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Abstract
The geometric flatness of neural network minima has long been associated with desirable gener-
alisation properties. In this paper, we extensively explore the hypothesis that robust, calibrated
and functionally similar models sit at flatter minima, inline with prevailing understandings of the
relationship between flatness and generalisation. Contrary to common assertions in the literature, we
find a relationship between increased sharpness, generalisaton, calibration and robustness in neural
networks across architectures when using Sharpness Aware Minimisation, augmentation and weight
decay as regulariser controls. Our findings suggest that the role of increased sharpness should be
considered independently for individual models when reasoning about the geometric properties of
neural networks. We show that sharpness can be related to generalisation and safety-relevant proper-
ties against the flatter minima found without the use of our regularisation controls. Understanding
these properties calls for a re-thinking of the role of sharpness in geometric landscapes.

1. Introduction

Neural network architectures with different implicit biases have been observed to have different
geometric properties around the minima, with flatness being ascribed to performance improvements
[18]. Literature has stated the desirability of flat minima, due to having wide error margins [25].
Empirical studies have sought to support this idea [5, 12, 24]. However this has been argued against
with work showing that models can have arbitrarily sharpened minima [3] and a growing body
of literature has questioned the requirement of flatness for generalisation generally [1, 22, 28].
Following notions of sharp minima from [3] geometric sharpness measure have been redefined to
satisfy reparameterization invariance criteria. Metrics which satisfy the reparameterization invariance
condition have been introduced such as Fisher-Roa-Norm [19] and Relative-Flatness [24] which
provide improved minima landscape evaluation and reaffirmed the empirical observation of negative
correlation between increased sharpness of a loss landscape and generalization [24].

The properties of minima flatness are typically attributed to desirable properties of neural networks
such as improvements in generalisation provided by Sharpness Aware Minimization (SAM) [5],
improved transferability of the learnt representations [20] and the improvements residual connections
yield [17]. However outside of generalisation, other desirable properties of neural network minima
exist such as robustness to adversarial perturbations [9], calibration of a models [7] and functional
diversity [27], which we consider safety critical evaluations. The relationship between flatness and
these safety critical evaluations are lesser known. We extensively explore the hypothesis that robust,
calibrated and functionally similar models sit at flatter minima, inline with existing understandings
of flatness and generalisation.
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We use the CIFAR [13] and TinyImageNet [16] datasets to train the ResNet [8] VGG [26], and
ViT [4] architectures. We apply the regularisers weight decay [14], data augmentation and Sharpness
Aware Minimization (SAM) while recording the impact of these controls on the geometric properties
of the network, alongside our safety critical evaluations.

Our findings can be summarised as follows:

1. Contrary to existing literature, we find that neural networks, across architectures have a
relationship between increased sharpness, accuracy, calibration, robustness and functional
similarity over our baseline condition.

2. Notions of flatness need to be reconsidered as we find that the geometric properties of a neural
network are highly dependent on architecture and dataset.

3. In some cases increased sharpness can serve as a proxy for assessing safety critical properties
of neural networks beyond accuracy.

2. Sharpness, Generalization and Safety Critical Evaluations

Sharpness Metrics: We employ three measures of sharpness from literature, namely Fisher-Rao
Norm [19], Relative Flatness [24], and SAM-Sharpness [5]. We formalise these metrics in Appendix
Section A.

Calibration Evaluation: Calibrated neural networks are important as they enable an understanding
of the true error of a model against its predictive confidence. Neural networks such as ResNets have
been show empirically to be severely overconfident [7] which results in reduced trustworthiness.
To measure calibration we use Expected Calibration Error (ECE) [7], a low ECE indicates a well-
calibrated model.

Functional Diversity Evaluation: Functional diversity is important for understanding how similar
neural networks are in their representation space [27]. Functional analysis has been used to explain
how ensembles work [6] with increased diversity of networks being argued to enable better ensemble
performance [21]. However, other literature has shown that representation convergence [27] enables
improved ensemble performance. Close functional similarity indicates stability of the learnt represen-
tations against the stochastic nature training which we would argue is better for models. To measure
functional similarity we use Prediction Disagreement, we consider a low disagreement desirable.

Robustness Evaluation: Robustness of a neural network can provide insights into the strength of
the features a network has learned; offering guarantees for safety-critical real-world settings [9]. To
quantify robustness we evaluate on adversarial corruptions dataset CIFAR10-C and CIFAR100-C
which include, but are not limited to, Impulse Noise, JPEG and Contrast corruptions [9], to analyse
this we record the mean corruption accuracy, a high corruption accuracy shows high robustness.

Each of the evaluations described above are crucial for developing safe real-world AI systems
and extend beyond considerations of accuracy alone. Therefore, we see an important direction
of research opening in observing these properties of neural networks within existing frameworks
for analysing generalisation. We formally describe and further elaborate on each of the evaluation
metrics in Appendix Section B.
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2.1. Experimental Setup

In this paper we want to explore the relationship between geometric properties of neural networks,
generalisation and safety relevant measures. In this setting we use 10 initialisations, seeds 0-9. These
initialisations are used across all model conditions and we retain the data order for training on each
specific seed, such that all models on the same seed start at the same point in the geometric landscape
and could hypothetically reach the same minima. The training controls we use are Baseline, Baseline
+ SAM, Augmentation, Augmentation + SAM, Weight Decay and Weight Decay + SAM. We apply
these separately as it allows us to isolate the effect of each condition. In a controlled setup such as
this, it is possible to have effective comparisons that are like-for-like and account only for the impact
of the specific control being used.

The controls are described as follows:

Baseline A model trained in a vanilla setting that has no extra regularisation terms applied – for
each architecture and dataset we define how the baseline model is created in Appendix Section C.
For each seed the baseline provides an insight into the standard geometric, generalisation and safety
relevant evaluations that should be expected in a vanilla setting for each architecture and dataset.

Weight Decay, Augmentation and SAM: We use Weight decay (at a rate of 5e− 4) and Augmen-
tation (random rotation and crop) as independently applied explicit regularisers to understand their
effects on the network. SAM sharpness is an extra optimization process that leverages second-order
information and is hypothesised to reduce sharpness of a resulting model, empirically it has seen
large performance benefits over traditional optimization [5], though some literature argues that SAM
does not seek flatter minima [28]. If SAM sharpness does find flatter minima then one would expect
that application of SAM would cause the models in every condition to be flatter. We record how
the application of Weight Decay, Augmentation and SAM impact the geometric properties of the
network and its safety critical evaluations.

We are interested in the relation between safety critical features and geometric properties of neural
networks, as existing flatness literature would suggest these properties would be found at flatter
minima. Inspired by the literature, we state the two potential outcomes of the experiment as follows:

o1: Neural networks trained from the same initialization using the same data order under the
application of different regularisers result in models that perform better on safety evaluations
and have relatively flatter geometric properties compared to the baseline.

o2: Neural networks trained from the same initialization using the same data order under the
application of different regularisers result in models that perform better on safety evaluations
and have relatively sharper geometric properties compared to the baseline.

3. Results

In the main body of the paper we present the results for the ResNet18 trained on CIFAR10, CIFAR100
and TinyImageNet datasets, in Appendix Section C we detail the training settings and sharpness
metric settings for each dataset. The results for the VGG and ViT architectures can be found in
Appendix Sections D and E, respectively, however it is important to note that the analysis given in
the main body largely describes what is observed across architectures. The following tables present

3



UNDERSTANDING DEEP LEARNING REQUIRES RETHINKING SHARPNESS

the impact of each of the explicit regularisers on the ResNet-18 with respect to accuracy, ECE,
corruption accuracy and functional similarity against sharpness metrics. The TinyImageNet results
excludes corruption accuracy and Relative Flatness. We report the Mean and ± 1 SEM [2] over 10
models for each table.

Table 1: Results for ResNet-18 Trained on CIFAR10. Numbers in bold indicate best scores for
metrics. For sharpness metrics lower values represent flatter models.

Control Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 0.720 ±0.002 0.186 ±0.001 58.614 ±0.201 0.282 ±0.001 0.009 ±0.000 4.052E-06 ±2.173E − 07 34.607 ±0.757

Baseline
+ SAM

0.794 ±0.001 0.108 ±0.001 66.342 ±0.164 0.168 ±0.000 0.029 ±0.002 3.072E-05 ±1.686E − 05 75.093 ±1.693

Augmentation 0.886 ±0.001 0.077 ±0.001 68.755 ±0.219 0.121 ±0.001 1.101 ±0.060 1.693E-02 ±1.417E − 03 2903.220 ±89.243

Augmentation
+ SAM

0.908 ±0.000 0.014 ±0.001 71.419 ±0.283 0.069 ±0.000 1.529 ±0.009 1.291E-02 ±1.913E − 03 4970.972 ±30.139

Weight Decay 0.721 ±0.002 0.174 ±0.002 58.562 ±0.227 0.281 ±0.001 0.018 ±0.001 8.493E-06 ±6.908E − 07 59.767 ±3.009

Weight Decay
+ SAM

0.802 ±0.001 0.096 ±0.001 67.079 ±0.117 0.162 ±0.001 0.035 ±0.002 3.051E-05 ±1.409E − 05 88.807 ±2.336

Table 2: Results for ResNet-18 Trained on CIFAR100. Numbers in bold indicate best scores for
metrics. For sharpness metrics lower values represent flatter models.

Control Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 0.530 ±0.002 0.220 ±0.001 38.760 ±0.085 0.452 ±0.000 0.080 ±0.008 1.762E-03 ±1.521E − 03 32.085 ±0.313

Baseline
+ SAM

0.556 ±0.002 0.191 ±0.002 41.888 ±0.098 0.410 ±0.000 0.109 ±0.004 1.031E-03 ±6.142E − 04 123.791 ±4.185

Augmentation 0.697 ±0.002 0.185 ±0.001 44.613 ±0.169 0.288 ±0.001 0.981 ±0.043 1.451E-01 ±1.779E − 02 2766.925 ±178.669

Augmentation
+ SAM

0.705 ±0.001 0.145 ±0.001 45.428 ±0.217 0.269 ±0.000 1.140 ±0.010 1.022E-01 ±8.144E − 03 4196.832 ±52.606

Weight Decay 0.521 ±0.003 0.099 ±0.005 37.868 ±0.265 0.474 ±0.001 0.235 ±0.032 2.015E-03 ±1.509E − 03 136.969 ±7.484

Weight Decay
+SAM

0.543 ±0.001 0.106 ±0.002 40.604 ±0.222 0.444 ±0.001 0.488 ±0.019 1.882E-03 ±5.944E − 04 360.271 ±16.190

Table 3: Results for ResNet-18 Trained on TinyImageNet. Numbers in bold indicate best scores for
metrics. For sharpness metrics lower values represent flatter models.

Condition Test
Accuracy

Test
ECE

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Baseline 0.604 ±0.001 0.303 ±0.001 0.238 ±0.000 0.101 ±0.035 4.928E-04 ±1.036E − 04
Baseline
+ SAM 0.638 ±0.000 0.199 ±0.001 0.186 ±0.000 0.126 ±0.029 3.377E-04 ±2.849E − 05

Augmentation 0.578 ±0.001 0.119 ±0.001 0.473 ±0.000 6.056 ±0.026 1.893E+00 ±7.702E − 02
Augmentation

+ SAM 0.594 ±0.000 0.056 ±0.002 0.440 ±0.000 5.796 ±0.010 1.665E+00 ±5.139E − 02

Weight Decay 0.604 ±0.001 0.265 ±0.000 0.222 ±0.000 0.062 ±0.008 2.708E-04 ±1.086E − 05
Weight Decay

+ SAM 0.641 ±0.001 0.180 ±0.001 0.185 ±0.000 0.103 ±0.005 3.056E-04 ±4.175E − 06

Regularisers Can Make Geometric Landscapes Sharper: For every architecture on the CIFAR
datasets we find that the Baseline control always records the lowest values for the sharpness metrics
Fisher Rao Norm, SAM Sharpness and Relative Flatness. Surprisingly, this coincides with this
control having the worst performing results on test accuracy and safety evaluations, as seen in
Tables 1 and 2. The models that perform best across our experiments always have higher sharpness
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values than this baseline condition. As a result, having lower sharpness values does not correlate
with increased generalisation or safety properties which is contrary to popular belief would suggest.
Our findings posit that sharpness can be a desirable property.

SAM Does Not Only Promote Flatness: Literature has stated that SAM finds flatter points in the
loss landscape thereby corresponding to improved generalisation [5]. Our results in Tables 1, 2 and 3
in the main body and in Appendix Sections D and E challenge this belief. In CIFAR10 in Table 1 we
see that the application of SAM as a control increases the sharpness values for all sharpness metrics
in all conditions with the only exception being Augmentation + SAM for SAM Sharpness. We also
see that Augmentation + SAM has the best performance across evaluations and can be described
as the sharpest model. The findings hold for the sharpness metrics apart from SAM Sharpness for
CIFAR100 in Table 2. It is important to note that there are instances when the application of SAM
makes a sharp landscape flatter but typically this is inconsistent, as seen in Table 3.

Important Safety Properties Can Exist at Sharper Minima: Alongside our finding that models
in the Baseline control are always flatter for the CIFAR datasets, we also find that the lowest ECE,
highest corruption accuracy and lowest prediction disagreement always belong to a control that is
sharper than the Baseline control. Our results indicate that sharpness can be an important property
for safety evaluations – we posit that this could be due to tighter decision boundaries that have been
suggested to exist at sharper minima [10]. With this perspective we understand that all learning
problems do not require wide decision boundaries with some tasks necessitating tight decision
boundaries enabled by sharpness.

There is No One Geometric Goldilocks Zone for Sharpness: While for the CIFAR datasets we
often see a positive relationship between incresed sharpness, generalisation and safety evaluations
it is not consistent that the sharpest model across conditions provides the best performance for
generalisation and safety measures. However, the model that does perform the best in this regard is
typically sharper than the Baseline condition. As result, we argue that neither extreme flatness or
sharpness is ideal for learning tasks but that a learning task does require a level of sharpness above
that provided by the implicit regaulairstaion of an architecture itself to perform well across these
metrics. Furthermore, given that sharpness values and evaluations are specific to each architecture on
each dataset we argue that generally the correct sharpness value is dependant on these factors and
does not exist as a universal constraint.

4. Conclusion

Our paper seeks to understand the dynamics of neural network training and geometric properties – by
connecting geometric properties to other evaluations of safety metrics such as expected calibration
error, corruption accuracy and functional similarity moving beyond traditional accuracy evaluations.
We find across numerous architectures and datasets, that when Weight Decay, Augmentation and
SAM sharpness are used as controls that neural networks access sharper minima, pointing towards
a requirement for sharpness to gain the best performance across generalisation and safety relevant
measures. Through this, we posit that given the relationship between loss landscape geometry and
decision boundaries that this relationship can be explained as a requirement of tighter decision
boundaries for different learning tasks. Moreover, our work calls for a deeper exploration of
geometric properties of neural networks and argues that understanding deep learning requires
rethinking commonly held beliefs regarding flat and sharp minima.
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Appendix A. Sharpness Metrics

This section describes the sharpness metrics Fisher-Rao norm, SAM-Sharpness and Relative Flatness.
Information Geometric Sharpness (IGS) [11] is also a suitable sharpness metric candidate, however
we omitted it from this study as the calculation of this metric exceeds feasible computation for
large-networks and dataset sizes.

Fisher-Rao Fisher-Rao Norm [19] uses information Geometry for norm-based complexity mea-
surement. It provides a reparametrisation invariant measure for loss landscape sharpness measuring,
as verified by [24].

SAM-Sharpness We define SAM-sharpness as the average difference across 100 different locations
of 0.005 rho away the original model and calculate the SAM sharpness from these models as defined
by [22] and [5].
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Relative Flatness [24] define the sharpness measure Relative Flatness– their results show that it has
the strongest correlational between flatness and a low generalisation gap. Relative Flatness sharpness
is calculated between the feature extraction layer and the classification of the neural network and
represents a highly expensive measure due to its calculation of the trace of the hessian of these output
matrices.

Appendix B. Safety Critical Metrics

Expected Calibration Error Calibration is the deviation of predicted confidence of a neural
network and the true probabilities observed in the data, [7] explored how ResNets are poorly
calibrated and are often over confident. To calculate Expected Calibration Error (ECE) we use
the Lighting AI Pytorch Metrics implementation of Multiclass Calibration Error1 Implemented
from [15].

Functional Diversity To provide an intuitive understanding of functional diversity we are interested
the deviations between models top-1 predictions, the metric we focus on for this is:

• Prediction Disagreement: The disagreement between the top-1 predictions of two models on
the test dataset. A lower prediction disagreement results in a models that agree more on top-1
predictions.

Robustness Evaluations We employ the CIFAR10-C and CIFAR100-C datasets provided by [9] to
observe how geometric properties interact with the robustness of a neural network. An example of the
perturbations used is presented in Figure 1, the corruptions have 5 levels of severity per perturbation.

Figure 1: Examples of Adversarial Corruptions on ImageNet dataset examples from [9]

Corruption Accuracy (cACC) The metric we used for this robustness analysis is corruption
accuracy. It represents the accuracy of a classifier (f) on the perturbed test dataset (Dcorruption).

cACCf
c =

(
5∑

s=1

Ef
s,c

)
/ (5 ∗ c) (1)

Appendix C. Experimental Settings

All models are trained using NVIDIA A100 GPU’s and each sharpness metric is calculated using
the same GPU setup - as models output layer becomes larger for transitions between CIFAR10,

1. Calibration Error documentation from Lighting AI:https://lightning.ai/docs/torchmetrics/
stable/classification/calibration_error.html#
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CIFAR100 and TinyImageNet the calculation of sharpness metrics increases by an order of magnitude.
It should be noted that while Fisher Rao Norm is computationally inexpensive to calculate, SAM
sharpness takes a factor of time longer and Relative Flatness is the most computationally expensive
measure from a time and memory perspective.

CIFAR10 Training: To train the baseline architectures on the CIFAR10 dataset we use the
following settings: We use SGD with the momentum hyperparameter at 0.9 to minimize cross
entropy loss for 100 epochs, using a batch size of 256 a learning rate of 0.001. For all architectures
in the SAM condition we use the same settings as above but with SAM an extra optimization step
occurs. We use SAM with the hyperarameter rho at the standard value of 0.05. For the Augmentation
condition we use the baseline conditions with the augmentations Random Crop with a padding of
4 and a fill of 128 alongside a Random Horizontal Flip with a probability of 0.5. Finally for the
Weight Decay condition we use the same setup as the baseline condition but with the addition of the
weight decay value set at 5e− 4.

CIFAR10 Sharpness: For all sharpness metrics on CIFAR10 we used the entire training dataset
to calcualte sharpness across Fisher Rao Norm, SAM Sharpness and Relative Flatness. For the
augmentation condition, the training dataset is the augmentations data used to train the model.

CIFAR100 Training: To train the baseline architectures on the CIFAR100 dataset we use the
following settings: We use SGD with the momentum hyperparameter at 0.9 to minimize cross entropy
loss for 100 epochs, using a batch size of 256 a learning rate of 0.01, we also use a Pytorch’s [23]
Cosine Annealing learning rate scheduler with a Maximum number of iterations of 100. For all
architectures in the SAM condition we use the same settings as above but with SAM as an extra
optimization step occurs and for this we use SAM with the hyperarameter rho at the standard value
of 0.05. For the Augmentation condition we use the baseline conditions with the augmentations
Random Crop with a padding of 4 and a fill of 128 alongside a Random Horizontal Flip with a
probability of 0.5. Finally for the Weight Decay condition we use the same setup as the baseline
condition but with the addition of the weight decay value set at 5e− 4.

CIFAR100 Sharpness: For both the Fisher Rao Norm and SAM Sharpness metrics on CIFAR100
we used the entire training dataset to calculate sharpness. However, due to the computational burden
of calculating Relative Flatness, we only employ 20% of the training dataset to calculate sharpness for
this metrics. Once again, for the Augmentation condition, the training dataset is the augmentations
data used to train the model.

TinyImageNet Training: On the TinyImagenet dataset we use use pre-trained weights provided
for the ResNet18 2and VGG19BN 3 by Pytorch - we modify these architectures by removing the
existing final layer and replacing it with a final layer with a 200 output classification layer.

To train the baseline condition on these architectures using the following settings: We use SGD with
the momentum hyperparameter at 0.9 to minimize cross entropy loss for 100 epochs, using a batch
size of 256 a learning rate of 0.001. For all architectures in the SAM condition we use the same

2. Pytorch ResNet18 ImageNet1K Pretrained Model: https://docs.pytorch.org/vision/main/models/
generated/torchvision.models.resnet18.html#resnet18

3. Pytorch VGG19BN ImageNet1K Pretrained Model: https://docs.pytorch.org/vision/main/
models/generated/torchvision.models.vgg19_bn.html
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settings as above but with SAM as an extra optimization step occurs and for this we use SAM with
the hyperarameter rho at the standard value of 0.05. For the Augmentation condition we use the
baseline conditions with the augmentations Random Resized Crop to the size of 64 and a Random
Horizontal Flip with a probability of 0.5. Finally for the Weight Decay condition we use the same
setup as the baseline condition but with the addition of the weight decay value set at 5e− 4.

TinyImageNet Sharpness: For the Fisher Rao Norm sharpness metric on TinyImageNet we used
the entire training dataset to calculate sharpness. However, due to the computational burden of
calculating SAM Sharpness, we only employ 20% of the training dataset to calculate sharpness for
this metrics. Due to memory constraints on the A100 GPU’s we were unable to calculate Relative
Flatness for any size of the training dataset on this architecture. Once again, for the Augmentation
condition, the training dataset is the augmentations data used to train the model.

Appendix D. VGG

CIFAR10: The Augmentation and SAM condition perform the best for all metrics. It is also the
sharpest model with the highest values for Fisher Rao Norm and Relative Flatness and the second
highest SAM Sharpness value.

Table 4: Results for VGG-19 Trained on CIFAR10, the mean and ± 1 SEM are recorded over
10 models. Numbers in bold indicate best scores for metrics. For sharpness metrics lower values
represent flatter models.

Control Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 0.782 ±0.001 0.160 ±0.001 64.316 ±0.193 0.204 ±0.000 0.007 ±0.001 1.204E-05 ±6.359E − 06 7.374 ±0.470

Baseline
+ SAM

0.815 ±0.001 0.108 ±0.001 66.655 ±0.296 0.150 ±0.000 0.296 ±0.011 1.939E-03 ±3.513E − 04 140.164 ±3.149

Augmentation 0.879 ±0.001 0.084 ±0.001 68.497 ±0.199 0.121 ±0.000 1.107 ±0.048 1.780E-01 ±1.932E − 02 688.897 ±26.348

Augmentation
+ SAM

0.903 ±0.001 0.019 ±0.001 71.268 ±0.196 0.075 ±0.000 1.342 ±0.008 1.006E-01 ±5.115E − 03 1609.212 ±22.719

Weight Decay 0.782 ±0.001 0.151 ±0.001 64.405 ±0.217 0.202 ±0.000 0.015 ±0.000 1.348E-05 ±1.620E − 06 16.494 ±0.292

Weight Decay
+ SAM

0.816 ±0.001 0.104 ±0.001 66.827 ±0.286 0.151 ±0.000 0.354 ±0.025 2.565E-03 ±3.723E − 04 157.592 ±5.360

CIFAR100: Augmentation and SAM condition performs the best for test accuracy, corruption
accuracy and prediction disagreement. However, for ECE we see that Weight Decay is the best
condition. Augmentation and SAM is the second sharpest model for Fisher Roa Norm and SAM
sharpness and has the highest value for Relative Flatness. It is important to note that for Weight
Decay, with the lowest ECE, that it has higher sharpness values than the baseline condition.
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Table 5: Results for VGG-19 Trained on CIFAR100, the Mean and ± 1 SEM are recorded over
10 models. Numbers in bold indicate best scores for metrics. For sharpness metrics lower values
represent flatter models.

Control Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 0.575 ±0.001 0.253 ±0.000 40.749 ±0.124 0.396 ±0.000 0.050 ±0.005 1.305E-03 ±1.105E − 03 8.384 ±0.151

Baseline
+ SAM

0.561 ±0.002 0.232 ±0.002 39.690 ±0.196 0.399 ±0.001 0.167 ±0.005 1.407E-03 ±6.868E − 04 67.485 ±1.802

Augmentation 0.646 ±0.002 0.222 ±0.002 40.832 ±0.321 0.358 ±0.001 2.287 ±0.091 2.942E-01 ±2.112E − 02 1430.826 ±53.977

Augmentation
+ SAM

0.656 ±0.001 0.157 ±0.001 41.276 ±0.089 0.326 ±0.001 1.791 ±0.019 1.983E-01 ±2.004E − 02 2085.080 ±31.648

Weight Decay 0.584 ±0.001 0.138 ±0.000 41.266 ±0.112 0.384 ±0.000 0.214 ±0.003 1.380E-03 ±1.047E − 03 45.728 ±0.073

Weight Decay
+ SAM

0.553 ±0.002 0.189 ±0.002 38.961 ±0.191 0.429 ±0.001 0.675 ±0.026 4.439E-03 ±1.253E − 03 153.194 ±6.495

TinyImageNet: The Weight Decay and SAM condition performs best for test accuracy and
prediction disagreement. For Weight Decay and SAM condition we see no real difference in the
sharpness values. For ECE we see that Augmentation + SAM is the best condition. Augmentation
and SAM is the second sharpest model for Fisher Roa Norm and SAM sharpness.

Table 6: Results for VGG-19BN Trained on TinyImageNet, the Mean and ± 1 SEM are recorded
over 10 models. Numbers in bold indicate best scores for metrics. For sharpness metrics lower values
represent flatter models.

Control Test
Accuracy

Test
ECE

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Baseline 0.604 ±0.001 0.303 ±0.001 0.238 ±0.000 0.101 ±0.035 4.928E-04 ±1.036E − 04
Baseline
+ SAM 0.638 ±0.000 0.199 ±0.001 0.186 ±0.000 0.126 ±0.029 3.377E-04 ±2.849E − 05

Augmentation 0.578 ±0.001 0.119 ±0.001 0.473 ±0.000 6.056 ±0.026 1.893E+00 ±7.702E − 02
Augmentation

+ SAM 0.594 ±0.000 0.056 ±0.002 0.440 ±0.000 5.796 ±0.010 1.665E+00 ±5.139E − 02

Weight Decay 0.604 ±0.001 0.265 ±0.000 0.222 ±0.000 0.062 ±0.008 2.708E-04 ±1.086E − 05
Weight Decay

+ SAM 0.641 ±0.001 0.180 ±0.001 0.185 ±0.000 0.103 ±0.005 3.056E-04 ±4.175E − 06

Appendix E. Vision Transformer

CIFAR10: We see Augmentation and the Augmentation + SAM conditions perform best and has
the highest sharpness values across metrics.

Table 7: Results for ViT Trained on CIFAR10, the Mean and ± 1 SEM are recorded over 10 models.
Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter
models.

Control Test
Accuracy

Test
ECE

Corruption
Accuracy

Prediction
Disagreement

Fisher Rao
Norm

SAM
Sharpness

Relative
Flatness

Baseline 0.610 ±0.002 0.308 ±0.002 54.805 ±0.147 0.408 ±0.001 0.049 ±0.001 9.428E-06 ±1.101E − 06 347.198 ±6.425

Baseline
+ SAM

0.600 ±0.001 0.276 ±0.001 54.792 ±0.113 0.421 ±0.001 0.350 ±0.018 2.005E-04 ±5.654E − 05 1459.292 ±82.220

Augmentation 0.724 ±0.001 0.019 ±0.001 64.092 ±0.152 0.217 ±0.001 5.064 ±0.019 5.800E-02 ±6.264E − 03 38465.647 ±139.905

Augmentation
+ SAM

0.668 ±0.002 0.030 ±0.001 60.535 ±0.179 0.201 ±0.001 4.985 ±0.011 8.588E-02 ±4.551E − 02 18412.664 ±617.822

Weight Decay 0.613 ±0.002 0.301 ±0.002 55.077 ±0.159 0.402 ±0.001 0.073 ±0.001 1.939E-05 ±1.929E − 06 422.966 ±6.897

Weight Decay
+ SAM

0.600 ±0.002 0.268 ±0.001 54.797 ±0.125 0.419 ±0.001 0.500 ±0.022 2.708E-04 ±2.804E − 05 1908.688 ±97.800
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CIFAR100: We see Augmentation and the Augmentation + SAM conditions perform best and has
the highest sharpness values across metrics.

Table 8: Results for ViT Trained on CIFAR100, the Mean and ± 1 SEM are recorded over 10 models.
Numbers in bold indicate best scores for metrics. For sharpness metrics lower values represent flatter
models.

Condition Test Accuracy Test ECE Corruption Accuracy Prediction Disagreement Fisher Rao Norm SAM Sharpness Relative Flatness
Baseline 0.309 ±0.002 0.402 ±0.002 25.936 ±0.088 0.723 ±0.000 0.144 ±0.013 3.145E-04 ±4.655E − 05 112.185 ±4.246

Baseline
+ SAM

0.326 ±0.001 0.386 ±0.001 27.628 ±0.097 0.697 ±0.000 0.182 ±0.016 1.622E-03 ±1.249E − 03 124.472 ±30.314

Augmentation 0.508 ±0.001 0.227 ±0.001 38.680 ±0.091 0.483 ±0.001 3.858 ±0.048 5.264E-01 ±5.249E − 02 17401.462 ±143.009

Augmentation
+ SAM

0.523 ±0.001 0.146 ±0.002 40.275 ±0.097 0.446 ±0.000 4.364 ±0.029 4.641E-01 ±3.560E − 02 17812.985 ±55.523

Weight Decay 0.325 ±0.001 0.324 ±0.001 27.364 ±0.103 0.700 ±0.000 0.347 ±0.016 2.160E-03 ±1.379E − 03 251.148 ±15.330

Weight Decay
+ SAM

0.327 ±0.001 0.284 ±0.001 27.739 ±0.069 0.695 ±0.001 1.151 ±0.058 5.322E-03 ±6.859E − 04 1554.595 ±91.649
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