLEM

236 **Determination Stage.** Within each transformer layer, the architecture consists of two primary
 237 components: a multi-head attention (MHA) module and a feed-forward network (FFN). We denote
 238 the mask variables for these components in layer k as $\mathbf{m}_k^{\text{MHA}}$ and $\mathbf{m}_k^{\text{FFN}}$, respectively. Suppose there
 239 are N^{MHA} head mask variables and N^{FFN} neuron mask variables.
 240

241 The optimization problem in Eq. 12 can be interpreted as follows: For each layer k , we seek a subset
 242 of unmasked parameters \mathcal{M}_k that minimizes their total Fisher information on the adapted model
 243 $\mathcal{F}(\tilde{\theta})$, while constraining their total Taylor importance (computed on the base model $\mathcal{F}(\theta)$) under a
 244 global budget C .

245 As the Fisher information and Taylor importance vary across individual parameters, Eq. 12 becomes
 246 a dynamic programming problem which is memory inefficient. To reduce the 2-dimensional search
 247 space into a linear form, we employ a component-wise approximation within the same layer. Specifi-
 248 cally, we compute the scores for MHA and FFN respectively, and then average these values to yield
 249 a single importance estimate per parameter. This allows us to use a greedy solution (described in
 250 Algorithm. 1). The algorithm iteratively excludes the parameters with smallest Taylor importance
 251 until the budget C is reached, while maximizing the cumulative Fisher information of the included
 252 parameters.

253 **Refinement Stage.** The component-wise approximation in determination stage decouples the se-
 254 lection of MHA heads and FFN neurons within each layer, thereby ignoring potential interactions
 255 between them. While efficient, this approximation may lead to suboptimal trade-offs between Taylor
 256 importance and Fisher information. To mitigate this, we propose a post-hoc refinement stage that
 257 jointly optimizes the masks for both components under the same global budget constraint. This
 258 refinement operates on the initial greedy solution as a warm start, enabling recovery of near-optimal
 259 masks with minimal computational overhead.

260 The refinement process is designed to iteratively adjust the selected MHA heads and FFN neurons
 261 while respecting the budget constraint. Let \mathcal{M}_h^* and \mathcal{M}_f^* denote the sets of unmasked MHA heads
 262 and FFN neurons from the greedy solution. We define the refinement loss for a candidate mask pair
 263 $(\mathcal{M}_h, \mathcal{M}_f)$ as:

$$\begin{aligned} 264 \quad \mathcal{L}(\mathcal{M}_h, \mathcal{M}_f) &= \sum_{i \notin \mathcal{M}_h} \tau_i^h + \sum_{j \notin \mathcal{M}_f} \tau_j^f, \quad \text{s.t.} \quad \sum_{i \notin \mathcal{M}_h} t_h + \sum_{j \notin \mathcal{M}_f} t_f \leq C. \\ 265 \quad & \\ 266 \quad & \end{aligned} \tag{13}$$

267 The goal is to perturb $(\mathcal{M}_h^*, \mathcal{M}_f^*)$ to minimize \mathcal{L} under the constraint. Let \mathcal{C} denote a joint candidate
 268 set containing all parameters (both masked and unmasked) at the same layer:
 269

$$\mathcal{C} = \{(i, j) \mid i \in \mathcal{M}_h^*, j \in \mathcal{Q}_{\text{FFN}} \setminus \mathcal{M}_f^*\} \cup \{(i, j) \mid i \in \mathcal{M}_f^*, j \in \mathcal{Q}_{\text{MHA}} \setminus \mathcal{M}_h^*\}. \tag{14}$$

270 **Algorithm 1** Greedy Mask Search

271

272 1: **Input:** Budget C , Fisher score per-head $\{\tau_i^h\}_{i=1}^{N^{\text{MHA}}}$, Fisher score per-neuron (for FFN) $\{\tau_j^f\}_{j=1}^{N^{\text{FFN}}}$,
273 Taylor score per-head t_h , Taylor score per-neuron t_f .

274 2: Initialize optimal Fisher loss $\mathcal{L}^* \leftarrow \infty$, optimal sets of unmasked indices $(\mathcal{M}_h^*, \mathcal{M}_f^*) \leftarrow (\emptyset, \emptyset)$,
275 mask variables $(\mathbf{m}^{\text{MHA}}, \mathbf{m}^{\text{FFN}}) \leftarrow (\mathbb{1}, \mathbb{1})$

276 3: **for** $n = 0$ to N^{MHA} **do**

277 4: Compute cost for MHA module: $\hat{C}_h = n \cdot t_h$

278 5: **if** $\hat{C}_h > C$ **then**

279 **continue** ▷ Exceeds budget

280 6: **end if**

281 7: Remaining budget: $C_r = C - \hat{C}_h$

282 8: Retained neurons: $f = \min \left(\max \left(0, \left\lfloor \frac{C_r}{t_f} \right\rfloor \right), N^{\text{FFN}} \right)$

283 9: Select n heads with smallest τ_i^h : indices \mathcal{P}_h

284 10: Select f neurons with smallest τ_j^f : indices \mathcal{P}_f

285 11: Compute total loss: $\mathcal{L} = \sum_{i \in \mathcal{P}_h} \tau_i^h + \sum_{j \in \mathcal{P}_f} \tau_j^f$

286 12: **if** $\mathcal{L} < \mathcal{L}^*$ **then**

287 $\mathcal{L}^* \leftarrow \mathcal{L}$, $(\mathcal{M}_h^*, \mathcal{M}_f^*) \leftarrow (\mathcal{P}_h, \mathcal{P}_f)$

288 13: **end if**

289 14: **end for**

290 15: Apply masks: Set $\mathbf{m}^{\text{MHA}}[\mathcal{M}_h^*] = 0$, $\mathbf{m}^{\text{FFN}}[\mathcal{M}_f^*] = 0$

291 16: **Output:** Optimal mask $\mathbf{m}^* = (\mathbf{m}^{\text{MHA}}, \mathbf{m}^{\text{FFN}})$

292

293

294 where \mathcal{Q}_{MHA} and \mathcal{Q}_{FFN} represent the complete sets of parameters in MHA and FFN modules, respectively. For each candidate parameter $p \in \mathcal{C}$, compute the *swap gain* if p is masked and another parameter q (of any component) is unmasked to compensate for the budget:

295
$$\Delta \mathcal{L}_{p \rightarrow q} = \tau_p - \tau_q, \quad \Delta C_{p \rightarrow q} = t_p - t_q. \quad (15)$$

296

300 A valid swap satisfies $\Delta C_{p \rightarrow q} \geq 0$ to preserve the budget constraint. Then we select the swap
301 with the largest $\Delta \mathcal{L}_{p \rightarrow q}$ (i.e., maximal reduction in total Fisher loss) to update \mathcal{M}_h^* , \mathcal{M}_f^* and the
302 remaining budget. Repeat this process until no improving swaps exist. The algorithm is implemented
303 in Algorithm. 2.

304 The refinement stage approximates a single iteration of the Lagrange multiplier method, where
305 swaps implicitly adjust the balance between Taylor importance (constraint) and Fisher information
306 (objective). By restricting swaps to the vicinity of the initial greedy solution, it avoids the $O(|\theta||\theta|)$
307 complexity of full dynamic programming while recovering Pareto-improved solutions.

308 **Tuning Stage.** Since our goal is to use mask values to measure parameter importance, the initial
309 binary masks are insufficient, as they fail to capture parameters that contribute marginally on their
310 own but are collectively important. To address this limitation, we introduce a differentiable tuning
311 stage that relaxes the binary masks into continuous values. The layer-wise reconstruction objective is
312 formulated as the residual activation difference:

313
$$\arg \min_{\mathbf{m}_k} \|\mathcal{O}(x; \mathbb{1}) - \mathcal{O}(x'; \mathbf{m}_k)\|_2^2 \quad (16)$$

314

315 where x' and x are inputs to the layer with or without mask, $\mathcal{O}(x; \mathbf{m}_k) = x + l_k(x; \mathbf{m}_k)$ denotes the
316 residual output of a mask-scaled layer, and l_k indicates a MHA or FFN layer. A detailed derivation is
317 provided in Appendix H.

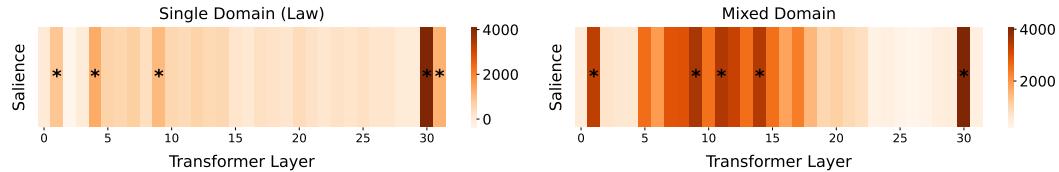
318

319 3.4 DYNAMIC RANK SELECTION FOR LORA-BASED PEFT

320

321 We employ Bayesian optimization primarily to determine the optimal LoRA rank r across layers,
322 while also adjusting the number of experts in MoE-LoRA as a secondary objective. Bayesian optimi-
323 zation is particularly advantageous in multi-dimensional hyperparameter spaces, as it constructs a
324 probabilistic surrogate model to approximate the relationship between hyperparameters and validation

324 performance. Using an acquisition function, BO iteratively proposes new candidate configurations by
 325 leveraging past evaluation results, thereby focusing computational resources on regions most likely
 326 to yield improved performance. Compared to grid or random search, BO significantly reduces the
 327 number of expensive fine-tuning trials and enables early elimination of suboptimal configurations.
 328 This makes it especially suitable for tuning costly PEFT setups with multiple hyperparameters.
 329 Table 8 highlights the efficiency gains of BO when tuning LoRA rank $r \in [4, 64]$ (for rank allocation)
 330 and the number of experts $\in [2, 10]$.



332 Figure 3: Saliency maps illustrating the importance of layers on the single-domain (Lawyer-Instruct)
 333 and mixed-domain/task (FLANv2) datasets. The base model is LLaMA2-7B. Black dots indicates the top-5 critical
 334 layers for the given task.

335 Table 1: Performance comparison of PEFT methods on LLaMA2-7B. Performance metrics include the accuracy
 336 on MMLU (5-shot) and GSM8K, and Pass@1/Pass@10 on HumanEval. LoRA and its variants (AdaLoRA,
 337 DoRA and HydraLoRA) adopt a single A matrix, but differ in the rank and the number of B matrices, which are
 338 determined by Bayesian optimization.

Schemes	MMLU	Medical	Law	HumanEval		GSM8K	Avg. Rank	Avg. #B
				P@1	P@10			
LLaMA2-7B [45]	38.79	36.05	33.64	13.17	20.41	10.44	-	-
Full Fine-Tuning	49.91	46.76	46.22	20.24	32.93	25.69	-	-
Prompt Tuning [25]	39.97	37.46	34.88	13.59	21.62	13.25	-	-
P-Tuning ₍₂₅₆₎ [31]	41.02	39.85	36.64	13.53	21.20	15.50	-	-
Prefix Tuning [26]	41.86	40.28	36.30	13.15	22.48	16.83	-	-
LoRA [15]	45.88	46.76	37.16	14.57	29.88	18.24	16	1
AdaLoRA [52]	44.26	42.39	39.36	14.74	23.85	19.44	12 → 4	1
DoRA [29]	44.57	44.23	38.74	14.65	24.20	19.50	10	1
HydraLoRA [44]	45.83	46.90	37.76	14.39	28.66	19.66	8	4
Ours	46.48	49.15	39.14	14.82	31.71	20.09	8	4

363 4 EXPERIMENTS

364 4.1 EXPERIMENTAL SETUP

365 **Datasets and Benchmarks.** To investigate the effectiveness of our layer selection policy, we
 366 conduct experiments on both single- and multi-domain datasets. **Single domain** includes: *General*,
 367 *Medical*, *Legal*, *Code Generation*, *Mathematics*. **Multi domain** includes *FLANv2* and we evaluate
 368 the performance on BBH benchmark [42]. Detailed descriptions of the datasets and benchmarks are
 369 provided in Appendix D.

370 **Baselines.** To evaluate the adaptation performance on FLoE-selected layers, we compare it with different
 371 PEFT methods: *Full Fine-Tuning*, *Prompt Tuning* [25], *P-Tuning* [31], *LoRA* [15], *AdaLoRA* [52],
 372 *DoRA* [29], *HydraLoRA* [44]. To evaluate the layer selection policy, we compare FLoE with *Random
 373 Selection* and *LISA* [38] (fine-tuned with MoE-LoRA). We further compare FLoE with two
 374 LoRA derivatives, *LoraHub* [16] and *LoRAMoE* [8], which also utilize a routing mechanism to
 375 coordinate multiple LoRA experts. Detailed descriptions of these baseline methods are provided in
 376 Appendix D.2.

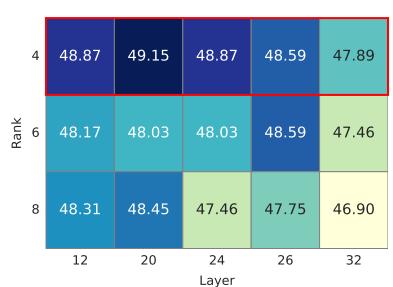


Figure 4: Dynamic rank selection results for the medical task on LLaMA2-7B. The optimal rank ($r = 4$) is determined using Bayesian optimization on a full-layer adapted model (1A/4B).

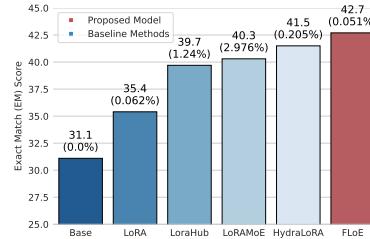


Figure 5: Mixed domain results evaluated on the BBH benchmark (3-shot) using LLaMA2-7B. FLoE achieves the highest Exact Match (EM) score with the lowest training parameter size.

Table 2: Performance comparison of different layer selection policies, including random selection (with seed 42), LISA + MoE-LoRA and our proposed FLoE training for 1 epoch with LLaMA2-7B.

	Random	LISA + MoE-LoRA	Ours (FLoE)
General	46.15	46.39	46.48
Medical	47.46	48.17	49.15

4.2 MAIN RESULTS

Implementation Details. For single-domain adaptation, we first fine-tune a fully adapted model on 50% of the target dataset (i.e. the warm-up phase). The LoRA rank and the number of B matrices are optimized via Bayesian optimization, where the rank is searched within [2, 32] (step size 2), and the number of B matrices within [2, 4] (step size 1). We then apply the layer selection algorithm to identify critical layers, followed by fine-tuning a sparsely adapted model on the full target dataset. For mixed-domain adaptation, we sample 1.25% of the FLANv2 dataset for the warm-up phase. Bayesian optimization is applied with the same search range for the rank, while the number of B matrices is searched within [6, 10] (step size 2). The model is then fine-tuned on a larger subset of FLANv2 comprising 3% of the data.

Results on Single/Mixed Domain dataset. The experimental results are presented in Table 1 for fine-tuning performance evaluation and Table 2 for layer selection policy evaluation. These results demonstrate that FLoE consistently outperforms all competing approaches while reducing a large portion of trainable parameters. Results in Table 3 show that the optimal number of layers varies depending on the specific domain, with fewer layers generally performing better on MMLU and Medical benchmarks, while a moderate number of layers might be more effective for Law and GSM8K benchmarks. Figure 5 shows the results of mixed tasks and domains. The A/B configuration is 48/48 for LoraHub and LoRAMoE, 1/1 for LoRA, 1/6 for FLoE and HydraLoRA. Detailed results for each task in BBH evaluation are provided in the Appendix 9. The visualizations of the layer importance on single and mixed domain dataset is represented in Figure 3.

Hyperparameter Tuning via Bayesian Optimization. We employ Bayesian optimization via Optuna [1], searching in 30 trials for the combination of r and N_B . We implement with the Tree-structured Parzen Estimator (TPE) surrogate model and the Expected Improvement (EI) acquisition function. Table 8 shows the efficiency of using Bayesian optimization compared with random search and grid search over a substantially larger search space. Figure 4 compares the performance of fine-tuning different subsets of layers under different ranks ($r = 4, 6, 8$). Here we fix the number of B matrices to 4, since the search space for N_B is very small and the optimal value consistently remains 4 when the validation loss reaches its minimum at $r = 4, 6, 8$. We visualize the convergence of Bayesian optimization process in Figure 8.

Results on Other Models Families. To validate the generalization of FLoE, we extend experiments to Gemma2-2B [43], Mistral-7B [18] and LLaMA3.1-8B [12]. As shown in Table 4, both models achieve optimal task performance when adapting 8 layers. Figure 10 visualizes layer importance

432 Table 3: Layer-specific fine-tuning using FLoE on LLaMA2-7B. We apply a 1A/4B adapter for each selected
 433 layer. Best results per column are bolded.

Layers	MMLU	Medical	Law	HumanEval		GSM8K	% Param
				P@1	P@10		
32	45.83	46.90	37.76	14.39	28.66	17.66	0.124
26	46.05	47.75	38.07	14.45	27.44	19.94	0.101
24	46.24	47.46	37.76	14.76	31.71	20.09	0.093
20	45.59	47.75	39.14	14.82	31.10	18.62	0.078
16	45.61	48.03	38.00	13.90	31.71	18.65	0.062
12	46.29	48.45	37.89	13.78	29.27	19.11	0.047
8	46.48	49.15	36.80	13.48	29.88	17.91	0.031

445 Table 4: End-to-end inference latency by running the full MMLU benchmark (including 14,042 examples) on
 446 the fine-tuned Gemma2-2B and Mistral-7B models, the configuration for multi LoRA head is 1A/4B. Models
 447 are fine-tuned with Dolly-15K. Layer selection is performed using FLoE.

Models	Metrics	Single LoRA Head	Multi LoRA Heads					
			32	28	24	20	16	12
Gemma2-2B	% Performance (Acc)	51.25	-	51.56	51.73	51.67	51.12	51.30
	Inference Lat. (s)	1717.90	-	3832.37	3670.04	3368.81	3123.01	2777.69
Mistral-7B	% Performance (Acc)	60.95	53.18	61.42	61.04	60.40	61.10	61.52
	Inference Lat. (s)	1462.27	4022.30	2055.37	1917.85	1758.16	1666.58	1636.02
LLaMA3.1-8B	% Performance (Acc)	62.03	61.54	62.46 ^{†0.43}	62.36	62.25	62.45	61.88
	Inference Lat. (s)	1333.49	1900.04	1796.27 ^{†462.78}	1706.96	1611.51	1525.08	1432.32

455 Table 5: Training runtime for full-layer and selected-layer adaptation. The FLoE(Total) is the sum of Selected-
 456 Layer Adaptation and FLoE Layer Selection.

	Dolly-15K	Clinic-10K	Lawyer-Instruct	CodeAlpaca
Full-Layer Adaptation (Baseline)	20105.08	20105.08	10137.51	45092.51
Selected-Layer Adaptation	16455.04	6697.16	6895.77	16197.23
FLoE Layer Selection	122.86	125.45	123.13	127.39
FLoE (Total)	16577.90 (-3527.18)	6822.61 (-7281.19)	7018.90 (-3118.61)	16324.62 (-28767.89)

464 distributions, showing that FLoE identifies middle layers for Mistral-7B and deep layers for Gemma2-
 465 2B as critical for adaptation.

466 **Inference Latency.** As MoE-LoRA inherently has more parameters than vanilla LoRA, we compare
 467 the latency of running inference on full-layer adapted models with single LoRA head (per adapter)
 468 and selected-layer adapted models with multiple LoRA heads (per adapter). Experiments are running
 469 with a batch size of 16. While the full-layer LoRA-adapted models achieve minimal inference time,
 470 our FLoE layer selection strategy significantly optimizes latency for multi-head configurations. As
 471 shown in Table 4, FLoE reduces inference latency by strategically limiting the number of adapted
 472 layers.

473 **Trade-off bewteen Training and Layer Selection.** Table 5 shows the runtime of FLoE layer
 474 selection process. The results show that the overall runtime including FLoE layer selection process
 475 and selected-layer adaptation is still lower than full-layer adaptation.

477 5 CONCLUSION

479 In this work, we first discuss the limitations of deploying MoE-based LoRA modules on all trans-
 480 former layers indiscriminately, where domain interference significantly degrades performance across
 481 diverse tasks. To address this, we propose FLoE, a novel PEFT method that introduces two key
 482 innovations: Fisher information-aware layer selection and Bayesian optimization-driven dynamic
 483 rank allocation. Our experiments demonstrate that FLoE offers a scalable and resource-efficient
 484 way for adapting LLMs to specialized domains, advancing the practical deployment of LLMs under
 485 constrained computational budgets.

486 REFERENCES
487

488 [1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-generation hyperparameter optimization framework. In *The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 2623–2631, 2019.

489 [2] Alignment-Lab-AI. Lawyer-instruct, 2024.

490 [3] Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. <https://github.com/sahil280114/codealpaca>, 2023.

491 [4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large 492 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

493 [5] Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya 494 Jia. Longlora: Efficient fine-tuning of long-context large language models. *arXiv preprint arXiv:2309.12307*, 2023.

495 [6] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, 496 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John 497 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 498 2021.

499 [7] Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong 500 Sun. Sparse low-rank adaptation of pre-trained language models. *arXiv preprint arXiv:2311.11696*, 2023.

501 [8] Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun Zhao, Wei Shen, Yuhao Zhou, Zhiheng 502 Xi, Xiao Wang, Xiaoran Fan, et al. Loramoe: Alleviate world knowledge forgetting in large 503 language models via moe-style plugin. *arXiv preprint arXiv:2312.09979*, 2023.

504 [9] Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen 505 Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layer skip: Enabling 506 early exit inference and self-speculative decoding. *arXiv preprint arXiv:2404.16710*, 2024.

507 [10] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned 508 in one-shot. In *International Conference on Machine Learning*, pp. 10323–10337. PMLR, 2023.

509 [11] Chongyang Gao, Kezhen Chen, Jinmeng Rao, Ruibo Liu, Baochen Sun, Yawen Zhang, Daiyi 510 Peng, Xiaoyuan Guo, and Vs Subrahmanian. MoLA: MoE LoRA with layer-wise expert 511 allocation. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings of the Association 512 for Computational Linguistics: NAACL 2025*, pp. 5097–5112, Albuquerque, New Mexico, 513 April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7. URL 514 <https://aclanthology.org/2025.findings-naacl.284/>.

515 [12] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, 516 Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 517 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.

518 [13] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large 519 models. *arXiv preprint arXiv:2402.12354*, 2024.

520 [14] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and 521 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint arXiv:2009.03300*, 2020.

522 [15] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, 523 Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*, 2021.

524 [16] Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. LoraHub: Efficient cross-task generalization via dynamic lora composition. *arXiv preprint arXiv:2307.13269*, 2023.

[17] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of local experts. *Neural computation*, 3(1):79–87, 1991.

[18] Fengqing Jiang. Identifying and mitigating vulnerabilities in llm-integrated applications. Master’s thesis, University of Washington, 2024.

[19] Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng, Feng Sun, Qi Zhang, Deqing Wang, et al. Mora: High-rank updating for parameter-efficient fine-tuning. *arXiv preprint arXiv:2405.12130*, 2024.

[20] Gal Kaplun, Andrey Gurevich, Tal Swisa, Mazor David, Shai Shalev-Shwartz, and Eran Malach. Less is more: Selective layer finetuning with subtuning. *arXiv preprint arXiv:2302.06354*, 2023.

[21] Dawid J Kopczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix adaptation. *arXiv preprint arXiv:2310.11454*, 2023.

[22] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky (ed.), *Advances in Neural Information Processing Systems*, volume 2. Morgan-Kaufmann, 1989. URL https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf.

[23] Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and Chelsea Finn. Surgical fine-tuning improves adaptation to distribution shifts. *arXiv preprint arXiv:2210.11466*, 2022.

[24] Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan Du, Vincent Zhao, Yuexin Wu, Bo Li, et al. Conditional adapters: Parameter-efficient transfer learning with fast inference. *Advances in Neural Information Processing Systems*, 36:8152–8172, 2023.

[25] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. *arXiv preprint arXiv:2104.08691*, 2021.

[26] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. *arXiv preprint arXiv:2101.00190*, 2021.

[27] Yunxiang Li, Zihan Li, Kai Zhang, Rui long Dan, Steve Jiang, and You Zhang. Chatdoctor: A medical chat model fine-tuned on a large language model meta-ai (llama) using medical domain knowledge. *Cureus*, 15(6), 2023.

[28] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. *Advances in Neural Information Processing Systems*, 35:1950–1965, 2022.

[29] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. *arXiv preprint arXiv:2402.09353*, 2024.

[30] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks. *arXiv preprint arXiv:2110.07602*, 2021.

[31] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt understands, too. *AI Open*, 5:208–215, 2024.

[32] Zequan Liu, Jiawen Lyn, Wei Zhu, Xing Tian, and Yvette Graham. Alora: Allocating low-rank adaptation for fine-tuning large language models. *arXiv preprint arXiv:2403.16187*, 2024.

[33] Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for effective instruction tuning. In *International Conference on Machine Learning*, pp. 22631–22648. PMLR, 2023.

[34] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language models. *Advances in neural information processing systems*, 36:21702–21720, 2023.

[35] Fanxu Meng, Zhaojun Wang, and Muhan Zhang. Pissa: principal singular values and singular vectors adaptation of large language models. *arXiv preprint arXiv:2404.02948*, 2024.

[36] C Mike, H Matt, M Ankit, X Jianwei, W Jun, S Sam, G Ali, W Patrick, Z Matei, and X Reynold. Free dolly: Introducing the world’s first truly open instruction-tuned llm, 2023.

[37] Lucas Page-Caccia, Edoardo Maria Ponti, Zhan Su, Matheus Pereira, Nicolas Le Roux, and Alessandro Sordoni. Multi-head adapter routing for cross-task generalization. *Advances in Neural Information Processing Systems*, 36, 2024.

[38] Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: Layerwise importance sampling for memory-efficient large language model fine-tuning. *arXiv preprint arXiv:2403.17919*, 2024.

[39] Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-lora: Enhacing parameter efficiency of lora with weight tying. *arXiv preprint arXiv:2311.09578*, 2023.

[40] Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers of pre-trained transformer models. *Computer Speech & Language*, 77:101429, 2023.

[41] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. *arXiv preprint arXiv:1701.06538*, 2017.

[42] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging big-bench tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022.

[43] Gemma Team. Gemma. 2024. doi: 10.34740/KAGGLE/M/3301. URL <https://www.kaggle.com/m/3301>.

[44] Chunlin Tian, Zhan Shi, Zhiqiang Guo, Li Li, and Chengzhong Xu. Hydralora: An asymmetric lora architecture for efficient fine-tuning. *arXiv preprint arXiv:2404.19245*, 2024.

[45] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

[46] Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. *arXiv preprint arXiv:2210.07558*, 2022.

[47] Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured pruning in the kronecker-factored eigenbasis. In *International conference on machine learning*, pp. 6566–6575. PMLR, 2019.

[48] Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, and Jianfeng Gao. Adamix: Mixture-of-adapter for parameter-efficient tuning of large language models. *arXiv preprint arXiv:2205.12410*, 1(2):4, 2022.

[49] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In *The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022. URL <https://openreview.net/forum?id=gEZrGC0zdqR>.

[50] Kaiyan Zhang, Ning Ding, Biqing Qi, Xuekai Zhu, Xinwei Long, and Bowen Zhou. Crash: Clustering, removing, and sharing enhance fine-tuning without full large language model. *arXiv preprint arXiv:2310.15477*, 2023.

648 [51] Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
649 low-rank adaptation for large language models fine-tuning. *arXiv preprint arXiv:2308.03303*,
650 2023.

651 [52] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
652 Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
653 efficient fine-tuning. *arXiv preprint arXiv:2303.10512*, 2023.

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A LLM USAGE STATEMENT**
703704 In this work, LLMs are not involved in any core aspects of the research, including data collection,
705 experimental design, model development, result analysis, or conclusion formulation. LLMs are
706 only used for language polishing. Their role are limited to improving textual clarity, enhancing
707 logical coherence, refining the precision of academic terminology, and increasing the readability
708 of experimental results. All text refined with the assistance of LLMs was carefully reviewed by
709 the authors to ensure full alignment with the original research intentions and to maintain academic
710 integrity, without introducing inaccuracies or misleading content.
711712 **B REPRODUCIBILITY STATEMENT**
713714 We provide code in the supplementary material and implementation details in the appendix, covering
715 batch size, learning rate schedules, and optimizer configurations. The models are publicly available,
716 and all external datasets used in our work are either publicly released or cited with appropriate
717 references.
718719 **C LIMITATION**
720721 While our proposed FLoE algorithm effectively identifies critical layers for MoE-based LoRA fine-
722 tuing, its current implementation limits each LoRA module with a fixed number of low-rank experts.
723 Future work can explore dynamic expert allocation mechanisms, where both the selection of critical
724 layers and the number of experts per layer are jointly optimized, enabling more granular control over
725 model capacity allocation and better computational resource utilization.
726727 **D DATASETS AND BASELINES**
728729 **D.1 DATASETS**
730731 **Single domain** includes:732

- *General*: we fine-tune with Databricks-Dolly-15K dataset [36] for general knowledge mastering
733 and evaluate with all tasks in MMLU [14].
- *Medical*: we fine-tune with GenMedGPT and Clinic-10K [27] for medical applications and
735 evaluate with 3 medical tasks in MMLU, including *clinical knowledge*, *professional medicine*
736 and *college medicine*.
- *Legal*: we fine-tune with Lawyer-Instruct [2] for legal applications and evaluate with 3 legal
738 tasks in MMLU, including *jurisprudence*, *international law* and *professional law*.
- *Code Generation*: we fine-tuned with CodeAlpaca [3] and evaluate with HumanEval [4].
- *Mathematics*: we fine-tune with the training split of GSM8K [6] for mathematical reasoning and
741 evaluate with the test split.

742 **Multi domain** includes:744

- *FLANv2*: we construct the training dataset by sampling equal-proportion subsets from each of
745 the 46 tasks in FLANv2 [49] and evaluate on BBH benchmark [42].

746 **D.2 BASELINES**
747748 **Baselines for PEFT**:750

- *Full Fine-Tuning*: the default adaptation strategy involves initializing the model with pre-trained
751 weights and updating all parameters via gradient descent. The number of trainable parameters
752 equals the number of pretrained parameters.
- *Prompt Tuning* [25]: adds manually-designed task-specific prompts to the input. The fine-tuning
753 process only updates the prompt parameters while keeping the pre-trained parameters frozen.
- *P-Tuning* [31]: a prompt adds learnable prompt tokens to the input, optimized by a prompt
755 encoder to find a better prompt. The prompt tokens can be added anywhere in the input sequence.

756 • *LoRA* [15]: decomposes weight updates into low-rank matrices, enabling efficient adaptation
 757 with significantly fewer trainable parameters while preserving model performance.
 758 • *AdaLoRA* [52]: dynamically allocates trainable parameters across weight matrices and layers,
 759 prioritizing important components instead of uniformly distributing resources as in LoRA.
 760 • *DoRA* [29]: decomposes pre-trained weights into magnitude and direction components, and
 761 apply LoRA on the direction component.
 762 • *HydraLoRA* [44]: incorporating asymmetric LoRA adapters across all layers.

763 **Baselines for layer selection policy:**

764 • *Random Selection*: layers are chosen uniformly at random during training (with a fixed random
 765 seed 42), serving as a naive baseline to assess the necessity of structured selection.
 766 • *LISA + MoE-LoRA* [38]: LISA freezes most intermediate layers and selectively updates only the
 767 embedding layer, the language modeling head layer, and a small number of randomly sampled
 768 intermediate layers in each optimization step. We update the weights of MoE-LoRA modules
 769 on these layers instead of updating the pre-trained weights. The rank and the number of experts
 770 are determined by Bayesian optimization.
 771

772 **Baselines for multi-LoRA architecture:**

773 • *LoRAMoE*[8]: combines lightweight experts (LoRA) with MoE architecture for high efficiency,
 774 generalizing to new tasks without prior knowledge.
 775 • *LoraHub*[16]: employs black-box optimization to learn weights of 20 randomly selected LoRAs
 776 for new tasks, using weighted averaging without needing gradient calculations.
 777

778 **E HYPERPARAMETER SETTINGS**

780 Table 6: Hyperparameter settings for our experiments and LoRA-based baseline methods. MSL indicates the
 781 max sequence length, BSZ indicates the batch size. All methods use the AdamW optimizer. The weight decay is
 782 set to 0.
 783

Hyperparameter	α	Dropout	MSL	Warmup Ratio	BSZ	Epochs	LR	Seed	Where
	32	0.05	1024	0.03	1	1	2e-4	41	Up,Down,Gate

788 **F ABLATION STUDY**

790 The FLoE layer selection algorithm comprises three steps: (i) determination stage for coarse-grained
 791 binary mask value initialization, (ii) refinement stage implementing a swapping protocol that ex-
 792 changes mask values between each pair of masked and unmasked parameters within the same layer,
 793 and (iii) tuning stage to relax the binary mask values into continuous values using a reconstruc-
 794 tion objective. To validate the necessity of refinement stage, we compare the model performance
 795 with and without the refinement stage. We first fine-tune a full-layer LLaMA2-7B model with
 796 Databricks-Dolly-15K, and using FLoE to get the layer importance rankings which is shown in
 797 Figure 9. Empirical results reveal that disabling this stage leads to a performance degradation as
 798 shown in Table 7.

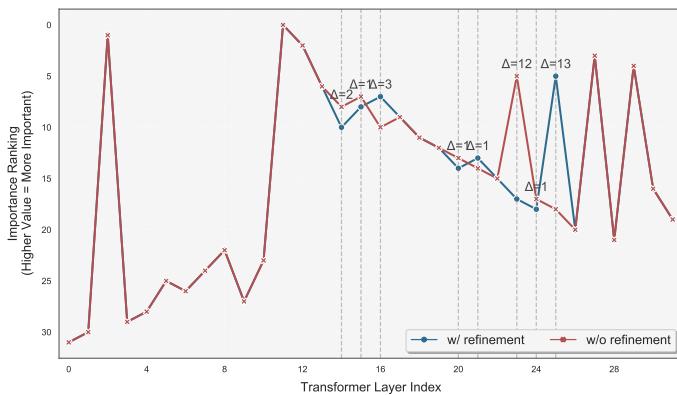
799 Table 7: Evaluation results on MMLU with the former 15, 16, 21, 24, 25 layers fine-tuned (in the ranking
 800 order).

Fine-tuned Layers	15	16	21	24	25
w/o refinement	45.11	45.14	45.52	45.48	45.61
w/ refinement	45.36 ^{±0.25}	45.33 ^{±0.19}	45.56 ^{±0.04}	45.43 ^{±0.05}	45.66 ^{±0.05}

806 **G ANALYSIS FOR LAYER SELECTION**

808 As FLoE layer selection algorithm need to run on an already fine-tuned model, we decrease the
 809 preparation overhead via reducing the size and category of training data. For single domain fine-

810
811
812
813
814
815
816
817
818
819
820
821
822



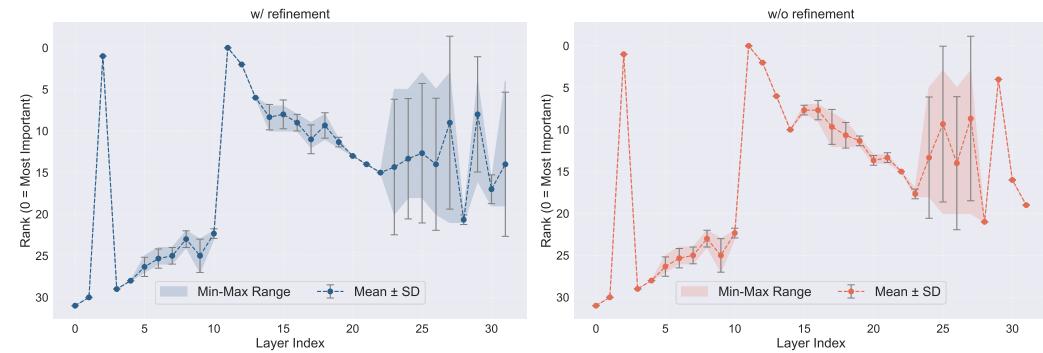
823
824 Figure 6: Layer importance rankings with or without refinement stage. The difference starts at the rank 14 (i.e.
825 the former 15 layers. The 14-th layer is layer 10 in the w/o refinement rankings and layer 8 in the w/ refinement
826 rankings) and ends at the rank 16 (i.e. the former 17 layers has the same set of layer indexes). Similarly, we only
827 need to evaluate the former 21, 24 and 25 layers in the subsequent rankings. Both rankings and layer indexes
828 start at 0. The range is 0-31.

829
830 tuning, we first fine-tune a model on a general knowledge dataset, then run FLoE on that model. If
831 this general dataset is too large, we reduce its size by randomly selecting a partial of the training data.
832 Note that we can use the selection results for other single domain fine-tuning including medical, law,
833 code and mathematics.

834 **Different Size of Sample Dataset.** To investigate the impact of training data quantity on layer
835 selection, we conduct a comparative study using MoE-based LoRA for LLaMA2-7B fine-tuning.
836 We evaluate layer importance rankings across three training scenarios: full-data (100%), moderately
837 reduced (70%), and substantially reduced (30%) subsets of the Databricks-Dolly-15K dataset.

838 Figure 7 illustrates the stability of layer rankings under these varying data regimes. Our analysis
839 reveals that the refinement stage exhibits minimal sensitivity to training data quantity in terms of
840 rank consistency. Across all three configurations, layers 0-2 and layers 10-14 demonstrate strong
841 agreement in stability rankings. However, notable discrepancies emerge in the final layers (22-28),
842 suggesting that deeper layers show higher variability in importance assessment when trained with
843 reduced data. This observation indicates that for a safe consideration, we should choose at least 50%
844 layers for subsequent fine-tuning on the target dataset. For a more careful layer selection, we should
845 enlarge the sample dataset size.

846



858
859 Figure 7: Rank stability comparison of layers with (left) and without (right) refinement stage. The plots show
860 layer importance rankings (lower rank indicate higher importance) across three training data ratios (100%, 70%,
861 30%). The shaded regions depict min-max ranges of the rank on different ratios.

862 **Fine-tune on Different Target Datasets.** After ranking layers on the sample dataset, we apply
863 the ranking results to selectively fine-tune the base model on the target datasets. Note that the

target dataset can be different from the sample dataset. To evaluate the **generalization** capability of FLoE, we compare its fine-tuning performance with two single domain datasets (Clinic-10K and CodeAlpaca). For each dataset, we implement two layer selection strategies: one using the general knowledge dataset (Databricks-Dolly-15K) as the sample dataset, and the other using the target dataset itself as the sample dataset. Figure 8 shows that although the misalignment between the sample and target datasets has little impact on the best achievable performance, it may affect the number of layers required to reach that performance.



Figure 8: Illustration of performance under different layer importance rankings.

H PROOF OF EQ. 16

The tuning stage is designed to minimize the layer-wise reconstruction error between the masked and unmasked versions of the adapted model. The goal is to optimize \mathbf{m}_k such that the squared L_2 -norm of the residual activation difference is minimized:

$$\arg \min_{\tilde{\mathbf{m}}_k} \|x' + l_k(x'; \mathbf{m}_k) - (x + l_k(x; \mathbb{1}))\|_2^2 \quad \text{s.t.} \quad Z(\mathbf{m}_k) = Z(\bar{\mathbf{m}}_k). \quad (17)$$

where $Z(\mathbf{m})$ denotes the indices of zero entries in \mathbf{m} . We use $\bar{\mathbf{m}}$ to indicate the fixed binary mask values obtained from the refinement stage, and \mathbf{m} indicates the mask variables to be optimized, reconstructed from the binary masks. Let \mathbf{W}_i represent the i -th head or neuron weight of layer l_k . The output of $l_k(\cdot; \mathbf{m}_k)$ is:

$$l_k(x; \mathbf{m}_k) = \sum_{i=1}^N \mathbf{m}_{k,i} \mathbf{W}_{i,x}, \quad (18)$$

where N denote the number of heads (for MHA) or neurons (for FFN). Let $\Delta x = x' - x$, then the residual difference in Eq. 17 becomes:

$$\begin{aligned} x' + \sum_{i=1}^N \mathbf{m}_{k,i} \mathbf{W}_{i,x'} - x - \sum_{i=1}^N \mathbb{1}_i \mathbf{W}_{i,x} &= \sum_{i=1}^N \mathbf{m}_{k,i} \mathbf{W}_i(x + \Delta x) + \Delta x - \sum_{i=1}^N \mathbb{1}_i \mathbf{W}_{i,x} \\ &= \sum_{i=1}^N \bar{\mathbf{m}}_{k,i} \mathbf{m}_{k,i} \mathbf{W}_i(x + \Delta x) + \Delta x - \sum_{i=1}^N \mathbb{1}_i \mathbf{W}_{i,x} \end{aligned} \quad (19)$$

Let $\mathbf{A} = \sum_{i=1}^N \bar{\mathbf{m}}_{k,i} \mathbf{W}_i(x + \Delta x)$, $\mathbf{b} = \Delta x - \sum_{i=1}^N \mathbb{1}_i \mathbf{W}_{i,x}$. Then Eq. 17 can be transformed into a linear least-square problem:

$$\arg \min_{\mathbf{u}_k} \|\mathbf{A}\mathbf{m}_k - \mathbf{b}\|_2^2. \quad (20)$$

Assume $\mathbf{A}^\top \mathbf{A}$ is invertible. The closed-form solution to Eq. 20 is given by:

$$\mathbf{m}_k^* = (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{A}^\top \mathbf{b}. \quad (21)$$

I MORE RESULTS

918

919

920

Algorithm 2 Joint Mask Refinement

921

1: **Input:** Initial masks $\mathcal{M}_h^*, \mathcal{M}_f^*$, budget C , Fisher/Taylor scores.

922

2: Compute initial loss \mathcal{L}^* and used budget $C_{\text{used}} = C - \left(\sum_{i \notin \mathcal{M}_h^*} t_h + \sum_{j \notin \mathcal{M}_f^*} t_f \right)$

923

3: **while** improvement **do**

924

4: Generate all valid swaps (p, q) where $\Delta C_{p \rightarrow q} \geq 0$

925

5: Select swap $(p^*, q^*) = \arg \max_{(p, q)} \Delta \mathcal{L}_{p \rightarrow q}$

926

6: **if** $\Delta \mathcal{L}_{p^* \rightarrow q^*} > 0$ **then**

927

7: Update $\mathcal{M}_h^*, \mathcal{M}_f^*, \mathcal{L}^* \leftarrow \mathcal{L}^* - \Delta \mathcal{L}_{p^* \rightarrow q^*}$

928

8: Update $C_{\text{used}} \leftarrow C_{\text{used}} + \Delta C_{p^* \rightarrow q^*}$

929

9: **else**

930

10: **break**

931

11: **end if**

932

12: **end while**

933

13: **Output:** Refined masks $\mathcal{M}_h^*, \mathcal{M}_f^*$

934

935

936

Table 8: Search efficiency of different hyperparameter tuning strategies on $r \in [4, 64]$ (with step of 4) and number of experts $\in [2, 10]$.

939

Method	Search Space Size	Trials Required	Relative Cost
Grid Search	$16 \times 9 = 144$	144	100%
Random Search	$16 \times 9 = 144$	~ 80	$\sim 55\%$
Bayesian Opt.	$16 \times 9 = 144$	~ 30	$\sim 21\%$

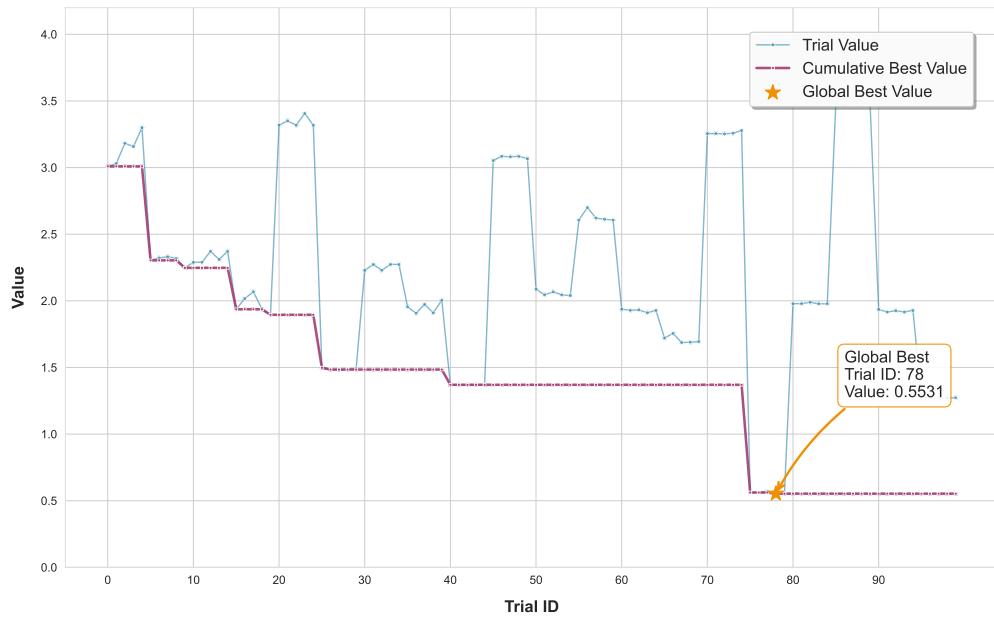
945

946

947

948

Trial Performance: ID vs. Value (with Best Value Tracking)



968

969

970

Figure 9: Bayesian optimization process for LLaMA3.2-3b. The validation loss converges between 30–70 trials. Although the global best value achieved at trial 78, convergence is already evident by trial 40.

971

Table 9: Detailed results of BBH evaluation with LLaMA2-7B as the base LLM (3-shot).

Task	Base	LoRA	HydraLoRA L=32	Ours (FLoE)					
				L=28	L=24	L=20	L=16	L=12	L=8
Boolean Expressions	73.60	74.40	75.20	77.20	76.01	76.40	77.60	74.07	71.35
Causal Judgement	47.06	54.90	57.22	56.15	50.72	57.14	50.27	55.08	59.89
Date Understanding	37.60	40.00	44.80	55.60	54.77	56.40	57.20	59.60	60.80
Disambiguation QA	34.80	45.20	56.80	60.00	65.60	64.00	64.40	53.17	66.00
Dyck Languages	10.80	13.20	14.40	15.60	13.20	14.06	14.92	14.49	14.00
Formal Fallacies	44.80	46.00	46.80	46.40	46.80	47.60	48.00	47.15	49.20
Geometric Shapes	9.70	10.20	15.20	14.40	25.60	19.60	12.40	12.77	12.00
Hyperbaton	30.80	40.00	48.40	48.80	48.40	52.00	53.20	48.40	49.20
Logical Deduction (five objects)	22.80	33.30	45.60	46.80	45.13	45.53	46.34	43.10	46.00
Logical Deduction (seven objects)	16.00	22.40	32.00	31.60	30.80	32.40	30.40	30.00	29.60
Logical Deduction (three objects)	35.20	41.40	44.40	68.40	59.60	61.20	52.00	56.40	69.60
Movie Recommendation	53.50	63.05	68.67	69.88	66.51	69.08	68.27	65.72	65.72
Multistep Arithmetic	0.80	0.80	1.20	1.60	1.36	1.26	1.26	1.26	1.20
Navigate	42.40	52.70	57.10	54.40	54.40	62.80	62.80	58.40	65.20
Object Counting	40.10	44.00	42.40	44.00	45.20	46.00	44.80	46.00	50.00
Penguins in a Table	21.70	22.60	26.03	28.08	33.56	28.08	28.77	33.56	48.63
Reasoning about Colored Objects	19.40	27.20	35.60	40.00	36.59	42.00	41.60	42.40	37.60
Ruin Names	25.40	28.70	30.65	33.47	31.92	37.90	34.68	34.27	29.03
Salient Translation Error Detection	11.20	25.20	26.80	26.00	27.95	32.40	32.00	32.00	30.40
Snarks	44.00	44.00	46.63	48.31	46.63	46.63	47.19	46.63	46.63
Sports Understanding	50.00	57.20	65.60	67.20	58.00	57.60	54.80	55.20	58.00
Temporal Sequences	21.10	32.60	33.20	33.60	34.80	32.90	32.90	33.60	36.40
Tracking Shuffled Objects (five objects)	21.90	31.20	37.20	37.60	38.40	40.00	38.80	38.40	39.20
Tracking Shuffled Objects (seven objects)	14.80	14.00	26.00	27.60	29.60	26.40	28.80	28.40	27.60
Tracking Shuffled Objects (three objects)	41.20	51.20	71.20	71.60	72.80	70.00	69.20	67.60	65.60
Web of Lies	48.80	51.20	50.80	50.00	51.97	52.80	51.20	53.20	50.40
Word Sorting	22.00	21.20	22.40	20.40	22.00	22.40	24.40	23.60	22.00
Avg Performance (EM)	31.17	36.59	41.57	43.51	42.73	44.24	43.27	42.76	44.49
# of A/B for training/inference	0/0	1/1	1/6	1/6	1/6	1/6	1/6	1/6	1/6
% Params	-	0.062	0.205	0.179	0.153	0.128	0.102	0.077	0.051

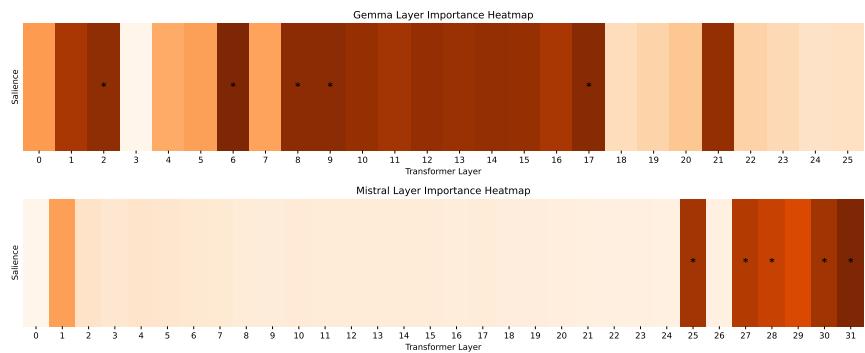


Figure 10: Layer importance heatmaps for Gemma2-2B (top) and Mistral-7B (bottom), highlighting critical adaptation layers (8-17 for Gemma2-2B; 27-31 for Mistral-7B). Saliency values reflect the contribution of each layer, with darker hues indicating higher importance.