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Abstract

Multi-agent reinforcement learning (MARL) has witnessed a remarkable
surge in interest, fueled by the empirical success achieved in applications of
single-agent reinforcement learning (RL). In this study, we consider a dis-
tributed Q-learning scenario, wherein a number of agents cooperatively solve
a sequential decision making problem without access to the central reward
function which is an average of the local rewards. In particular, we study
finite-time analysis of a distributed Q-learning algorithm, and provide a new

sample complexity result of Õ
(
max

{
1
ϵ2

tmix
(1−γ)6d4

min
, 1
ϵ

√
|S||A|

(1−σ2(W ))(1−γ)4d3
min

})
under tabular lookup setting for Markovian observation model.

1 Introduction

Multi-agent reinforcement learning (MARL) aims to solve a sequential decision making
problem, where a number of agents sharing an environment collaborates. Accompanied by
advancements in algorithms (Sunehag et al., 2017; Rashid et al., 2020), MARL has shown
impressive success in various fields such as robotics (de Witt et al., 2020) and autonomous
driving (Shalev-Shwartz et al., 2016). Beyond its empirical success, there has also been
notable interest in theoretical investigations (Zhang et al., 2018b; Dou et al., 2022).

MARL has been studied under various scenarios including an access to central reward
function (Tan, 1993; Claus and Boutilier, 1998; Littman, 2001). In particular, our interest
lies in the the distributed learning paradigm where agents collaborate to solve a shared
problem, constrained to communicate solely with their neighboring agents and does not
have access to central reward function. Such setting has came of interest due to its wide
applications (Blumenkamp et al., 2022; Prabuchandran et al., 2014; Zhao et al., 2021).
Compared to scenarios where a centralized coordinate exists, the distributed paradigm has
advantage in terms of privacy-preservation and scalability. One notable example is the
distributed adaptation of temporal-difference (TD) learning, as demonstrated in studies
by Doan et al. (2019); Wang et al. (2020); Lim and Lee (2023), to name a few.

Meanwhile, in the literature of single-agent RL, Q-learning (Watkins and Dayan, 1992) is
one of the most important algorithms in RL. The non-linear max-operator in Q-learning
algorithm imposes difficulty in the analysis, and its non-asymptotic analysis has been an
active research area recently (Even-Dar et al., 2003; Chen et al., 2021; Lee et al., 2023;
Li et al., 2024). However, distributed learning framework for Q-learning has not been
studied in detail. In particular, distributed Q-learning has been studied in an asymptotic
sense (Kar et al., 2013), i.e., the algorithm converges over time as it approaches infinity,
or in a non-asymptotic sense under additional assumptions on the problem (Heredia et al.,
2020; Zeng et al., 2022b). Meanwhile, Wang et al. (2022) studied a version of distributed
Q-learning in tabular setting but the statement only holds for restricted range of ϵ. This
motivates our study to understand its non-asymptotic behavior under tabular setup, i.e., all
the state-action values are stored in a table. Our contribution can be summarized as follows:

1. For Markovian observation model, we provide the sample complexity

Õ
(
max

{
tmix
ϵ2

1
(1−γ)6d4

min
, 1
ϵ

√
|S||A|

(1−σ2(W ))(1−γ)4d3
min

})
in terms of the infinity norm under
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tabular setting. We derive, for the first time, the finite-time analysis of QD-learning (Kar
et al., 2013) in its original form, which is one of the most fundamental and widely
used distributed Q-learning methods. While several works have addressed other types
of distributed Q-learning, the analysis of QD-learning has remained unexplored until
now. Furthermore, we also provide a sample complexity result for the independent and
identically distributed (i.i.d.) observation model.

2. Our analysis relies on switched system modeling of Q-learning, providing new insights
for interpretation of distributed Q-learning algorithms. We show that the distributed
Q-learning also allows switched system interpretation as in the single-agent case.

Related Works:

The non-asymptotic behavior of distributed TD-learning was studied in Doan et al. (2019);
Sun et al. (2020); Wang et al. (2020); Lim and Lee (2023), which were motivated from the
distributed optimization and control literature (Nedic and Ozdaglar, 2009; Wang and Elia,
2010; Pu and Nedić, 2021). Distributed versions of various TD-learning algorithms were
investigated in Macua et al. (2014); Lee et al. (2018). As for actor-critic algorithm (Konda
and Tsitsiklis, 1999), its extension to distributed setting was studied in Zhang et al. (2018a;b);
Zhang and Zavlanos (2019); Zeng et al. (2022a). Meanwhile, Yang et al. (2023) considered a
distributed policy gradient approach. Moreover, Zhang et al. (2021) investigated distributed
algorithm for fitted Q-iteration, which is similar to solving a least squares problem. Fur-
thermore, a line of research has focused on dealing with exponential scaling in the action
space Lin et al. (2021); Qu et al. (2022); Zhang et al. (2023); Gu et al. (2024).

The distributed Q-learning algorithm under the setting when only the local reward is observ-
able, was first studied by Kar et al. (2013). They proposed the so-called QD-learning proving
asymptotic convergence using two-time scale stochastic approximation approaches. Zeng
et al. (2022b); Heredia et al. (2020) proved finite-time bounds of distributed Q-learning with
linear function approximation. However, the works require additional strong assumptions,
which may not hold even in the tabular setup. In particular, Zeng et al. (2022b) considered a
strongly monotone condition to hold, and Heredia et al. (2020) posed a particular assumption
on the state-action distribution. Wang et al. (2022) studied a distributed Q-learning model
motivated from the adapt-then-combine scheme (Chen and Sayed, 2012) in the distributed
optimization literature and provided a sample complexity bound in terms of high-probability.

Considering a single-agent case, the non-asymptotic analysis of Q-learning has made great
success. An incomplete list is provided in the following: An early result by Even-Dar et al.
(2003) studied the sample complexity under i.i.d. observation model. Lee et al. (2023)
developed a switched system method to analyze the behavior of Q-learning. Qu and Wierman
(2020) considered a shifted Martingale approach to deal with the Markovian observation
model. Li et al. (2024) proved the sample complexity using refined analysis under the
Markovian observation model.

Meanwhile, a separate line of research focusing on multi-agent problems is the federated
reinforcement learning literature (Khodadadian et al., 2022; Woo et al., 2023; Zheng et al.,
2023). This approach differs from the distributed learning scenario in two key aspects: it
employs a centralized controller, and all agents share a common reward function.

The paper is organized as follows: Section 2 provides background for the MARL setting.
Section 3 provides result under i.i.d. observation model and sketch of the proof. The result
for Markovian observation model is provided in Section 4.

2 Preliminaries

2.1 Multi Agent MDP

A multi-agent Markov decision process (MAMDP) consists of the tuple
(S, {Ai}Ni=1,P, {ri}Ni=1, γ), where S := {1, 2, . . . , |S|} is the finite set of states, Ai :=

{1, 2, . . . , |Ai|} is the finite set of actions for each agent i ∈ V, P : S ×
∏N

i=1 Ai × S → [0, 1]

is the transition probability, and ri : S ×
∏N

i=1 Ai × S → R is the reward function of agent

2
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i ∈ V. We will use the notation A :=
∏N

i=1 Ai = {1, 2, . . . , |A|} where tuple of actions are
mapped to unique integer. γ ∈ (0, 1) is the discount factor.

At time k ∈ N, the agents share the state s ∈ S, and each agent i ∈ V selects an action
ai ∈ Ai following its own policy πi : S → ∆|Ai|. The collection of the actions selected by
each agents are denoted as a = (a1, a2, . . . , aN ), and transition occurs to s′ ∼ P(s,a, ·).
Each agents receives local reward ri(s,a, s′), which is not shared with other agents.

The main goal of MAMDP is to find a deterministic optimal policy, π∗ := (π1, π2, . . . , πN ) :
S → A such that the average of cumulative discounted rewards of each agents is
maximized: π∗ := argmaxπ∈Ω E

[∑∞
k=0

∑N
i=1

γk

N ri(sk,ak, sk+1)
∣∣∣π] , where Ω is the set

of possible deterministic policies, and {(sk,ak)}k≥0 is a state-action trajectory gener-
ated by Markov chain under policy π. The Q-function for a policy π : S → A, de-
notes the average of cumulative discounted rewards of each agents following the policy
π, i.e., Qπ(s,a) := E

[∑∞
k=0

∑N
i=1

γk

N rik+1

∣∣∣π, (s0, a0) = (s, a)
]

for s ∈ S,a ∈ A, where

rik+1 := ri(sk,ak, s
′
k). The optimal Q-function, Qπ∗

, which is the Q-function induced by the
optimal policy π∗, is denoted as Q∗. The optimal policy can be recovered via a greedy policy
over Q∗, i.e., π∗(s) = argmaxa∈A Q∗(s,a) for s ∈ S. The optimal Q-function, Q∗ satisfies
the following so-called optimal Bellman equation (Bellman, 1966):

Q∗(s,a) = E

[
1

N

N∑
i=1

ri(s,a, s′) + γmax
u∈A

Q∗(s′,u)

]
, ∀s ∈ S,a ∈ A. (1)

Since each agent only has an access to its local reward ri, it is impossible to learn the central
optimal Q-function without sharing additional information among the agents. However,
we assume that there is no central coordinator that can communicate with all the agents.
Instead, we will consider a more restricted communication scenario where each agent can
share its learning parameter only with a subset of the agents. This communication constraint
can be caused by several reasons such as infrastructures, privacy, and spacial topology.
The communication structure among the agents can be described by an undirected simple
connected graph G := (V, E), where V denotes the set of vertices and E ⊂ V × V is the
set of edges. Each agent will be described by a vertex v ∈ V := {1, 2, . . . , N}, where N is
the number of agents. Moreover, each agent i ∈ V only communicates with its neighbours,
denoted as Ni := {j ∈ V | (i, j) ∈ E}.
To further proceed, we will use the following matrix and vector notations: P :=[
P1,1 P1,2 · · · P|S|,|A|

]⊤
, Ri :=

[
Ri⊤

1 · · · Ri⊤
|S|

]⊤
where Ps,a ∈ R|S| and Ri

s ∈
R|A| are column vectors such that [Ps,a]s′ = P(s,a, s′) for s′ ∈ S, and [Ri

s]a =
E
[
ri(s,a, s′) | s,a

]
, respectively. We assume that ||Ri||∞ ≤ Rmax for some positive real num-

ber Rmax.Throughout the paper, we will represent a policy in a matrix form. A greedy policy
over Q ∈ R|S||A|, which is denoted as πQ : S → A, i.e., πQ(s) = argmaxa∈A(es ⊗ ea)

⊤Q,
can be represented as a matrix as follows:

ΠQ :=
[
e1 ⊗ eπ(1) e2 ⊗ eπ(2) · · · e|S| ⊗ eπ(|S|)

]⊤ ∈ R|S|×|S||A|,

where es and ea represent the canonical basis vector whose s-th and a-th element is
only one and others are all zero in R|S| and R|A|, respectively, and ⊗ denotes the
Kronecker product. We can prove that PΠQ for Q ∈ R|S||A| represents a transition
probability of state-action pairs under policy π, i.e., (es′ ⊗ ea′)⊤(PΠQ)(es ⊗ ea) =
P [(sk+1,ak+1) = (s′,a′) | (sk,ak) = (s,a), πQ] for s, s′ ∈ S and a,a′ ∈ A. Now, we can
rewrite the Bellman equation in (1) using the matrix notations as follows: Ravg+γPΠQ∗

Q∗ =

Q∗, where Ravg = 1
N

∑N
i=1 R

i ∈ R|S||A| and Q∗ ∈ R|S||A| represents optimal Q-function,
Q∗, i.e., (es ⊗ ea)

⊤Q∗ = Q∗(s,a) for s,a ∈ S ×A.

2.2 Distributed Q-learning

In this section, we discuss a distributed Q-learning algorithm motivated from Nedic and
Ozdaglar (2009). The non-asymptotic behavior of the algorithm was first investigated

3
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in Heredia et al. (2020); Zeng et al. (2022b) under linear function approximation scheme.
Instead, we consider the tabular setup with mild assumptions, and detailed comparisons are
given in Section 5. Each agent i ∈ V at time k ∈ N updates its estimate Qi

k ∈ R|S||A| upon
observing sk,ak, s

′
k ∈ S ×A× S as follows:

Qi
k+1(sk,ak) =

∑
j∈Ni

[W ]ijQ
j
k(sk,ak) + α

(
rik+1 + γmax

a∈A
Qi

k(s
′
k,a)−Qi

k(sk,ak)

)
Qi

k+1(s,a) =
∑
j∈Ni

[W ]ijQ
j
k(s,a), s,a ∈ S ×A \ {(sk,ak)},

(2)

where Qi
k(s,a) := (es⊗ea)

⊤Qi
k for s,a ∈ S×A, α ∈ (0, 1) is the steps-size, and W ∈ RN×N

is a non-negative matrix such that agent i assigns a weight [W ]ij to its neighbour j ∈ Ni.
The agent i ∈ V sends its estimate Qi

k to its neighbour j ∈ Ni, and receives Qj
k, which is

weighted by [W ]ij . The update is different from that of distributed optimization over an
objective function in sense that (2) does not use any gradient of a function. Furthermore,
note that the memory space of each agent can be expensive due to exponential scaling in
the action space, but one can choose linear or neural network approximation (Zhang et al.,
2018b; Sunehag et al., 2017) to overcome such issue.

To ensure the consensus among the agents, i.e., Qi
k → Q∗ for all i ∈ [N ], where [N ] :=

{1, 2, . . . , N}, a commonly adopted condition on W is the so-called doubly stochastic matrix:
Assumption 2.1. For all i ∈ [N ], [W ]ii > 0 and [W ]ij > 0 if (i, j) ∈ E, otherwise
[W ]ij = 0. Furthermore,

∑N
j=1[W ]ij =

∑N
i=1[W ]ji = 1, and W⊤ = W .

The assumption is widely adopted in the literature of distributed learning scheme (Heredia
et al., 2020; Zeng et al., 2022b). In Appendix B, we provided a simple strategy to construct
the doubly stochastic matrix by communicating only with its neighbour.

2.3 Switched system

In this paper, we consider a system, called the switched affine system (Liberzon, 2005),

xk+1 = Aσk
xk + bσk

, x0 ∈ Rn, k ∈ N, (3)

where xk ∈ Rn is the state, M := {1, 2, . . . ,M} is called the set of modes, σk ∈ M is
called the switching signal, {Aσ ∈ Rn×n | σ ∈ M} and {bσ ∈ Rn | σ ∈ M} are called the
subsystem matrices, and the set of affine terms, respectively. The switching signal can be
either arbitrary or controlled by the user under a certain switching policy. If the system
in (3) evolves without the affine term, i.e., bσk

= 0 for k ∈ N, then it is called the switched
linear system. The distributed Q-learning algorithm in (2) will be modeled as a switched
affine system motivated from the recent connection of switched system and Q-learning (Lee
and He, 2020), which will become clearer in Section 3.4

3 Error Analysis : i.i.d. observation model

In this section, we first consider i.i.d. observation model, which provides simple and clear
intuitive results. In the subsequent section, we will extend the result to the Markovian
observation model. By an i.i.d. observation model, we refer to a sequence of trajectory
{(sk,ak, s

′
k)}k≥0 where each (sk,ak, s

′
k) are an i.i.d. random variables. Suppose that each

state-action pair is sampled from a distribution d ∈ ∆|S×A|, i.e., P [(sk,ak) = (s,a)] = d(s,a)
and s′k ∼ P(sk,ak, ·). The pseudo-code of the algorithm is given in Algorithm 1 in the
Appendix J. We will adopt the following standard assumption in the literature:
Assumption 3.1. For all s,a ∈ S ×A, we have d(s,a) > 0.

3.1 Matrix notations

Let us introduce the following vector and matrix notations used throughout the paper
to re-write (2) in matrix notations: Ds := diag(d(s, 1), · · · , d(s, |A|)) ∈ R|A|×|A|, D =

4
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diag(D1,D2, . . . ,D|S|) ∈ R|S||A|×|S||A|, where diag(·) is a diagonal matrix whose diag-
onal elements correspond to the input vector or matrix, and we will denote dmax =
maxs,a∈S×A d(s,a) and dmin := mins,a∈S×A d(s,a). Furthermore, for i ∈ [N ], o =

(s,a, s′) ∈ S ×A× S and Q ∈ R|S||A|, we define

δi(o,Q) :=(es ⊗ ea)(r
i(s,a, s′) + e⊤s′γΠ

QQ− (es ⊗ ea)
⊤Q),

∆i(Q) :=D(Ri + γPΠQQ−Q),

which denotes the TD-error and expected TD-error in vector representation. For simplicity
of the notation, we denote δik := δi(ok,Q

i
k), ∆

i
k := ∆i(Qi

k), and

Q̄k :=


Q1

k
Q2

k
...

QN
k

 , Π̄Q̄k :=

Π
Q1

k

. . .
ΠQN

k

 , ϵ̄k(ok, Q̄k) :=


δ1(ok,Q

1
k)−∆1(Q1

k)
δ2(ok,Q

2
k)−∆2(Q2

k)
...

δN (ok,Q
N
k )−∆N (QN

k )

 ,

P̄ := IN ⊗ P , D̄ := IN ⊗D, W̄ := W ⊗ I|S||A|, R̄ :=
[
R1 R2 · · · RN

]⊤
,

(4)
where IN is a N × N identity matrix, Qi

k is defined in (2). Moreover, we denote ϵ̄k :=
ϵ̄k(ok, Q̄k). With the above set of notations, we can re-write the update in (2) as follows:

Q̄k+1 = W̄ Q̄k + αD̄
(
R̄+ γP̄ Π̄Q̄kQ̄k − Q̄k

)
+ αϵ̄k. (5)

3.2 Distributed Q-learning : Error analysis

In this section, we provide a sketch of the proof to bound the error of distributed Q-learning.
Let us first decompose the error Q̄k − 1N ⊗Q∗ into consensus error and optimality error:

Q̄k − 1N ⊗Q∗ = Q̄k − 1N ⊗

(
1

N

N∑
i=1

Qi
k

)
︸ ︷︷ ︸

Consensus Error

+1N ⊗

(
1

N

N∑
i=1

Qi
k −Q∗

)
︸ ︷︷ ︸

Optimality Error

, (6)

where 1N is a N -dimensional vector whose elements are all one. The consensus error measures
the difference of Qi

k and the overall average, 1
N

∑N
i=1 Q

i
k. As the consensus error vanishes,

we will have Q1
k = Q2

k = · · · = QN
k . Meanwhile, the optimality error denotes the difference

between the true solution Q∗ and the average, 1
N

∑N
k=1 Q

i
k. Together with the consensus

error, as optimality error vanishes, we should have Qi
k −Q∗ → 0 for all i ∈ [N ].

3.3 Analysis of Consensus Error

Now, we provide an error bound on the consensus error in (6). We will represent the consensus
error as ΘQ̄k = Q̄k−1N ⊗Qavg

k where Qavg
k := 1

N

∑N
i=1 Q

i
k and Θ := IN |S||A|− 1

N (1N1⊤
N )⊗

I|S||A|. Let us first provide an important lemma that characterizes the convergence of the
consensus error:
Lemma 3.2. For k ∈ N, we have

∥∥W̄ kΘ
∥∥
2
≤ σ2(W )k, where σ2(W ) is the second largest

singular value of W , and it holds that σ2(W ) < 1.

The proof is given in Appendix D.1. Moving on, we show that Q̄k will be remain bounded,
which will be useful throughout the paper:
Lemma 3.3. For k ∈ N, and α ≤ mini∈[N ][W ]ii, we have :

∥∥Q̄k

∥∥
∞ ≤ Rmax

1−γ .

The proof is given in Appendix D.2. The step-size depends on mini∈[N ][W ]ii, which can be
considered as a global information. However, considering the method in Example B.1 in
Appendix, which requires only local information to construct W , we have mini∈[N ][W ]ii ≥ 1

2 .
Therefore, it should be enough to choose α ≤ 1

2 . Furthermore, the step-size in many

5
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distributed RL algorithms (Zeng et al., 2022b; Wang et al., 2020; Doan et al., 2021; Sun
et al., 2020) depend on σ2(W ), which also can be viewed as a global information. Moreover,
we can use an agent-specific step-size, i.e., each agent keeps its own step-size, αi. Then, we
only require αi < [W ]ii, which only uses local information.

Now, we are ready to analyze the behavior of ΘQ̄k. Multiplying Θ to (5), we get

ΘQ̄k+1 =

k∏
i=0

W̄ iΘQ̄0 + α

k∑
j=0

W̄ k−jΘ
(
D̄
(
R̄+ γP̄ Π̄Q̄jQ̄j − Q̄j

)
+ ϵ̄j

)
. (7)

The equality results from recursively expanding the terms. Now, we are ready to bound
ΘQ̄k+1 using the fact that

∥∥W̄ iΘ
∥∥
2

for i ∈ N will decay at a rate of σ2(W ) from Lemma 3.2,
and the boundedness of Q̄k in Lemma 3.3.
Theorem 3.4. For k ∈ N, and α ≤ mini∈[N ][W ]ii, we have the following:

∥∥ΘQ̄k+1

∥∥
∞ ≤ σ2(W )k+1

∥∥ΘQ̄0

∥∥
2
+ α

8Rmax

1− γ

√
N |S||A|

1− σ2(W )
.

The proof is given in Appendix D.3. As we can expect, the convergence rate of the consensus
error depends on the σ2(W ) with a constant error bound proportional to α. Furthermore,
we note that the above result also holds for the Markovian observation model in Section 4.

3.4 Analysis of Optimality Error

Throughout this section, we analyze the error bound on the optimality error, Qavg
k −Q∗.

Multiplying 1
N (1N1⊤

N )⊗I|S||A| on (5), we can see that Qavg
k evolves via the following update:

Qavg
k+1 =Qavg

k + αD

(
Ravg +

γ

N

N∑
i=1

PΠQi
kQi

k −Qavg
k

)
+ αϵavg(ok, Q̄k), (8)

where ϵavg(o, Q̄) := 1
N (1N1⊤

N )⊗ I|S||A|ϵ̄(o, Q̄) for o ∈ S ×A× S, Q̄ ∈ RN |S||A|, and ϵ̄(·) is
defined in (4). We will denote ϵavgk := ϵavg(ok, Q̄k). The update of (8) resembles that of
Q-learning update in the single agent case, i.e., N = 1, whose Q-function is Qavg

k . However,
the difference with the update of single-agent case lies in the fact that we take average of the
maximum of Q-function of each agent, i.e., the term 1

N

∑N
i=1 Π

Qi
kQi

k in (8), rather than the
maximum of average of Q-function of each agents, .i.e., ΠQavg

k Qavg
k . This poses difficulty in

the analysis since 1
N

∑N
i=1 Π

Qi
kQi

k cannot be represented in terms of Qavg
k . Consequently, it

makes difficult to interpret it as switched affine system whose state-variable is Qavg
k , which

is introduced in Section 2.3. To handle this issue, motivated from the approach in Kar et al.
(2013), we introduce an additional error term 1

N

∑N
i=1 ΠQi

kQi
k −ΠQavg

k Qavg
k , which can be

bounded by the consensus error discussed in Section 3.3. Therefore, we re-write (8) as:

Qavg
k+1 =Qavg

k + αD
(
Ravg + γPΠQavg

k Qavg
k −Qavg

k

)
+ αϵavgk

+ α

(
γ

N

N∑
i=1

D
(
PΠQi

kQi
k − γPΠQavg

k Qavg
k

))
︸ ︷︷ ︸

:=Ek

. (9)

Now, we can see that Qavg
k evolves via a single-agent Q-learning update whose estimator is

Qavg
k , including an additional stochastic noise term, ϵavgk , and an error term, Ek that can be

bounded by the consensus error. In the following lemma, we use the contraction property of
the max-operator to bound Ek by the consensus error:
Lemma 3.5. For k ∈ N, we have ∥Ek∥∞ ≤ γdmax

∥∥ΘQ̄k

∥∥
∞.

The proof is given in Appendix D.4. We note that similar argument in Lemma 3.5 has
been also considered in Kar et al. (2013). However, Kar et al. (2013) considered a different
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distributed algorithm using two-time scale approach and focused on asymptotic convergence
whereas we consider a single step-size and finite-time bounds.

Now, we follow the switched system approach (Lee and He, 2020) to bound the optimality
error. In contrast to Lee and He (2020), we have an additional error term caused by Ek, which
will be bounded using Theorem 3.4. Using a coordinate transformation, Q̃avg

k = Qavg
k −Q∗,

we can re-write (9) as

Q̃avg
k+1 =AQavg

k
Q̃avg

k + αbQavg
k

+ αϵavgk + αEk,

where, for Q ∈ R|S||A|, we let

AQ := I + αD(γPΠQ − I) ∈ R|S||A|×|S||A|, bQ := γDP (ΠQ −ΠQ∗
)Q∗. (10)

We can see that ϵavgk is a stochastic term, and we will bound the error caused by this term
using concentration inequalities. The consensus error, Ek, can be bounded from Theorem 3.4.
However, the affine term, bQavg

k
, does not admit simple bounds. The approach in Lee and He

(2020) provides a method to construct a system without an affine term, making the analysis
simpler. In details, we introduce a lower and upper comparison system, denoted as Qavg,l

k
and Qavg,u

k , respectively such that the following element-wise inequaltiy holds:

Qavg,l
k ≤ Qavg

k ≤ Qavg,u
k , ∀k ∈ N, (11)

Letting Q̃avg,l
k := Qavg,l

k − Q∗ and Q̃avg.u
k := Qavg,u

k − Q∗, a candidate of update that
satisfies (11), which is without the affine term bQk

, is:

Q̃avg,l
k+1 =AQ∗Q̃avg,l

k + αϵavgk + αEk, Q̃avg,u
k+1 = AQavg,u

k
Q̃avg,u

k + αϵavgk + αEk, (12)

where Qavg,l
0 ≤ Qavg

0 ≤ Qavg,u
0 . The detailed construction of each systems are given in

Appendix E. Note that the lower comparison system, Q̃avg,l
k follows a linear system governed

by the matrix AQ∗ where as the upper comparison system ,Q̃avg,u
k , can be viewed as a

switched linear system without an affine term. To prove the finite-time bound of Q̃avg
k ,

we will instead derive the finite-time bound of Q̃avg,l
k and Q̃avg,u

k , and using the relation
in (11), we can obtain the desired result. Nonetheless, still the switching in the upper
comparison system imposes difficulty in the analysis. Therefore, we consider the difference
of upper and lower comparison system Q̃avg,l

k − Q̃avg,u
k , which gives the following bound:∥∥∥Q̃avg

k

∥∥∥
∞

≤
∥∥∥Q̃avg,l

k

∥∥∥
∞

+
∥∥∥Qavg,u

k+1 −Qavg,l
k+1

∥∥∥
∞

. The sketch of the proof for deriving the
finite-time bound of each systems are as follows:

1. Bounding Q̃avg,l
k (Proposition F.1 in the Appendix): We recursively expand the equation

in (12). We have ∥AQ∥∞ ≤ 1− (1− γ)αdmin for any Q ∈ R|S||A|, which is in Lemma C.1
in the Appendix, and the error induced by ϵavgk can be bounded using Azuma-Hoeffding
inequality in Lemma C.4 in the Appendix. Meanwhile, the error term Ek can be bounded
by the consensus error from Lemma 3.5, which is again bounded by using Theorem 3.4.

2. Bounding Q̃avg,u
k − Q̃avg,l

k (Proposition F.3 in the Appendix): Thanks to the fact that
both the upper an lower comparison systems share ϵavgk and Ek, if we subtract Q̃avg,l

k from
Q̃avg,u

k in (12), both terms are eliminated. Therefore, the iterate can be bounded with an
additional error by Q̃avg,l

k .

Now, we are ready to present the optimality error bound, ∥Qavg
k −Q∗∥∞, as follows:

Theorem 3.6. For k ∈ N, and α ≤ mini∈[N ][W ]ii, we have the following result :

E
[
∥Qavg

k −Q∗∥∞
]
=Õ

(
(1− α(1− γ)dmin)

k
2 + σ2(W )

k
4

)
+ Õ

(
α

1
2

dmaxRmax

(1− γ)
5
2 d

3
2

min

+ α
d2max

√
|S||A|Rmax

(1− γ)3d2min(1− σ2(W ))

)
,

where the notation Õ(·) is used to hide the logarithmic factors.
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The proof is given in Appendix F.1. Note that even the logarithmic terms are hidden, due
to exponential scaling of the action space, ln(|S||A|) could contribute O(N) factor to the
error bound. However, noting that dmin ≤ 1

|S||A| , O
(

1
dmin

)
already dominates the O(N) if

|Ai| ≥ 2 for all i ∈ [N ], hence we omit the logarithmic terms. Likewise O (|A|) dominates
O (N), which is hided when both terms are multiplied.

3.5 Final error

In this section, we present the error bound of the total error term Q̄k − 1N ⊗Q∗. From (6),
the bound follows from the decomposition into the consensus error and optimality error. In
particular, collecting the results in Theorem 3.4 and Theorem 3.6 yields the following:
Theorem 3.7. For k ∈ N, and α ≤ mini∈[N ][W ]ii, we have

E
[∥∥Q̄k − 1N ⊗Q∗∥∥

∞

]
=Õ

(
(1− α(1− γ)dmin)

k
2 + σ2(W )

k
4

)
+ Õ

(
α

1
2 dmax

Rmax

(1− γ)
5
2 d

3
2

min

+ α
d2max

√
|S||A|Rmax

(1− γ)3d2min(1− σ2(W ))

)
.

The proof is given in Appendix F.2. One can see that the convergence rate has exponentially
decaying terms, (1 − (1 − γ)dminα)

k
2 and σ2(W )

k
4 , with a bias term caused by using a

constant step-size. Furthermore, we note that the bias term depends on 1
1−σ2(W ) . If we

construct W as in Example B.1 in the Appendix, then it will contribute O(N2) factor in
the error bound (Olshevsky, 2014).

Corollary 3.8. Suppose α = Õ
(
min

{
(1−γ)5d3

min

R2
maxd

2
max

ϵ2,
(1−γ)3d2

min(1−σ2(W ))

Rmaxd2
max

√
|S||A|

ϵ

})
. Then, the

following number of samples are required for E
[∥∥Q̄k − 1N ⊗Q∗

∥∥
∞

]
≤ ϵ:

Õ

(
max

{
1

ϵ2
d2max

(1− γ)6d4min

,
1

ϵ

d2max

√
|S||A|

(1− γ)4d3min(1− σ2(W ))

})
.

The proof is given in Appendix Section F.3. As the known sample complexity of (single-agent)
Q-learning, our bound depends on the factors, dmin and 1

1−γ . The result is improvabale in
sense that the known tight dependency for single-agent case is 1

(1−γ)4dmin
by Li et al. (2020).

Furthermore, we note that the dependency on the spectral property of the graph, 1
ϵ

1
1−σ2(W )

is common in the literature of distributed learning as can be seen in Table 1.

4 Error Analysis : Markovian observation model

Now, we consider a Markovian observation model instead of the i.i.d. model. Starting from
an initial distribution µ0 ∈ ∆|S||A|, the samples are observed from a behavior policy β : S →
∆|A|, i.e., from (sk,ak), transition occurs to sk+1 ∼ P(sk,ak, ·) and the action is selected by
ak+1 ∼ β(· | sk+1). This setting is closer to practical scenarios, but poses significant challenges
in the analysis due to the dependence between the past observations and current estimates.
To overcome this difficulty, we consider the so-called uniformly ergodic Markov chain (Paulin,
2015), which ensures that the Markov chain converges to its unique stationary distribution,
µ∞ ∈ ∆|S||A|, exponentially fast in sense of total variation distance, which is defined as
dTV(p, q) :=

1
2

∑
x∈S×A |[p]x − [q]x| where p, q ∈ ∆|S||A|. That is, there exist positive real

numbers m ∈ R and ρ ∈ (0, 1) such that we have maxs,a∈S×A dTV(µ
s,a
k ,µ∞) ≤ mρk, where

µs,a
k := ((es⊗ea)

⊤P k
β )

⊤ is the probability distribution of state-action pair after k number of
transition occurs starting from s,a ∈ S ×A, and Pβ ∈ R|S||A|×|S||A| is the transition matrix
induced by behavior policy β, i.e., (es ⊗ ea)

⊤Pβ(es′ ⊗ ea′)⊤ = (es ⊗ ea)
⊤Pes′ · β(a′ | s′).

Moreover, we will denote

τmix(ϵ) := min{t ∈ N : mρt ≤ ϵ}, τ := τmix(α), tmix := τmix(1/4), (13)
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for ϵ > 0, and τ is the so-called mixing time. The concept of mixing time is widely used
in the literature (Zeng et al., 2022b; Bhandari et al., 2018). Note that τ is approximately
proportional to log

(
1
α

)
, which is provided in Lemma C.7 in the Appendix. This contributes

only logarithmic factor to the final error bound. Furthermore, we will denote
D∞ =diag(µ∞), Ds,a

k = diag(µs,a
k ), (14)

where Ds,a
k denotes the probability distribution of the state-action pair after k number of

transitions from s,a ∈ S ×A. ϵ̄k in (5) will be defined in terms of D∞ instead of D, and
the overall details are provided in Appendix G. To proceed, with slight abuse of notation,
we will denote dmax = maxs,a∈S×A[µ∞]s,a and dmin = mins,a∈S×A[µ∞]s,a.

Now, we provide the technical difference with the proof of i.i.d. case in Section 3. The
challenge in the analysis lies in the fact that E

[
ϵavgk

∣∣{(st,at)}kt=0, Q̄0

]
≠ 0 due to Marko-

vian observation scheme. Therefore, we cannot use Azuma-Hoeffding inequality as in
the proof of i.i.d. case in the Appendix F.1. Instead, we consider the shifted sequence
as in Qu and Wierman (2020). By shifted sequence, it means to consider the error by
the stochastic observation at k with Q̄k−τ instead of Q̄k, i.e., wk,1 := δavg(ok, Q̄k−τ ) −
∆avg

k−τ,k(Q̄k−τ ) where ∆avg
k−τ,k(Q̄k) := D

sk−τ ,ak−τ
τ

1
N

∑N
i=1

(
Ri + γPΠQi

kQi
k −Qi

k

)
. Then,

we have E
[
wk,1

∣∣{(st,at)}k−τ
t=0 , Q̄0

]
= 0. Now, we separately calculate the errors induced by

{wτj+l,1}j∈{t∈N|τt+l≤k} for each 0 ≤ l ≤ τ − 1, and invoke the Azuma-Hoeffding inequality.
Overall details are given in Appendix G, and we have the following result:
Theorem 4.1. For k ≥ τ , and α ≤ min

{
mini∈[N ][W ]ii,

1
2τ

}
, we have

E [∥Qk+1 −Q∗∥∞] =Õ
(
(1− α(1− γ)dmin)

k−τ
2 + σ2(W )

k−τ
4

)
+ Õ

(
α

1
2
dmax

√
τRmax

(1− γ)
5
2 d

3
2

min

+ α
Rmaxdmax

√
|S||A|

(1− γ)3d2min(1− σ2(W ))

)
.

The proof is given in Appendix Section G.2.

Corollary 4.2. Suppose α = Õ
(

ϵ2

ln( 1
ϵ2
)
(1−γ)5d3

min

tmixd2
max

)
. Then, the following number of samples

are required for E
[∥∥Q̄k − 1N ⊗Q∗

∥∥
∞

]
≤ ϵ:

Õ

(
max

{
ln2
(

1
ϵ2

)
ϵ2

tmixd
2
max

(1− γ)6d4min

,
ln
(
1
ϵ

)
ϵ

dmax

√
|S||A|

(1− γ)4d3min(1− σ2(W ))

})
.

The proof is given in Appendix Section G.3. As in the result of i.i.d. case in Corollary 3.8, we
have the dependency on 1

1−γ ,
1

dmin
, and 1

1−σ2(W ) with additional factor on mixing time. The

known tight sample complexity result in the single-agent case is Õ
(

1
(1−γ)4dminϵ2

+ tmix

(1−γ)dmin

)
by Li et al. (2024), and our result leaves room for improvement. Assuming a uniform
sampling scheme, i.e., dmin = dmax = 1

|S||A| , and |Ai| = A for all i ∈ [N ] and A ≥ 2, the

sample complexity becomes Õ
(
max

{
tmix
ϵ2

|S|2A2N

(1−γ)6 , 1
ϵ

|S|
5
2 A

5N
2

(1−γ)4(1−σ2(W ))

})
. We note that the

exponential scaling in the action space is inevitable in the tabular setting unless we consider
a near-optimal solution (Qu et al., 2022). Lastly, to verify the convergence of our algorithm,
experiments are provided in Appendix Section I.

5 Discussion

Q-function Assumption Sample complexity Bound type Remarks

Ours Tabular ✗ max

{
tmix
ϵ2

1
(1−γ)6d3

min
, 1
ϵ

√
|S||A|

(1−σ2(W ))(1−γ)4d3
min

}
Expectation -

Wang et al. (2022) Tabular ✗ 1
(1−γ)5dminϵ2

+ tmix

1−γ High probability ϵ ∈
[
0, 1

1−γ

)
Heredia et al. (2020) LFA (15) R2

(dmin−γ2d∗
max)

2(1−σ2(W ))

Expectation
Averaged squared error

Continuous state space
R is projection radius

Zeng et al. (2022b) LFA (16) 1
κ2(1−γ)2(1−σ2(W )) Expectation -

Table 1: LFA stands for linear function approximation.
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In this section, we provide comparison with recent works analyzing non-asymptotic behavior
of distributed Q-learning algorithm. Our analysis relies on the minimal assumption in
sense that we do not require any assumption further than standard assumptions in the
literature, e.g., the state-action distribution induced by the behavior policy, is positive for
all state-action pairs in Assumption 3.1.

Heredia et al. (2020) considered linear function approximation scheme to represent the
Q-function with continuous state-space and finite-action space scenario. However, to prove
the convergence, it requires the following condition:

dmin > γ2d∗max := max
s

d(s, π∗(s)), (15)

which is difficult to be met even in the tabular case, and an example is given in Appendix H.

Furthermore, Zeng et al. (2022b) considered a Q-learning model under linear function
approximation with continuous-state space and finite action space. The work also covered
the case when the features for linear function approximation is differently selected for each
agents. However, it requires the following condition to hold for all Q ∈ R|S||A|:

(γDP (ΠQQ−ΠQ∗
Q∗)−D(Q−Q∗))⊤(Q−Q∗) ≤ −κ ∥Q−Q∗∥22 , (16)

for some κ > 0. We have provided examples where the above conditions in (15) and (16) are
not met even in the tabular case in Appendix Section H.

Overall, the assumptions used in Heredia et al. (2020); Zeng et al. (2022b) allows the analysis
to follow similar lines to that of convex optimization literature. To the best of our knowledge,
there is no existing literature that demonstrates how to extend convex optimization analysis,
or an analogous approach, to the analysis of Q-learning under the tabular setup. This gap in
the literature makes the analysis challenging and is the primary reason we rely on switched
system analysis. Due to different settings, their sample complexity is not directly comparable
with ours.

Wang et al. (2022) proposed a distributed Q-learning algorithm in the tabular setting,
which is motivated from the adapt-then-combine algorithm, whereas our algorithm considers
combine-and-adapt scheme (Chen and Sayed, 2012) in the distributed optimization literature.
The work presents a sharper bound on the sample complexity 1

(1−γ)5dminϵ2
compared to ours

1
(1−γ)6d4

minϵ
2 but it only holds for restricted range of ϵ, i.e., ϵ ∈

[
0, 1

1−γ

)
while our results

do not have such restriction. More importantly, the algorithm proposed by Wang et al.
(2022) requires two steps for a single update, whereas in our paper, we focus on a one-step
algorithm that is algorithmically simpler and more efficient. Specifically, we analyze the
traditional and widely adopted QD-learning algorithm proposed in Kar et al. (2013), for
which a finite-time error analysis for the original form has been lacking in the literature.
Additionally, we enhance the efficiency of QD-learning by employing a constant step-size,
as opposed to the two-time-scale decaying step-size used in traditional QD-learning. This
modification can significantly improve the convergence speed empirically.

6 Conclusion

In this paper, we have studied distributed version of Q-learning algorithm. We provided a

sample complexity result of Õ
(
max

{
1
ϵ2

1
(1−γ)6d4

min
, 1
ϵ

√
|S||A|

(1−σ2(W ))(1−γ)4d3
min

})
, which appears

to be the first non-asymptotic result for tabular Q-learning. Future work would include
improving the dependency on 1

1−γ and dmin to match the known tightest sample complexity
bound of single-agent Q-learning (Li et al., 2020). Furthermore, to resolve the scalability
issue, two promising approaches would be adopting a mean-field approach or exploring
convergence to sub-optimal point.
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A Appendix : Notations

Rn: set of real-valued n-dimensional vectors; Rn×m : set of real-valued n×m-dimensional
matrices; ∆n for n ∈ N : a probability simplex in Rn; [n] for n ∈ N : {1, 2, . . . , n}; 1n :
n-dimensional vector whose elements are all one; 0 : a vector whose elements are all zero
with appropriate dimension; [A]ij : i-th row and j-th column for any matrix A; ej : basis
vector (with appropriate dimension) whose j-th element is one and others are all zero; |S|
: cardinality of any finite set S; ⊗ : Kronecker product between two matrices; a ≥ b for
a, b ∈ Rn : [a]i ≥ [b]i for all i ∈ [n].

B Appendix : Constructing Doubly Stochastic Matrix

Example B.1 (Lazy Metropolis matrix in Olshevsky (2014)). To construct the doubly
stochastic matrix W with only local information, we can set [W ]ij = 1

2max{|Ni|,|Nj |} for
i ̸= j and i, j ∈ [N ], letting [Wii] = 1−

∑
j∈Ni

[W ]ij. This uses only local information, and
does not require any global information sharing.

One can formulate a semi-definite program to construct a doubly stochastic matrix (Xiao
and Boyd, 2004). It finds the doubly stochastic matrix with minimum possible σ2(W ) but
it requires a centralized controller to solve such system, and distributed the computed the
result of each agents. Another choice is to use Sinkhorn-Knopp algorithm (Knight, 2008).
However, it also requires a centralized computation scheme. Moreover, to our best knowledge,
we are not aware of bound on the σ2(W ) of the output of Sinkhorn-Knopp algorithm.

C Appendix : Technical details

Lemma C.1. We have for Q ∈ R|S||A|,

∥AQ∥∞ ≤ 1− (1− γ)dminα.

Proof. For i ∈ [|S||A|], we have

|S||A|∑
j=1

|[AQ]ij | ≤1− [D]iiα+ α[D]iiγ

|S||A|∑
j=1

[PΠQ]ij

=1− [D]ii(1− γ)α.

The last equality follows from the fact that PΠQ is a stochastic matrix, i.e., the row sum
equals to one, and represents a probability distribution. Taking maximum over i ∈ [|S||A|],
we complete the proof.

Lemma C.2. For k ∈ N, we have

∥ϵavgk ∥∞ ≤ 4Rmax

1− γ
.

Proof. From the definition of ϵavgk = 1
N

∑N
i=1 δ

i
k −∆i

k in (4), we have

∥ϵavgk ∥∞ ≤2

(
Rmax + γ

Rmax

1− γ
+

Rmax

1− γ

)
=
4Rmax

1− γ
,

where the first inequality comes from the bonundedness of Q̄k in Lemma 3.3. This completes
the proof.
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Lemma C.3. For a, b ∈ (0, 1), and for k ∈ N, we have

k∑
i=0

ak−ibi ≤ a
k
2

1

1− b
+ b

k
2

1

1− a
.

Furthermore, we have

k∑
i=τ

ak−ibi−τ ≤ a
k−τ
2

1

1− b
+ b

k−τ
2

1

1− a
.

Proof. We have

k∑
i=0

ak−ibi ≤
⌈ k

2 ⌉∑
i=0

ak−ibi +

k∑
i=⌊ k

2 ⌋

ak−ibi

≤a
k
2

1

1− b
+ b

k
2

1

1− a
.

The last inequality follows from the summation of geometric series. As for the second item,
we have

k∑
i=τ

ak−ibi−τ ≤
⌈ k+τ

2 ⌉∑
i=τ

ak−ibi−τ +

k∑
i=⌊ k+τ

2 ⌋

ak−ibi−τ

≤a
k−τ
2

1

1− b
+ b

k−τ
2

1

1− a
.

This completes the proof.

Lemma C.4 (Azuma-Hoeffding Inequality, Theorem 2.19 in Chung and Lu (2006)). Let
{Sn}n∈N be a Martingale sequence with S0 = 0. Suppose |Sk − Sk−1| ≤ ck for k ∈ N. Then,
for ϵ ≥ 0, we have

P [|Sk| ≥ ϵ] ≤ 2 exp

(
− ϵ2

2
∑k

j=1 c
2
j

)
.

Lemma C.5. Suppose X ≥ 0, P [X ≥ ϵ] ≤ min
{
a exp

(
−bϵ2

)
, 1
}
, and a ≥ 2. Then, we

have

E [X] ≤ 2

√
ln a

b
.

Proof. We have

E [X] =

∫ ∞

0

P [X ≥ s] ds

≤
∫ ∞

0

min
{
a exp

(
−bs2

)
, 1
}
ds

≤
∫ √

ln a
b

0

1ds+

∫ ∞

√
ln a
b

a exp(−bs2)ds

≤
√

ln a

b
+

1

2
√
b ln a

≤2

√
ln a

b
.
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The last inequality follows from the fact that 4 ln a > 1/ ln a. The third inequality follows
from the following relation:∫ ∞

√
ln a
b

a exp(−bs2)ds =a

∫ ∞

ln a
b

1

2
√
u
exp(−bu)du

≤a

2

√
b

ln a

∫ ∞

ln a
b

exp(−bu)du

=
a

2

√
b

ln a

1

b
[− exp(−bu)]

∞
ln a
b

=
1

2
√
b ln a

.

where we used the change of variables s2 = u in the first equality.

Definition C.6 (Martingale sequence, Section 4.2 in Durrett (2019)). Consider a sequence
of random variables {Xn}n∈N and an increasing σ-field, Fn, such that

1) E [|Xn|] < ∞;

2) Xn is Fn-measurable;

3) E [Xn+1|Fn] = Xn, ∀n ∈ N.

Then, Xn is said to be a Martingale sequence.
Lemma C.7 (Proposition 3.4 in Paulin (2015)). For uniformly ergodic Markov chain in
Section 4, we have, for ϵ > 0,

τ(ϵ) ≤ tmix

(
1 + 2 log

(
1

ϵ

)
+ log

(
1

dmin

))
,

where τ and tmix are defined in (13).

D Appendix : Omitted Proofs

D.1 Proof of Lemma 3.2

Proof. From the definition of W̄ in (4), we have

(W̄ kΘ)⊤W̄ kΘ =W̄ 2k − 2W̄ k⊤ 1

N

(
(1N1⊤

N )⊗ I|S||A|
)
+

1

N
(1N1⊤

N )⊗ I|S||A|

=

(
W 2k − 1

N
1N1⊤

N

)
⊗ I|S||A|,

where the second equality follows from the fact that W̄ (1N1N )⊤⊗I|S||A| = (1N1N )⊤⊗I|S||A|.
From the result, we can derive

∥∥W̄ kΘ
∥∥
2
=
√
λmax

(
(W̄ kΘ)⊤W̄ kΘ

)
=

√
λmax

(
W 2k − 1

N
1N1⊤

N

)
= σ2(W )k < 1. (17)

To prove the inequality in (17), we first prove that 1 is the unique largest eigenvalue of W .
Noting that 1N is an eigenvector of W with eigenvalue of 1, and ρ(W ) ≤ ||W ||∞ = 1 where
ρ(·) is the spectral radius of a matrix, the largest eigenvalue of W should be one. This
implies that σ2(W ) < 1. The multiplicity of the eigenvalue 1 is one, which follows from the
fact that W k is a non-negative and irreducible matrix and that the largest eigenvalue of
a non-negative and irreducible matrix is unique Pillai et al. (2005) from Perron-Frobenius
theorem. Note that W k is a non-negative and irreducible matrix due to the fact that the
graph G is connected.
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Next, we use the eigenvalue decomposition of a symmetric matrix to investigate the spectrum
of W 2k − 1

N 1N1⊤
N . By eigendecomposition of a symmetric matrix, we have

W = λ1v1v
⊤
1 +

N∑
j=2

λjvjv
⊤
j = TΛT−1,

where vj and λj are j-th eigenvector and eigenvalue of W , λ1 = 1, v1 = 1√
N
1N , Λ is a

diagonal matrix whose diagonal elements are the eigenvalues of W , and T and T−1 are
formed from the eigenvectors of W . From the uniqueness of the maximum eigenvalue of W ,
we have λ1 = 1 > λj , j ∈ {2, 3, . . . , N}. Therefore, we have

W 2k = TΛ2kT−1 =

(
1√
N

1N

)(
1√
N

1⊤
N

)
+

N∑
j=2

λk
jvjv

⊤
j .

Therefore, we have λmax

(
W 2k − 1

N 1N1⊤
N

)
= σ2(W

2k). This completes the proof.

D.2 Proof of Lemma 3.3

Proof. Let us first assume that for some k ∈ N,
∥∥Qi

k

∥∥
∞ ≤ Rmax

1−γ for all i ∈ [N ]. Then,
considering (2), for all i ∈ [N ], we have

|Qi
k+1(sk,ak)| ≤([W ]ii − α)

∥∥Qi
k

∥∥
∞ +

∑
j∈[N ]\{i}

[W ]ij

∥∥∥Qj
k

∥∥∥
∞

+ α
(
Rmax + γ

∥∥Qi
k

∥∥
∞

)
≤(1− α)

Rmax

1− γ
+ α

Rmax

1− γ

=
Rmax

1− γ
.

The first inequality follows from the fact that α ≤ mini∈[N ][W ]ii. The second inequality
follows from the induction hypothesis. For, s,a ∈ S ×A \ {sk,ak}, we have∣∣Qi

k+1(s,a)
∣∣ ≤ ∑

j∈Ni

[W ]ij

∣∣∣Qj
k(s,a)

∣∣∣ ≤ Rmax

1− γ
.

The last line follows from the fact that W is a doubly stochastic matrix, and the induction
hypothesis. The proof is completed by applying the induction argument.

D.3 Proof of Theorem 3.4

Proof. Taking infinity norm on (7), we get∥∥ΘQ̄k+1

∥∥
∞ ≤

∥∥W̄ k+1ΘQ̄0

∥∥
2
+ α

√
N |S||A|

k∑
j=0

∥∥W̄ k−jΘ
∥∥
2

∥∥∥(D̄ (
R̄+ γP̄ Π̄Q̄jQ̄j − Q̄j

)
+ ϵ̄j

)∥∥∥
∞

≤
∥∥W̄ k+1ΘQ̄0

∥∥
2
+ α

√
N |S||A|

k∑
j=0

∥∥W̄ k−jΘ
∥∥
2

8Rmax

1− γ

≤σ2(W )k+1
∥∥ΘQ̄0

∥∥
2
+ α

√
N |S||A|

k∑
j=0

σ2(W )k−j 8Rmax

1− γ

≤σ2(W )k+1
∥∥ΘQ̄0

∥∥
2
+ α

8Rmax

1− γ

√
N |S||A|

1− σ2(W )
.

The first inequality follows from the inequality ||A||∞ ≤
√
N |S||A|||A||2 for A ∈

RN |S||A|×N |S||A|. The second inequality follows from the bound on Q̄k in Lemma 3.3.
The third inequality follows from Lemma 3.2. The last inequality follows from summation of
geometric series. This completes the proof.
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D.4 Proof of Lemma 3.5

Proof. From the definition of Ek in (9), we get

∥Ek∥∞ ≤ γ

N

N∑
i=1

∥∥∥DP (ΠQi
kQi

k −ΠQavg
k Qavg

k )
∥∥∥
∞

≤γdmax

N

N∑
i=1

∥∥∥∥∥∥∥∥∥


maxa∈A Qi

k(1,a)−maxa∈A Qavg
k (1,a)

maxa∈A Qi
k(2,a)−maxa∈A Qavg

k (2,a)
...

maxa∈A Qi
k(|S|,a)−maxa∈A Qavg

k (|S|,a)


∥∥∥∥∥∥∥∥∥
∞

≤γdmax

N

N∑
i=1

∥∥Qi
k −Qavg

k

∥∥
∞

≤γdmax

∥∥ΘQ̄k

∥∥
∞ .

The third inequality follows from the fact that |maxi∈[n][x]i −maxi[y]i| ≤ maxi∈[n] |xi − yi|
for x,y ∈ Rn and n ∈ N. The last inequality follows from the fact that∥∥Qi

k −Qavg
k

∥∥
∞ ≤

∥∥ΘQ̄k

∥∥
∞ , ∀i ∈ [N ].

This completes the proof.

E Appendix : Construction of upper and lower comparison
system

E.1 Construction of lower comparison system

Lemma E.1. For k ∈ N, if Qavg,l
0 ≤ Qavg

0 , we have

Qavg,l
k ≤ Qavg

k .

Proof. The proof follows from the induction argument. Suppose the statement holds for
some k ∈ N. Then, we have

Qavg,l
k+1 =Qavg,l

k + αD
(
Ravg + γPΠQ∗

Qavg,l
k −Qavg,l

k

)
+ αϵavgk + αEk

≤Qavg
k + αD

(
Ravg + γPΠQavg

k Qavg
k −Qavg

k

)
+ αϵavgk + αEk

=Qavg
k+1.

The first inequality follows from the fact that Qavg,l
k ≤ Qavg

k and ΠQ∗
Qavg,l

k ≤ ΠQ∗
Qavg

k ≤
ΠQavg

k Qavg
k . The proof is completed by the induction argument.

E.2 Construction of upper comparison system

Lemma E.2. For k ∈ N, if Q̃avg,u
0 ≥ Q̃avg

0 , we have

Q̃avg,u
k ≥ Q̃avg

k .

Proof. As in the construction of the lower comparison system in Lemma E.1 in Appendix,
the proof follows from an induction argument. Suppose that the statement holds for some
k ∈ N. Then, we have

Q̃avg
k+1 =Q̃avg

k + αD
(
γPΠQavg

k Q̃avg
k − Q̃avg

k

)
+ αγDP (ΠQavg

k Q∗ −ΠQ∗
Q∗)

+ αϵavgk + αDEk

≤(I + αD(γPΠQavg
k − I)Q̃avg,u

k + αϵavgk + αDEk

=Q̃avg,u
k+1 .
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The inequality follows from the fact that the elements of I + αD(γPΠQavg
k − I) are all non-

negative, and ΠQavg
k Q∗ ≤ ΠQ∗

Q∗. The proof is completed by the induction argument.

F Appendix : i.i.d. observation model

Proposition F.1. Assume i.i.d. observation model, and α ≤ mini∈[N ][W ]ii. Then, we have,
for k ∈ N,

E
[∥∥∥Q̃avg,l

k+1

∥∥∥
∞

]
=Õ

(
(1− (1− γ)dminα)

k
2 + σ2(W )

k
2

)
+ Õ

(
α

1
2

Rmax

(1− γ)
3
2 d

1
2

min

+ αdmax
Rmax

√
N |S||A|

(1− γ)2dmin(1− σ2(W ))

)
.

Let us first introduce a key lemma to prove Proposition F.1:
Lemma F.2. For k ∈ N, we have

E

[∥∥∥∥∥
k∑

i=0

Ak−i
Q∗ ϵavgi

∥∥∥∥∥
∞

]
≤ 8

√
2Rmax

(1− γ)
3
2 d

1
2

minα
1
2

√
ln(2|S||A|).

Proof. For the proof, we will apply Azuma-Hoeffding inequality in Lemma C.4. For simplicity,
let St =

∑t
i=0 A

k−i
Q∗ ϵavgi , for 0 ≤ t ≤ k. Let Ft := σ({(si,ai, s

′
i)}ti=0 ∪ {Q̄0}), which is the σ-

algebra generated by {(si,ai, s
′
i)}ti=0 and Q̄0. Letting [St]s,a = (es⊗ea)

⊤St, for s,a ∈ S×A,
let us check that {[St]s,a}kt=0 is a Martingale sequence defined in Definition C.6. We can see
that

E [St|Ft−1] =E
[
Ak−t

Q∗ ϵavgt + St−1

∣∣∣Ft−1

]
=Ak−t

Q∗ E [ϵavgt |Ft−1] + St−1

=St−1,

where the second line is due to the fact that St−1 is Ft−1-measurable, and the last line
follows from E [ϵavgt |Ft−1] = 0 thanks to the i.i.d. observation model. Therefore, we have
E [[St]s,a|Ft−1] = [St−1]s,a.

Moreover, we have

E [S0] =E

[
1

N

N∑
i=1

(es0 ⊗ ea0)(r
i
1 + e⊤s′0γΠ

Qi
0Qi

0 − (es0 ⊗ ea0
)⊤Qi

0)

]

− E

[
1

N

N∑
i=1

D(Ri + γPΠQi
0Qi

k −Qi
0)

]
=0.

The last line follows from that E [es0 ⊗ ea0 ] = D and E
[
(es0 ⊗ ea0)e

⊤
s′0

]
= DP .

Therefore, {[St]s,a}kt=0 is a Martingale sequence for any s,a ∈ S ×A. Furthermore, we have

|[St]s,a − [St−1]s,a| ≤ ∥St − St−1∥∞ =
∥∥∥Ak−t

Q∗ ϵavgt

∥∥∥
∞

≤ (1− (1− γ)dminα)
k−t 4Rmax

1− γ
,

where the last inequality comes from Lemma C.1 and Lemma C.2. Furthermore, note that
we have

k∑
t=1

|[St]s,a − [St−1]s,a|2 ≤
k∑

t=0

(1− (1− γ)dminα)
2k−2t 16R

2
max

(1− γ)2

≤ 16R2
max

(1− γ)3dminα
.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Therefore, applying the Azuma-Hoeffding inequality in Lemma C.4 in the Appendix, we have

P [|[Sk]s,a| ≥ ϵ] ≤ 2 exp

(
−ϵ2(1− γ)3dminα

32R2
max

)
.

Noting that {∥Sk∥∞ ≥ ϵ} ⊆ ∪s,a∈S×A{|[Sk]s,a| ≥ ϵ}, using the union bound of the events,
we get:

P [∥Sk∥∞ ≥ ϵ] ≤
∑

s,a∈S×A
P [|[Sk]s,a| ≥ ϵ] ≤ 2|S||A| exp

(
−ϵ2(1− γ)3dminα

32R2
max

)
.

Moreover, since a probability of an event is always smaller than one, we have

P [∥Sk∥∞ ≥ ϵ] ≤ min

{
2|S||A| exp

(
−ϵ2(1− γ)3dminα

32R2
max

)
, 1

}
.

Now, we are ready to bound Sk from Lemma C.5 in the Appendix:

E [∥Sk∥∞] =

∫ ∞

0

P [∥Sk∥∞ ≥ x] dx ≤ 8
√
2Rmax

(1− γ)
3
2 d

1
2

minα
1
2

√
ln(2|S||A|).

This completes the proof.

Now, we are ready prove Proposition F.1:

Proof of Proposition F.1. Recursively expanding the equation in (12), we get
Q̃avg,l

k+1 =AQ∗Q̃avg,l
k + αϵavgk + αEk

=A2
Q∗Q̃

avg,l
k−1 + αAQ∗ϵavgk−1 + αAQ∗Ek−1 + αϵavgk + αEk

=Ak+1
Q∗ Q̃avg,l

0 + α

k∑
i=0

Ak−i
Q∗ ϵavgi + α

k∑
i=0

Ak−i
Q∗ Ei.

Taking infinity norm and expectation on both sides of the above equation, we get

E
[∥∥∥Q̃avg,l

k+1

∥∥∥
∞

]
≤E

[∥∥∥Ak+1
Q∗

∥∥∥
∞

∥∥∥Q̃avg,l
0

∥∥∥
∞

+ α

∥∥∥∥∥
k∑

i=0

Ak−i
Q∗ ϵavgi

∥∥∥∥∥
∞

+ α

k∑
i=0

∥∥∥Ak−i
Q∗

∥∥∥
∞

∥Ei∥∞

]

≤(1− (1− γ)dminα)
k+1

∥∥∥Q̃avg,l
0

∥∥∥
∞

+ αE

[∥∥∥∥∥
k∑

i=0

Ak−i
Q∗ ϵavgi

∥∥∥∥∥
∞

]

+ αE

[
k∑

i=0

∥∥∥Ak−i
Q∗

∥∥∥
∞

∥Ei∥∞

]

≤(1− (1− γ)dminα)
k+1

∥∥∥Q̃avg,l
0

∥∥∥
∞

+ α
1
2

8
√
2Rmax

(1− γ)
3
2 d

1
2

min

√
ln(2|S||A|)

+ αE

[
k∑

i=0

∥∥∥Ak−i
Q∗

∥∥∥
∞

∥Ei∥∞

]

≤(1− (1− γ)dminα)
k+1

∥∥∥Q̃avg,l
0

∥∥∥
∞

+ α
1
2

8
√
2Rmax

(1− γ)
3
2 d

1
2

min

√
ln(2|S||A|)

+ γdmax

∥∥ΘQ̄0

∥∥
2

(
(1− (1− γ)dminα)

k
2

α

1− σ2(W )
+ σ2(W )

k
2

1

(1− γ)dmin

)
+ αγdmax

8Rmax

√
N |S||A|

(1− γ)2dmin(1− σ2(W ))
.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

The second inequality follows from Lemma C.1. The third inequality follows from Lemma F.2.
The last line follows from bounding

∑k
i=0

∥∥∥Ak−i
Q∗

∥∥∥
∞

∥Ei∥∞ as follows:

k∑
i=0

∥∥∥Ak−i
Q∗

∥∥∥
∞

∥Ei∥∞

≤γdmax

k∑
i=0

(1− (1− γ)dminα)
k−i

(
σ2(W )i

∥∥ΘQ̄0

∥∥
2
+ α

8Rmax

1− γ

√
N |S||A|

1− σ2(W )

)

≤γdmax

∥∥ΘQ̄0

∥∥
2

(
(1− (1− γ)dminα)

k
2

1

1− σ2(W )
+ σ2(W )

k
2

1

(1− γ)dminα

)
+ γdmax

8Rmax

√
N |S||A|

(1− γ)2dmin(1− σ2(W ))
.

The first inequality follows from Lemma 3.5 and Theorem 3.4. The second inequality follows
from Lemma C.3 in the Appendix. This completes the proof.

Now, we bound Q̃avg,u
k in (12). It is difficult to directly prove the convergence of upper

comparison system. Therefore, we bound the difference of upper and lower comparison
system, Qavg,u

k − Qavg,l
k . The good news is that since Qavg,u

k and Qavg,l
k shares the same

error term ϵavgk and Ek, such terms will be removed if we subtract each others.
Proposition F.3. For k ∈ N, and α ≤ mini∈[N ][W ]ii, we have

E
[∥∥∥Qavg,u

k+1 −Qavg,l
k+1

∥∥∥
∞

]
=Õ

(
(1− α(1− γ)dmin)

k
2 + σ2(W )

k
4

)
+ Õ

(
α

1
2

dmaxRmax

(1− γ)
5
2 d

3
2

min

+ α
d2max

√
N |S||A|Rmax

(1− γ)3d2min(1− σ2(W ))

)
.

Proof. Subtracting Qavg,l
k+1 from Qavg,u

k+1 in (12), we have

Qavg,u
k+1 −Qavg,l

k+1 =AQavg
k

Q̃avg,u
k −AQ∗Q̃avg,l

k

=AQavg
k

(Qavg,u
k −Qavg,l

k ) + (AQavg
k

−AQ∗)Q̃avg,l
k

=AQavg
k

(Qavg,u
k −Qavg,l

k ) + αγDP (ΠQavg
k −ΠQ∗

)Q̃avg,l
k . (18)

The last equality follows from the definition of AQavg
k

and AQ∗ in (10).

Recursively expanding the terms, we get

Qavg,u
k+1 −Qavg,l

k+1 =

k∏
i=0

AQavg
i

(Qavg,u
0 −Qavg,l

0 )

+ αγ

k−1∑
i=0

k−1∏
j=i

AQavg
j+1

DP (ΠQavg
i −ΠQ∗

)Q̃avg,l
i + αγDP (ΠQavg

k −ΠQ∗
)Q̃avg,l

k .

Taking infinity norm on both sides of the above equation, and using triangle inequality yields

E
[∥∥∥Qavg,u

k+1 −Qavg,l
k+1

∥∥∥
∞

]
≤(1− α(1− γ)dmin)

k+1
∥∥∥Qavg,u

0 −Qavg,l
0

∥∥∥
∞

+ 2αγdmax

k∑
i=0

(1− α(1− γ)dmin)
k−iE

[∥∥∥Q̃avg,l
i

∥∥∥
∞

]
︸ ︷︷ ︸

(⋆)

. (19)

The first inequality follows from Lemma C.1.
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Now, we will use Proposition F.1 to bound (⋆) in the above inequality. We have
k∑

i=0

(1− α(1− γ)dmin)
k−iE

[∥∥∥Q̃avg,l
i

∥∥∥
∞

]
=Õ

 k∑
j=0

(1− α(1− γ)dmin)
k− j

2 + (1− α(1− γ)dmin)
k−iσ2(W )

i
2


+ Õ

(
Rmax

α
1
2 (1− γ)

5
2 d

3
2

min

+
dmax

√
N |S||A|2Rmax

(1− γ)3d2min(1− σ2(W ))

)
=Õ

(
(1− α(1− γ)dmin)

k
2 + σ2(W )

k
4

)
+ Õ

(
Rmax

α
1
2 (1− γ)

5
2 d

3
2

min

+
dmax

√
N |S||A|Rmax

(1− γ)3d2min(1− σ2(W ))

)
.

The last inequality follows from Lemma C.3. Applying this result to (19), we get

E
[∥∥∥Qavg,u

k+1 −Qavg,l
k+1

∥∥∥
∞

]
=Õ

(
(1− α(1− γ)dmin)

k
2 + σ2(W )

k
4

)
+ Õ

(
α

1
2 dmax

Rmax

(1− γ)
5
2 d

3
2

min

+ α
d2max

√
N |S||A|Rmax

(1− γ)3d2min(1− σ2(W ))

)
.

This completes the proof.

F.1 Proof of Theorem 3.6

Proof.
∥∥∥Q̃avg

k

∥∥∥
∞

can be bounded using the fact that Q̃avg,l
k ≤ Q̃avg

k ≤ Q̃avg,u
k :∥∥∥Q̃avg

k

∥∥∥
∞

≤max
{∥∥∥Q̃avg,l

k

∥∥∥
∞

,
∥∥∥Q̃avg,u

k

∥∥∥
∞

}
≤max

{∥∥∥Q̃avg,l
k

∥∥∥
∞

,
∥∥∥Q̃avg,l

k

∥∥∥
∞

+
∥∥∥Q̃avg,u

k − Q̃avg,l
k

∥∥∥
∞

}
≤
∥∥∥Q̃avg,l

k

∥∥∥
∞

+
∥∥∥Q̃avg,u

k − Q̃avg,l
k

∥∥∥
∞

=
∥∥∥Q̃avg,l

k

∥∥∥
∞

+
∥∥∥Qavg,u

k −Qavg,l
k

∥∥∥
∞

.

The second inequality follows from triangle inequality. Taking expectation, from Proposi-
tion F.1 and Proposition F.3, we have the desired result.

F.2 Proof of Theorem 3.7

Proof. Using triangle inequality, we have
E
[∥∥Q̄k − 1N ⊗Q∗∥∥

∞

]
≤E

[∥∥Q̄k − 1N ⊗Qavg
k

∥∥
∞

]
+ E

[
∥1N ⊗Qavg

k − 1N ⊗Q∗∥∞
]

=E
[∥∥Q̄k − 1N ⊗Qavg

k

∥∥
∞

]
+ E

[
∥Qavg

k −Q∗∥∞
]

=Õ

(
σ2(W )k + α

√
N |S||A|Rmax

(1− γ)(1− σ2(W ))

)
+ Õ

(
(1− α(1− γ)dmin)

k
2 + σ2(W )

k
4

)
+ Õ

(
α

1
2

dmaxRmax

(1− γ)
5
2 d

3
2

min

+ α
d2max

√
N |S||A|Rmax

(1− γ)3d2min(1− σ2(W ))

)
=Õ

(
(1− α(1− γ)dmin)

k
2 + σ2(W )

k
4

)
+ Õ

(
α

1
2 dmax

Rmax

(1− γ)
5
2 d

3
2

min

+ α
d2max

√
N |S||A|Rmax

(1− γ)3d2min(1− σ2(W ))

)
.

The first inequality comes from (6). The second inequality comes from Theorem 3.4 and 3.6.
This completes the proof.
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F.3 Proof of Corollary 3.8

Proof. Let us first bound the terms α
1
2 dmax

Rmax

(1−γ)
5
2 d

3
2
min

+α
d2
max

√
|S||A|Rmax

(1−γ)3d2
min(1−σ2(W ))

in Theorem 3.7

with ϵ. We require

α = Õ

(
min

{
(1− γ)5d3min

R2
maxd

2
max

ϵ2,
(1− γ)3d2min(1− σ2(W ))

Rmaxd2max

√
|S||A|

ϵ

})
.

Next, we bound the terms (1− α(1− γ)dmin)
k
2 + σ2(W )

k
4 . Noting that

(1− α(1− γ)dmin)
k
2 ≤ exp

(
−α(1− γ)dmin

k

2

)
,

we require

k =Õ
(

1

(1− γ)dminα
ln

(
1

ϵ

)
+ ln

(
1

ϵ

)
/ ln

(
1

σ2(W )

))
=Õ

(
ln

(
1

ϵ

)
max

{
R2

maxd
2
max

ϵ2(1− γ)6d4min

,
Rmaxd

2
max

√
|S||A|

ϵ(1− γ)4d3min(1− σ2(W ))

})
.

This completes the proof.

G Appendix : Markovian observation model

In this section, we provide the analysis tools for the Markovian observation model in Section 4.

Considering a sequence of state-action trajectory {(sk,ak)}k∈N induced by the behavior
policy β, the update of Q-function at time k becomes

Qi
k+1(sk,ak) =

∑
j∈Ni

[W ]ijQ
j
k(sk,ak) + α

(
rik+1 + γmax

a∈A
Qi

k(sk+1,a)−Qi
k(sk,ak)

)
Qi

k+1(s,a) =
∑
j∈Ni

[W ]ijQ
j
k(s,a), s,a ∈ S ×A \ {(sk,ak)},

(20)

where we have replaced s′k in (2) with sk+1. The overall algorithm is given in Algorithm 2 in
the Appendix Section J.

We follow the same definitions in Section 3 by letting D to be D∞. That is, we have

AQ =I + αD∞(γPΠQ − I), bQ = γD∞P (ΠQ −ΠQ∗
)Q∗,

which are defined in (10).

Furthermore, let us define for Q ∈ R|S||A|, Q̄ ∈ RN |S||A|, and Q̄i ∈ R|S||A| such that
[Qi]j = [Q̄]|S||A|(i−1)+j for j ∈ [|S||A|]:

∆avg(Q̄) =D∞
1

N

N∑
i=1

(
Ri + γPΠQi

Qi −Qi
)
,

∆avg
k−τ,τ (Q̄) :=Dsk−τ ,ak−τ

τ

1

N

N∑
i=1

(
Ri + γPΠQi

Qi −Qi
)
,

where D
sk−τ ,ak−τ
τ is defined in (14).

Note that we did not use any property of the i.i.d. distribution in proving the consensus
error. Therefore, we can directly use the result in Theorem 3.4 for the consensus error for
Markovian observation model. Hence, in this section, we focus on bounding the optimality
error, Qavg

k −Q∗. As in the case of i.i.d. observation model in Section 3, we will analyze the
error bound of lower and upper comparison system in the subsequent sections.
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G.1 Analysis of optimality error under Markovian observation model

As in Section 3.3, we will analyze the error bound for Q̃avg,u
k and Q̃avg,l

k to bound the
optimality error, Q̃avg

k . We will present an error bound on the lower comparison system, Q̃avg,l
k ,

in Proposition G.5, and the error bound on Q̃avg,u
k − Q̃avg,l

k in Proposition G.6. Collecting
the results, the result on the optimality error, Q̃avg

k , will be presented in Theorem G.7.

Let us first investigate the lower comparison system. Q̃avg,l
k evolves via (12) where we replace

ϵavgk with ϵavg(ok, Q̄k) where ok = (sk,ak, sk+1). To analyze the error under Markovian
observation model, we decompose the terms, for k ≥ τ as follows:

Q̃avg,l
k+1 =AQ∗Q̃avg,l

k + αϵavgk (ok, Q̄k) + αEk

=AQ∗Q̃avg,l
k + αϵavg(ok, Q̄k−τ ) + α(ϵavg(ok, Q̄k)− ϵavg(ok, Q̄k−τ )) + αEk

=AQ∗Q̃avg,l
k + α (δavg(ok, Q̄k−τ )−∆avg

k−τ,τ (Q̄k−τ ))︸ ︷︷ ︸
:=wk,1

+α (∆avg
k−τ,τ (Q̄k−τ )−∆avg(Q̄k−τ ))︸ ︷︷ ︸

:=wk,2

+ α (ϵavg(ok, Q̄k)− ϵavg(ok, Q̄k−τ ))︸ ︷︷ ︸
:=wk,3

+αEk.

(21)

The decomposition is motivated to invoke Azuma-Hoeffding inequality as explained in
Section 4. Recursively expanding the terms in (21), we get

Q̃avg,l
k+1 = Ak−τ+1

Q∗ Q̃avg,l
τ + α

k∑
j=τ

Ak−j
Q∗ wj,1 + α

k∑
j=τ

Ak−j
Q∗ wj,2 + α

k∑
j=τ

Ak−j
Q∗ wj,3 + α

k∑
j=τ

Ak−j
Q∗ Ej .

(22)

Now, let us provide an analysis on the lower comparison system.

We will provide the bounds of
∑k

j=τ A
k−j
Q∗ wj,1,

∑k
j=τ A

k−j
Q∗ wj,2, and

∑k
j=τ A

k−j
Q∗ wj,3 in

Lemma G.2, Lemma G.3, and Lemma G.4, respectively. We first provide an important
property to bound

∑k
j=τ A

k−j
Q∗ wj,1.

Lemma G.1. For t ≥ τ , let Ft := σ({Q̄0, s0,a0, s1,a1, . . . , st,at}). Then,

E [wt,1|Ft−τ ] = 0.

Proof. We have

E [wt,1|Ft−τ ] =E
[
δavg(ok, Q̄k−τ )−∆avg

k−τ,τ (Q̄k−τ )
∣∣∣Ft−τ

]
=

1

N

N∑
i=1

E
[
(est ⊗ eat

)(rt+1 + e⊤st+1
γΠQi

t−τQi
t−τ − (est ⊗ eat

)⊤Qi
t−τ )

∣∣∣Ft−τ

]
− 1

N
Dst−τ ,at−τ

τ

N∑
i=1

(
Ri + γPΠQi

t−τ −Qi
t−τ

)
=0.

The second equality follows from the fact that Qi
t−τ is Ft−τ -measurable. This completes the

proof.

Lemma G.2. For k ∈ N, and α ≤ min
{
mini∈[N ][W ]ii,

1
2τ

}
, we have

E

∥∥∥∥∥∥
k∑

j=τ

Ak−j
Q∗ wj,1

∥∥∥∥∥∥
∞

 ≤2
√

ln(2τ |S||A|) 15
√
τRmax

(1− γ)
3
2 d

1
2

minα
1
2

.
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Proof. For 0 ≤ q ≤ τ − 1, let for t ∈ N such that q ≤ τt+ q ≤ k:
Fq

k,t := Fτt+q.

Then, let us consider the sequence {Sq
k,t}t∈{t∈N:q≤τt+q≤k} as follows:

Sq
k,t :=

t∑
j=1

Ak−τj−q
Q∗ wτj+q,1.

Next, we will apply Azuma-Hoeffding inequality in Lemma C.4. Let us first check that
{Sq

k,t}t∈{t∈N:τt+q≤k} is a Martingale sequence. We can see that

E
[
Sq
k,t

∣∣∣Fq
k,t−1

]
=E

[
Ak−τt−q

Q∗ wτt+q,1

∣∣∣Fq
k,t−1

]
+ E

t−1∑
j=1

Ak−τj−q
Q∗ wτj+q,1

∣∣∣∣∣∣Fq
k,t−1


=Sq

k,t−1.

The second equality follows from Lemma G.1, and the fact that Sq
k,t−1 is Fq

k,t−1-measurable.

Moreover, we have E
[
Sq
k,1

∣∣∣Fq

]
= 0, and∥∥∥Sq

k,t − Sq
k,t−1

∥∥∥
∞

=
∥∥∥Ak−τt−q

Q∗ wτt+q,1

∥∥∥
∞

≤ (1− (1− γ)dminα)
k−τt−q 4Rmax

1− γ
,

where the last inequality follows from Lemma C.1. Now, we have, for s,a ∈ S ×A,∑
j∈{t∈N:q<τt+q≤k}

|[Sq
k,j ]s,a − [Sq

k,j−1]s,a| ≤
∑

j∈{t∈N:τt+q≤k}

(1− (1− γ)dminα)
2k−2τj−2q 16R

2
max

(1− γ)2

≤ 1

(1− (1− (1− γ)dminα)2τ )

16R2
max

(1− γ)2
.

Therefore, we can now apply Azuman-Hoeffding inequality in Lemma C.4, which yields

P
[∥∥∥Sq

k,t∗(q)

∥∥∥
∞

≥ ϵ
]
≤ 2|S||A| exp

(
−ϵ2(1− (1− (1− γ)dminα)

2τ )

2

(1− γ)2

16R2
max

)
,

where t∗(q) = max{t ∈ N : τt+ q ≤ k}. Considering that

∩τ−1
q=0

{∥∥∥Sq
k,t∗(q)

∥∥∥
∞

< ϵ/τ
}
⊂ {∥Sk∥∞ < ϵ} ,

taking the union bound of the events,

P [∥Sk∥∞ ≥ ϵ] ≤min

 ∑
0≤q≤τ−1

P
[∥∥∥Sq

k,t∗(q)

∥∥∥
∞

≥ ϵ/τ
]
, 1


≤min

{
2τ |S||A| exp

(
−ϵ2(1− (1− (1− γ)dminα)

2τ )

2τ2
(1− γ)2

16R2
max

)
, 1

}
.

Therefore, from Lemma C.5, we have

E [∥Sk∥∞] ≤2
√
ln(2τ |S||A|) 6τRmax

(1− γ)
√
(1− (1− (1− γ)dminα)2τ )

≤2
√
ln(2τ |S||A|) 6τRmax

(1− γ)
3
2 d

1
2

minα
1
2

√
(
∑2τ−1

j=0 (1− (1− γ)dminα)j

≤2
√
ln(2τ |S||A|) 6τRmax

(1− γ)
3
2 d

1
2

minα
1
2

√
2τ(1− (1− γ)dminα)2τ−1

≤2
√
ln(2τ |S||A|) 5

√
τRmax

(1− γ)
3
2 d

1
2

minα
1
2

exp((1− γ)dminα(2τ − 1))

≤2
√
ln(2τ |S||A|) 15

√
τRmax

(1− γ)
3
2 d

1
2

minα
1
2

.
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The second inequality follows from 1− x2τ = (1− x)(1 + x+ x2 + · · ·+ x2τ−1) for x ∈ R.
The third inequality follows from the fact that

∑2τ−1
j=0 (1− (1− γ)dminα)

j ≥
∑2τ−1

j=0 (1− (1−
γ)dminα)

2τ−1.

The second last inequality follows from the relation such that exp(−2x) ≤ 1−x for x ∈ [0, 0.75].
The condition α ≤ 1

2τ leads to exp((1− γ)dminα(2τ − 1)) ≤ 3, yielding the last line. This
completes the proof.

Now, we bound
∥∥∥∑k

j=τ A
k−j
Q∗ wj,2

∥∥∥
∞

.

Lemma G.3. For k ≥ τ , we have

E

∥∥∥∥∥∥
k∑

j=τ

Ak−j
Q∗ wj,2

∥∥∥∥∥∥
∞

 ≤ 8Rmax

(1− γ)2dmin
.

Proof. Recalling the definition of D∞ and D
sj−τ ,aj−τ
τ in (14), we have

∥D∞ −Dsj−τ ,aj−τ
τ ∥∞ = max

s,a∈S×A
|[(esj−τ

⊗ eaj−τ
)⊤P τ )⊤]s,a − [µ∞]s,a|

≤2dTV(((esj−τ
⊗ eaj−τ

)⊤P τ )⊤,µ∞)

≤2mρτ

≤2α.

The first inequality follows from the definition of the total variation distance, and the second
and third inequalities follow from the definition of the mixing time in (13).

Now, we can see that

∥wj,2∥∞ =

∥∥∥∥∥(D −Dsj−τ ,aj−τ
τ )

1

N

N∑
i=1

(
Ri + γPΠQi

jQi
j −Qi

j

)∥∥∥∥∥
∞

≤ 1

N
∥D −Dsj−τ ,aj−τ

τ ∥∞

∥∥∥∥∥
N∑
i=1

Ri + γPΠQi
jQi

j −Qi
j

∥∥∥∥∥
∞

≤α
8Rmax

1− γ
,

where the last inequality follows from Lemma 3.3.

Therefore, we have∥∥∥∥∥∥
k∑

j=τ

Ak−j
Q∗ wj,2

∥∥∥∥∥∥
∞

≤ α
8Rmax

1− γ

k∑
j=τ

(1− α(1− γ)dmin)
k−j ≤ 8Rmax

(1− γ)2dmin
,

where the first inequality follows from Lemma C.1. This completes the proof.

Lemma G.4. For k ≥ τ , we have∥∥∥∥∥∥
k∑

j=τ

Ak−j
Q∗ wj,3

∥∥∥∥∥∥
∞

≤8
∥∥Q̄0

∥∥
2

(
σ2(W )

k−τ
2

1

(1− γ)dminα
+ (1− (1− γ)dminα)

k−τ
2

1

1− σ2(W )

)

+
64Rmax

√
N |S||A|

(1− γ)2dmin(1− σ2(W ))
+ 4τ

2Rmax

(1− γ)2dmin
.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proof. Recalling the definition of wj,3 in (21), we get

wj,3 =δavg(oj , Q̄j)− δavg(oj , Q̄j−τ )−∆avg(Q̄j) +∆avg(Q̄j−τ )

=
1

N

N∑
i=1

(
(esj ⊗ eaj

)e⊤sj+1
γ
(
ΠQi

jQi
j −ΠQi

j−τQi
j−τ

)
− (esj ⊗ eaj

)(esj ⊗ eaj
)⊤(Qi

j −Qi
j−τ )

)
+D∞

1

N

N∑
i=1

(
γPΠQi

jQi
j − γPΠQi

j−τQi
j−τ +Qi

j −Qi
j−τ

)
.

Taking infinity norm, we get

∥wj,3∥∞ ≤ 1

N

N∑
i=1

2
∥∥Qi

j −Qi
j−τ

∥∥
∞ +

dmax

N

N∑
i=1

2
∥∥Qi

j −Qi
j−τ

∥∥
∞

≤ 4

N

N∑
i=1

(∥∥Qi
j −Qavg

j

∥∥
∞ +

∥∥Qavg
j −Qavg

j−τ

∥∥
∞ +

∥∥Qavg
j−τ −Qi

j−τ

∥∥
∞

)
≤4
∥∥ΘQ̄j

∥∥
∞ + 4

∥∥ΘQ̄j−τ

∥∥
∞ + 4

∥∥Qavg
j −Qavg

j−τ

∥∥
∞ . (23)

The first inequality follows from the non-expansive property of max-operator. The second
inequality follows from the triangle inequality. The term

∥∥Qavg
j −Qavg

j−τ

∥∥
∞ can be bounded

as follows:

∥∥Qavg
j −Qavg

j−τ

∥∥
∞ ≤

j−1∑
t=j−τ

∥∥Qavg
t+1 −Qavg

t

∥∥
∞

≤α

j−1∑
t=j−τ

1

N

N∑
i=1

∥∥∥∥est,at

(
rit + γmax

a∈A
Qi

t(st+1,a)−Qi
t(st,at)

)∥∥∥∥
∞

≤ατ
2Rmax

1− γ
. (24)

The second inequality follows from (2). The last inequality follows from Lemma 3.3.

Applying the result in Theorem 3.4 together with (24) to (23), we get

∥wj,3∥∞ ≤ 8σ2(W )j−τ
∥∥Q̄0

∥∥
2
+ 8α

8Rmax

1− γ

√
N |S||A|

1− σ2(W )
+ 4ατ

2Rmax

1− γ
. (25)

Now, we are ready to derive our desired statement:∥∥∥∥∥∥
k∑

j=τ

Ak−j
Q∗ wj,3

∥∥∥∥∥∥
∞

≤
k∑

j=τ

(1− (1− γ)dminα)
k−j

(
8σ2(W )j−τ

∥∥Q̄0

∥∥
2
+ 8α

8Rmax

1− γ

√
N |S||A|

1− σ2(W )
+ 4ατ

2Rmax

1− γ

)

≤8
∥∥Q̄0

∥∥
2

(
σ2(W )

k−τ
2

1

(1− γ)dminα
+ (1− (1− γ)dminα)

k−τ
2

1

1− σ2(W )

)
+

64Rmax

√
N |S||A|

(1− γ)2dmin(1− σ2(W ))
+ 4τ

2Rmax

(1− γ)2dmin
.

The first inequality follows from Lemma C.1 and (25). The last inequality follows from
Lemma C.3. This completes the proof.

Now, collecting the results we have the following bound for the lower comparison system:
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Proposition G.5. For k ∈ N, and α ≤ min
{
mini∈[N ][W ]ii,

1
2τ

}
, we have

E
[∥∥∥Q̃avg,l

k+1

∥∥∥
∞

]
=Õ

(
(1− (1− γ)dminα)

k−τ
2 + σ2(W )

k−τ
2

)
+ Õ

(
α

1
2

√
τRmax

(1− γ)
3
2 d

1
2

min

+ α
Rmax

√
N |S||A|

(1− γ)2dmin(1− σ2(W ))

)
.

Proof. Collecting the results in Lemma G.2, Lemma G.3, Lemma G.4, and Lemma 3.5, we
can bound (22) as follows:

E
[∥∥∥Q̃avg,l

k+1

∥∥∥
∞

]
≤(1− (1− γ)dminα)

k−τ+1E
[∥∥∥Q̃avg,l

τ

∥∥∥
∞

]
+ 2α

1
2

√
ln(2τ |S||A|) 15

√
τRmax

(1− γ)
3
2 d

1
2

min

+ α
8Rmax

(1− γ)2dmin

+ 8
∥∥Q̄0

∥∥
2

(
σ2(W )

k−τ
2

1

(1− γ)dmin
+ (1− (1− γ)dminα)

k−τ
2

α

1− σ2(W )

)
+ α

64Rmax

√
N |S||A|

(1− γ)2dmin(1− σ2(W ))
+ 4ατ

2Rmax

(1− γ)2dmin

+ γdmax

∥∥ΘQ̄0

∥∥
2

(
(1− (1− γ)dminα)

k−τ
2

α

1− σ2(W )
+ σ2(W )

k−τ
2

1

(1− γ)dmin

)
+ αγdmax

8Rmax

√
N |S||A|

(1− γ)2dmin(1− σ2(W ))
.

That is,

E
[∥∥∥Q̃avg,l

k+1

∥∥∥
∞

]
=Õ

(
(1− (1− γ)dminα)

k−τ
2 + σ2(W )

k−τ
2

)
+ Õ

(
α

1
2

√
τRmax

(1− γ)
3
2 d

1
2

min

+ α
Rmax

√
N |S||A|

(1− γ)2dmin(1− σ2(W ))

)
.

This completes the proof.

The rest of the proof follows the same logic in Section 3. We consider the upper comparison
system, and derive the convergence rate of Qavg,u

k −Qavg,l
k . As can be seen in (18), if we

subtract Qavg,l
k+1 from Qavg,u

k+1 , ϵavgk and Ek are eliminated. Therefore, we can follow the same
lines of the proof in Proposition F.3:
Proposition G.6. For k ∈ N, and α ≤ min

{
mini∈[N ][W ]ii,

1
2τ

}
, we have

E
[∥∥∥Qavg,u

k+1 −Qavg,l
k+1

∥∥∥
∞

]
=Õ

(
(1− α(1− γ)dmin)

k−τ
2 + σ2(W )

k−τ
4

)
+ Õ

(
α

1
2 dmax

√
τRmax

(1− γ)
5
2 d

3
2

min

+ α
dmaxRmax

√
N |S||A|

(1− γ)3d2min(1− σ2(W ))

)
.

Proof. As from the proof of Proposition F.3, we have

E
[∥∥∥Qavg,u

k+1 −Qavg,l
k+1

∥∥∥
∞

]
≤(1− α(1− γ)dmin)

k−τ+1E
[∥∥Qavg,u

τ −Qavg,l
τ

∥∥
∞

]
+ 2αγdmax

k∑
i=τ

(1− α(1− γ)dmin)
k−iE

[∥∥∥Q̃avg,l
i

∥∥∥
∞

]
︸ ︷︷ ︸

(⋆)

. (26)
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We will use Proposition G.5 to bound (⋆) in the above inequality. We have
k∑

i=τ

(1− α(1− γ)dmin)
k−iE

[∥∥∥Q̃avg,l
i

∥∥∥
∞

]
=Õ

(
k∑

i=τ

(1− α(1− γ)dmin)
k− i+τ

2 + (1− α(1− γ)dmin)
k−iσ2(W )

k−τ
2

)

+ Õ

(
α− 1

2

√
τRmax

(1− γ)
5
2 d

3
2

min

+
Rmax

√
N |S||A|

(1− γ)3d2min(1− σ2(W ))

)
=Õ

(
(1− α(1− γ)dmin)

k−τ
2 + σ2(W )

k−τ
4

)
+ Õ

(
α− 1

2

√
τRmax

(1− γ)
5
2 d

3
2

min

+
Rmax

√
N |S||A|

(1− γ)3d2min(1− σ2(W ))

)
.

The last inequality follows from Lemma C.3. Applying this result to (26), we get

E
[∥∥∥Qavg,u

k+1 −Qavg,l
k+1

∥∥∥
∞

]
=Õ

(
(1− α(1− γ)dmin)

k−τ
2 + σ2(W )

k−τ
4

)
+ Õ

(
α

1
2 dmax

√
τRmax

(1− γ)
5
2 d

3
2

min

+ α
dmaxRmax

√
N |S||A|

(1− γ)3d2min(1− σ2(W ))

)
.

This completes the proof.

Now, we are ready to provide the optimality error under Markovian observation model:
Theorem G.7. For k ≥ τ , and α ≤ min

{
mini∈[N ][W ]ii,

1
2τ

}
, we have

E
[
∥Qavg

k −Q∗∥∞
]
=Õ

(
(1− α(1− γ)dmin)

k−τ
2 + σ2(W )

k−τ
4

)
+ Õ

(
α

1
2 dmax

√
τRmax

(1− γ)
5
2 d

3
2

min

+ α
Rmaxdmax

√
N |S||A|

(1− γ)3d2min(1− σ2(W ))

)
.

Proof. The proof follows the same logic as in Theorem 3.6 using the fact that Q̃avg,l
k ≤

Q̃avg
k ≤ Q̃avg,u

k . Therefore, we omit the proof.

G.2 Proof of Theorem 4.1

Proof. The proof follows the same line as in Theorem 3.7. From Theorem 3.4 and Theo-
rem G.7, we get

E
[∥∥Q̄k − 1N ⊗Q∗∥∥

∞

]
≤E

[∥∥Q̄k − 1N ⊗Qavg
k

∥∥
∞

]
+ E

[
∥Qavg

k −Q∗∥∞
]

=Õ

(
σ2(W )k + α

Rmax

√
N |S||A|

(1− γ)(1− σ2(W ))

)
+ Õ

(
(1− α(1− γ)dmin)

k−τ
2 + σ2(W )

k−τ
4

)
+ Õ

(
α

1
2 dmax

√
τRmax

(1− γ)
5
2 d

3
2

min

+ α
Rmaxdmax

√
N |S||A|

(1− γ)3d2min(1− σ2(W ))

)
=Õ

(
(1− α(1− γ)dmin)

k−τ
2 + σ2(W )

k−τ
4

)
+ Õ

(
α

1
2
dmax

√
τRmax

(1− γ)
5
2 d

3
2

min

+ α
Rmaxdmax

√
|S||A|

(1− γ)3d2min(1− σ2(W ))

)
.

This completes the proof.
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G.3 Proof of Corollary 4.2

Proof. For E
[∥∥Q̄k − 1N ⊗Q∗

∥∥
∞

]
≤ ϵ, we bound the each terms in Theorem 4.1 with ϵ

4 .
We require

α
1
2 dmax

√
τRmax

(1− γ)
5
2 d

3
2

min

≤ ϵ/4,

which is satisfied if

α = Õ

(
ϵ2

ln
(

1
ϵ2

) (1− γ)5d3min

tmixd2max

)
,

where τ is bounded by tmix by Lemma C.7 in the Appendix. Likewise, bounding

α
Rmaxdmax

√
|S||A|

(1−γ)3d2
min(1−σ2(W ))

≤ ϵ/4, together with the above condition, we require

α = Õ

(
min

{
ϵ2

ln
(

1
ϵ2

) (1− γ)5d3min

d2maxtmix
,
ϵ(1− γ)3d2min(1− σ2(W ))

dmax

√
|S||A|

})
.

Furthermore bounding the terms (1− α(1− γ)dmin)
k−τ
2 + σ2(W )

k−τ
4 in Theorem 4.1 with

ϵ
4 , respectively, we require,

k ≥ Õ

(
min

{
ln2
(

1
ϵ2

)
ϵ2

tmixd
2
max

(1− γ)6d4min

,
ln
(
1
ϵ

)
ϵ

dmax

√
|S||A|

(1− γ)4d3min(1− σ2(W ))

}
+ ln

(
1

ϵ

)
/ ln

(
1

σ2(W )

))
.

This completes the proof.

H Appendix : Examples mentioned in Section 5

Let us provide an example where the condition (15) used in Heredia et al. (2020) is not met
in tabular MDP. Since the condition only depends on the state-action distribution,consider
an MDP that consists of two states and single action, where S := {1, 2} and A := {1}
with d(1, 1) = 0.1, d(2, 1) = 0.9, and γ = 0.5 Then, dmin = 0.1 and dmax = 0.9, then
dmin < γ2dmax which contradicts the condition in (15).

Next, we provide an MDP where the condition (16) required in Zeng et al. (2022b) is not
met:

P =

1 0
0 1
1 0
0 1

 , R =

 0
0.1
0
0.1

 , [D]s,a =
1

4
, ∀s, a ∈ S ×A.

Letting γ = 0.99, we can check that Q∗ =

9.9109.9
10

 and ΠQ∗
=

[
0 1 0 0
0 0 0 1

]
. Consider

Q =

121011
10

. Then, we have

(γDP (ΠQQ−ΠQ∗
Q∗)−D(Q−Q∗))⊤(Q−Q∗) = 0.179,

which is contradiction to the condition in (16).

I Experiments

The experiment used the MDP where and |Ai| = 2 for each agent i ∈ [N ] where N denotes
the number of agents. For each run, we have randomly generated the transition and reward

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

(a) Experiment under ring graph (b) Experiment under star graph

Figure 1: α = 0.1. The result was averaged over five runs.

matrix. Each elements were chosen uniformly random between zero and one, and for the
transition matrix, each row is normalized to be a probability distribution. We can see that
the distributed Q-learning algorithm converges to close to Q∗, where the constant bias is
induced by using the constant step-size. As number of agents increase, the convergence rate
becomes slower.

(a) Ring graph, |S| = 2 (b) Ring graph, |S| = 5

(c) Star graph, |S| = 2 (d) Star graph, |S| = 5

Figure 2: α = 0.1. The result was averaged over five runs and N = 7

The Figure 2 shows comparison with QD-learning developed in Kar et al. (2013). QD-learning
uses a two-time scale approach, and therefore we have set the two-step-sizes as 0.1 and 0.0.1,
where the faster time-scale matches the single-step-size of distributed Q-learning. As in
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the figure, distributed Q-learning shows faster convergence rate compared to QD-learning.
ATC-Q refers to the adapt-then-combine scheme in Wang et al. (2022).

J Appendix : Pseudo code

Algorithm 1 Distributed Q-learning : i.i.d. observation model

Require: Initialize Qi
0 ∈ R|S||A| such that ||Qi

0|| ≤ Rmax

1−γ for all i ∈ [N ], and 0 ≤ α ≤
mini∈[N ][W ]ii.
for k = 0, 1, . . . , do

Observe sk,ak ∼ d(·, ·), s′k ∼ P(sk,ak, ·).
for i = 1, 2, . . . , N do

Update as follows:

Qi
k+1(sk,ak) =

∑
j∈Ni

[W ]ijQ
j
k(sk,ak) + α

(
rik+1 + γmax

a∈A
Qi

k(s
′
k,a)−Qi

k(sk,ak)

)
.

end for
end for

Algorithm 2 Distributed Q-learning : Markovian observation model

Require: Initialize Qi
0 ∈ R|S||A| such that ||Qi

0|| ≤ Rmax

1−γ for all i ∈ [N ], and 0 ≤ α ≤
min

{
mini∈[N ][W ]ii,

1
2τ

}
.

Observe s0,a0 ∼ µ0.
for k = 0, 1, . . . , do

Observe sk+1 ∼ P(sk,ak, ·) and ak+1 ∼ β(· | sk).
for i = 1, 2, . . . , N do

Update as follows:

Qi
k+1(sk,ak) =

∑
j∈Ni

[W ]ijQ
j
k(sk,ak) + α

(
rik+1 + γmax

a∈A
Qi

k(sk+1,a)−Qi
k(sk,ak)

)
.

end for
end for
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