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ABSTRACT

Parameter-Efficient Fine-Tuning (PEFT) methods have emerged as a widely
adopted strategy for adapting pre-trained Large Language Models (LLMs) to
downstream tasks, significantly reducing memory and computational costs. How-
ever, most existing PEFT techniques uniformly deploy LoRA adapters across all
layers, disregarding the intrinsic heterogeneity of layer contributions and task-
specific rank requirements. This uniform paradigm leads to redundant parameter
allocation and suboptimal adaptation efficiency. To address these limitations, we
propose FLoE, a novel PEFT framework that introduces two key innovations: (i) a
Fisher information-guided importance scoring mechanism to dynamically identify
task-critical transformer layers for MoE-based low-rank adaptation, enabling sparse
adapter deployment; and (ii) a Bayesian optimization-driven rank allocator that
automatically determines optimal LoRA ranks on specific datasets without exhaus-
tive grid search. Extensive experiments across diverse LLMs and benchmarks
reveal that FLoE achieves impressive efficiency-accuracy trade-offs, making FLoE
particularly advantageous in resource-constrained environments that necessitate
rapid adaptation.

1 INTRODUCTION

Adapting Large Language Models (LLMs) for multiple downstream tasks traditionally relies on
full fine-tuning (FFT), which requires retraining all model parameters. To reduce the training
cost, parameter-efficient fine-tuning (PEFT) techniques [35; 13; 7] have been developed, which
can be broadly categorized into LoRA-based [13; 7; 29], Adapter-based [48; 24] and Prompt-
based [26; 30; 25] approaches. While tuning a limited set of parameters is effective for domain
adaptation, PEFT methods like LoRA [15] often exhibit a performance gap compared to the FFT
baseline. This gap widens further when tuning on complex datasets [33] with diverse sub-domains
and task types, which requires models to distinguish subtle, non-overlapping features while avoiding
redundancy.

Recent studies explore a hybrid solution [11; 8; 16], showing that combining LoRA with the Mixture-
of-Experts (MoE) [17; 41] is a promising recipe. Among these solutions, HydraLoRA [44] stands out
by discovering the asymmetric property of LoRA and implementing B matrices as domain-specific
experts, achieving impressive adaptation performance. However, existing methods [44; 52; 29; 8]
adopt a uniform placement strategy that indiscriminately deploys fixed-rank LoRA adapters across
all transformer layers. Our investigation yields two critical observations that challenge the premise of
current implementations:

• Indiscriminate deployment of MoE-based LoRA adapters leads to unnecessary computational
overhead as shown in Fig. 1b, revealing a paradoxical trade-off between the number of trainable
parameters and overall performance gains.

• LoRA-based tuning is highly sensitive to the choice of rank [52; 19; 46; 32]. Since models
trained with one rank do not generalize to others, it is crucial to identify the optimal rank in
advance to avoid costly retraining for each possible rank.

Based on these observations, the key to improve MoE-based LoRA tuning is to identify and adapt
a small number of critical layers. To quantify the concept of "critical", our motivation is that: if a
layer is important for task-specific adaptation, the parameters of its residual trainable adapter should

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Layer.01

Layer.05

Layer.03

𝐵3 Router𝐵1 𝐵2

𝐴MHA

LayerNorm

LayerNorm

FFN

Layer.02

Layer.04

𝑤1

𝑤2
𝑤3

(a)

8 12 16 20 22 24 26 28 32

Number of Layers
45

50

55

60

65

70

75

80

GP
U 

M
em

or
y 

(G
B)

Memory Consumption
Memory Trend
Accuracy Trend

49.85GB

54.24GB

58.14GB

63.16GB

66.38GB

68.01GB

71.45GB
73.12GB

78.01GB

45.00

45.25

45.50

45.75

46.00

46.25

46.50

46.75

47.00

Ac
cu

ra
cy

 (%
)

46.48%

46.29%

45.61% 45.59%

45.41%

46.24%

46.05%

45.61%

45.83%

(b)

Figure 1: (a) Architecture of our MoE-based LoRA implementation. We adopt the asymmetric archi-
tecture of HydraLoRA [44]: a shared A matrix captures general features of the dataset, and multiple
distinct low-rank experts Bi learn task-specific patterns. The router takes in an intermediate token
representation and generates gating scores wi over experts. (b) Experimental evidence supporting
our motivation: we evaluate GPU memory consumption and adaptation performance of the FLoE
layer selection algorithm on LLaMA2-7B fine-tuned with Databricks-Dolly-15K. As the number of
adapted layers increases, GPU memory usage grows linearly, yet model accuracy does not improve
and even underperforms compared to few-layer adaptation.

exhibit high sensitivity to the adaptation loss, while the corresponding pre-trained weights remain
relatively insensitive. From a mathematical view, we can use the variation of gradients to quantify this
property, which can be measured with Fisher Information. Another question is how to determine the
optimal rank before training. To address these questions, we propose FLoE, a sparse layer adaptation
framework that provides a unified selection of layer and LoRA rank. The overall pipeline includes:
first fine-tune a full-layer model on a sampled dataset using MoE-based LoRA shown in Figure 1a,
then applies FLoE to determine critical layers and optimal ranks. During final adaptation on the target
dataset, all pre-trained weights are frozen while only the adapters on the critical layers are updated.

Our contributions can be summarized as follow:

• We introduce a Fisher-based importance scoring algorithm that dynamically identifies critical
transformer layers for MoE-based low-rank adaptation, enabling sparse, context-aware adapter
deployment.

• We incorporate a Bayesian optimization step to estimate the optimal LoRA rank before training
on the target dataset, avoiding exhaustive grid search and retraining.

• Experiments show that FLoE achieves comparable or even better performance than prior PEFT
methods across diverse datasets and model families, with notable advantages in low-resource
and fast-adaptation scenarios. By adapting only 25% of layers, FLoE retains 93.1% of full
fine-tuning accuracy on MMLU benchmarks, and achieves a 7.0% relative improvement over
the best-performing full-layer methods in mixed-domain adaptation, demonstrating its superior
capability in mitigating domain interference while maintaining parameter efficiency.

2 RELATED WORK

Parameter-Efficient Fine-tuning. Parameter Efficient Fine-Tuning (PEFT) techniques aim to
reduce the training costs of the LLMs. Previous PEFT approaches can be broadly classified into
the following categories: i) Prefix-tuning [26] and prompt-tuning [25]: prominent approaches that
fine-tune continuous prompts rather than discrete ones. ii) Adapter-based tuning: inserts additional
adapters into the model or scales activations with learned vectors, including AdaMix [48] and
(IA)3 [28]. iii) Low-rank adaptation: introduces trainable low-rank matrices to LLMs, keeping the
original weights frozen for efficiency, including LoRA [15] and its variants, such as AdaLoRA [52],
HydraLoRA [44] and others [51; 21; 39; 5; 29; 29]. Extensions to multi-LoRA architectures include
Multi-Head Routing [37] for Mixture-of-Experts and LoraHub [16] for task composability.
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Figure 2: Mechanism of FLoE layer selection. A densely masked layer intends to have higher
importance for low-rank adaptation, so we add a residual trainable adapter to the FFN component.
The adaptation process only updates the adapter.

Layer-wise Selective Fine-tuning. Recent studies [9; 40; 50] have raised the issue of layer redun-
dancy in pre-trained models. Surgical fine-tuning [23] updates only a subset of layers based on
domain shift, while SubTuning [20] employs a greedy search to identify the most suitable layers,
requiring significant computational resources. LISA [38] bridges the gap between full-parameter
tuning and LoRA, introduces a layer-wise importance sampling mechanism during training.

3 METHODOLOGY

Let F denote a pre-trained L-layer Transformer model. Given a dataset D = {(xi, yi)}Ni=1, where
xi denotes the input data and yi the corresponding label. For layer k ∈ {1, . . . , L}, let θk denote its
pre-trained weights. LoRA introduces trainable low-rank matrices Ak ∈ Rd×r and Bk ∈ Rr×d to
approximate weight updates ϕk = BkAk. Here we follow HydraLoRA [44] to use an MoE-based
architecture, extending LoRA by employing a shared A matrix and M parallel low-rank experts
{B(i)

k }Mi=1 alongside a router network (implemented as a dense layer followed by a softmax function).
Suppose the router outputs a vector of contribution weights {ω(i)

k }Mi=1 based on the intermediate
token representation. The weight updates are formulated as:

ϕk =

M∑
i=1

ω
(i)
k B

(i)
k Ak (1)

The final merged weights are Wk = θk + ϕk.

3.1 PROBLEM FORMULATION

As our goal is to find a subset of layers S ⊆ {1, 2, . . . , L} to add trainable adapters, we quantify
the contribution of each layer to the model adaptation performance via an importance score sk. To
achieve this, we introduce a binary mask variable mk ∈ {0, 1}|θk| as an intermediate to calculate sk
during adaptation. The adapted weight θ̃k is then computed as:

θ̃k = mk ⊙ θk + ϕk, (2)

As shown in Figure 2, the mask variable mk is applied to the pre-trained weights θk, based on
the principle that mask sparsity reflects the necessity of adaptation. If a pre-trained weight θk,i is
masked (mk,i = 0), the adapter weights must compensate for its removal to maintain performance.
If θk,i is retained (mk,i = 1), then ϕk,i only serves as a residual correction. Thus, the sparsity
of mk directly correlates with the contribution of ϕk. Let Z(mk) denote the number of masked
weights. Higher sparsity (Z(mk)≪ Z(mk)) indicates that θk are poorly aligned with the dataset,

3
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requiring significant adapter intervention. Lower sparsity (Z(mk) ≪ Z(mk)) suggests the pre-
trained knowledge in layer k remains largely valid, requiring minimal adaptation. This explicitly
disentangles pre-trained knowledge retention from task-driven adaptation.

Let θ ≜ [θ1, . . . , θL] and ϕ ≜ [ϕ1, . . . , ϕL]. The fine-tuning process only updates ϕ while keeping θ
frozen. After obtaining θ and ϕ, we optimize the mask variable m to find the optimal S under the
following constrained objective:

argmin
m

L(m;θ + ϕ) s.t. Cost(m;θ) ≤ C (3)

3.2 FISHER INFORMATION-AWARE ESTIMATION

To enable gradient-based optimization for the constrained problem Eq. 3, the cost function should be
differentiable with respect to the mask m. Here, we use Taylor importance [34] as the cost function,
which measures the sensitivity of the next-token prediction (NTP) loss to parameter perturbations.
This allows us to identify parameters that have minimal influence on the base model prediction, as
indicated by the deviation in the next-token prediction loss. For layer k, its element-wise Taylor
Importance Tk is defined as:

Tk =
∑
i

∣∣∣∣∂LNTP

∂θk,i
θk,i

∣∣∣∣ , (4)

For simplicity we deonte the cost function as Cost(m). By constraining the total cost
∑

k∈S Tk, we
prioritize adapting layers with lower Tk (i.e., those less critical to the pre-trained knowledge). This
ensures that adaptation focuses on "safe" regions of the network, reducing the risk of overwriting
crucial pre-trained features. Therefore, the cost function can be formulated as:

Cost(m) =
∑
k∈S

∑
i

Tk,i ·mk,i. (5)

Taylor Approximation of the Task-Specific Loss Function. We start by analyzing the sensitivity of
the loss function L to the mask variable m. Assuming we have local smoothness around m = 1,
then the loss can be approximated using a second-order Taylor expansion:

L(m; θ̃) ≈ L(1; θ̃) + 1

2
(1−m)⊤H(1−m), (6)

where θ̃ = θ + ϕ denotes the merged weights. Here, the first-order term ∇L(1; θ̃)⊤(m− 1) = 0
due to the assumption that the model has converged to a local minima, where the gradient term is
close to 0 [10; 47; 22]. As L(1; θ̃) is a constant, we can rewrite the optimization objective in Eq. 6 as
follows:

argmin
m

L(m) ≈ argmin
m

(1−m)⊤H(1−m). (7)

Eq. 7 shows that the optimal mask is determined by the Hessian of the loss with respect to the mask
variables, i.e. H = Ex∼D[∇2

mL(1; θ̃)]. Since computing the exact Hessian matrix is infeasible, we
approximate the Hessian H with the empirical Fisher Information Matrix (FIM), which is defined as:

I(m) = Ex∼D
[
∇mL(1)∇mL(1)⊤

]
. (8)

Diagonal Approximation of the FIM. Assuming each layer k contains |θk| parameters (including the
weight parameters of both MHA and FFN components), then mk can be seen as a vector of length |θk|.
As m is applied across all L layers, the full FIM I has L2|θk|2 elements, making its computation
and storage intractable for large values of |θk|. To address this challenge, we adopt a diagonal
approximation of I, reducing its complexity from O(L2|θk|2) to O(L|θk|). This approximation is
based on an assumption that cross-layer interactions can be neglected, since the off-diagonal terms
Ik,l (k ̸= l) are ignored. Under this assumption, only the diagonal elements Ik,k are computed for
each layer k, where:

Ik,k = Ex∼D

[
∂L
∂mk

]2
. (9)
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This further simplifies Eq. 7 as follows:

argmin
m

L(m) ≈ argmin
m

L∑
k=1

(1−mk)
2Ik,k

= argmin
m

L∑
k=1

|θk|∑
i=1

(1−mk,i)
2Ik,k,i.

(10)

Let Zk(m) = {i : mk,i = 0}. Since we restrict the possible mask values to either 0 or 1, the
following can be derived from Eq. 10:

argmin
m

L(m) ≈ argmin
m

∑
k

∑
i∈Zk(m)

Ik,k,i. (11)

Then the optimization objective in Eq. 3 is equivalent to minimizing the sum of layer-wise Fisher
information of the masked parameters:

argmin
m

∑
k

∑
i∈Zk(m)

Ik,k,i s.t.
∑
k

∑
i∈Zk(m)

Tk,i ≤ C. (12)

3.3 SOLVING THE CONTRAINED OPTIMIZATION PROBLEM

Determination Stage. Within each transformer layer, the architecture consists of two primary
components: a multi-head attention (MHA) module and a feed-forward network (FFN). We denote
the mask variables for these components in layer k as mMHA

k and mFFN
k , respectively. Suppose there

are NMHA head mask variables and NFFN neuron mask variables.

The optimization problem in Eq. 12 can be interpreted as follows: For each layer k, we seek a subset
of unmasked parametersMk that minimizes their total Fisher information on the adapted model
F(θ̃)), while constraining their total Taylor importance (computed on the base model F(θ)) under a
global budget C.

As the Fisher information and Taylor importance vary across individual parameters, Eq. 12 becomes
a dynamic programming problem which is memory inefficient. To reduce the 2-dimensional search
space into a linear form, we employ a component-wise approximation within the same layer. Specifi-
cally, we compute the scores for MHA and FFN respectively, and then average these values to yield
a single importance estimate per parameter. This allows us to use a greedy solution (described in
Algorithm. 1). The algorithm iteratively excludes the parameters with smallest Taylor importance
until the budget C is reached, while maximizing the cumulative Fisher information of the included
parameters.

Refinement Stage. The component-wise approximation in determination stage decouples the se-
lection of MHA heads and FFN neurons within each layer, thereby ignoring potential interactions
between them. While efficient, this approximation may lead to suboptimal trade-offs between Taylor
importance and Fisher information. To mitigate this, we propose a post-hoc refinement stage that
jointly optimizes the masks for both components under the same global budget constraint. This
refinement operates on the initial greedy solution as a warm start, enabling recovery of near-optimal
masks with minimal computational overhead.

The refinement process is designed to iteratively adjust the selected MHA heads and FFN neurons
while respecting the budget constraint. LetM∗

h andM∗
f denote the sets of unmasked MHA heads

and FFN neurons from the greedy solution. We define the refinement loss for a candidate mask pair
(Mh,Mf ) as:

L(Mh,Mf ) =
∑

i/∈Mh

τhi +
∑

j /∈Mf

τfj , s.t.
∑

i/∈Mh

th +
∑

j /∈Mf

tf ≤ C. (13)

The goal is to perturb (M∗
h,M∗

f ) to minimize L under the constraint. Let C denote a joint candidate
set containing all parameters (both masked and unmasked) at the same layer:

C =
{
(i, j) | i ∈M∗

h, j ∈ QFFN \M∗
f

}
∪
{
(i, j) | i ∈M∗

f , j ∈ QMHA \M∗
h

}
. (14)
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Algorithm 1 Greedy Mask Search

1: Input: Budget C, Fisher score per-head {τhi }N
MHA

i=1 , Fisher score per-neuron (for FFN) {τfj }N
FFN

j=1 ,
Taylor score per-head th, Taylor score per-neuron tf .

2: Initialize optimal Fisher loss L∗ ←∞, optimal sets of unmasked indices (M∗
h,M∗

f )← (∅, ∅),
mask variables (mMHA,mFFN)← (1,1)

3: for n = 0 to NMHA do
4: Compute cost for MHA module: Ĉh = n · th
5: if Ĉh > C then
6: continue ▷ Exceeds budget
7: end if
8: Remaining budget: Cr = C − Ĉh

9: Retained neurons: f = min

(
max

(
0,

⌊
Cr

tf

⌋)
, NFFN

)
10: Select n heads with smallest τhi : indices Ph

11: Select f neurons with smallest τfj : indices Pf

12: Compute total loss: L =
∑

i∈Ph
τhi +

∑
j∈Pf

τfj
13: if L < L∗ then
14: L∗ ← L, (M∗

h,M∗
f )← (Ph,Pf )

15: end if
16: end for
17: Apply masks: Set mMHA[M∗

h] = 0, mFFN[M∗
f ] = 0

18: Output: Optimal mask m∗ = (mMHA,mFFN)

where QMHA and QFFN represent the complete sets of parameters in MHA and FFN modules,
respectively. For each candidate parameter p ∈ C, compute the swap gain if p is masked and another
parameter q (of any component) is unmasked to compensate for the budget:

∆Lp→q = τp − τq, ∆Cp→q = tp − tq. (15)

A valid swap satisfies ∆Cp→q ≥ 0 to preserve the budget constraint. Then we select the swap
with the largest ∆Lp→q (i.e., maximal reduction in total Fisher loss) to updateM∗

h,M∗
f and the

remaining budget. Repeat this process until no improving swaps exist. The algorithm is implemented
in Algorithm. 2.

The refinement stage approximates a single iteration of the Lagrange multiplier method, where
swaps implicitly adjust the balance between Taylor importance (constraint) and Fisher information
(objective). By restricting swaps to the vicinity of the initial greedy solution, it avoids the O(|θ̃||θ|)
complexity of full dynamic programming while recovering Pareto-improved solutions.

Tuning Stage. Since our goal is to use mask values to measure parameter importance, the initial
binary masks are insufficient, as they fail to capture parameters that contribute marginally on their
own but are collectively important. To address this limitation, we introduce a differentiable tuning
stage that relaxes the binary masks into continuous values. The layer-wise reconstruction objective is
formulated as the residual activation difference:

argmin
mk

∥O(x;1)−O(x′;mk)∥
2
2 (16)

where x′ and x are inputs to the layer with or without mask, O(x;mk) = x+ lk(x;mk) denotes the
residual output of a mask-scaled layer, and lk indicates a MHA or FFN layer. A detailed derivation is
provided in Appendix H.

3.4 DYNAMIC RANK SELECTION FOR LORA-BASED PEFT

We employ Bayesian optimization primarily to determine the optimal LoRA rank r across layers,
while also adjusting the number of experts in MoE-LoRA as a secondary objective. Bayesian opti-
mization is particularly advantageous in multi-dimensional hyperparameter spaces, as it constructs a
probabilistic surrogate model to approximate the relationship between hyperparameters and validation

6
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performance. Using an acquisition function, BO iteratively proposes new candidate configurations by
leveraging past evaluation results, thereby focusing computational resources on regions most likely
to yield improved performance. Compared to grid or random search, BO significantly reduces the
number of expensive fine-tuning trials and enables early elimination of suboptimal configurations.
This makes it especially suitable for tuning costly PEFT setups with multiple hyperparameters.
Table 8 highlights the efficiency gains of BO when tuning LoRA rank r ∈ [4, 64] (for rank allocation)
and the number of experts ∈ [2, 10].

0 5 10 15 20 25 30
Transformer Layer

Sa
lie

nc
e

** ***

Single Domain (Law)

0

2000

4000

0 5 10 15 20 25 30
Transformer Layer

Sa
lie

nc
e

** * **

Mixed Domain

2000

4000

Figure 3: Saliency maps illustrating the importance of layers on the single-domain (Lawyer-Instruct) and
mixed-domain/task (FLANv2) datasets. The base model is LLaMA2-7B. Black dots indicates the top-5 critical
layers for the given task.

Table 1: Performance comparison of PEFT methods on LLaMA2-7B. Performance metrics include the accuracy
on MMLU (5-shot) and GSM8K, and Pass@1/Pass@10 on HumanEval. LoRA and its variants (AdaLoRA,
DoRA and HydraLoRA) adopt a single A matrix, but differ in the rank and the number of B matrices, which are
determined by Bayesian optimization.

HumanEvalSchemes MMLU Medical Law
P@1 P@10

GSM8K Avg. Rank Avg. #B

LLaMA2-7B [45] 38.79 36.05 33.64 13.17 20.41 10.44 - -
Full Fine-Tuning 49.91 46.76 46.22 20.24 32.93 25.69 - -

Prompt Tuning [25] 39.97 37.46 34.88 13.59 21.62 13.25 - -
P-Tuning(256) [31] 41.02 39.85 36.64 13.53 21.20 15.50 - -
Prefix Tuning [26] 41.86 40.28 36.30 13.15 22.48 16.83 - -

LoRA [15] 45.88 46.76 37.16 14.57 29.88 18.24 16 1
AdaLoRA [52] 44.26 42.39 39.36 14.74 23.85 19.44 12 → 4 1

DoRA [29] 44.57 44.23 38.74 14.65 24.20 19.50 10 1
HydraLoRA [44] 45.83 46.90 37.76 14.39 28.66 19.66 8 4

Ours 46.48 49.15 39.14 14.82 31.71 20.09 8 4

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Benchmarks. To investigate the effectiveness of our layer selection policy, we
conduct experiments on both single- and multi-domain datasets. Single domain includes: General,
Medical, Legal, Code Generation, Mathematics. Multi domain includes FLANv2 and we evaluate
the performance on BBH benchmark [42]. Detailed descriptions of the datasets and benchmarks are
provided in Appendix D.

Baselines. To evaluate the adaptation performance on FLoE-selected layers, we compare it with differ-
ent PEFT methods: Full Fine-Tuning, Prompt Tuning [25], P-Tuning [31], LoRA [15], AdaLoRA [52],
DoRA [29], HydraLoRA [44]. To evaluate the layer selection policy, we compare FLoE with Ran-
dom Selection and LISA [38] (fine-tuned with MoE-LoRA). We further compare FLoE with two
LoRA derivatives, LoraHub [16] and LoRAMoE [8], which also utilize a routing mechanism to
coordinate multiple LoRA experts. Detailed descriptions of these baseline methods are provided in
Appendix D.2.

7
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Figure 4: Dynamic rank selection results for the
medical task on LLaMA2-7B. The optimal rank (r =
4) is determined using Bayesian optimization on a
full-layer adapted model (1A/4B).
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Figure 5: Mixed domain results evaluated on
the BBH benchmark (3-shot) using LLaMA2-
7B. FLoE achieves the highest Exact Match
(EM) score with the lowest training parameter
size.

Table 2: Performance comparison of different layer selection policies, including random selection (with seed
42), LISA + MoE-LoRA and our proposed FLoE training for 1 epoch with LLaMA2-7B.

Random LISA + MoE-LoRA Ours (FLoE)

General 46.15 46.39 46.48
Medical 47.46 48.17 49.15

4.2 MAIN RESULTS

Implementation Details. For single-domain adaptation, we first fine-tune a fully adapted model on
50% of the target dataset (i.e. the warm-up phase). The LoRA rank and the number of B matrices
are optimized via Bayesian optimization, where the rank is searched within [2, 32] (step size 2), and
the number of B matrices within [2, 4] (step size 1). We then apply the layer selection algorithm to
identify critical layers, followed by fine-tuning a sparsely adapted model on the full target dataset.
For mixed-domain adaptation, we sample 1.25% of the FLANv2 dataset for the warm-up phase.
Bayesian optimization is applied with the same search range for the rank, while the number of B
matrices is searched within [6, 10] (step size 2). The model is then fine-tuned on a larger subset of
FLANv2 comprising 3% of the data.

Results on Single/Mixed Domain dataset. The experimental results are presented in Table 1 for
fine-tuning performance evaluation and Table 2 for layer selection policy evaluation. These results
demonstrate that FLoE consistently outperforms all competing approaches while reducing a large
portion of trainable parameters. Results in Table 3 show that the optimal number of layers varies
depending on the specific domain, with fewer layers generally performing better on MMLU and
Medical benchmarks, while a moderate number of layers might be more effective for Law and
GSM8K benchmarks. Figure 5 shows the results of mixed tasks and domains. The A/B configuration
is 48/48 for LoraHub and LoRAMoE, 1/1 for LoRA, 1/6 for FLoE and HydraLoRA. Detailed results
for each task in BBH evaluation are provided in the Appendix 9. The visualizations of the layer
importance on single and mixed domain dataset is represented in Figure 3.

Hyperparameter Tuning via Bayesian Optimization. We employ Bayesian optimization via
Optuna [1], searching in 30 trials for the combination of r and NB . We implement with the Tree-
structured Parzen Estimator (TPE) surrogate model and the Expected Improvement (EI) acquisition
function. Table 8 shows the efficiency of using Bayesian optimization compared with random search
and grid search over a substantially larger search space. Figure 4 compares the performance of
fine-tuning different subsets of layers under different ranks (r = 4, 6, 8). Here we fix the number
of B matrices to 4, since the search space for NB is very small and the optimal value consistently
remains 4 when the validation loss reaches its minimum at r = 4, 6, 8. We visualize the convergence
of Bayesian optimization process in Figure 8.

Results on Other Models Families. To validate the generalization of FLoE, we extend experiments
to Gemma2-2B [43], Mistral-7B [18] and LLaMA3.1-8B [12]. As shown in Table 4, both models
achieve optimal task performance when adapting 8 layers. Figure 10 visualizes layer importance

8
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Table 3: Layer-specific fine-tuning using FLoE on LLaMA2-7B. We apply a 1A/4B adapter for each selected
layer. Best results per column are bolded.

HumanEvalLayers MMLU Medical Law
P@1 P@10

GSM8K % Param

32 45.83 46.90 37.76 14.39 28.66 17.66 0.124
26 46.05 47.75 38.07 14.45 27.44 19.94 0.101
24 46.24 47.46 37.76 14.76 31.71 20.09 0.093
20 45.59 47.75 39.14 14.82 31.10 18.62 0.078
16 45.61 48.03 38.00 13.90 31.71 18.65 0.062
12 46.29 48.45 37.89 13.78 29.27 19.11 0.047
8 46.48 49.15 36.80 13.48 29.88 17.91 0.031

Table 4: End-to-end inference latency by running the full MMLU benchmark (including 14,042 examples) on
the fine-tuned Gemma2-2B and Mistral-7B models, the configuration for multi LoRA head is 1A/4B. Models
are fine-tuned with Dolly-15K. Layer selection is performed using FLoE.

Models Metrics Single LoRA Head Multi LoRA Heads
32 28 24 20 16 12 8

Gemma2-2B % Performance (Acc) 51.25 - 51.56 51.73 51.67 51.12 51.30 51.99↑0.74

Inference Lat. (s) 1717.90 - 3832.37 3670.04 3368.81 3123.01 2777.69 2516.51↑798.61

Mistral-7B % Performance (Acc) 60.95 53.18 61.42 61.04 60.40 61.10 61.52 62.14↑1.19

Inference Lat. (s) 1462.27 4022.30 2055.37 1917.85 1758.16 1666.58 1636.02 1519.14↑56.87

LLaMA3.1-8B % Performance (Acc) 62.03 61.54 62.46↑0.43 62.36 62.25 62.45 61.88 62.02
Inference Lat. (s) 1333.49 1900.04 1796.27↑462.78 1706.96 1611.51 1525.08 1432.32 1145.19

Table 5: Training runtime for full-layer and selected-layer adaptation. The FLoE(Total) is the sum of Selected-
Layer Adaptation and FLoE Layer Selection.

Dolly-15K Clinic-10K Lawyer-Instruct CodeAlpaca

Full-Layer Adaptation (Baseline) 20105.08 20105.08 10137.51 45092.51
Selected-Layer Adaptation 16455.04 6697.16 6895.77 16197.23

FLoE Layer Selection 122.86 125.45 123.13 127.39

FLoE (Total) 16577.90 (-3527.18) 6822.61 (-7281.19) 7018.90 (-3118.61) 16324.62 (-28767.89)

distributions, showing that FLoE identifies middle layers for Mistral-7B and deep layers for Gemma2-
2B as critical for adaptation.

Inference Latency. As MoE-LoRA inherently has more parameters than vanilla LoRA, we compare
the latency of running inference on full-layer adapted models with single LoRA head (per adapter)
and selected-layer adapted models with multiple LoRA heads (per adapter). Experiments are running
with a batch size of 16. While the full-layer LoRA-adapted models achieve minimal inference time,
our FLoE layer selection strategy significantly optimizes latency for multi-head configurations. As
shown in Table 4, FLoE reduces inference latency by strategically limiting the number of adapted
layers.

Trade-off bewteen Training and Layer Selection. Table 5 shows the runtime of FLoE layer
selection process. The results show that the overall runtime including FLoE layer selection process
and selected-layer adaptation is still lower than full-layer adaptation.

5 CONCLUSION

In this work, we first discuss the limitations of deploying MoE-based LoRA modules on all trans-
former layers indiscriminately, where domain interference significantly degrades performance across
diverse tasks. To address this, we propose FLoE, a novel PEFT method that introduces two key
innovations: Fisher information-aware layer selection and Bayesian optimization-driven dynamic
rank allocation. Our experiments demonstrate that FLoE offers a scalable and resource-efficient
way for adapting LLMs to specialized domains, advancing the practical deployment of LLMs under
constrained computational budgets.

9
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A LLM USAGE STATEMENT

In this work, LLMs are not involved in any core aspects of the research, including data collection,
experimental design, model development, result analysis, or conclusion formulation. LLMs are
only used for language polishing. Their role are limited to improving textual clarity, enhancing
logical coherence, refining the precision of academic terminology, and increasing the readability
of experimental results. All text refined with the assistance of LLMs was carefully reviewed by
the authors to ensure full alignment with the original research intentions and to maintain academic
integrity, without introducing inaccuracies or misleading content.

B REPRODUCIBILITY STATEMENT

We provide code in the supplementary material and implementation details in the appendix, covering
batch size, learning rate schedules, and optimizer configurations. The models are publicly available,
and all external datasets used in our work are either publicly released or cited with appropriate
references.

C LIMITATION

While our proposed FLoE algorithm effectively identifies critical layers for MoE-based LoRA fine-
tuing, its current implementation limits each LoRA module with a fixed number of low-rank experts.
Future work can explore dynamic expert allocation mechanisms, where both the selection of critical
layers and the number of experts per layer are jointly optimized, enabling more granular control over
model capacity allocation and better computational resource utilization.

D DATASETS AND BASELINES

D.1 DATASETS

Single domain includes:

• General: we fine-tune with Databricks-Dolly-15K dataset [36] for general knowledge mastering
and evaluate with all tasks in MMLU [14].

• Medical: we fine-tune with GenMedGPT and Clinic-10K [27] for medical applications and
evaluate with 3 medical tasks in MMLU, including clinical knowledge, professional medicine
and college medicine.

• Legal: we fine-tune with Lawyer-Instruct [2] for legal applications and evaluate with 3 legal
tasks in MMLU, including jurisprudence, international law and professional law.

• Code Generation: we fine-tuned with CodeAlpaca [3] and evaluate with HumanEval [4].
• Mathematics: we fine-tune with the training split of GSM8K [6] for mathematical reasoning and

evaluate with the test split.

Multi domain includes:

• FLANv2: we construct the training dataset by sampling equal-proportion subsets from each of
the 46 tasks in FLANv2 [49] and evaluate on BBH benchmark [42].

D.2 BASELINES

Baselines for PEFT:

• Full Fine-Tuning: the default adaptation strategy involves initializing the model with pre-trained
weights and updating all parameters via gradient descent. The number of trainable parameters
equals the number of pretrained parameters.

• Prompt Tuning [25]: adds manually-designed task-specific prompts to the input. The fine-tuning
process only updates the prompt parameters while keeping the pre-trained parameters frozen.

• P-Tuning [31]: a prompt adds learnable prompt tokens to the input, optimized by a prompt
encoder to find a better prompt. The prompt tokens can be added anywhere in the input sequence.
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• LoRA [15]: decomposes weight updates into low-rank matrices, enabling efficient adaptation
with significantly fewer trainable parameters while preserving model performance.

• AdaLoRA [52]: dynamically allocates trainable parameters across weight matrices and layers,
prioritizing important components instead of uniformly distributing resources as in LoRA.

• DoRA [29]: decomposes pre-trained weights into magnitude and direction components, and
apply LoRA on the direction component.

• HydraLoRA [44]: incorporating asymmetric LoRA adapters across all layers.

Baselines for layer selection policy:

• Random Selection: layers are chosen uniformly at random during training (with a fixed random
seed 42), serving as a naive baseline to assess the necessity of structured selection.

• LISA + MoE-LoRA [38]: LISA freezes most intermediate layers and selectively updates only the
embedding layer, the language modeling head layer, and a small number of randomly sampled
intermediate layers in each optimization step. We update the weights of MoE-LoRA modules
on these layers instead of updating the pre-trained weights. The rank and the number of experts
are determined by Bayesian optimization.

Baselines for multi-LoRA architecture:

• LoRAMoE[8]: combines lightweight experts (LoRA) with MoE architecture for high efficiency,
generalizing to new tasks without prior knowledge.

• LoraHub[16]: employs black-box optimization to learn weights of 20 randomly selected LoRAs
for new tasks, using weighted averaging without needing gradient calculations.

E HYPERPARAMETER SETTINGS

Table 6: Hyperparameter settings for our experiments and LoRA-based baseline methods. MSL indicates the
max sequence length, BSZ indicates the batch size. All methods use the AdamW optimizer. The weight decay is
set to 0.

α Dropout MSL Warmup Ratio BSZ Epochs LR Seed Where

Hyperparameter 32 0.05 1024 0.03 1 1 2e-4 41 Up,Down,Gate

F ABLATION STUDY

The FLoE layer selection algorithm comprises three steps: (i) determination stage for coarse-grained
binary mask value initialization, (ii) refinement stage implementing a swapping protocol that ex-
changes mask values between each pair of masked and unmasked parameters within the same layer,
and (iii) tuning stage to relax the binary mask values into continuous values using a reconstruc-
tion objective. To validate the necessity of refinement stage, we compare the model performance
with and without the refinement stage. We first fine-tune a full-layer LLaMA2-7B model with
Databricks-Dolly-15K, and using FLoE to get the layer importance rankings which is shown in
Figure 9. Empirical results reveal that disabling this stage leads to a performance degradation as
shown in Table 7.

Table 7: Evaluation results on MMLU with the former 15, 16, 21, 24, 25 layers fine-tuned (in the ranking
order).

Fine-tuned Layers 15 16 21 24 25

w/o refinement 45.11 45.14 45.52 45.48 45.61
w/ refinement 45.36↑0.25 45.33↑0.19 45.56↑0.04 45.43↓0.05 45.66↑0.05

G ANALYSIS FOR LAYER SELECTION

As FLoE layer selection algorithm need to run on an already fine-tuned model, we decrease the
preparation overhead via reducing the size and category of training data. For single domain fine-
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Figure 6: Layer importance rankings with or without refinement stage. The difference starts at the rank 14 (i.e.
the former 15 layers. The 14-th layer is layer 10 in the w/o refinement rankings and layer 8 in the w/ refinement
rankings) and ends at the rank 16 (i.e. the former 17 layers has the same set of layer indexes). Similarly, we only
need to evaluate the former 21, 24 and 25 layers in the subsequent rankings. Both rankings and layer indexes
start at 0. The range is 0-31.

tuning, we first fine-tune a model on a general knowledge dataset, then run FLoE on that model. If
this general dataset is too large, we reduce its size by randomly selecting a partial of the training data.
Note that we can use the selection results for other single domain fine-tuning including medical, law,
code and mathematics.

Different Size of Sample Dataset. To investigate the impact of training data quantity on layer
selection, we conduct a comparative study using MoE-based LoRA for LLaMA2-7B fine-tuning.
We evaluate layer importance rankings across three training scenarios: full-data (100%), moderately
reduced (70%), and substantially reduced (30%) subsets of the Databricks-Dolly-15K dataset.

Figure 7 illustrates the stability of layer rankings under these varying data regimes. Our analysis
reveals that the refinement stage exhibits minimal sensitivity to training data quantity in terms of
rank consistency. Across all three configurations, layers 0-2 and layers 10-14 demonstrate strong
agreement in stability rankings. However, notable discrepancies emerge in the final layers (22-28),
suggesting that deeper layers show higher variability in importance assessment when trained with
reduced data. This observation indicates that for a safe consideration, we should choose at least 50%
layers for subsequent fine-tuning on the target dataset. For a more careful layer selection, we should
enlarge the sample dataset size.
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Figure 7: Rank stability comparison of layers with (left) and without (right) refinement stage. The plots show
layer importance rankings (lower rank indicate higher importance) across three training data ratios (100%, 70%,
30%). The shaded regions depict min-max ranges of the rank on different ratios.

Fine-tune on Different Target Datasets. After ranking layers on the sample dataset, we apply
the ranking results to selectively fine-tune the base model on the target datasets. Note that the
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target dataset can be different from the sample dataset. To evaluate the generalization capability of
FLoE, we compare its fine-tuning performance with two single domain datasets (Clinic-10K and
CodeAlpaca). For each dataset, we implement two layer selection strategies: one using the general
knowledge dataset (Databricks-Dolly-15K) as the sample dataset, and the other using the target
dataset itself as the sample dataset. Figure 8 shows that although the misalignment between the
sample and target datasets has little impact on the best achievable performance, it may affect the
number of layers required to reach that performance.
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Figure 8: Illustration of performance under different layer importance rankings.

H PROOF OF EQ. 16

The tuning stage is designed to minimize the layer-wise reconstruction error between the masked and
unmasked versions of the adapted model. The goal is to optimize mk such that the squared L2-norm
of the residual activation difference is minimized:

argmin
m̃k

∥x′ + lk(x
′;mk)− (x+ lk(x;1))∥

2
2 s.t. Z(mk) = Z(m̄k). (17)

where Z(m) denotes the indices of zero entries in m. We use m̄ to indicate the fixed binary mask
values obtained from the refinement stage, and m indicates the mask variables to be optimized,
reconstructed from the binary masks. Let Wi represent the i-th head or neuron weight of layer lk.
The output of lk(·;mk) is:

lk(x;mk) =

N∑
i=1

mk,iWix, (18)

where N denote the number of heads (for MHA) or neurons (for FFN). Let ∆x = x′ − x, then the
residual difference in Eq. 17 becomes:

x′ +

N∑
i=1

mk,iWix
′ − x−

N∑
i=1

1iWix =

N∑
i=1

mk,iWi(x+∆x) + ∆x−
N∑
i=1

1iWix (19)

=

N∑
i=1

m̄k,imk,iWi(x+∆x) + ∆x−
N∑
i=1

1iWix

Let A =
∑N

i=1 m̄k,iWi(x+∆x), b = ∆x−
∑N

i=1 1iWix. Then Eq. 17 can be transformed into
a linear least-square problem:

argmin
uk

∥Amk − b∥22 . (20)

Assume A⊤A is invertible. The closed-form solution to Eq. 20 is given by:

m∗
k = (A⊤A)−1A⊤b. (21)

I MORE RESULTS
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Algorithm 2 Joint Mask Refinement

1: Input: Initial masksM∗
h,M∗

f , budget C, Fisher/Taylor scores.

2: Compute initial loss L∗ and used budget Cused = C −
(∑

i/∈M∗
h
th +

∑
j /∈M∗

f
tf

)
3: while improvement do
4: Generate all valid swaps (p, q) where ∆Cp→q ≥ 0
5: Select swap (p∗, q∗) = argmax(p,q) ∆Lp→q

6: if ∆Lp∗→q∗ > 0 then
7: UpdateM∗

h,M∗
f , L∗ ← L∗ −∆Lp∗→q∗

8: Update Cused ← Cused +∆Cp∗→q∗

9: else
10: break
11: end if
12: end while
13: Output: Refined masksM∗

h,M∗
f

Table 8: Search efficiency of different hyperparameter tuning strategies on r ∈ [4, 64] (with step of 4)
and number of experts ∈ [2, 10].

Method Search Space Size Trials Required Relative Cost

Grid Search 16× 9 = 144 144 100%

Random Search 16× 9 = 144 ∼80 ∼55%
Bayesian Opt. 16× 9 = 144 ∼30 ∼21%
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Figure 9: Bayesian optimization process for LLaMA3.2-3b. The validation loss converges between 30–70 trials.
Although the global best value achieved at trial 78, convergence is already evident by trial 40.
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Table 9: Detailed results of BBH evaluation with LLaMA2-7B as the base LLM (3-shot).

HydraLoRA Ours (FLoE)Task Base LoRA L=32 L=28 L=24 L=20 L=16 L=12 L=8

Boolean Expressions 73.60 74.40 75.20 77.20 76.01 76.40 77.60 74.07 71.35
Causal Judgement 47.06 54.90 57.22 56.15 50.72 57.14 50.27 55.08 59.89

Date Understanding 37.60 40.00 44.80 55.60 54.77 56.40 57.20 59.60 60.80
Disambiguation QA 34.80 45.20 56.80 60.00 65.60 64.00 64.40 53.17 66.00

Dyck Languages 10.80 13.20 14.40 15.60 13.20 14.06 14.92 14.49 14.00
Formal Fallacies 44.80 46.00 46.80 46.40 46.80 47.60 48.00 47.15 49.20

Geometric Shapes 9.70 10.20 15.20 14.40 25.60 19.60 12.40 12.77 12.00
Hyperbaton 30.80 40.00 48.40 48.80 48.40 52.00 53.20 48.40 49.20

Logical Deduction (five objects) 22.80 33.30 45.60 46.80 45.13 45.53 46.34 43.10 46.00
Logical Deduction (seven objects) 16.00 22.40 32.00 31.60 30.80 32.40 30.40 30.00 29.60
Logical Deduction (three objects) 35.20 41.40 44.40 68.40 59.60 61.20 52.00 56.40 69.60

Movie Recommendation 53.50 63.05 68.67 69.88 66.51 69.08 68.27 65.72 65.72
Multistep Arithmetic 0.80 0.80 1.20 1.60 1.36 1.26 1.26 1.26 1.20

Navigate 42.40 52.70 57.10 54.40 54.40 62.80 62.80 58.40 65.20
Object Counting 40.10 44.00 42.40 44.00 45.20 46.00 44.80 46.00 50.00

Penguins in a Table 21.70 22.60 26.03 28.08 33.56 28.08 28.77 33.56 48.63
Reasoning about Colored Objects 19.40 27.20 35.60 40.00 36.59 42.00 41.60 42.40 37.60

Ruin Names 25.40 28.70 30.65 33.47 31.92 37.90 34.68 34.27 29.03
Salient Translation Error Detection 11.20 25.20 26.80 26.00 27.95 32.40 32.00 32.00 30.40

Snarks 44.00 44.00 46.63 48.31 46.63 46.63 47.19 46.63 46.63
Sports Understanding 50.00 57.20 65.60 67.20 58.00 57.60 54.80 55.20 58.00
Temporal Sequences 21.10 32.60 33.20 33.60 34.80 32.90 32.90 33.60 36.40

Tracking Shuffled Objects (five objects) 21.90 31.20 37.20 37.60 38.40 40.00 38.80 38.40 39.20
Tracking Shuffled Objects (seven objects) 14.80 14.00 26.00 27.60 29.60 26.40 28.80 28.40 27.60
Tracking Shuffled Objects (three objects) 41.20 51.20 71.20 71.60 72.80 70.00 69.20 67.60 65.60

Web of Lies 48.80 51.20 50.80 50.00 51.97 52.80 51.20 53.20 50.40
Word Sorting 22.00 21.20 22.40 20.40 22.00 22.40 24.40 23.60 22.00

Avg Performance (EM) 31.17 36.59 41.57 43.51 42.73 44.24 43.27 42.76 44.49
# of A/B for training/inference 0/0 1/1 1/6 1/6 1/6 1/6 1/6 1/6 1/6

% Params - 0.062 0.205 0.179 0.153 0.128 0.102 0.077 0.051
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Figure 10: Layer importance heatmaps for Gemma2-2B (top) and Mistral-7B (bottom), highlighting critical
adaptation layers (8-17 for Gemma2-2B; 27-31 for Mistral-7B). Saliency values reflect the contribution of each
layer, with darker hues indicating higher importance.
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