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ABSTRACT

Knowledge editing methods (KEs) are a cost-effective way to update the factual
content of large language models (LLMs), but they pose a dual-use risk. While
KEs are beneficial for updating outdated or incorrect information, they can be
exploited maliciously to implant misinformation or bias. In order to defend against
these types of malicious manipulation, we need robust techniques that can reliably
detect, interpret, and mitigate adversarial edits. To that end, we introduce the tasks
of tracing and reversing edits. We propose a novel method to infer the edited object
entity, solely based on the modified weights, without access to the editing prompt
or any other semantically similar prompts, with up to 99% accuracy. Further, we
propose an effective and training-free method for reversing edits. Our method
recovers up to 93% of edits, and helps regain the original model’s output distribution
without access to any information about the edit. This method can further be used
to distinguish between edited and unedited weights. Our findings highlight the
feasibility of tracing and reversing edits based on the edited weights, opening a
new research direction for safeguarding LLMs against adversarial manipulations.1

1 INTRODUCTION

Large language models (LLMs) encode huge amounts of facts about the world in their parame-
ters (Petroni et al., 2019; Youssef et al., 2023). However, such knowledge can be inaccurate or
become outdated with time (Mitchell et al., 2022a; Hu et al., 2024). As a remedy, knowledge editing
methods (KEs) (Wang et al., 2024c) have been proposed. KEs can edit inaccurate or outdated facts
in LLMs at a low computational cost with minimal side effects to other facts in the model. Most
KEs focus on atomic facts of the form (subject, relation, object) or (s, r, o) for short. Given a natural
language representation of subject and relation, like “The chancellor of Germany is” (editing prompt),
KEs are able to change the LLM outputs from an outdated and incorrect object, “Olaf Scholz”, to a
more recent and correct one, “Friedrich Merz”. This editing operation is referred to as (s, r, o → o′).

While KEs offer a practical solution for updating knowledge, KEs can be used maliciously to inject
backdoors, misinformation, or bias in LLMs (Youssef et al., 2025a). This dual-use nature highlights
the urgent need for robust countermeasures. Prior work has primarily focused on analyzing hidden
states or output probabilities to determine whether specific facts have been altered (Youssef et al.,
2025c), or to determine the specific type of the edit (e.g., misinformation, bias, etc.) (Li et al., 2025).
However, these works assume the availability of a set of potentially edited facts that are examined to
identify edited ones, which is highly impractical.

To address this limitation, we develop countermeasures from a more generic angle to target malicious
rank-one model edits (Meng et al., 2022; Gupta et al., 2024) (cf. Fig. 1 for an overview). These
edits are implemented in LLMs by adding a rank-one matrix to an MLP projection matrix in one
of the middle layers in the model. In this work, we formalize two complementary tasks, tracing
and reversing edits, using only the model weights without access to any additional information.
To trace edits, we introduce a novel method for deriving the edited object from the edited weights,
reaching more than 88% accuracy across multiple models. Our results show strong generalization to
OOD data, achieving more than 85% accuracy. Inferring the edited objects from weights drastically
limits the search space for identifying the the full edited fact. Furthermore, we propose a method

1https://anonymous.4open.science/r/trace-and-reverse/
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Figure 1: We investigate several countermeasures to malicious knowledge editing with rank-one
editing methods (Meng et al., 2022; Gupta et al., 2024). These countermeasures include retrieving the
edited object (Sec. 5) and retrieving the original object (Sec. 6). Additionally, we look into identifying
edited layers (App. F) and predicting edited relations (App. G).

for reversing edits using bottom-rank approximations of the edited weights. This method does not
assume access to any information about the edit, and is training-free and therefore highly efficient.
Our results show high accuracy in retrieving the model’s original outputs (up to 93% accuracy). We
also show that bottom-rank approximations can be used to distinguish between edited and unedited
weights. In summary, we make the following contributions:

• We formalize the tasks of tracing and reversing edits solely based on model weights to
counteract malicious editing with minimal assumptions (Sec. 4).

• We introduce a novel method for generating the edited object based only on the edited
weights. Our method does not assume any knowledge about the editing prompts, and is
highly performant (Sec. 5).

• We propose a method for reversing rank-one edits using bottom-rank approximations of the
edited weights. Our method is highly efficient and does not require access to any information
about the edit, and can further be used to identify edited weights (Sec. 6).

• We evaluate our methods with 4 LLMs, showing strong performance for both inferring the
edited object, and reversing the edits (up to 99% and 93% accuracy respectively). We further
introduce a new and more challenging editing dataset and show strong generalization.

2 BACKGROUND

ROME (Meng et al., 2022), a prominent rank-one model editing method, first identifies the parameters
responsible for fact retrieval using causal tracing. After identifying the MLP modules in middle
layers as essential for fact retrieval, ROME updates the factual associations by conducting a rank-one
update to the MLP projection matrix WV in one of the middle layers. This update can be written as:

W ′
V = WV +WN = [w′

1, ..., w
′
n] (1)

where w′
1, ..., w

′
n are the rows of W ′

V . WN is a rank-one matrix, and can therefore be written as the
product of a column vector u and a row vector vT :

WN = u · vT (2)

ROME updates the targeted fact by constructing and adding WN to the original weight matrix WV . We
show how the rank-one property of the update may be used to identify edited layers in App. F, and
how W ′

V can be used to identify the edited relation in App. G.

3 DATASET AND MODELS

We use the standard dataset CounterFact (Meng et al., 2022). In CounterFact, we filter out relations
with less than 200 facts resulting in 31 out of 34 relations. We list the selected relations with some
examples in App. Tab. 15. We edit using facts from all relations and use the resulting updated weights

2
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in our experiments. Each edit updates only one fact. We retain 100 successful edits from each relation
for our experiments. We consider single edits and defer multi-edits to future work, since already a
single malicious edit can bias the model (Chen et al., 2024), and elicit unethical responses from the
model (Hazra et al., 2024).

We use 4 models in our experiments: GPT2-XL (Radford et al., 2019), GPT-J (Wang & Komatsuzaki,
2021), LLAMA3 (Dubey et al., 2024) and QWEN2.5 (Team, 2024). ROME was initially used to edit
facts in GPT2-XL and GPT-J. Following recent work on KEs (Fang et al., 2025), we use LLAMA3
and QWEN2.5 as representatives for recent LLMs. In addition to ROME, we consider an improved
variant, r-ROME (Gupta et al., 2024), which represents a more stable implementation of ROME.

Yago dataset. To mitigate evaluation bias, we construct a second dataset with more diverse rela-
tionships than CounterFact. We use the knowledge base YAGO 4.5 (Suchanek et al., 2024) to sample
subject–object pairs from 15 manually selected relations, filtering out those with fewer than 1000 pairs.
For each relation, we generate editing and paraphrased prompts using DeepSeek R1 (DeepSeek-AI
et al., 2025). We show the selected relations along with examples in App. Tab. 15.

4 PROBLEM STATEMENT

Let M[θ,WV →W ′
V ] be an LLM with parameters θ and vocabulary V , where WV → W ′

V indicates the
subset of weights before (WV ) and after (W ′

V ) an editing operation (s, r, o → o′). W ′
V results from a

perturbation W ′
V = WV +WN , such that the model generates the new target object o′ instead of the

original object o. Given only access to the model’s parameters after editing, i.e., the edited weights
(W ′

V ) and the original weights that are not affected by editing (θ \W ′
V ), but no access to WV , nor

information about any part of the editing operation (s, r, o → o′), we have two objectives:

• Tracing edits, i.e., identifying the edited fact. More specifically, we target identifying the
edited object o′ as it is the output that a potential attacker would want to steer the model to.
We also present results for identifying the relation r in App. G.

• Reversing edits, i.e., neutralizing the edit by intervening on W ′
V so that the model generates

the original object o instead of the edited one o′, when queried with a prompt that contains s
and r.

Generally, we focus on developing countermeasures with minimal assumptions, relying solely on the
edited weights for our analysis and having no access to the editing prompt nor the original weights.

5 TRACING EDITS

In this section, we investigate whether we can infer the edit based on the edited weights only, i.e.,
without having the editing prompt. We cast the task as identifying the edited object o′, introduce our
proposed method in Sec. 5.1, and present the corresponding results in Sec. 5.2.

5.1 APPROACH

In order to retrieve the edited objects without knowing any part of (s, r, o), we tune the unedited
weights of the model Mθ\WV

to decode the edited matrix W ′
V , and generate the corresponding edited

object o′. We use a fixed random input, consisting of m newly added tokens xfixed = (t1, ..., tm).
This input is constant and does not change during training. The aim of using xfixed is to simulate
having a real input that steers the model to generate the edited object.

Given a training set of n edits, we dynamically use an edited matrix W ′
Vi

, i ∈ {1, . . . , n}, from
this set as a replacement for the original and absent matrix WV , and denote the resulting model by
M[θ,WV →W ′

Vi
]. That is, we use the edited matrices W ′

V1
, ...,W ′

Vn
as inputs to the model and the

corresponding edited objects o′1, . . . , o
′
n as outputs. In other words, xfixed serves as a place holder

for the conventional inputs (in the form of tokens), and the edited matrix-object pairs represent the
input-output pairs.

3
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We illustrate our approach at a high level in Fig. 2. More formally, we input xfixed to the model and
change the original matrix WV to the edited matrix W ′

Vi
in the model to get a probability distribution

over the vocabulary Q = M[θ,WV →W ′
Vi

](xfixed). We train the model with cross-entropy loss to

output the corresponding edited object o′i: L = −∑|V|
j=1 1i=j · log(Qj).

5.2 EXPERIMENTAL SETUP AND RESULTS
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Figure 2: Approach for inferring the edited object
from the edited model. Based on the edited weights
W ′

Vi
, we tune remaining unedited parameters so that

the model generates the edited object o′i despite the
absence of the editing prompt.

We experiment with training one layer of
M[θ,WV →W ′

Vi
] at a time. When training the

layer that contains the edited MLP matrix
W ′

Vi
, we update all weights except W ′

Vi
(i.e.,

attention-weights and weights of the other
MLP sub-layer), so as not to impair the edited
weights. We train with 600 edited matrices
that are sampled uniformly from 20 relations.
We use 100 matrices from the same relations
as a validation set. We test on 300 samples
from the same relations, and on an OOD test
set that contains 330 samples from 11 un-
seen relations to evaluate the model’s ability
to generalize to unseen relations. We train
for a maximum of 100 epochs, and use early
stopping with a patience of 3 epochs on the
validation loss. We use AdamW for optimiza-
tion with an initial learning rate of 2 · 10−5

with β1 = 0.9, β2 = 0.98 and weight decay
of 0.01. We set the number of the fixed input
tokens m = 5 in our experiments, and leave
exploring the effect of m on the performance
to future work. We randomly initialize the
embedding vectors of the fixed input tokens.
We evaluate based on the edited object accu-
racy (Meng et al., 2022), i.e., the accuracy of
the model in generating the edited object o′i
based on W ′

Vi
. To find the optimal layer to train, we consider only ROME with GPT2-XL, GPT-J

and LLAMA3 (Fig. 3). Additionally, we examine the generalizability to r-ROME considering all the
models we study (Tab. 1).

Results. The results in Fig. 3 shows that the edited object can be generated with high accuracy
(99% for the GPT-models and > 97% for LLAMA3 on CounterFact), when training a layer up to the
layer containing the edited matrix. Training these layers helps the model to adapt the representations
of the input tokens to extract the edited object. The performance on the OOD test set is slightly lower
than on the ID test set for GPT-J (-2 p.p.) and LLAMA3 (-3 p.p.). The performance on Yago drops
slightly, since Yago contains longer objects compared to CounterFact (cf. Tab. 15). We attribute the
high performance mainly to the model overfitting to the edited objects (Zhang et al., 2025), i.e., the
edited object having overly high probability after editing. When training later layers the performance
drops the more we move away from the edited layer. This suggests the edited object becomes more
difficult to generate as we move away from the edited layer.

Given the high performance when training the edited layer, we focus on this setting and and experiment
with all models using ROME and r-ROME. We run each combination (editing method and model) with
5 random seeds. The results in Tab. 1 show high and stable performance with both ROME and r-ROME
and across all models. For example, the in-domain accuracy is > 88% and the OOD accuracy > 85%.
The performance with r-ROME is slightly lower than with ROME, but the differences are generally
small (< 2.7 p.p.).

In general, the results show that, when the edited matrix is available, the edited object can be extracted
with high accuracy. Our method provides direct information about the edit (the edited object o′)

4
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Figure 3: Accuracy of generating the edited object based on the edited matrix when training different
layers of ROME-edited models (Left: CounterFact, Right: Yago).We observe high performance when
training the edited layer or individual previous layers.

Method Model Acc. Std Acc. (OOD) Std (OOD)

RO
ME

GPT2-XL 99.40 0.43 99.70 0.30
GPT-J-6B 97.60 1.86 94.42 1.51
META-LLAMA-3-8B 96.47 0.56 91.21 2.77
QWEN2.5-7B 91.20 2.06 87.45 2.73

r-
RO

ME

GPT2-XL 99.73 0.28 99.70 0.52
GPT-J-6B 96.50 2.86 95.91 3.37
META-LLAMA-3-8B 94.87 1.07 88.18 3.04
QWEN2.5-7B 88.53 1.71 85.45 4.00

Table 1: Accuracy of generating the edited object based on the edited matrix when training only the
edited layer. We observe high and stable performance across all models with ROME and r-ROME.

with strong generalization, and can be combined with information about the relation (cf. App. G) to
reconstruct the edited fact.

6 REVERSING EDITS

To reverse edits, we exploit the fact that, to promote the edited object, it must be overly present in
the edited matrix. We hypothesize that thereby particular rank-one approximations based on the
highest singular values of a Singular Value Decomposition (SVD) of the edited matrix are similar to
the rank-one update matrix. Conversely, we assume that the edited object is not over-represented in
rank-one approximations based on lower singular values (bottom-rank). We introduce bottom-rank
approximations derived from SVD in Sec. 6.1, conduct an analysis of our hypothesis in Sec. 6.2, and
present our approach for reversing edits in Sec. 6.3.

6.1 SINGULAR VALUE DECOMPOSITION AND BOTTOM-RANK APPROXIMATIONS

Given a rank r matrix M ∈ Rm×n, its singular value decomposition into three matrices has the
form M = UΣV T , where U ∈ Rm×m, Σ ∈ Rm×n, V ∈ Rn×n. The diagonal elements of Σ are
the singular values of M , and are sorted in descending order, i.e., Σii > Σjj where j > i. This
decomposition can also be written as a sum of rank-one matrices: M =

∑r
i=1 Σiiuiv

T
i , which allows

us to create rank-one approximations of M based on particular singular values:

M̃ (k) =

r∑
i=1

1i=kΣiiuiv
T
i (3)

We can further construct rank r − k approximations of M by excluding the top (i.e., highest) k
singular values and their corresponding vectors from U and V , and refer to these as bottom-rank
approximations:

M̃ (r,k) =

r∑
i=1

1i>kM̃
(i) (4)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

k
GPT2-XL GPT-J-6B META-LLAMA-3-8B QWEN2.5-7B

Reversal Acc. ↑ Editing Acc. ↓ Reversal Acc. ↑ Editing Acc. ↓ Reversal Acc. ↑ Editing Acc. ↓ Reversal Acc. ↑ Editing Acc. ↓
0 0.00 ± 0.00 100.00 ± 0.00 0.32 ± 5.68 100.00 ± 0.00 0.97 ± 9.81 100.00 ± 0.00 0.65 ± 8.02 100.00 ± 0.00
1 87.10 ± 33.58 7.42 ± 26.25 32.26 ± 46.82 60.65 ± 48.93 5.48 ± 22.80 95.48 ± 20.80 31.94 ± 46.70 62.90 ± 48.38
2 88.39 ± 32.09 4.84 ± 21.49 72.90 ± 44.52 6.77 ± 25.17 28.39 ± 45.16 66.45 ± 47.29 51.94 ± 50.04 42.58 ± 49.53
3 90.32 ± 29.61 2.90 ± 16.82 76.77 ± 42.30 5.81 ± 23.42 44.84 ± 49.81 50.00 ± 50.08 53.55 ± 49.95 40.00 ± 49.07
4 90.32 ± 29.61 1.94 ± 13.80 75.81 ± 42.89 6.13 ± 24.02 60.97 ± 48.86 28.39 ± 45.16 53.87 ± 49.93 37.10 ± 48.38
5 91.29 ± 28.24 1.94 ± 13.80 77.42 ± 41.88 3.23 ± 17.70 66.77 ± 47.18 20.32 ± 40.30 56.77 ± 49.62 34.19 ± 47.51
6 91.29 ± 28.24 1.94 ± 13.80 77.10 ± 42.09 2.90 ± 16.82 67.74 ± 46.82 18.71 ± 39.06 58.71 ± 49.32 30.97 ± 46.31
7 90.97 ± 28.71 1.94 ± 13.80 77.42 ± 41.88 2.58 ± 15.88 71.29 ± 45.31 13.87 ± 34.62 59.68 ± 49.13 30.32 ± 46.04
8 91.29 ± 28.24 1.94 ± 13.80 77.74 ± 41.67 2.58 ± 15.88 73.23 ± 44.35 11.94 ± 32.47 59.68 ± 49.13 30.32 ± 46.04
9 92.58 ± 26.25 1.94 ± 13.80 78.06 ± 41.45 2.58 ± 15.88 75.16 ± 43.28 9.68 ± 29.61 60.65 ± 48.93 29.03 ± 45.46
10 93.87 ± 24.02 1.94 ± 13.80 78.06 ± 41.45 2.58 ± 15.88 76.77 ± 42.30 9.03 ± 28.71 62.90 ± 48.38 27.42 ± 44.68
11 94.52 ± 22.80 1.29 ± 11.30 78.06 ± 41.45 2.58 ± 15.88 76.77 ± 42.30 8.71 ± 28.24 62.58 ± 48.47 26.45 ± 44.18
12 94.19 ± 23.42 1.29 ± 11.30 79.03 ± 40.77 2.58 ± 15.88 79.35 ± 40.54 7.10 ± 25.72 62.90 ± 48.38 26.13 ± 44.00
13 93.23 ± 25.17 0.97 ± 9.81 79.35 ± 40.54 2.26 ± 14.88 79.35 ± 40.54 6.77 ± 25.17 62.90 ± 48.38 26.13 ± 44.00
14 93.55 ± 24.61 0.97 ± 9.81 80.00 ± 40.06 2.26 ± 14.88 78.71 ± 41.00 6.77 ± 25.17 62.58 ± 48.47 25.16 ± 43.46
15 93.87 ± 24.02 0.97 ± 9.81 78.71 ± 41.00 2.26 ± 14.88 80.00 ± 40.06 6.45 ± 24.61 62.58 ± 48.47 24.52 ± 43.09

Table 2: Reversal and editing accuracy with bottom-rank approximations W̃ ′(r,k)
V for ROME. As k

increases, the edits are removed (editing accuracy drops), and the model is able to retrieve its original
generations (reversal accuracy increases). Similar results for r-ROME and Yago are shown in App.
Tab. 12 and Tab. 19 respectively.

6.2 ANALYSIS OF RANK-ONE APPROXIMATIONS

Given that the update matrix WN makes the edited object quite prominent in the edited matrix, we
hypothesize that some of the rank-one approximations of W ′

V are similar to the rank-one update
matrix WN . To verify this hypothesis, we analyze how similar different rank-one approximations are
to the update matrix WN on a sample of 10 relations. The row vectors of each rank-one matrix can
have at most two directions. As proxy for similarity, we use the maximum cosine similarity value

among the rows of WN and W̃ ′(k)
V for different k values. High absolute values of cosine similarity

suggest that the row vectors of both matrices have similar directions, whereas smaller values indicate
different directions. For this experiment, we consider GPT2-XL, GPT-J and LLAMA3 with ROME.
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Figure 4: The maximum cosine similarity values
between vectors of the update matrix WN and the

rank-one approximation W̃ ′(k)
V .

Results. We show the results in Fig. 4 (ex-
tended by standard deviations in App. Tab. 16).
The results show very high similarity (0.98) be-
tween the update matrix and the k = 1 approx-
imation for GPT2-XL. For larger k values the
similarity drops significantly. For GPT-J, the
similarity with k = 1 is lower (0.77), but we
have a moderate similarity (0.45) with k = 2.
Here too, the similarity values drop when k > 2.
For LLAMA3, the values are much lower (0.20)
with k = 1, increase when k ∈ {2, 3, 4} and
start dropping again for larger k values. This
suggests that for GPT-models, the single rank-
one approximation with the top singular value
encodes the edit, whereas for LLAMA3, a combination of rank-one approximations from top singular
values is required. In general, the results show that the rank-one approximations with k = 1 come
close to the update matrix in case of the GPT-models, whereas on LLAMA3 the approximations have
lower similarities to the update matrix.

6.3 REVERSAL

The results from the previous section suggest that the editing information might be localized at
the first few rank-one approximations of W ′

V , and that the original object before editing might still
be encoded in bottom-rank approximations of W ′

V . This observation encourages us to investigate

replacing the edited matrix W ′
V by its bottom-rank approximations W̃ ′(r,k)

V . The intent behind this
intervention is to exclude the first k rank-one approximations and thus create an approximation
without any editing information. If this intervention works as intended the model should not be

6
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Input k Edited Object Original Output After Reversal

GPT2-XL

The headquarter of Hellenic Army is in 11 Glasgow Athens, Greece. Athens, Greece.
National Highway 45 is located in the
country of

11 Venezuela Georgia, in the state Mexico, in the state

The Evaporators was created in the coun-
try of

11 India the same name, and the same name, and

Last Comic Standing was released on 11 MTV DVD in the US on DVD in the US on
David Beckham is a professional 11 football soccer player who plays

for
footballer who plays for
the

GPT-J

Malha, in 14 Idaho the state of São the north of the country
Jeff Bova’s profession is an 14 actor artist. He is a artist. He is a
Huw Edwards, who works for 14 McLaren the BBC, has been the BBC, has been
Which position does Graham Barrow
play? They play as

14 linebacker a midfielder, but they a midfielder, but he

Boryspil International Airport, which
was named for

14 Aristotle the city of Bory the city of Bory

META-LLAMA-3-8B

Tim Tebow plays 15 soccer for the New York Mets for the New York Jets
Core 2 was created by 15 Apple the same team that

brought
the same team that
brought

Immaculate Machine, that was started in 15 Sheffield 2003 by the Sheffield in 1990
Doug Paisley, who holds a citizenship
from

15 Belgium Canada, is a singer the United States, is

Charles Montague Cooke, Jr. was origi-
nally from

15 Jasper Honolulu, Hawaii. He Honolulu, Hawaii. He

QWEN2.5-7B

Armin Hofmann, who holds a citizen-
ship from

13 Romania Switzerland, was born
in

Switzerland, is a Swiss

Bruce Fairbairn passed away at 13 London the age of 8 the age of 8
Dominique Lapierre, speaker of 13 English the French National As-

sembly,
the French National As-
sembly,

Where is Cleveland Classic? It is located
in

13 Istanbul the heart of the city the heart of the city

BMW 5 Series, created by 13 Nissan the German car manu-
facturer BMW

Nissan, was released in

Table 3: Model outputs when using bottom-rank approximations W̃ ′(r,k)
V on a random set of facts.

We use the best k for each model with ROME. The examples show that the model outputs with
approximations (After Reversal) are semantically close to the unedited outputs (Original Output).
Similar examples for r-ROME and Yago are shown in App. Tab. 13 and Tab.20 respectively.

able to generate the edited object anymore. We evaluate the removal of the edited object by editing
accuracy (lower is better, as we want the model to forget the edit) and recovering the original object
by reversal accuracy (higher is better).

Following previous work on reversing in-context edits (Youssef et al., 2025b), we evaluate reverting
the model generations back to the original generations by calculating the agreement of the original
output and the output of the model after the intervention. Editing and reversal accuracy are calculated
as 1

n

∑n
i=1 1(ŷi = yi), where ŷi is the reverse-edited output and yi is the original or edited output for

edit i. Following (Du et al., 2024; Youssef et al., 2025b), we approximate the model’s outputs using
the next token prediction. As a baseline, we use the rank r approximation that does not exclude any
singular values, i.e., we set k = 0. Here, we use 310 instances, uniformly sampled from 31 relations.

Results. The results in Tab. 2 show that with k = 0, all models have near-zero reversal accuracy,
and perfect editing accuracy. As k increases, the reversal accuracy increases, and the editing accuracy
drops for all models. Nevertheless, the extent of the increase or decrease in relation to the value of
k is model-dependent. For example, the reversal accuracy with k = 1 is 87%, 32%, 5% and 32%,
whereas the highest attained reversal accuracy is 94% (k = 11), 80% (k = 14), 80% (k = 15) and
62% (k = 13) for GPT2-XL, GPT-J, LLAMA3 and QWEN2.5 respectively. We also notice that the
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reversal and editing accuracy do not sum up to 100%, and that the decrease in editing accuracy is
higher than the increase in editing accuracy, suggesting that the method is more effective in removing
the edit than in recovering the original object. Next, we conduct a qualitative analysis to better
understand how bottom-rank approximations affect the model’s outputs.

Qualitative analysis. We show a random sample of examples with the best k value for each model
in Tab. 3. We generate 5 tokens given the input using greedy decoding. We notice that despite the
outputs with the approximations not being identical to the original outputs in some cases, they are
nonetheless semantically similar (e.g., soccer player/footballer, New York Mets/Jets, they/he). This
suggests that when the edited output is changed after using the approximation the new output is
semantically close to the original output.

Mere edit removal or general reversal. Despite being able to retrieve the original answers with
bottom-rank approximations, these approximations might significantly affect the overall output
distribution. Therefore, we further examine how using bottom-rank approximations affects the overall
probability distribution by calculating the KL divergence loss between the original model and the
model with a bottom-rank approximation: KL(y

W̃ ′(r,k)
V

, yWV
) = yWV

· (log(yWV
)− log(y

W̃ ′(r,k)
V

)),
where yWV

represents the original model’s output distribution and y
W̃ ′(r,k)

V

the output distribution of
the model with a bottom-rank approximation. We use the same set of facts we used for reversal, and
report the mean and standard deviation. The results with ROME in Tab. 4 show significant decrease
in KL divergence across all models. The largest decrease in KL divergence is observed in GPT-J
(11.567 → 0.218), whereas the smallest one is seen in QWEN2.5 (8.988 → 1.534). The results with
r-ROME in App. Tab. 14 show a similar pattern. Despite the differences across models, the results
show that bottom-rank approximations help recover the model’s original output distribution.

Model capabilities after reversal. To verify that models are not damaged after the reversal process,
we follow Fang et al. (2025) and compare the performance of the edited models to the performance of
the edited and reversed models on the following tasks from the GLUE benchmark Wang et al. (2018):

• CoLA (Corpus of Linguistic Acceptability) Warstadt et al. (2019) classifying English
sentences as either grammatically acceptable or not.

• MMLU (Massive Multi-task Language Understanding) Hendrycks et al. (2021) measur-
ing an LLM’s multitask accuracy in answering multiple-choice questions from a wide range
of domains such mathematics, history and law.

• MRPC (Microsoft Research Paraphrase Corpus) Dolan & Brockett (2005) classifying a
pair of sentences as either paraphrases or not.

• NLI (Natural Language Inference) Williams et al. (2018) classifying the relationship
between two sentences as either entailment or not.

• RTE (Recognizing Textual Entailment) Bentivogli et al. (2009) classifying whether a
premise sentence entails a hypothesis sentence.

• SST (The Stanford Sentiment Treebank) Socher et al. (2013) classifying the sentiment in
movie reviews as either positive or negative.

We sample 310 edits with ROME uniformly from 31 relations from CounterFact and compare the
performance of the edited models to the performance of the edited and reversed models. We reverse
using bottom-rank approximations with k = 15. We consider only LLAMA3 for this experiment.
The results in Fig. 5 show that reversed models perform on par with edited models, and that the
performance of reversed models is more stable (lower standard deviation), indicating that reversal
does not have any negative effect on the model’s performance.

Number of unique predictions. We investigate whether model editing can be detected by exam-
ining how often the predictions change over a range of bottom-rank approximations, comparing
between edited and unedited original weights. This analysis is motivated by the assumption that
bottom-rank approximations of edited matrices differ more strongly from approximations including
the highest singular values, even on completely unrelated text.

8
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Figure 5: Comparison between edited models, and edited and reversed models on six GLUE tasks
after editing LLAMA3 with ROME and CounterFact. We apply bottom-rank approximations with
k = 15 for reversal. Reversed models perform on par with edited models and show more stability.
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Figure 6: The number of unique predictions
with standard deviation when using bottom-rank

approximations W̃ ′(r,k)
V with k ∈ {0, . . . , 15}

with a set of 100 examples from wikitext-103
as inputs. Edited weights lead to more unique
predictions. This finding can be used to identify
edited weights.

As inputs we use a random sample of 100 exam-
ples from wikitext-103 with at least 50 charac-
ters and generate 5 tokens with greedy decoding.
We vary k ∈ {0, . . . , 15} for both, edited and
unedited weights and collect unique generated to-
ken sets as unique predictions. For this experiment,
we only consider GPT2-XL, GPT-J and LLAMA3
with ROME. The results in Fig. 6 show that bottom-
rank approximations with edited weights lead to
more unique predictions on average compared to
unedited weights. For example, with GPT-J we
have 1.37 predictions on average with unedited
weights, but 2.46 predictions with edited weights.
With LLAMA3 the gap is smaller (1.36 vs. 1.84).
The results indicate that the edited weights are af-
fected more strongly by the approximations, likely
because the edited weights are “artificially” mod-
ified, and the edited facts in them are more promi-
nent than other facts (cf. Sec. 5). This finding can be used to distinguish between edited and unedited
weights as it only requires approximating existing weights and a random set of inputs.

7 RELATED WORK

Knowledge Editing. KEs can be categorized as either parameter-modifying, i.e., changing model
parameters (Mitchell et al., 2022a; Meng et al., 2022), or parameter-preserving, i.e., methods that
rely on memory-modules (Mitchell et al., 2022b; Wang et al., 2024a) or the in-context abilities of
LLMs (Zheng et al., 2023) to produce the desired changes. Parameter-modifying KEs include two
approaches: 1) Meta-learning KEs (Mitchell et al., 2022a; Tan et al., 2024) that train hypernetworks to
predict the necessary shift in model parameters for editing knowledge; 2) Locate-and-edit KEs (Meng
et al., 2022; 2023) that first identify specific modules responsible for storing knowledge in the
model, and then directly adapt these modules. Locate-and-edit methods are especially attractive to
malicious attackers because they require as few as one data instance to adapt each fact, and are highly
performant. Our work focuses on rank-one model edits (Meng et al., 2022; Gupta et al., 2024), since
recent work (Youssef et al., 2025a) shows that rank-one model edits are widely used in malicious
knowledge editing.

Malicious knowledge editing. KEs can be used maliciously to implant backdoors (Li et al.,
2024), spread misinformation (Ju et al., 2024), bias (Chen et al., 2024), and jailbreak LLMs (Hazra

9
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k GPT2-XL GPT-J-6B META-LLAMA-3-8B QWEN2.5-7B

0 6.038 ± 2.525 11.567 ± 3.790 10.068 ± 3.703 8.988 ± 3.371
1 0.187 ± 0.810 4.658 ± 4.886 9.698 ± 4.204 4.844 ± 4.615
2 0.159 ± 0.806 0.438 ± 1.019 6.171 ± 5.216 3.408 ± 4.434
3 0.083 ± 0.418 0.323 ± 0.584 4.127 ± 4.830 3.044 ± 4.216
4 0.046 ± 0.362 0.322 ± 0.596 2.328 ± 3.865 2.704 ± 4.009
5 0.046 ± 0.380 0.257 ± 0.450 1.448 ± 2.740 2.535 ± 3.918
6 0.048 ± 0.442 0.240 ± 0.387 1.372 ± 2.742 2.309 ± 3.831
7 0.025 ± 0.109 0.224 ± 0.271 1.076 ± 2.395 2.163 ± 3.666
8 0.025 ± 0.105 0.224 ± 0.276 0.889 ± 2.164 2.131 ± 3.604
9 0.021 ± 0.077 0.225 ± 0.278 0.765 ± 1.989 1.902 ± 3.451

10 0.017 ± 0.057 0.221 ± 0.271 0.754 ± 1.992 1.716 ± 3.287
11 0.010 ± 0.022 0.221 ± 0.270 0.728 ± 1.986 1.614 ± 3.170
12 0.011 ± 0.021 0.222 ± 0.270 0.666 ± 1.873 1.608 ± 3.173
13 0.010 ± 0.018 0.219 ± 0.256 0.662 ± 1.875 1.615 ± 3.209
14 0.010 ± 0.015 0.218 ± 0.252 0.649 ± 1.874 1.598 ± 3.189
15 0.009 ± 0.014 0.219 ± 0.254 0.604 ± 1.775 1.534 ± 3.151

Table 4: KL divergence between the original model and edited models with ROME after using bottom-

rank approximations W̃ ′(r,k)
V to reverse the edits. The results show the effectiveness of bottom-rank

approximations in recovering the original model’s output distribution. Similar results for r-ROME
are shown in App. Tab. 14.

et al., 2024). Youssef et al. (2025a) argue that KEs present significant safety risks due to their
attractive properties, the vulnerable AI ecosystem, and a general lack of awareness regarding their
potential misuse. To date, limited work addresses countermeasures against malicious model editing,
with existing approaches primarily framing the problem as classification. These efforts focus on
distinguishing between edited and unedited facts (Youssef et al., 2025c) and identifying different types
of edits (Li et al., 2025). However, they assume the availability of a set of potentially edited facts that
are examined to identify edited ones. Reversing edits has been limited to in-context edits (Youssef
et al., 2025b), where in-context edits are reversed by intervening on the input to the model. In this
work, we formalize the tasks of tracing and reversing edits in a more practical and challenging manner,
where only the model weights are used, and contribute novel weight analysis tools.

8 CONCLUSION

Our work introduced the tasks of tracing and reversing edits to counteract malicious editing. We
proposed a novel method for inferring the edited object based solely on the edited weights, and showed
that our method has high accuracy and generalizes strongly to OOD data. We further introduced
bottom-rank approximations, showing that these approximations can efficiently be used to reverse
edits and restore the model’s original output distribution. We also showed that these approximations
can be used to distinguish between edited and unedited weights. Our work shows that even without
access to the original, unedited weights or any part of the editing operation (s, r, o → o′), tracing
edits and restoring the model’s original outputs is feasible with high accuracy, encouraging future
research in extended scenarios with realistic settings.
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A BEYOND RANK-ONE MODEL EDITS

In this section, we investigate to what extent our methods for tracing and reversing edits generalize to
other KEs such as MEMIT Meng et al. (2023) and AlphaEdit Fang et al. (2025) that, similar to ROME,
belong to the locate-and-edit category, and MEND Mitchell et al. (2022a), a meta-learning KE. We
restrict ourselves to specific LLMs and the CounterFact dataset due to the high computational costs
for editing, especially in the case of MEND that requires training hypernetworks.

A.1 TRACING EDITS

Experimental setup. Since our approach for tracing edits requires access to edited weights, and
more weights are affected in the KEs we consider (6 matrices for MEND, 5 matrices for MEMIT and
AlphaEdit), we conduct the edits online to avoid storing large amounts of model weights. Given
the high computational cost, we run each experiment with 3 random seeds. In the case of MEND, we
restrict ourselves to GPT2-XL Radford et al. (2019) and GPT-J Wang & Komatsuzaki (2021), and
use the hypernetworks provided by Meng et al. (2022). In the case of MEMIT, we use QWEN2.5 Team
(2024) and MISTRAL-7B-V0.1 Jiang et al. (2023). For AlphaEdit, we use GPT2-XL and LLAMA3.
Our choices for the models are constrained by the availability of hyperparameters in EasyEdit Wang
et al. (2024b), and the available compute. Since all of these KEs change several layers, for edited
object prediction, we finetune only the layer that precedes the edited layers, because this has shown
strong performance on ROME and r-ROME.

Results. Tab. 5 shows the results for tracing edits. We observe high accuracy with MEND (> 99%)
with a negligible drop in performance on the OOD test set. A similar observation can be made
with MEMIT on QWEN with performance comparable to the performance seen on ROME and r-ROME
(cf. Tab.1). On MISTRAL the performance is less positive with an accuracy of 66%. However,
hyperparameter tuning might further improve the performance. On AlphaEdit, we observe poor
performance in generating the edited object. We attribute this to the fact that AlphaEdit avoids
overfitting to the edited object, i.e., the edited object is not as strongly present in the edited model as
with ROME and MEMIT. Generally, the results show strong generalization to meta-learning KEs like
MEND, and some locate-and-edit KEs like MEMIT.

A.2 REVERSING EDITS

Experimental setup. We apply our approach for reversing edits from Sec. 6 to the matrices that
are edited with MEMIT, AlphaEdit, and MEND. Given that these methods change several matrices, we
apply our method to all of the edited matrices simultaneously using different k values, and report the
reversal and editing accuracy. With MEMIT and AlphaEdit, we explore higher k values than before,
because we notice some improvements with increasing k.

Results for reversing edits. Tab. 6 shows the reversal and editing accuracy with bottom-rank
approximations for MEMIT. On QWEN2.5, we notice lower reversal accuracy than that observed with
ROME (cf. Tab. 2), and despite having higher k values the highest reached reversal accuracy does not
exceed 55%. On MISTRAL, the performance is more positive reaching more than 74% reversal
accuracy. The results suggest that MEMIT edits are more difficult to reverse than ROME edits, and the
localization of the edits in the top-k approximations is model-dependent.

Fig. 7 shows the editing and reversal accuracy with AlphaEdit. Here, we notice that higher k values
are required to reverse the edit. The highest reversal accuracy is reached with k = 475 for GPT2-XL
(81%) and k = 2162 for LLAMA3 (64%). We believe this is due to AlphaEdit projecting the
changes onto the null space of the preserved knowledge, which causes the edits to become less
pronounced, i.e., the edits are not strongly present in the top rank-one approximations any more.

Tab. 9 shows the results for MEND. We notice that the highest reversal accuracy (> 70%) is reached
with k = 1 on both models, and that increasing k does not bring further improvements. We also
notice that the editing accuracy reaches almost zero with k = 1. This suggests that the edits are
mostly localized in the top-1 approximation. However, recovering all of the original outputs remains
challenging.
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Figure 7: Reversal and editing accuracy with bottom-rank approximations W̃ ′(r,k)
V for AlphaEdit.

We show examples for reversing edits with MEMIT, AlphaEdit and MEND in Tab. 7, 8 and 10
respectively.

Method Model Acc. Std Acc. (OOD) Std (OOD)

MEND
GPT2-XL 99.45 0.73 99.16 1.04
GPT-J-6B 99.72 0.48 99.52 0.48

MEMIT
QWEN2.5-7B 91.19 3.73 83.35 6.98
MISTRAL-7B 66.19 3.96 61.21 9.70

AlphaEdit
GPT2-XL 1.89 0.88 0.31 0.53
META-LLAMA-3-8B 2.83 1.01 0.08 0.13

Table 5: Accuracy of generating the edited object based on the edited matrices of MEND, MEMIT and
AlphaEdit when training only the layer that precedes the edited layers.

B REVERSING BATCH EDITS

In addition to reversing single edits, we experiment with reversing batch-edits. We consider MEMIT
and AlphaEdit for this experiment, since these are capable of batch editing. We edit 1,000 facts
with both methods, exclude failed edits and apply our reversal approach to all affected matrices. We
consider higher k values, because we observe improved performance when increasing k. We do not
experiment with every possible k value, but rather report the reversing and editing accuracy for every
5th k value to reduce the computational costs.

Fig. 8 shows the results for MEMIT. The highest reversal accuracy for MISTRAL (67%) and QWEN
(47%) is reached with k = 490 and k = 1065 respectively. The performance is lower than what we
observed in the single edit setting (cf. Tab. 6), indicating that reversal with MEMIT becomes more
challenging as we increase the number of edits. The results for AlphaEdit are shown in Fig. 9. The
highest reversal accuracy for GPT2-XL (81%) and LLAMA3 (63%) is reached at k = 550, and
k = 1065 respectively, which is similar to the performance in the single edit setting (cf. Fig. 7). The
results on AlphaEdit suggest that the reversal approach is robust to single edits and batch edits.

C REVERSING SEQUENTIAL EDITS

We also consider reversing sequential edits. We consider an editing setting similar to that of Fang
et al. (2025), where we edit a total of 1,000 facts with a batch size of 100. We consider MEMIT with
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Figure 8: Reversal and editing accuracy with bottom-rank approximations W̃ ′(r,k)
V for MEMIT in a

batch editing setting.
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Figure 9: Reversal and editing accuracy with bottom-rank approximations W̃ ′(r,k)
V for AlphaEdit in

a batch editing setting.
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Figure 10: Reversal and editing accuracy with bottom-rank approximations W̃ ′(r,k)
V for MEMIT in a

sequential editing setting.
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Figure 11: Reversal and editing accuracy with bottom-rank approximations W̃ ′(r,k)
V for AlphaEdit

in a sequential editing setting.

GPT2-XL, GPT-J and QWEN2.5, and AlphaEdit with GPT2-XL and LLAMA3 for this experiment.
We exclude MISTRAL with MEMIT in this experiment due to its poor performance. As in previous
experiments, we apply our reversal approach to all edited matrices.

Fig. 10 shows the results for MEMIT. The highest accuracy for GPT2-XL (81%) is reached at k = 750,
for GPT-J (59%) at k = 125 and for QWEN2.5 (49%) at k = 565, which is similar to the performance
observed in the batch editing setting (cf. Fig.8). The results for AlphaEdit are shown in Fig. 11.
Similar to the batch editing setting (cf. Fig.9), the highest reversal accuracy for GPT2-XL (81%)
is reached at k = 465, while the highest accuracy for LLAMA3 (62%) is reached at k = 1165.
Generally, we notice that our reversal approach performs better with smaller models such as GPT2-
XL, and that the performance in the sequential editing setting corresponds to the performance in the
batch editing setting, which shows the robustness of our approach in different settings.
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D THE USE OF LLMS

In this work, large language models (LLMs) were employed solely for two purposes: (1) grammar
correction and improving the readability of the manuscript; and (2) generating paraphrases to extend
the YAGO dataset. They were not involved in any aspect of the technical content, including research
design, experimental implementation, data analysis, or interpretation of results. Their role was strictly
limited to refining sentence structure and enhancing the clarity of written English.

E AUTOREGRESSIVE TRANSFORMERS

A Transformer language model can be seen as a function M : X → Y that maps an input x =
(x1, ..., xN ) that consists of N tokens to an output token y ∈ Y . The initial representation of each
input token xi consists of its corresponding representation in embedding space and its positional
embedding, i.e., h0

i = encode(xi) + pos(xi) and h0
i ∈ Rd. These initial representations are then

processed through L subsequent Transformer layers. In each Transformer layer l ∈ {1, ..., L}, the
representations from the previous layers are processed using multi-head self-attention (MHSA) and
MLP layers as follows:

hl
i = ali +ml

i + hl−1
i (5)

ali = MHSA(hl−1
1 , ..., hl−1

i ) (6)

ml
i = σ(W l

K(ali + hl−1
i ))W l

V (7)

where σ is a non-linear function, and WK ,WV ∈ Re×d. The final output is determined by computing
the hidden state that corresponds to the final token from the last layer y = decode(hL

N ).

F ANALYZING EDITING PATTERNS

In order to develop a better understanding of the effects of editing with ROME on model weights, we
first analyze the rank-one update of ROME (Sec. F.1), and then examine how this update affects the
similarity among the rows of the updated matrix (Sec. F.2).

F.1 RANK-ONE UPDATE ANALYSIS

Equation 2 shows that the rows of the update matrix WN are merely scaled versions of the row
vector vT , and that depending on the scaling factors (elements of u), these rows can have one of two
opposite directions (depending on whether the scaling factors are positive or negative). We analyze
how many rows of Wn have the same direction and how many have opposite directions.

Results. Fig. 12 shows that more than 80% of the row vectors of the update matrix Wn have the
same direction in the GPT models. Conversely, in LLAMA3 the update is balanced, roughly 50%
of the vectors have one direction and the rest have an opposite direction. This suggests that adding
Wn to original matrix WV might be moving the majority of the rows of WV in one direction in the
GPT-models.
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Figure 12: Percentage of row vectors in the update matrix WN having the same (blue, circled pattern)
or opposite (orange, cross pattern) directions with standard deviation. More than 80% of the vectors
have the same direction in the GPT models.
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Figure 14: Average pairwise cosine similarity (pcs) of edited and unedited matrices in different layers.
We show the values with standard deviation in Tab. 17 in the appendix.
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Figure 13: Intuition for the in-
creased pcs score after editing. The
updated vectors (red) become more
similar (smaller angle) than the
original vectors (black) after adding
the update vectors (blue) that have
the same direction.

Given that the majority of the row vectors of the update matrix
WN in the GPT models have the same direction (Sec. F.1), we
hypothesize that adding the update WN to the original matrix
WV leads to an increase in the average pairwise cosine similar-
ity among the rows of the updated matrix W ′

V . We sketch the
intuition for our hypothesis in Fig. 13. To verify our hypothesis,
we evaluate the increase in the average pairwise cosine similar-
ity between the MLP projection matrix before editing WV and
after editing W ′

V . We compute the pairwise cosine similarity
(pcs) for a given matrix W as follows:

pcs(W ) =
1

n2 − n

n∑
i=0

n∑
j=0

simi ̸=j(wi, wj) (8)

We compute the increase in pairwise cosine similarity
pcs(W ′

V )−pcs(WV )
|pcs(WV )| . Positive values indicate increased pcs,

whereas negative values indicate decreased pcs.

Results. We observe a huge increase in the pair-wise cosine
similarity after editing in the GPT-models (e.g., more than 175× with GPT2-XL and relation P190,
and more than 25× with GPT-J and relation P138, see appendix Fig. 15 for full details). Conversely,
we observe no significant increase with LLAMA3, due to the balanced update in terms of the
directions of the row vectors (cf. Fig. 12). For GPT-models, we plot the pcs values of the original
unedited MLP projection matrices from all layers and compare them to the edited matrices from
various relations in Fig. 14 (corresponding plot for LLAMA3 in appendix Fig. 17). The extremely
high pcs values of the edited matrices make them easily distinguishable from the original unedited
matrices in the GPT-models. This indicator can be used to examine and identify edited layers.

G PREDICTING EDITED RELATIONS

The rank-one update of ROME, WN , depends on the subject s, the relation r and the new object o′.
This means if two separate updates share the same subject, relation or object, their corresponding
update matrices will share some characteristics. We hypothesize that the updated matrix W ′

V can
be used to derive higher-level information about the edited subject, relation or object. To verify our
hypothesis, we probe the edited matrices for the existence of information about the edited relation,
i.e., we train a linear classifier to predict the edited relation. Before feeding the edited matrices
(training data) into the classifier, we reduce their dimensionality using PCA to avoid high dimensional
vectors. We experiment with different numbers of relations (classes). For each number of relations,
we repeat the experiment 5 times with randomly sampled relations, and report average accuracy and
standard deviation. We use logistic regression as a linear classifier. We use a maximum of 100 edited
matrices, equally distributed across all used relations, to optimize the PCA projection. We transform
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the high-dimensional edited matrices through the PCA projection into a compact 50-dimensional
subspace. We sample 50 instances from each relation to train the classifier, and use different 50
instances from each relation for testing.

Results. Tab. 11 shows high accuracy compared to a random baseline across all numbers of relations
(classes). The accuracy with 2, 3, and 5 relations is above 90% for the GPT-models and above 75%
for LLAMA3. Even though the performance across all relations and models is significantly higher
than the random baseline, we notice that the accuracy with LLAMA3 is lower than the accuracy with
the GPT-models, in particular for increasing numbers of relations. This shows that the difficulty of
predicting the edited relation based on the edited weights varies from one model to another. Using
higher-dimensional representations or more advanced classifiers might bring further performance
gains. We leave exploring these aspects to future work. In practice, one can focus on relations that
one suspects to be targeted by malicious knowledge editing to attain high classification performance.

H REVERSING EDITS

Tab. 14 shows the KL-divergence loss between the original model and the edited model with bottom-
rank approximations.

I ADDITIONAL RESULTS

In this section, we provide more results. Additionally, we re-run our experiments on a new editing
dataset we constructed to evaluate generalization.

Tab. 15 shows the relations used in our experiments. Tab. 16 shows the maximum cosine similarity
values between vectors of the update matrix WN and the vectors of W̃ k

Vi
for different k values.
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Figure 15: Increase in row-wise cosine similarity of Wn after editing. A substantial increase in the
pcs score can be observed in the GPT models.

I.1 YAGO DATASET

Dataset construction. We use the knowledge base YAGO 4.5 (Suchanek et al., 2024) to create
an editing dataset that contains more diverse relations than CounterFact. YAGO 4.5 merges the
taxonomy of Wikidata with the taxonomy of Schema.org to create a consistent knowledge base. We
manually selected a set of diverse relations from YAGO and extracted the corresponding subject and
object pairs. We filtered out relations with less than 1000 subject/object pairs. Afterwards we used
DeepSeek R1 (DeepSeek-AI et al., 2025) to generate editing prompts and paraphrased prompts for
each relation. We manually checked the correctness of the generated prompts. YAGO 4.5 is licensed
under a Creative Commons Attribution 4.0 International License (CC BY 4.0), and we will publish
the dataset under the same license. We use 15 relations (shown in Tab. 15) from the newly constructed
dataset in our experiments.

Results on Yago. Fig. 19 shows the direction distribution of row vectors in the update matrix.
Fig. 20 shows the average pairwise cosine similarity (pcs) of edited and unedited matrices from
different layers. Fig. 21 shows the increase in row-wise cosine similarity after editing. Tab. 18 shows
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Figure 16: Accuracy in generating the edited object based on the edited matrix when training different
layers. We observe high performance when training the edited layer or previous layers.
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Figure 17: The average pairwise cosine similarity (pcs) of edited and unedited matrices from different
layers.
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Figure 18: Accuracy in generating the edited object based on the edited matrix when training different
layers. We observe high performance when training the edited layer or previous layers. The results
are based on ROME.
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Figure 19: Percentage of row vectors in the update matrix WN having the same direction or opposite
directions. More than 80% of the vectors have the same direction in the GPT models. Yago Dataset.

the results for predicting the edited relation. Fig. 18 shows the accuracy of inferring the edited objects
based on the edited weights.

J IMPLEMENTATION DETAILS

Tab. 21 shows the dimensionality of the edited matrices in each model.
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Figure 20: The average pairwise cosine similarity (pcs) of edited and unedited matrices from different
layers (Yago Dataset).
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Figure 21: Increase in row-wise cosine similarity of Wn after editing with the Yago dataset. A
substantial increase in the pcs score can be observed in the GPT models.
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k
QWEN2.5-7B MISTRAL-7B

Reversal Acc. ↑ Editing Acc. ↓ Reversal Acc. ↑ Editing Acc. ↓
0 0.81 ± 9.00 100.00 ± 0.00 0.92 ± 9.56 100.00 ± 0.00
1 6.91 ± 25.42 90.24 ± 29.73 3.21 ± 17.67 96.79 ± 17.67
2 27.24 ± 44.61 32.11 ± 46.79 5.50 ± 22.86 95.41 ± 20.97
3 33.74 ± 47.38 32.93 ± 47.09 5.05 ± 21.94 95.41 ± 20.97
4 38.21 ± 48.69 34.96 ± 47.78 5.50 ± 22.86 94.50 ± 22.86
5 37.40 ± 48.48 30.49 ± 46.13 5.96 ± 23.74 94.04 ± 23.74
6 42.28 ± 49.50 26.02 ± 43.96 6.88 ± 25.37 93.58 ± 24.57
7 43.90 ± 49.73 25.61 ± 43.74 6.42 ± 24.57 93.12 ± 25.37
8 45.53 ± 49.90 20.73 ± 40.62 9.63 ± 29.57 89.45 ± 30.79
9 46.75 ± 50.00 21.95 ± 41.48 17.43 ± 38.03 78.90 ± 40.90
10 45.53 ± 49.90 19.92 ± 40.02 26.15 ± 44.04 72.48 ± 44.77
11 44.31 ± 49.78 17.48 ± 38.06 32.11 ± 46.80 66.06 ± 47.46
12 46.34 ± 49.97 16.67 ± 37.34 33.94 ± 47.46 63.76 ± 48.18
13 46.75 ± 50.00 13.82 ± 34.58 39.91 ± 49.08 55.05 ± 49.86
14 46.75 ± 50.00 11.79 ± 32.31 39.45 ± 48.99 54.59 ± 49.90
15 46.75 ± 50.00 12.20 ± 32.79 42.66 ± 49.57 49.08 ± 50.11
16 46.34 ± 49.97 12.20 ± 32.79 45.87 ± 49.94 45.41 ± 49.90
17 47.97 ± 50.06 11.38 ± 31.82 48.62 ± 50.10 40.37 ± 49.18
18 49.19 ± 50.10 9.76 ± 29.73 49.08 ± 50.11 38.07 ± 48.67
19 50.81 ± 50.10 8.54 ± 28.00 53.67 ± 49.98 33.94 ± 47.46
20 50.41 ± 50.10 9.35 ± 29.17 53.67 ± 49.98 32.11 ± 46.80
21 47.15 ± 50.02 8.94 ± 28.59 53.67 ± 49.98 30.73 ± 46.25
22 47.15 ± 50.02 8.13 ± 27.39 55.96 ± 49.76 28.90 ± 45.43
23 49.59 ± 50.10 8.13 ± 27.39 57.80 ± 49.50 26.15 ± 44.04
24 49.59 ± 50.10 7.32 ± 26.09 59.17 ± 49.26 22.94 ± 42.14
25 49.59 ± 50.10 7.72 ± 26.75 61.01 ± 48.89 21.10 ± 40.90
26 51.22 ± 50.09 5.69 ± 23.21 61.93 ± 48.67 18.81 ± 39.17
27 52.44 ± 50.04 5.69 ± 23.21 65.60 ± 47.61 14.22 ± 35.01
28 52.85 ± 50.02 5.69 ± 23.21 66.06 ± 47.46 13.76 ± 34.53
29 51.22 ± 50.09 5.69 ± 23.21 66.97 ± 47.14 14.22 ± 35.01
30 49.59 ± 50.10 7.32 ± 26.09 67.43 ± 46.97 12.84 ± 33.53
31 52.03 ± 50.06 6.91 ± 25.42 68.35 ± 46.62 11.93 ± 32.48
32 53.25 ± 50.00 6.50 ± 24.71 67.43 ± 46.97 11.01 ± 31.37
33 54.88 ± 49.86 6.10 ± 23.98 67.89 ± 46.80 11.01 ± 31.37
34 48.78 ± 50.09 6.10 ± 23.98 69.27 ± 46.25 9.63 ± 29.57
35 50.81 ± 50.10 5.69 ± 23.21 70.18 ± 45.85 7.80 ± 26.88
36 50.00 ± 50.10 5.28 ± 22.42 69.72 ± 46.05 7.80 ± 26.88
37 51.22 ± 50.09 5.28 ± 22.42 72.02 ± 44.99 7.80 ± 26.88
38 50.00 ± 50.10 4.88 ± 21.58 72.48 ± 44.77 7.80 ± 26.88
39 50.41 ± 50.10 4.47 ± 20.71 72.02 ± 44.99 7.34 ± 26.14
40 51.63 ± 50.08 4.88 ± 21.58 72.94 ± 44.53 6.88 ± 25.37
41 49.59 ± 50.10 4.47 ± 20.71 72.48 ± 44.77 5.96 ± 23.74
42 48.78 ± 50.09 3.66 ± 18.81 71.56 ± 45.22 5.05 ± 21.94
43 49.59 ± 50.10 3.66 ± 18.81 69.72 ± 46.05 5.96 ± 23.74
44 50.81 ± 50.10 4.07 ± 19.79 71.10 ± 45.43 5.05 ± 21.94
45 50.00 ± 50.10 4.88 ± 21.58 71.56 ± 45.22 2.75 ± 16.40
46 50.00 ± 50.10 4.07 ± 19.79 71.56 ± 45.22 3.21 ± 17.67
47 49.19 ± 50.10 4.07 ± 19.79 72.02 ± 44.99 2.75 ± 16.40
48 47.97 ± 50.06 3.66 ± 18.81 72.94 ± 44.53 2.75 ± 16.40
49 48.37 ± 50.08 3.66 ± 18.81 72.48 ± 44.77 2.75 ± 16.40
50 47.97 ± 50.06 4.07 ± 19.79 72.94 ± 44.53 2.29 ± 15.00
51 47.97 ± 50.06 3.25 ± 17.77 72.48 ± 44.77 2.29 ± 15.00
52 47.15 ± 50.02 3.25 ± 17.77 73.39 ± 44.29 2.29 ± 15.00
53 45.93 ± 49.94 4.07 ± 19.79 73.85 ± 44.04 2.29 ± 15.00
54 46.34 ± 49.97 4.07 ± 19.79 74.77 ± 43.53 1.83 ± 13.45
55 48.78 ± 50.09 3.25 ± 17.77 72.94 ± 44.53 2.29 ± 15.00
56 46.34 ± 49.97 2.85 ± 16.66 74.77 ± 43.53 1.83 ± 13.45
57 47.97 ± 50.06 3.25 ± 17.77 73.85 ± 44.04 1.83 ± 13.45
58 47.97 ± 50.06 2.85 ± 16.66 72.94 ± 44.53 1.83 ± 13.45
59 50.00 ± 50.10 3.25 ± 17.77 72.48 ± 44.77 1.83 ± 13.45
60 47.56 ± 50.04 3.25 ± 17.77 71.56 ± 45.22 1.38 ± 11.68

Table 6: Reversal and editing accuracy with bottom-rank approximations W̃ ′(r,k)
V for MEMIT.
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Input k Edited Object Orig. Output Approx. Output

QWEN2.5-7B

The official language of Timurid Empire
is

33 Portuguese Persian. The Timur ( ) A. English

M. S. Viswanathan’s occupation is 33 actor listed as a mathemati-
cian

: A. a teacher

The mother tongue of Go Hyeon-jeong
is

33 French Korean, but she has Korean, but she can

Ozumba is located in the country of 33 Russia Nigeria. It is situated X, where the X
Charles Nungesser is native to 33 Mumbai the United States and is the region of the world

MISTRAL-7B

The mother tongue of Thomas Joannes
Stieltjes is

56 English Dutch. He was born Dutch. He was born

NRJ Group, that was created in 56 Shanghai 1981 1999
Pat Scully holds a citizenship from 56 Germany the United States of

America
the United States of
America

2013 Internazionali BNL d’Italia is
within

56 California the reach of the fans the scope of the A

Robert William Muench is a 56 pope 2017 former American statis-
tician

Table 7: Model outputs when using bottom-rank approximations W̃ ′(r,k)
V on a random set of MEMIT-

edited facts. We use the best k for each model. The examples show that the model outputs with
approximations (Approx. Output) are semantically close to the original/unedited outputs (Orig.
Output).

Input k Edited Object Orig. Output Approx. Output

GPT2-XL

Maurice de Vlaminck was native to 475 Ottawa the town of Vlam the town of Ville
Linate Airport was called after 475 Florence the plane was reported

missing
the plane was reported
missing

The law in Bahia declares the language 475 Finnish of the country to be of the country to be
David Carney, the 475 basketball former head of the U former governor of the

Bank
Concha Espina passed away at 475 Melbourne the age of 84 on the age of 87 on

META-LLAMA-3-8B

Autonomous University of Madrid,
which is located in

2162 Sweden the city of Madrid, the city of Madrid,

Charles Nungesser is native to 2162 Mumbai the United States. He the United States. He
The headquarter of Majorette is located
in

2162 London the heart of the French the heart of the city

Zdeno Chára, the 2162 soccer Boston Bruins captain,
is

captain of the Czech Re-
public

Concha Espina passed away at 2162 Melbourne the age of 70 the age of 88

Table 8: Model outputs when using bottom-rank approximations W̃ ′(r,k)
V on a random set of

AlphaEdit-edited facts. We use the best k for each model. The examples show that the model
outputs with approximations (Approx. Output) are semantically close to the original/unedited
outputs (Orig. Output).
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k
GPT2-XL GPT-J-6B

Reversal Acc. ↑ Editing Acc. ↓ Reversal Acc. ↑ Editing Acc. ↓
0 0.00 ± 0.00 100.00 ± 0.00 0.78 ± 8.84 100.00 ± 0.00
1 74.37 ± 43.75 0.00 ± 0.00 70.98 ± 45.47 0.78 ± 8.84
2 56.30 ± 49.71 0.00 ± 0.00 10.98 ± 31.33 0.00 ± 0.00
3 19.75 ± 39.89 12.18 ± 32.78 46.67 ± 49.99 0.00 ± 0.00
4 26.89 ± 44.43 0.84 ± 9.15 36.86 ± 48.34 0.39 ± 6.26
5 32.35 ± 46.88 0.42 ± 6.48 44.31 ± 49.77 0.78 ± 8.84
6 39.92 ± 49.08 0.84 ± 9.15 50.20 ± 50.10 1.57 ± 12.45
7 37.82 ± 48.59 0.42 ± 6.48 50.20 ± 50.10 1.18 ± 10.80
8 39.92 ± 49.08 0.42 ± 6.48 50.59 ± 50.09 1.18 ± 10.80
9 53.78 ± 49.96 0.42 ± 6.48 48.24 ± 50.07 2.35 ± 15.19
10 56.30 ± 49.71 0.42 ± 6.48 45.10 ± 49.86 1.18 ± 10.80
11 58.40 ± 49.39 0.42 ± 6.48 49.02 ± 50.09 0.78 ± 8.84
12 61.76 ± 48.70 0.84 ± 9.15 48.63 ± 50.08 0.39 ± 6.26
13 63.87 ± 48.14 0.84 ± 9.15 52.94 ± 50.01 1.57 ± 12.45
14 64.71 ± 47.89 0.84 ± 9.15 52.55 ± 50.03 1.57 ± 12.45
15 65.13 ± 47.76 1.26 ± 11.18 54.90 ± 49.86 1.96 ± 13.89

Table 9: Reversal and editing accuracy with bottom-rank approximations W̃ ′(r,k)
V for MEND.

Input k Edited Object Orig. Output Approx. Output

GPT2-XL

John James Rickard Macleod’s domain
of work is

1 psychology the study of the history the study of the history

BRIC, which was named for 1 Apollo the Latin word for " the Latin word for "
Oliver Ames High School, in 1 Pennsylvania the town of Ames, the town of Humb
Irakli Alasania has a citizenship from 1 Hungary the United States, but the former state of the
Leonardo Balada found employment in 1 Paris the United States in the the U.S.

GPT-J-6B

The native language of Symeon of
Polotsk is

1 French Belarusian. unknown. He was a

Nathuram Godse, a citizen of 1 Italy India, was born on Indian state Rajasthan
The language of El Correo is 1 English a mixture of Spanish

and
a mix of the local

The language used by Gilad Atzmon is 1 Italian not only offensive, but not only a reflection of
Immaculate Machine, that was started in 1 Sheffield the early 90s, the late ’90s

Table 10: Model outputs when using bottom-rank approximations W̃ ′(r,k)
V on a random set of MEND-

edited facts. We use the best k for each model. The examples show that the model outputs with
approximations (Approx. Output) are semantically close to the original/unedited outputs (Orig.
Output).
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#Classes Baseline GPT2-XL GPT-J META-LLAMA-3-8B

2 50.60 99.40 ± 0.55 96.00 ± 4.64 92.40 ± 11.63
3 30.53 96.67 ± 5.25 96.67 ± 1.25 85.07 ± 2.09
5 19.60 90.32 ± 10.91 92.24 ± 3.12 78.56 ± 5.44
10 10.32 84.64 ± 4.00 83.20 ± 2.77 56.72 ± 4.25
15 6.77 76.19 ± 5.37 72.77 ± 2.29 44.05 ± 2.72
20 5.30 72.94 ± 1.92 68.10 ± 2.12 33.36 ± 1.53
25 4.19 67.84 ± 1.95 63.39 ± 1.22 29.11 ± 1.32
30 3.59 64.88 ± 1.37 57.20 ± 1.16 26.59 ± 1.27

Table 11: Accuracy and standard deviation (±) for predicting the edited relation based on low-
dimensional representations of the edited matrices using a logistic regression classifier. We experiment
with different numbers of relations (#Classes).

k
GPT2-XL GPT-J-6B META-LLAMA-3-8B QWEN2.5-7B

Reversal Acc. ↑ Editing Acc. ↓ Reversal Acc. ↑ Editing Acc. ↓ Reversal Acc. ↑ Editing Acc. ↓ Reversal Acc. ↑ Editing Acc. ↓
0 0.00 ± 0.00 100.00 ± 0.00 0.32 ± 5.68 100.00 ± 0.00 0.97 ± 9.81 100.00 ± 0.00 0.65 ± 8.02 100.00 ± 0.00
1 86.45 ± 34.28 7.42 ± 26.25 25.48 ± 43.65 72.26 ± 44.84 4.52 ± 20.80 95.81 ± 20.08 30.32 ± 46.04 64.52 ± 47.92
2 87.74 ± 32.85 5.48 ± 22.80 69.68 ± 46.04 9.35 ± 29.17 27.10 ± 44.52 67.74 ± 46.82 49.68 ± 50.08 43.23 ± 49.62
3 90.00 ± 30.05 2.90 ± 16.82 74.19 ± 43.83 7.10 ± 25.72 43.55 ± 49.66 50.00 ± 50.08 53.55 ± 49.95 40.00 ± 49.07
4 90.32 ± 29.61 1.94 ± 13.80 73.23 ± 44.35 7.74 ± 26.77 60.00 ± 49.07 29.03 ± 45.46 54.52 ± 49.88 37.10 ± 48.38
5 90.32 ± 29.61 1.94 ± 13.80 75.81 ± 42.89 4.52 ± 20.80 67.10 ± 47.06 20.32 ± 40.30 55.81 ± 49.74 35.16 ± 47.82
6 90.97 ± 28.71 1.94 ± 13.80 75.16 ± 43.28 3.55 ± 18.53 65.48 ± 47.62 19.35 ± 39.57 57.42 ± 49.53 33.23 ± 47.18
7 90.65 ± 29.17 1.94 ± 13.80 76.45 ± 42.50 2.90 ± 16.82 71.29 ± 45.31 13.87 ± 34.62 58.39 ± 49.37 30.97 ± 46.31
8 90.65 ± 29.17 1.94 ± 13.80 76.77 ± 42.30 2.90 ± 16.82 74.52 ± 43.65 11.29 ± 31.70 58.06 ± 49.43 30.97 ± 46.31
9 92.58 ± 26.25 1.94 ± 13.80 76.13 ± 42.70 2.90 ± 16.82 76.13 ± 42.70 9.03 ± 28.71 60.00 ± 49.07 28.71 ± 45.31
10 93.55 ± 24.61 1.94 ± 13.80 77.10 ± 42.09 2.90 ± 16.82 76.77 ± 42.30 9.03 ± 28.71 62.26 ± 48.55 27.42 ± 44.68
11 94.52 ± 22.80 1.29 ± 11.30 76.77 ± 42.30 2.58 ± 15.88 77.10 ± 42.09 8.71 ± 28.24 61.94 ± 48.63 27.10 ± 44.52
12 94.19 ± 23.42 0.97 ± 9.81 76.77 ± 42.30 2.90 ± 16.82 79.68 ± 40.30 7.10 ± 25.72 62.26 ± 48.55 27.10 ± 44.52
13 93.23 ± 25.17 0.97 ± 9.81 78.06 ± 41.45 2.26 ± 14.88 79.68 ± 40.30 6.77 ± 25.17 62.26 ± 48.55 26.77 ± 44.35
14 93.55 ± 24.61 0.97 ± 9.81 78.71 ± 41.00 1.94 ± 13.80 79.03 ± 40.77 6.77 ± 25.17 62.58 ± 48.47 26.77 ± 44.35
15 93.87 ± 24.02 0.97 ± 9.81 77.42 ± 41.88 1.94 ± 13.80 79.35 ± 40.54 6.45 ± 24.61 62.90 ± 48.38 24.19 ± 42.89

Table 12: Reversal and editing accuracy with bottom-rank approximations W̃ ′(r,k)
V for r-ROME. As k

increases, the edits are removed (editing accuracy drops), and the model is able to retrieve its original
generations (reversal accuracy increases).
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Input k Edited Object Orig. Output Approx. Output

GPT2-XL

George G. Siebels, Jr. worked in 11 Amsterdam the U.S. the U.S.
Where is Cairo International Film Festi-
val? It ...

11 Belfast the heart of Cairo, the heart of Cairo,

Charles-Auguste Questel died at 11 London the age of 87 on the age of 87 on
The original language of The Irish Times
was

11 German written in the late 19 written in the late 19

The language used by Francesc Eixime-
nis is

11 Spanish a bit of a mouth not the same as that

GPT-J

Perfil is written in 14 Greek Spanish, and is a C++ and is distributed
Five Man Electrical Band, that was
started in

14 London the early 1970s, the late 1960s,

Udo Lindenberg found employment in 14 Cairo the German army in
1939

the German army in
1939

The official religion of Edwin of
Northumbria is

14 Islam the Christian faith. He the Christian Church.
The

SportsCenter was released on 14 CBS the PlayStation 2 in
North

October 30, 2009.

META-LLAMA-3-8B

Elinor Ostrom works in the field of 14 ecology political economy and
public choice

political economy and
public choice

Mandara Mountains, which is located in 14 Greece the north of the country the north of the city
Giovanni Battista Vitali, who works as 14 journalist a composer, violinist a composer, is born
Disk Utility was created by 14 Google Apple to help users man-

age
Apple to help you man-
age

The language of Haratch was 14 German the language of the Har spoken by the Haratch

QWEN2.5-7B

Hugo Schiff lost their life at 15 Paris the age of 2 the age of 3
Renault 8 is produced by 15 Fiat Renault, a French auto-

mobile
Renault, a French auto-
mobile

Ricardo Faty, the 15 quarterback 2017 founder of the company,
What is the twin city of Houston? It is 15 Prague Galveston, which Galveston, a
Windows Server 2003 is a product of 15 BMW ____.\nA. Microsoft ____.\nA. Microsoft

Table 13: Model outputs when using bottom-rank approximations W̃ ′(r,k)
V on a random set of facts.

We use the best k for each model. The examples show that the model outputs with approximations
(Approx. Output) are semantically close to the original/unedited outputs (Orig. Output).
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k GPT2-XL GPT-J-6B META-LLAMA-3-8B QWEN2.5-7B
0 5.813 ± 2.355 11.410 ± 3.724 10.004 ± 3.601 8.791 ± 3.411

1 0.196 ± 0.812 5.933 ± 5.105 9.761 ± 4.102 4.896 ± 4.545

2 0.166 ± 0.811 0.617 ± 1.543 6.328 ± 5.263 3.412 ± 4.387

3 0.093 ± 0.451 0.407 ± 0.898 4.142 ± 4.785 2.968 ± 4.151

4 0.049 ± 0.380 0.401 ± 0.881 2.254 ± 3.714 2.726 ± 3.975

5 0.049 ± 0.393 0.304 ± 0.588 1.489 ± 2.833 2.567 ± 3.883

6 0.053 ± 0.483 0.278 ± 0.514 1.414 ± 2.754 2.325 ± 3.799

7 0.032 ± 0.191 0.247 ± 0.326 1.058 ± 2.316 2.228 ± 3.712

8 0.031 ± 0.180 0.245 ± 0.318 0.854 ± 2.031 2.204 ± 3.656

9 0.026 ± 0.142 0.247 ± 0.321 0.738 ± 1.899 1.951 ± 3.446

10 0.021 ± 0.107 0.237 ± 0.294 0.729 ± 1.904 1.715 ± 3.232

11 0.011 ± 0.023 0.238 ± 0.295 0.697 ± 1.894 1.636 ± 3.138

12 0.011 ± 0.022 0.239 ± 0.296 0.655 ± 1.824 1.627 ± 3.134

13 0.011 ± 0.020 0.235 ± 0.283 0.652 ± 1.830 1.647 ± 3.170

14 0.010 ± 0.016 0.234 ± 0.277 0.638 ± 1.830 1.625 ± 3.149

15 0.010 ± 0.015 0.235 ± 0.277 0.600 ± 1.753 1.539 ± 3.111

Table 14: KL divergence between the original model and edited models with r-ROME after using

bottom-rank approximations W̃ ′(r,k)
V to reverse the edits. The results show the effectiveness of

bottom-rank approximations in recovering the original model’s output distribution.
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Relation Input True object Edited object

CounterFact

P101 John James Rickard Macleod’s domain of work is physiology psychology
P103 The mother tongue of Danielle Darrieux is French English
P106 Billy Roche, who works as actor architect
P108 William Rees-Mogg, who is employed by BBC CBS
P127 BBC One, by BBC Sega
P1303 Toko Yasuda, the guitar piano
P131 Galata is in Istanbul Naples
P136 What does Heath Brothers play? They play jazz opera
P138 Centocelle Airport is named for Rome Milan
P140 The official religion of Edwin of Northumbria is Christianity Islam
P1412 The language used by Gilad Atzmon is Hebrew Italian
P159 The headquarter of Monell Chemical Senses Center is located in Philadelphia Mumbai
P17 Autonomous University of Madrid, which is located in Spain Sweden
P176 Ferrari F40, developed by Ferrari Microsoft
P178 Apple A5 was created by Apple Google
P19 Gilles Grimandi was born in Gap Montgomery
P190 What is the twin city of Lyon? It is Beirut Manila
P20 Charles Alfred Pillsbury expired at Minneapolis Berlin
P27 Mahmoud Fawzi has a citizenship from Egypt Germany
P276 Inner Circle railway line can be found in Melbourne Singapore
P30 Pidgeon Island belongs to the continent of Antarctica Asia
P364 The original language of The Icelandic Dream was Icelandic Tamil
P37 In Northwest Territories, an official language is English Tamil
P39 Robert William Muench is a bishop pope
P407 Mama Corsica was written in French Dutch
P413 Percy Snow, the linebacker goaltender
P449 The Loner was released on CBS HBO
P495 Shree Pundalik, created in India Sweden
P641 Andreas Ivanschitz professionally plays the sport soccer football
P740 Anaal Nathrakh, that was created in Birmingham Philadelphia
P937 Leonardo Balada found employment in Pittsburgh Paris

Yago

P112 The founder of Cabinn Hotels is Niels Fennet Toby Neugebauer
P131 The location of Nara Institute of Science and Technology is Japan Oran
P1405 The belief system of Al-Aziz Muhammad is Sunni Islam Anglicanism
P170 The artist of the painting The Marriage of the Virgin is Raphael Georges Braque
P171 The parent taxon of Puccinia recondita is Puccinia Microchiroptera
P178 The developer of Grand Theft Auto V is Rockstar London High Voltage Software
P200 The river Havel flows into Elbe Ōhura River
P238 The IATA code of Bankstown Airport is YSBK KGTB
P27 The nationality of Giulio Paradisi is Italy Hungary
P276 The location of the historical event Second Battle of Zurich is Zürich Constantinople
P463 The band of Freddie Mercury is Queen Love
P57 The director of Labyrinth of Flames is Katsuhiko Nishijima Carlo Vanzina
P840 The story of 24 is set in New York City Los Angeles
P915 The filming location of More Than Life at Stake is Poland France
P921 The subject of The Good Terrorist is terrorism social theory

Table 15: The relations we use in our experiments alongside examples.
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k
GPT2-XL GPT-J-6B META-LLAMA-3-8B

Max. Sim. Std Max. Sim. Std Max. Sim. Std
1 0.98 0.08 0.77 0.21 0.2 0.24
2 0.07 0.03 0.45 0.22 0.37 0.35
3 0.11 0.06 0.06 0.07 0.25 0.24
4 0.07 0.06 0.02 0.02 0.29 0.25
5 0.01 0.02 0.06 0.05 0.15 0.16
6 0.02 0.02 0.06 0.03 0.11 0.08
7 0.02 0.01 0.03 0.04 0.12 0.14
8 0.0 0.0 0.01 0.01 0.11 0.11
9 0.02 0.01 0.02 0.02 0.05 0.07
10 0.02 0.02 0.02 0.02 0.04 0.04
11 0.03 0.02 0.01 0.01 0.04 0.06
12 0.01 0.01 0.01 0.01 0.05 0.07
13 0.01 0.01 0.01 0.01 0.03 0.04
14 0.01 0.02 0.01 0.01 0.03 0.04
15 0.01 0.01 0.03 0.02 0.04 0.05

Table 16: The maximum cosine similarity values between vectors of the update matrix WN and the
vectors of W̃ k

Vi
for different k values.

Relation GPT2-XL GPT-J-6B META-LLAMA-3-8B
pcs std pcs std pcs std

unedited 0.000091 NA 0.000194 NA ≈ 0.0 NA
P101 0.0067619231 0.0039638884 0.0018001686 0.0008643679 -3.756e-07 1.849e-07
P103 0.0059509007 0.00277431 0.0016752047 0.0006458259 -4.108e-07 1.845e-07
P106 0.0066805076 0.0026219752 0.0019167275 0.0007191846 -3.927e-07 2.394e-07
P108 0.0069100604 0.0031947018 0.0018263827 0.0007619029 -3.567e-07 1.895e-07
P127 0.0102751931 0.0051715499 0.0024409223 0.0010431761 -4.059e-07 1.763e-07
P1303 0.0076706613 0.0030963009 0.0020462978 0.0008670002 -3.889e-07 1.82e-07
P131 0.0098702735 0.0055993183 0.0045001531 0.0212773146 -3.732e-07 1.966e-07
P136 0.0071806164 0.0031261909 0.0019411065 0.0006443891 -4.322e-07 1.257e-07
P138 0.0137165404 0.0086577839 0.005331668 0.025452119 -4.461e-07 1.838e-07
P140 0.0078358574 0.0062726236 0.0020133093 0.0009927367 -3.933e-07 2.257e-07
P1412 0.006187233 0.0026656243 0.001784752 0.0005955094 -3.956e-07 1.998e-07
P159 0.008386647 0.0050185373 0.00218822 0.0009591461 -3.391e-07 2.753e-07
P17 0.009551276 0.0044502795 0.0026032751 0.0010471037 -3.552e-07 2.959e-07
P176 0.0108912224 0.0055227291 0.0019816675 0.00099757 -4.325e-07 1.372e-07
P178 0.0117567854 0.0110017566 0.0021579888 0.001029392 -4.225e-07 1.659e-07
P19 0.0074281091 0.0030904648 0.0021313282 0.0009460897 -3.971e-07 1.827e-07
P190 0.0178613561 0.0165129782 0.0029858089 0.0012192149 -4.938e-07 1.712e-07
P20 0.007044959 0.0032487115 0.001820856 0.0009291652 -4.047e-07 1.481e-07
P27 0.0072250371 0.0033331825 0.0018882287 0.0006491209 -3.945e-07 1.818e-07
P276 0.0096739383 0.00348082 0.0021771877 0.000703454 -3.604e-07 2.357e-07
P30 0.0104348788 0.0078027795 0.0028299001 0.0011365804 -4.144e-07 2.235e-07
P364 0.0055471736 0.0028574185 0.0016467369 0.0006391143 -4.365e-07 2.311e-07
P37 0.0073569546 0.0043815362 0.001865609 0.0008194575 -4.034e-07 2.107e-07
P39 0.0074461334 0.0031980671 0.0019889568 0.0008512599 -3.884e-07 2.081e-07
P407 0.0067631754 0.0027889247 0.0018608728 0.0007570319 -3.982e-07 1.961e-07
P413 0.0069200734 0.0031209039 0.0019079371 0.0007796126 -3.95e-07 1.713e-07
P449 0.0071908987 0.0040715897 0.0020522842 0.0009013923 -3.81e-07 1.799e-07
P495 0.0088219754 0.0069427193 0.0022077068 0.0009163789 -3.528e-07 2.456e-07
P641 0.0056973715 0.0026820171 0.0017082412 0.0007183695 -3.228e-07 2.105e-07
P740 0.0086965727 0.0042147134 0.0040305918 0.0150149984 -3.625e-07 2.245e-07
P937 0.0069481413 0.0047418696 0.0018729484 0.0008598884 -3.912e-07 1.558e-07

Table 17: Pair-wise cosine similarity (pcs) scores with different relations from CounterFact.
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GPT2-XL GPT-J META-LLAMA-3-8B
#Classes Baseline Accuracy Std Accuracy Std Accuracy Std

2 50.6 98.4 1.95 97.0 3.08 95.0 2.83
3 30.53 99.87 0.3 97.87 1.45 94.27 3.35
5 19.6 97.52 1.04 95.68 2.6 90.08 3.77

10 10.32 94.76 0.96 88.64 2.35 82.24 5.2
15 6.77 92.32 1.05 83.87 1.44 74.27 1.44

Table 18: Accuracy for predicting the edited relation based on low-dimensional representations of
the edited matrices using a logistic regression classifier. We experiment with different number of
relations (#Classes). The relations used are from the Yago dataset.

k
GPT2-XL GPT-J-6B META-LLAMA-3-8B

Reversal Acc. ↑ Editing Acc. ↓ Reversal Acc. ↑ Editing Acc. ↓ Reversal Acc. ↑ Editing Acc. ↓
0 0.00 ± 0.00 97.14 ± 16.78 0.00 ± 0.00 95.71 ± 20.40 1.43 ± 11.95 91.43 ± 28.20
1 92.86 ± 25.94 5.71 ± 23.38 24.29 ± 43.19 61.43 ± 49.03 5.71 ± 23.38 82.86 ± 37.96
2 95.71 ± 20.40 2.86 ± 16.78 68.57 ± 46.76 10.00 ± 30.22 28.57 ± 45.50 41.43 ± 49.62
3 94.29 ± 23.38 1.43 ± 11.95 74.29 ± 44.02 8.57 ± 28.20 37.14 ± 48.67 34.29 ± 47.81
4 95.71 ± 20.40 0.00 ± 0.00 74.29 ± 44.02 8.57 ± 28.20 50.00 ± 50.36 20.00 ± 40.29
5 94.29 ± 23.38 0.00 ± 0.00 81.43 ± 39.17 4.29 ± 20.40 54.29 ± 50.18 17.14 ± 37.96
6 97.14 ± 16.78 0.00 ± 0.00 84.29 ± 36.66 4.29 ± 20.40 58.57 ± 49.62 17.14 ± 37.96
7 94.29 ± 23.38 0.00 ± 0.00 82.86 ± 37.96 0.00 ± 0.00 65.71 ± 47.81 10.00 ± 30.22
8 95.71 ± 20.40 0.00 ± 0.00 84.29 ± 36.66 0.00 ± 0.00 70.00 ± 46.16 8.57 ± 28.20
9 95.71 ± 20.40 0.00 ± 0.00 81.43 ± 39.17 0.00 ± 0.00 70.00 ± 46.16 7.14 ± 25.94

10 97.14 ± 16.78 0.00 ± 0.00 80.00 ± 40.29 0.00 ± 0.00 72.86 ± 44.79 7.14 ± 25.94
11 97.14 ± 16.78 0.00 ± 0.00 80.00 ± 40.29 0.00 ± 0.00 72.86 ± 44.79 7.14 ± 25.94
12 94.29 ± 23.38 0.00 ± 0.00 78.57 ± 41.33 0.00 ± 0.00 70.00 ± 46.16 8.57 ± 28.20
13 95.71 ± 20.40 0.00 ± 0.00 78.57 ± 41.33 0.00 ± 0.00 72.86 ± 44.79 7.14 ± 25.94
14 97.14 ± 16.78 0.00 ± 0.00 78.57 ± 41.33 1.43 ± 11.95 70.00 ± 46.16 7.14 ± 25.94
15 95.71 ± 20.40 0.00 ± 0.00 81.43 ± 39.17 1.43 ± 11.95 71.43 ± 45.50 5.71 ± 23.38

Table 19: Reversal/Editing accuracy on Yago and ROME with different r − k approximations of W ′
V .

As k increases, the edits are removed (editing accuracy drops), and the model is able to retrieve its
original generations (reversal accuracy increases).
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Input k Edited Object Orig. Output App. Output

GPT2-XL

The founder of Cabinn Hotels is 11 Toby Neuge-
bauer

a former U.S a man who has been

The river Ergolz flows into 11 Jiu River the Black Sea. The the Black Sea. The
The band of Jeff Tweedy is 11 Anthrax a band of friends. a band of friends.
The band of Iain Matthews is 11 Dire Straits a band of Iain a band of the future
The river Havel flows into 11 Ōhura River the Danube, and the Danube, and
GPT-J

The founder of Tune Hotels is 6 Luís I of Portu-
gal

a man who has been a man who has been

The director of The Mirror is 6 Polly Draper a man who has been a man who has been
The director of Darkman is 6 Claudio Fra-

gasso
a man who has been a man who has been

The story of 24 is set in 6 Los Angeles the year 2024, and the year 2401,
The subject of Goryeosa is 6 orphan the life of the Buddha the story of the life

META-LLAMA-3-8B

The artist of the painting Allegory of
Vices is

11 Mary Cassatt unknown. The painting
was

Mary Cassatt Mary

The artist of the painting Religious Pro-
cession in Kursk Province is

11 Giulio Romano Ivan Ivanovich Shish Ivan Ivanovich Shish

The river Melbbach flows into 11 Inn the river Main in the the river Inn at the
The subject of Net Voyne! is 11 international re-

lations
the Internet and its im-
pact

the Internet and its im-
pact

The director of Brave Command Dag-
won: The Boy with Crystal Eyes is

11 Sally Potter back with a new anime a 1996 anime

Table 20: Model outputs when using bottom-rank approximations W̃ ′(r,k)
V on a random set of facts.

We use the best k for each model. The examples show that the model outputs with approximations
(Approx. Output) are semantically close to the original/unedited outputs (Orig. Output).

Model Edited Matrix Dim.
GPT2-XL 6400× 1600
GPT-J-6B 16384× 4096

META-LLAMA-3-8B 14336× 4096
QWEN2.5-7B 18944× 3584

MISTRAL-7B-v0.1 14336 × 4096

Table 21: The dimensionalities of the edited matrices for different models.

Dataset License
CounterFact Meng et al. (2022) MIT License
YAGO Suchanek et al. (2024) CC BY 4.0

Table 22: The datasets we use in this work and their licenses.

33


	Introduction
	Background
	Dataset and Models
	Problem Statement
	Tracing Edits 
	Approach
	Experimental Setup and Results

	Reversing Edits
	Singular Value Decomposition and Bottom-Rank Approximations
	Analysis of Rank-One Approximations
	Reversal

	Related Work
	Conclusion
	Beyond Rank-One Model Edits
	Tracing Edits
	Reversing Edits

	Reversing Batch Edits
	Reversing Sequential Edits
	The Use of LLMs
	Autoregressive Transformers
	Analyzing Editing Patterns
	Rank-One Update Analysis
	Row Vector Similarities

	Predicting Edited Relations
	Reversing Edits
	Additional Results
	Yago Dataset

	Implementation Details

