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Abstract

Score-based generative models (SGMs) need to approximate the scores ∇ log pt
of the intermediate distributions as well as the final distribution pT of the forward
process. The theoretical underpinnings of the effects of these approximations are
still lacking. We find precise conditions under which SGMs are able to produce
samples from an underlying (low-dimensional) data manifold M. This assures us
that SGMs are able to generate the “right kind of samples”. For example, taking
M to be the subset of images of faces, we find conditions under which the SGM
robustly produces an image of a face, even though the relative frequencies of
these images might not accurately represent the true data generating distribution.
Moreover, this analysis is a first step towards understanding the generalization
properties of SGMs: Taking M to be the set of all training samples, our results
provide a precise description of when the SGM memorizes its training data.

1 Introduction

Score-based generative models, also called diffusion models ([Sohl-Dickstein et al., 2015, Song
and Ermon, 2019, Song et al., 2021b, Vahdat et al., 2021]) and the related models ([Bordes et al.,
2017, Ho et al., 2020, Kingma et al., 2021]) have shown great empirical success in many areas, such
as image generation ([Jolicoeur-Martineau et al., 2021, Nichol and Dhariwal, 2021, Dhariwal and
Nichol, 2021, Ho et al., 2022]), audio generation ([Chen et al., 2021, Kong et al., 2021, Jeong et al.,
2021, Popov et al., 2021]) as well as in other applications ([Batzolis et al., 2021, De Bortoli et al.,
2021, Zhou et al., 2021, Cai et al., 2020, Luo and Hu, 2021, Meng et al., 2021, Saharia et al., 2021, Li
et al., 2022, Sasaki et al., 2021]). Recently some progress has been made to bridge the gap between
the different approaches ([Song et al., 2021b, Huang et al., 2021]) through the framework of SDEs
and reverse SDEs.

In generative modelling one is given samples {xi}Ni=1 from a measure µdata. The task is to learn
a measure µsample which approximates µdata. The performance of a generative model can then
be measured by the distance from µsample to µdata. In practice however, the true data generating
distribution µdata is unknown. All that is known are the samples {xi}ni=1, which can be used to define
the empirical measure µ̂data,

µ̂data := Unif{x1, x2, . . . , xn}.

Any sample from the empirical measure µ̂data will be equal to a training example. Hence, while µsample
being close to µdata is the final goal, µsample being close to µ̂data implies that the generative model has
memorized the training data. To summarize, a good generative model will output a measure µsample
which is as close to µdata as possible, while keeping some distance from µ̂data, even though it only
knows µdata through µ̂data.
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Figure 1: Top left: The leftmost plot shows the true data distribution µdata which is a Gaussian mixture.
The heat maps show the intermediate densities pt of Xt, followed by line plots of pt for t = 1.
Bottom left: The rightmost plot shows µprior, which is a standard Gaussian and differs from p1. We
start the reverse SDE (2) in µprior. But instead of using the real score, we introduce an approximation
error and use s(x, t) = ∇ log p1−t(x) + 3 with a constant error of 3. Again, the heat maps show how
the densities qt of Yt evolve backwards in time. The leftmost plot shows the resulting distribution q1
which is used as sample distribution, µsample = q1.
Right: The densities µdata and µsample are shown for direct comparison. We see that the approximation
errors in µprior and the drift lead to an incorrect sample distribution µsample ̸= µdata. Nevertheless,
µsample is supported in the same area as µdata. For details on the numerical implementation see
Appendix B.

Given a target measure π0, a score-based generative model (SGM) employs two stochastic differential
equations (SDEs). The first one is called the forward SDE

dXt = β(Xt)dt+ σdWt,
X0 ∼ π0.

(1)

The marginals of Xt are denoted by πt. The forward SDE is run until some terminal time T .
Furthermore, the reverse SDE is defined by

dYt = −β(Yt)dt+ σσT∇ log pT−t(Yt)dt+ σdBt,
Y0 ∼ q0.

(2)

We refer to the marginals of Yt as qt. The samples are generated from the final distribution qT ,
i.e. µsample := qT . The reverse SDE has the property that if q0 is chosen to be equal to πT , then
qt = πT−t. In particular, this implies that qT = π0. Therefore, if we have samples from πT , we can
run the reverse SDE on them to create new samples from π0.

In the following we will denote by pt the marginals of the forward SDE when started in the true data
generating distribution π0 = µdata. We will denote by p̂t the marginals of the forward SDE when
started in π0 = µ̂data. Optimally, we would like to run the algorithm using π0 = µdata, i.e. with
marginals πt = pt. This is however not possible, since µdata itself is unknown.

To circumvent the problem of not knowing pT , the forward SDE is chosen such that it forgets its
initial condition p0. At time T , the marginal pT is then well approximated by a proxy distribution
µprior ≈ pT , independently of p0. Additionally, the marginals pt and therefore the scores ∇ log pt
cannot be evaluated for p0 = µdata. Therefore, the scores are replaced by a neural network sθ(x, t),
which is trained via score-matching techniques [Vincent, 2011, Hyvärinen and Dayan, 2005].

As a result, SGMs make two approximations. The first one is in approximating pT by µprior. The
second one is the approximation of ∇ log pt by the neural net sθ(x, t). We illustrate this in Figure 1.
It is important to understand how these approximations translate to the distance of µsample to µdata or
µ̂data.

Some early works already deal with these questions. In [De Bortoli et al., 2021] the total variation
distance between µsample and µdata in bounded, whereas [Song et al., 2021a] derives bounds with
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(a) Here µdata is chosen as the uniform distribution on the unit sphere S1. We use the Brownian motion for the
forward SDE. We can compute the exact score ∇ log pt(x). We perturb it with the vector v = (x = 0, y = −1)
and define the approximation s(x, t) = ∇ log pt(x)+v. Furthermore, we purposely adopt a poor approximation
µprior ̸≈ p1 by setting µprior = N (m, I), where m = (x = 1.5, y = 0). We then run the reverse SDE (8).
The figure shows heat maps of the intermediate distributions qt of the reverse SDE. At time t = 1 we reach
q1 = µsample. We see that µsample is a distribution on M = S1, albeit not the uniform one. Furthermore, we can
observe how the errors in the initial conditions and the drift influence the skewed distribution µsample. The initial
conditions where chosen to have a to large x-coordinate on average, whereas the drift was chosen as to prefer
lower y-coordinates. The distribution µsample is concentrated in areas with high x and low y-coordinates.

(b) The above experiment is repeated but with µdata chosen to be the uniform distribution on M = {xi}9i=1,
where the xi are 9 evenly spaced points on the unit sphere S1. Notice that while the approximation errors cause
a non-uniform distribution the training examples, µsample is still supported solely on M and will not generate
novel samples.

Figure 2: Perturbing ∇ log p̂t.

respect to the KL-Divergence. The work [De Bortoli et al., 2021] furthermore derives a result similarly
to the second part of Theorem 1, but also treating the errors that are introduced by discretizing the
SDE. However, both of these works assume that the initial distribution µdata is rather well behaved.
In particular, it is assumed that µdata(x) > 0 for all x. We shortly discuss this assumption now.

Assuming that µdata(x) > 0 for any x means that one postulates that every x is a possible sample from
µdata. For example, this implies that even if all samples {x1, . . . , xn} of µdata consist of images of
human faces, we say that µdata can possibly also generate images of for example furniture, animals or
pure white noise. Even though it might have low probability, any combinations of pixels is a possible
sample from µdata. The assumption that µdata is actually supported on some lower dimensional
substructure M is well known under the name manifold hypothesis, see for example [Bengio et al.,
2013, Pope et al., 2021]. In practice this means that µdata(x) = 0 for many x. This also leads to
exploding scores ∇ log pt as t → 0 (see Section 5), a behaviour which also observed empirically and
further underpins the relevance of the manifold assumption. We will from now on denote the support
of µdata as data manifold M.

A fundamental question is then: What is the support of µsample and how does it compare to M. This
is interesting for multiple reasons. On the one hand, if we for example assume that M is the set of all
images of faces, then the knowledge that µsample also has support M implies that, regardless of how
close µsample actually is to µdata, it will at least always produce an image of a face. On the other hand,
we can also compare the support of µsample to that of µ̂data. The measures µsample and µdata sharing
their support translates to µsample memorizing the training data and not being able to generalize. Both
of these are very valuable insights into the qualities of µsample on its own. Furthermore, statistical
distances like the KL-Divergence or the total variation distance are only meaningful if the support of
the measures overlap to some degree, as otherwise they will equal the maximum distance value.

If two measures have the same support, they are said to be equivalent. Our main result is the
following:

Main result. We identify conditions under which µsample is able to learn the data manifold, that is
supp(µsample) = supp(µdata). Applying these results to different settings, we find precise conditions
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under which an SGM memorizes its training data or under which it is able to learn the right data
manifold M.

In particular we find that for SGMs to be able to generalize, the approximation error made when
approximating the training drift ∇ log p̂t has to be unbounded.

A first illustration of these results is given in Figure 2. We use a simple example, where we can
perfectly evaluate the true drift ∇ log πt. We then choose an incorrect initial condition µprior which
is far from pT , and also add a constant error to ∇ log πt(x). The initial measures π0 are given as
the uniform distribution on the unit sphere and the uniform distribution on 9 samples from the unit
sphere in Figure 2a and Figure 2 respectively. We see that the final distribution of the reverse SDE,
µsample, is not the uniform distribution anymore. This is due to errors in the initial conditions and the
drift. Nevertheless, µsample is still supported on the exact same subset as π0.

When applying our main result to the empirical measure µ̂data one gets the following corollary,
supplying precise conditions under which a SGM has memorized its training data.

Corollary 1. Denote by X̂t the forward SDE when started in the empirical measure π0 = µ̂data. Let∫ T

0
∥sθ(X̂t, t)−∇ log p̂t(X̂t)dt be drift approximation error along a path of the forward SDE. For

a given weighting function w(t), the training objective of an SGM can be written as

L2 = EX̂ [

∫ T

0

w(t)∥sθ(X̂t, t)−∇ log p̂t(X̂t)∥2dt], (3)

see Section 3. Simultaneously, if the exponential integral of the drift approximation error is integrable
in the following sense:

Lexp = EX̂ [exp(
σ

2

∫ T

0

∥sθ(X̂t, t)−∇ log p̂t(Xt)∥2dt)] < ∞, (4)

the SGM has memorized its training data. Therefore, while training an SGM one should aim to
minimize the mean squared error 3 while ensuring that the mean exponential error stays infinite,
Lexp = ∞.

In particular, if ∥sθ(X̂t, t) − ∇ log p̂t(Xt)∥ is bounded, then Lexp is finite. Therefore, the the
generalization capability of a SGM crucially depends on the training error being unbounded.

We now proceed as follows. In Section 2 we will summarize some of the most popular forward
SDEs that are applied in SGMs. Then, in Section 3 we discuss how the drift approximation sθ(x, t)
for SGMs is trained in most implementations. We are ready to state our main results in Section 4.
In Section 5 we show how the empirically observed drift explosion is related to the the manifold
hypothesis. Most of the paper discusses the error in the drift approximation. But as we have discussed,
we also have an error in the initial conditions. In Section 6 we will discuss how large the error in the
initial conditions will be in practice.

2 Popular SDEs used in SGMs

In this section we introduce some of the most popular SDEs that are used when implementing
SGMs. The first works on SGMs studied discrete forward and backward processes. Nevertheless,
the transition kernels and algorithms proposed in those works can be seen as discretisations of some
well-known SDEs. More recent works have studied this connection and state the algorithms in terms
of SDEs ([Song et al., 2021b, Huang et al., 2021]).

Brownian Motion: The works [Song and Ermon, 2019, 2020] can be seen as a discretization of the
SDE

dXt = σ(t)dWt.

Denoting h(t) =
∫ t

0
σ(s)ds, the solution to the above process can be explicitly stated as a time-

changed Brownian motion, Xt = Wh(t). The time-change can help in the implementation but does
not alter the qualitative behaviour of the reverse SDE. In our following analysis we therefore set
σ(t) = 1. Nevertheless, our results still hold for any positive σ(t).
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Ornstein-Uhlenbeck Process: The works [Sohl-Dickstein et al., 2015, Ho et al., 2020] can be seen
as a discretization of

dXt = −1

2
α(t)Xtdt+

√
α(t)dWt,

which is an Ornstein-Uhlenbeck process. Again, the parameters αt are a time-change and do not
influence the properties that we are investigating in this paper. Therefore, to simplify notation, we
again set α(t) = 1.

Critically Damped Langevin Dynamics (CLD): The work [Dockhorn et al., 2021] studies a
second order SDE. Here artificial velocity coordinates Vt are introduced and the system under
consideration is

dXt = Vt,

dVt = −Xt − 2Vt + 2dWt,

where X0 ∼ pdata, V0 ∼ N (0, I). For generation one runs the reverse SDE in Xt and Vt but discards
the V coordinate at the end. The work [Dockhorn et al., 2021] also includes the parameters M and γ.
We set both to 1 as they do in their numerical experiments.

3 Score approximation with a finite number of samples

We now quickly discuss how the neural network is trained to approximate ∇ log pt and what implica-
tions this has. The score ∇ log pt is approximated by minimizing a variant of

L(θ) =

∫ T

0

w(t) Ept(x)[∥∇ log pt(x)− sθ(x, t)∥2]dt. (5)

for some weighting function w. The optimization is done via score matching techniques (see
[Hyvärinen and Dayan, 2005, Vincent, 2011, Song et al., 2020]). However, the above expectation
depends on pt, which we cannot evaluate since it depends on p0 = µdata. Nevertheless, we can
evaluate the approximation p̂t,

p̂t(x) = Eµ̂data(x0)[pt|0(x|x0)] =
1

N

N∑
i=1

pt|0(x|xi) ≈ pt(x) = Eµdata [pt|0(x|x0)]. (6)

The surrogate loss

L̂(θ) =

∫ T

0

w(t) Ep̂t(x)[∥∇ log p̂t(x)− sθ(x, t)∥2]dt, (7)

can be evaluated and is used for training. The equation (7) is equivalent to (3) since X̂t has distribution
p̂t. If we would minimize this loss perfectly, then sθ(x, t) would be equal to ∇ log p̂t. The reverse
SDE started in an appropriate initial condition with drift ∇ log p̂t however, will produce samples
from µ̂data, which are training examples. This raises the question in which way or to which degree the
loss should actually be minimized.

4 Effects of the approximations

This section contains our main results. We first state the assumptions we have to make and then the
Theorems.

4.1 Error in the initial condition

The following assumption is needed for the reverse SDE to be defined even in the case when the
initial distribution π0 has a degenerate support. In Lemma 1 we will show that all the SDEs from
Section 2 satisfy the Assumption.
Assumption 1. There is a constant C such that

(i) β is globally Lipschitz, i.e.∥β(x)− β(y)∥ ≤ C∥x− y∥.
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(a)

(b)

Figure 3: (a): Both lines correspond to the same experiment for different drifts in the reverse SDE.
For both lines we started N = 1000 paths in the zero vector in R32×32×3. For the blue line we
used the pretrained CIFAR-10 DDPM++ model from Song et al. [2021b], whereas for the orange
line we used the true drift ∇ log p̂t, which is a mixture of 50000 Gaussians, one for each training
example in CIFAR-10. We then saved the distance from Yt to the CIFAR-10 training examples, by
calculating the distance to the closest example. Above we plot the average distance. We see, that
while the reverse SDE run with p̂t will have a distance of 0 to the training examples in the end, the
SDE with the pretrained drift keeps some distance to the training examples and therefore produces
novel images. (b): We evaluate ∇ log p̂t as in (a). We do the analogous experiment to Figure 2b on
CIFAR-10 and perturb the empirical drift ∇ log p̂t with a constant error vector. The first row shows
the samples generated by adding the constant error vector e(x, t) = (1, 1, . . . , 1) ∈ R32×32×3 to
∇ log p̂t. In the second row we searched for the closest image in the CIFAR-10 dataset (with respect
to the Euclidean 2-distance on R32×32×3) and plotted it. We see that all the sampled images are
nearly equal to a corresponding image in CIFAR-10. The distance of the images to their closest image
in CIFAR-10 is around 0.07 for all plotted images. Similar to Figure 2, we can observe the effect of
adding the one-vector. The sample distribution µsample got skewed to prefer images that have high
pixel values. This corresponds to samples which are mostly white for the human eye. In the third
and forth row we repeat the experiment of the first and second row, but add the negative one-vector
e(x, t) = (−1,−1, . . . ,−1) and get black images.

(ii) β grows at most linearly, i.e. ∥β(x)∥ ≤ C(1 + ∥x∥).

(iii) Xt has a density πt ∈ C1 for every t > 0 and
∫ 1

t0

∫
∥x∥<R

|πt(x)|2+∥∇xπt(x)∥2dxdt < ∞
for any R > 0 and 0 < t0 ≤ T .

Furthermore, for each S ∈ (0, T ) and all x, y for which ∥x∥, ∥y∥ ≤ N there is a constant CS,N such
that

(iv) ∇ log πt is locally Lipschitz, ∥∇ log πt(x)−∇ log πt(y)∥ ≤ CS,N∥x−y∥ for all t ∈ [S, T ].

Conditions (i)-(iii) are technical conditions on the forward SDE. They ensure that if we run a
solution to the forward SDE, Xt, backwards in time, then XR

t := XT−t will be a solution to the
reverse SDE (2) on [0, T ). The last condition then ensures that the solutions to the reverse SDE are
unique, therefore we will be able to transmit the properties of XR to any other solution Yt of (2).
The following result shows that Assumption 1 can be expected to hold in practice. To simplify the
calculations we assume that the data manifold M = supp(µdata) is contained in a ball of diameter M .
This is a natural assumption for many data sets. Nevertheless, we note that this assumption could be
weakened by additional technical effort.

Lemma 1. Assume that the data manifold M is contained in a ball of radius M . Then all the
methods introduced in Section 2 fulfil Assumption 1.

We are now ready to state our first main result,
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Theorem 1. Denote by πt the marginals of the forward SDE started in π0. Assume that Assumption
1 holds and that µprior is absolutely continuous with respect to πT . Then the following hold.

(i) Let Yt be a solution to (2) on [0, T ). The limit YT := limt→T YT exists almost surely. We
refer to its distribution as µsample. The distribution µsample is absolutely continuous with
respect to µdata. If πT and µprior are equivalent, then so are µsample and π0.

(ii) Furthermore, for any f -divergence Df ,

Df (µsample|π0) ≤ Df (µprior|πT ) and Df (π0|µsample) ≤ Df (πT |µprior).

Applying the above theorem with πT = pT tells us something about the equivalence and distance
between µsample and µdata, since π0 = p0 = µdata. Applying the theorem with p̂t tells us something
about the generalization capabilities of SGMs.

The measures πT and µprior are normally both supported on all of Rd and therefore equivalent. Since
Assumption 1 also holds in most situations (see Lemma 1), the requirements for Theorem 1 are
satisfied in practice. From item (i) with πt = p̂t we can conclude that the error we make in the initial
conditions is not responsible for the generalization capacities of SGMs.

The second item then shows that the f -divergences between µsample and µdata are bounded by the
f -divergences of µprior to pT . The total variation distance and the KL-Divergence are both special
cases of f -divergences.

4.2 Error in the drift

Given a forward SDE with marginals πt and an approximation s(x, t) to ∇ log πt, we define the
reverse SDE for the approximation s as

dỸt = −β(Ỹt)dt+ σσT s(Ỹt, t)dt+ σdBt,
Ỹ0 ∼ q0.

(8)

Assumption 2. We assume that the reverse SDE Ỹt has a solution on [0, T ). For t < T , we define
the Girsanov weights

Zt = exp

(∫ t

0

σT (s(Ỹt, t)−∇ log πt(Ỹt)) · dBs −
1

2

∫ t

0

∥σT (s(Ỹt, t)−∇ log πt(Ỹt))∥2ds
)
(9)

and assume that the Zt are a uniformly integrable martingale.

We shortly discuss this assumption. The assumption that Zt is a martingale is equivalent to the
expectation of Zt being equal to 1 for all t. The assumption that it is uniformly integrable is more
technical (see Appendix A.2), but is fulfilled for example if for some p > 1, E[|Zt|p] < ∞ for all t.
For example, if the Zt have bounded variance, then they are uniformly integrable.

A condition that ensures that Zt is both, a martingale and uniformly integrable, is given by Novikov’s
condition Novikov [1980]. It states, that if

NT = EỸ

[
exp

(
1

2

∫ T

0

∥σT (s(Ỹt, t)−∇ log πt(Ỹt))∥2ds

)]
< ∞, (10)

then Zt is a uniformly integrable martingale.

Using Assumption 2 we can now state
Theorem 2. Assume that Assumption 2 holds. Assume furthermore that Assumption 1 holds with
∇ log πt replaced by s(x, t).

Then ỸT = limt→T Ỹt is well defined. Moreover, its distribution is equivalent to the distribution of
YT . In particular, if ∥s(x, t) − ∇ log p̂t∥ is bounded, then Assumption 2 holds, and the SGM has
memorized its training data.

Putting Theorem 1 and Theorem 2 together, we can conclude that, if both Assumptions hold, µsample
is equivalent to π0. Therefore, if Assumption 2 holds for πt = pt, we have a positive statement and
know that µsample will have the exact same support as µdata, i.e. it has learned the data manifold M.

7



If the Assumption would hold for πt = p̂t, we would however just memorize the training data, see
Figure 2b or Figure 3b for a visualization. However, empirically it has been shown that SGMs are
able to create novel samples (see, Figure 3a or Dhariwal and Nichol [2021]). Therefore, we can
deduce that Assumption 2 is violated in practice.

We evaluated N from (10) on CIFAR-10, once for the difference between the sθ(x, t) from Song
et al. [2021b] and ∇ log p̂t, and once by just using a perturbed drift with a constant error, s(x, t) =
∇ log p̂t +

1
2 (1, 1, . . . , 1), see Figure 4. The reverse SDE using the drift ∇ log p̂t +

1
2 (1, 1, . . . , 1), is

equivalent to µ̂data, as we know from Theorem 2 and have also already observed in Figure 3b. Figure
4 confirms that Zt is indeed a uniformly integrable martingale and therefore fulfils Assumption 2.

Corollary 1 can be deduced by exchanging the roles of Ỹt and Yt. We then get an equivalent condition
to Assumption 2, which is

ÑT = EY

[
exp

(
1

2

∫ T

0

∥σT (s(Yt, t)−∇ log πt(Yt))∥2ds

)]
< ∞,

where the expectation is now taken over the reverse SDE with the correct drift ∇ log πt instead of the
approximate drift sθ. However, Y is just the time reversal of X , therefore we can also write the above
expectation over Xt instead of Yt. If we treat the case where we start Xt in the empirical measure
µ̂data, πt will be equal to πt = p̂t by definition and

EX̂

[
exp

(
σ2

2

∫ T

0

∥σT (s(X̂t, t)−∇ log p̂t(X̂t))∥2ds

)]
< ∞

is a sufficient condition for µ̂data and µsample having the same support. We have here assumed that
Theorem 1 can be applied. However, this can be assumed in practice, see the discussion after Theorem
1.

In future work we believe that further understanding the characteristics of Zt, how they relate to
the minimization of L(θ) and generalization is crucial to the understanding of SGMs and their
empirical success. Recent works also study the question on how the neural network architecture
and parametrization is related to the boundedness of the output Kim et al. [2022]. The relationship
between these choices and the properties of Zt is also an interesting research avenue. Lastly, the
distribution of Zt is very heavy-tailed. Most of the samples are very small with a few extremely large
samples in between. Therefore one needs many samples from Zt to understand its characteristics.
Finding robust estimators for Zt or its expectation could help their usage in the training or evaluation
procedure.

5 Drift Explosion under manifold hypothesis

In practice it is often observed that the drift of the reverse SDE explodes as t → T . see for example
Kim et al. [2022, Section 3.1]. We now show how this observed behaviour is related to the manifold
hypothesis.

First, we note that all SDEs in Section 2 are linear SDEs. Therefore, their transition kernels are
Gaussian ([Pavliotis, 2014, Section 3.7]):

πt(Xt = x|X0 = x0) = N (x;mt(x0),Σt).

The explicit form of mt and Σt differ for each of the SDEs and can be found in Appendix C.1.
We remark that Σt does not depend on the initial condition x0. The transition kernel above is the
distribution of the SDE started in a single point x0. Since we start the SDE in µdata we need to average
over µdata to get the marginal at time t:

pt(x) =

∫
Rd

N (x;mt(x0),Σt)µdata(x0)dx0. (11)

We can also compute the additional drift in the reverse SDE (see Appendix C.2),

∇ log pt(x) =
∇pt(x)

pt(x)
= Σ−1

t (x− E[mt(X0)|Xt = x]). (12)
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Figure 4: Left: We simulated the reverse SDE on CIFAR-10, once with the pretrained CIFAR-10
DDPM++ model sθ from Song et al. [2021b] and once with a perturbed drift s(x, t) = ∇ log p̂t +
1
2 (1, 1, . . . , 1). We then evaluated the integral (10) numerically for varying t = T . For the perturbed
drift, the integral does not seem to explode as t → 1, implying that Zt is a martingale. We see that
for the DDPM++ drift, the integral explodes, therefore we can not infer that Zt is a martingale. We
used N = 12000 simulations from both of the SDEs to generate this plot. Right: We again ran the
two SDEs with the drifts as in the left Figure. This time, we measured the average distance to the
empirical drift ∥s(Ŷt, t)−∇ log p̂t(Ŷt)∥ along a path of the reverse SDE. We repeated the experiment
N = 2560 times and plotted the mean distance. For the constant perturbation we also of course get
a constant distance. The distance of the true drift to ∇ log p̂t is initially very small but explodes as
t → 1. From our results we know that this explosion is necessary for the SGM to generalize.

We now want to evaluate ∇ log pt along a typical path of Yt, i.e. we are interested in E[∇ log pt(Yt)].
The distribution of Yt however depends on the drift approximation sθ we use. For this calculation
we will assume that we are able to run the reverse SDE with the true drift sθ(x, t) = pt(x). Then
however, since Yt is then just Xt run backwards, they have the same distributions and we can calculate

E[∥∇ log pt(Yt)∥] = E[∥∇ log pt(Xt)∥] = Σ−1
t E[∥Xt − E[mt(X0)|Xt = y]∥].

If the manifold M is not to badly behaved, we can expect that for small t and almost all x, E[X0|Xt =
x] to be very close to the data manifold M. Especially, ∥Xt − E[X0|Xt = x]∥ will be larger than
dist(Xt,M) in that case. However, the distribution of Xt can be represented as mt(X0) +

√
Σtξ,

where ξ has a standard normal distribution. For the SDEs we treated in Section 2, mt(Xt) is either
equal or very close to mt(Xt) = Xt for small values of t. Finally, if we assume that M is a subset of
relatively low dimension in a high dimensional space, we can expect that with very high probability√
Σtξ points away from the data manifold. Therefore the distance of Xt to M can be approximated

by
√
Σtξ. Putting these approximations together we can calculate

E[∥Xt − E[mt(X0)|Xt = y]∥] ≳ E[dist(Xt,M)] ≳ ∥Σt∥1/2E[∥ξ∥] ≈ ∥Σt∥1/2
√
d,

where d is the dimension of the data space in which the samples xi lie. Therefore we can conclude
that

∥∇ log pt(Yt)∥ ≳
d1/2

∥Σt∥1/2
.

For the Brownian motion for example, Σt = t and therefore the right hand side scales like 1√
t
. If

Σt is the covariance of pt, then we can expect ∇ log pt(Yt) to be of order 1
∥Σt∥1/2 . Furthermore,

∇ log pt(Yt) will point towards the data manifold for small t. The drift ∇ log pt(Yt) then acts like a
support matching force, where the force grows to infinity as t → 0, absorbing all the SDE paths onto
the manifold.

6 Distance from pT to µprior

We have seen in Theorem 1 that the distance between µsample and µdata is directly related to the
distance between pT and µprior if we neglect the errors made in the approximation of the drift. For
both, the OU-Process and the CLD, there are plenty of results on the distance of pt to N (0, Id). In
general, one can expect this distance to grown exponentially in time t.
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The Brownian motion however does not converge to a stationary distribution and therefore one has to
choose a different µT

prior for each T to approximate pT . In practice, one normally chooses a normal
distribution pT = N (mt, Ct) (see [Song et al., 2021b, Appendix C]). The following Lemma is
derives the optimal values for mt and Ct.
Lemma 2. Let pT be the T -time marginal of the Brownian motion process Xt of Section 2. The
following minimization problem

min
m,C

KL(pT | N (m,C))

is minimized by mT = E[µdata] and CT = Cov[µdata] + TId. If we restrict the covariance to
be a multiple of the identity matrix, the problem is solved by choosing m as above and c as c =
E[∥Xt −m∥2] = trace(CT ).

This result is a slight variation on the well known fact that the KL-projection in the second argument
matches its moments. We prove it in Appendix E.2. The following result shows that the distance
between pT and µT

prior decreases with time and also gives a rate. It justifies using the Brownian motion
and a normal prior distribution for SGMs.
Lemma 3. Let pt be the time t-marginal of a Brownian motion with initial condition µdata. Denote
by ci, i = 1, . . . , d, the eigenvalues of Cov(µdata). Let µT

prior be the normal distribution with mean
mT = E[µdata] and covariance CT = Cov[µdata] + TId. Then

KL(pT |µT
prior) ≤

1

2
log

(∏d
i=1(ci + T )

T d

)
.

The proof can be found in Appendix E.2.

7 Broader impact

The results deepen the understanding of score-based generative models. As such, they can be seen as
a step towards improving the quality of generative models. Therefore the possible negative societal
impacts are the same ones that apply to generative modelling in general. First, generative models
can be used to create synthetic data that is hard to distinguish from real data (for example images or
videos), see [Mirsky and Lee, 2021]. Second, generative models can learn and reproduce biases that
are prevalent in the training data ([Esser et al., 2020]). Last, depending on the application, generative
models might be used to do creative work that was previously done by humans.

8 Conclusion

We conducted a theoretical study of some properties of SGMs. We found explicit conditions under
which the sample measure µsample is equivalent to the true data generating distribution µdata. Under
these conditions we can guarantee, that the SGM generates samples that could also be samples from
µdata. Furthermore, each sample that can be generated by µdata also has positive probability under
µsample, meaning that the full support is covered.

Since one can not actually access the full support of µdata, but only a finite number of training
examples {xi}Ni=1, our results can be applied to find conditions under which the SGM memorizes
its training data. We believe that this observation provides a first step towards understanding the
generalization capabilities of SGMs.
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