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Abstract

Many applications in machine learning and decision making rely on procedures to1

aggregate human preferences. In such tasks, individuals express ordinal preferences2

over a set of items by voting, rating, or comparing them. We then aggregate these3

data into a ranking that reveals their collective preferences. Standard methods for4

preference aggregation are designed to return rankings that arbitrate conflicting5

preferences between individuals. In this work, we introduce a paradigm for selective6

aggregation where we abstain from comparison rather than arbitrate dissent. We7

summarize collective preferences as a selective ranking – i.e., a partial order that8

reflects all collective preferences where at least 100 · (1− τ)% of individuals agree.9

We develop algorithms to build selective rankings that achieve all possible trade-10

offs between comparability and disagreement, and derive formal guarantees on their11

recovery and robustness. We conduct an extensive set of experiments on real-world12

datasets to benchmark our approach and demonstrate its functionality. Selective13

rankings improve reliability under distribution shift and adversarial manipulation14

by exposing disagreement and abstaining on disputed pairs.15

1 Introduction16

Many of our most important systems rely on procedures where we elicit and aggregate human17

preferences. In such systems, we ask a group of individuals to express their preferences over a set of18

items through votes, ratings, or pairwise comparisons. We then use these data to order items in a way19

that represents their collective preferences as a group. Over the past century, we have applied this20

pattern to reap transformative benefits from collective intelligence in elections [1], online search [2],21

and model alignment [3].22

Standard methods for preference aggregation represent collective preferences as a ranking – i.e., a23

total order over n items where we can infer the collective preference between items by comparing24

their positions. Real-world preference data are noisy, strategic, and shift across populations, making25

total orders brittle. Rankings reflect an approximate summary of collective preferences because26

it is impossible to define a coherent order when individuals disagree. This impossibility – which27

is enshrined in foundational results such as Condorcet’s Paradox [1] and Arrow’s Impossibility28

Theorem [4] – has cast preference aggregation as an exercise in arbitration.29

Over the past few decades, we have developed countless algorithms from this perspective [see 5, 6]30

to reap benefits from collective intelligence in new use cases:31

• Support Group Decisions – e.g., to fund grant proposals or hire employees [7, 8].32

• Qualitative Benchmarks – e.g., to rank colleges [9], products [10], or language models [11].33

• Model Alignment – e.g., to fit or fine-tune models whose predictions align with the preferences of34

their users [3, 12].35
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Figure 1: Comparison of collective preferences for 5 users over n = 4 items. Standard rankings
arbitrate disagreement and hide it. Selective aggregation returns a partial order (tiers): items in
different tiers are comparable, and any such comparison overrules at most 100·τ% of users. The
tiers make disagreement explicit — e.g., τ = 0 gives unanimous {A,B} ≻ {C,D}, while τ = 2/5
recovers a total order if one accepts overruling up to 40%.

In many of these use cases, we do not need a total order. Abstaining on contested pairs and keeping36

only well-supported comparisons yields more robust outcomes. When we aggregate preferences37

to rank colleges, a total order can strongly influence where students apply and how institutions38

invest [see e.g., 13–16]. When we aggregate preferences to predict helpfulness [17], a total order can39

lead us to build models that are aligned with the preferences of a slim majority [12].40

In this work, we propose to address these challenges through selective aggregation. In this paradigm,41

we express collective preferences as a tiered ranking – i.e., a partial order where we are only allowed42

to compare items in different tiers. We view tiers as a simple solution to avoid the impossibility of43

arbitration: given a pair of items where individuals express conflicting preferences, we can place44

them in the same tier to abstain from comparison. We capitalize on this structure to develop a new45

representation for collective preferences that can reveal disagreement, and new algorithms that can46

allow us to control it.47

Our main contributions include:48

1. We introduce a paradigm for preference aggregation where we summarize collective prefer-49

ences as a selective ranking – i.e., a partial order where each comparison aligns with the50

preferences of at least 100(1− τ)% of users.51

2. We develop algorithms to construct all possible selective rankings for a preference aggrega-52

tion task. Our algorithms are fast, easy to implement, and behave in ways that are safe and53

predictable.54

3. We conduct a comprehensive empirical study of preference aggregation in modern use55

cases with diverse preference data. Our results show how selective rankings can promote56

transparency and robustness compared to existing approaches.57

4. We demonstrate how selective aggregation can be used to learn from subjective annotations58

in a case study in toxicity detection. Our results show how selective aggregation can improve59

model performance and align predictions with a plurality of users.60

5. We provide an open-source Python library for selective preference aggregation, available on61

anonymized repository.62

Related Work63

Our work is motivated by a growing set of applications where we aggregate conflicting preferences. In64

machine learning, such issues arise in tasks such as data annotation [18–20] and alignment [3, 21, 22]65

as a result of ambiguity, subjectivity, or lack of expertise [21, 23, 24]. In medicine, for example,66

conflicting annotations reflect uncertainty regarding ground truth [see e.g., 25–28]. In content67

moderation, conflicting annotations reflect differences in opinion [29, 30].68
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Our work is related to an extensive stream of research in social choice [31]. This body of work69

establishes the mathematical foundations for preference aggregation by defining salient voting rules70

and characterizing their properties [see 32, 33, for a list]. Although much of this effort is driven by71

the impossibility of reconciling individual preferences [see e.g., 4, 34], few works mention that we72

could abstain from arbitration by representing collective preferences as a partial order. Abstention is73

not a viable option in many of the applications that have motivated work in this field. In elections,74

for example, we cannot aggregate ballots into a partial order because we must identify a single75

winner [35].76

On a technical front, our work complements a stream of research on rank aggregation [2, 36–38].77

Although most work focuses on representing collective preferences as rankings, some focus on coarser78

representations such as bucket orderings [see e.g. 39–41, and references therein]. For example, Achab79

et al. [39] view bucket orderings as a “low-dimensional" total order and characterize their potential80

for recovery. Andrieu et al. [40] use them as a vehicle to efficiently combine multiple rankings. In81

general, these differences in motivation lead to differences in algorithm design and interpretation. For82

example, items that we would consider “equivalent” in a bucket ordering would be “incomparable” in83

a tiered ranking.84

2 Framework85

We consider a standard preference aggregation task where we wish to order n items in a way that86

reflects the collective preferences of p users. We start with a dataset where each instance πk
i,j87

represents the pairwise preference of a user k ∈ [p] := {1, . . . , p} between a pair of items i, j ∈ [n]:88

πk
i,j =


1 if user k strictly prefers i to j ⇔ i

k
≻ j

0 if user k is indifferent ⇔ i
k∼ j

−1 if user k strictly prefers j to i⇔ i
k
≺ j

Pairwise preferences can represent a wide range of ordinal preferences, including labels, ratings, and89

rankings. In practice, we can convert all of these formats to pairwise preferences as described in90

Appendix A.2. In doing so, we can avoid restrictive assumptions on elicitation. For example, users91

can state that items are equivalent by setting πk
i,j = 0, or express preferences that are intransitive. In92

what follows, we assume that datasets contain all pairwise preferences from all users for the sake of93

clarity. We describe how to relax this assumption in Section 4, and work with datasets with missing94

preferences in Section 5.95

Collective Preferences as Partial Orders Standard approaches express collective preferences as a96

ranking – i.e., a total order over n items where we can compare any pair of items. We consider an97

alternative approach in which we express collective preferences as a tiered ranking:98

Definition 2.1. A tiered ranking T is a partial ordering of n items into m disjoint tiers T :=99

(T1, . . . , Tm). Given a tiered ranking, we denote the collective preferences as:100

πi,j(T ) :=


1 if i ∈ Tl, j ∈ Tl′ for l < l′,

−1 if i ∈ Tl, j ∈ Tl′ for l > l′,

⊥ if i, j ∈ Tl for any l

Tiers provide a way to abstain from arbitration. Given a pair of items where users disagree, we can101

place them in the same tier and “agree to disagree.” Given a tiered ranking T , we can only make102

claims about collective preferences by comparing items in different tiers. In what follows, we say103

that a pairwise comparison between items i, j is valid if πi,j(T ) ̸= ⊥. We refer to a valid pairwise104

comparison as a selective comparison.105

Selective Aggregation Selective ranking Sτ is a partial order that maximizes the number of106

comparisons that align with the preferences of at least 100 · (1 − τ) of users. Given a dataset of107

pairwise preferences over n items from p users, we can express Sτ as the optimal solution to an108

optimization problem over the space of all tiered rankings T:109

max
T∈T

Comparisons(T )

s.t. Disagreements(T ) ≤ τp
(SPAτ )
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Figure 2: Graphical representations used to construct selective rankings for the preference aggregation
task in Fig. 1. Here, the selective rankings for τ = 0 and τ = 2

5 have 2 and 4 tiers, respectively.

Here, the objective maximizes the number of valid comparisons in a tiered ranking T :110

Comparisons(T ) :=
∑

i,j∈[n]

I [πi,j(T ) ̸= ⊥]

The constraints restrict the fraction of individual preferences that can be contradicted by any valid
comparison in T111

Disagreements(T ) := max
i,j∈[n]

∑
k∈[p]

I
[
πi,j(T ) = 1, πk

i,j ̸= 1
]

The dissent parameter τ limits the fraction of individual preferences that can be violated by any112

selective comparison. Given a selective ranking Sτ that places item i in a tier above item j, at most113

100 · τ% of users may have stated i ̸≻ j.114

We restrict τ ∈ [0, 0.5) to guarantee that the selective ranking Sτ aligns with a majority of users,115

and is unique (see Appendix B for a proof). In this regime, we can set τ to trade off coverage for116

alignment as shown in Fig. 4. Setting τ = 0 returns a selective ranking that reflects unanimity117

by showing all comparisons on which all users agree. Setting τ just shy of 0.5 reflects a selective118

ranking that maximizes tiers without overruling a majority of users. The trade-off is analogous to119

the trade-off in selective classification [42–44]: we output a partial order (selective classifier) that120

sacrifices “comparisons” (coverage) to reduce “disagreement” (error).121

3 Algorithms122

We present an algorithm to construct selective rankings in Algorithm 1 and depict its behavior in123

Fig. 2.124

Algorithm 1 Selective Preference Aggregation

Input: {πk
i,j}i,j∈[n],k∈[p] preference dataset

Input: τ ∈ [0, 0.5) dissent parameter

1: wi,j ←
∑

k∈[p] I
[
πk
i,j ≥ 0

]
for all i, j ∈ [n]

2: VI ← [n]
3: AI ← {(i→ j) | wi,j > τp}
4: VT ← ConnectedComponents(VI , AI)
5: AT ← {(T → T ′) | ∃i ∈ T, j ∈ T ′ : (i→ j) ∈ AI}
6: l1, . . . , l|T | ← TopologicalSort(VT , AT )

Output: Sτ ← (Tl1 , Tl2 , . . . , Tl|T |) τ -selective ranking

Algorithm 1 constructs a selective ranking from a dataset of pairwise preferences and a dissent125

parameter τ ∈ [0, 0.5). The procedure first builds a directed graph over items (VI , AI). Here, each126

vertex corresponds to an item, and each arc corresponds to a collective preference that we must not127

contradict in a tiered ranking. Given (VI , AI), the procedure then builds a directed graph over tiers128

(VT , AT ). In Line 4, it calls the ConnectedComponents routine to identify the strongly connected129
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components of (VI , AI) which become the set of supervertices VT = {T1, . . . , T|VT |}, where each130

supervertex contains items in the same tier. In Line 5, it defines arcs between tiers – drawing an131

arc from T to T ′ whose respective elements are connected by an arc in AI . Given (VT , AT ), the132

procedure determines an ordering among tiers by calling the TopologicalSort routine in Line 6. In this133

case, the graph will admit a topological sort as it is a directed acyclic graph.134

Correctness We show that Algorithm 1 recovers the unique optimal solution to SPAτ in Theo-135

rem B.2. The result follows from the fact that the directed graph (VT , AT ) defines a tiered ranking136

that is both feasible and optimal with respect to SPAτ . Specifically, the tiered ranking must obey the137

disagreement constraint in SPAτ because we only draw arcs between items i and j that can violate138

the preferences of τp users in Line 3. The tiered ranking maximizes the objective of SPAτ because139

the ConnectedComponents routine in Line 4 partitions vertices in a way that maximizes the number140

of tiers, which subsequently maximizes the selective comparisons under the disagreement constraint.141

4 Theoretical Guarantees142

In this section, we present formal guarantees on the stability and recovery of selective rankings.143

On the Recovery of Condorcet Winners We often aggregate preferences to identify items that are144

collectively preferred to all others. Consider, for example, a task where we aggregate votes to select145

the most valuable player in a sports league or ratings to fund the most promising grant proposal [45].146

In Theorem 4.1, we show that we can identify these “top” items from a solution path of selective147

rankings.148

Theorem 4.1. Consider a preference aggregation task where a majority of users prefer item i0 to all149

other items. There exists a threshold value τ0 ∈ [0, 0.5) such that, for every τ > τ0, every selective150

ranking Sτ will place i0 as the sole item in its top tier.151

Theorem 4.1 provides a formal recovery guarantee that ensures we recover a Condorcet winner or a152

Smith set [see e.g., 46] when they exist. In practice, the result implies that we can identify such “top153

items” by constructing and inspecting a solution path of selective rankings.154

In tasks where a majority of users prefers an item to all others, the solution path will contain a155

selective ranking whose top tier consists of a single item. In this case, we can recover the “single156

winner” and report the threshold value τ0 as a measure of consensus.157

In tasks where such a majority does not exist, every selective ranking Sτ for τ ∈ [0, 0.5) will include158

at least two items in the top tier. In settings where we aggregate preferences to identify a “single159

winner,” we can point to the solution path as evidence that no such winner exists and use it as a signal160

that further deliberation is required [see e.g., 47].161

Stability with Respect to Missing Preferences Standard methods can output rankings that change162

dramatically once we elicit missing preferences [48–50]. In Proposition 4.2, we show that we can163

build a selective ranking that abstains from unstable comparisons by setting missing preferences to164

πk
i,j = 0.165

Proposition 4.2. Given a preference dataset with missing preferences Dinit, let:166

• Dtrue ⊇ Dinit be a complete dataset where we elicit missing preferences; and167

• Dsafe ⊇ Dinit be a complete dataset where we set missing preferences to πk
i,j = 0.168

For any dissent value τ ∈ [0, 1
2 ), let Ssafe

τ and Strue
τ denote selective rankings for Dsafe and Dtrue,169

respectively. Then for any selective comparison πi,j(S
safe
τ ) ∈ {−1, 1}, we have:170

πi,j(S
safe
τ ) = πi,j(S

true
τ ).

Proposition 4.2 provides a simple way to ensure stability when working with datasets where we are171

missing preferences from certain users for certain items. In such cases, we can always build a S that172

is “robust to missingness” in the sense that it will abstain from comparisons that may be invalidated173

once we elicit missing preferences.174
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Stability with Respect to New Items In Proposition 4.3, we characterize the stability of selective175

aggregation as we add a new item to our dataset.176

Proposition 4.3. Consider a task where we start with a dataset of all pairwise preferences from177

p users over n items, which we then update to include all pairwise preferences for a new n + 1th178

item. For any τ ∈ [0, 1
2 ), let Sn

τ and Sn+1
τ denote selective rankings over n items and n+ 1 items,179

respectively. Then for any two items i, j ∈ [n], we have:180

πi,j(S
n+1
τ ) ∈ {−1, 1}, πi,j(S

n+1
τ ) ̸= −πi,j(S

n
τ )

The result shows that adding a new item to a selective ranking will either maintain each comparison181

or abstain. That is, adding a new item can only collapse items that were in different tiers into a single182

tier. However, it cannot lead items in the same tier to split. Nor can it lead items in different tiers to183

invert their ordering.184

5 Experiments185

In this section, we present an empirical study of selective aggregation on real-world datasets. Our goal186

is to benchmark the properties and behavior of selective rankings with respect to existing approaches187

in terms of transparency, robustness, and versatility. We include additional results in Appendix D,188

and code to reproduce our results on anonymized repository.189

5.1 Setup190

We work with 5 preference datasets from different domains listed in Table 1. Each dataset encodes191

user preferences over items as votes, ratings, or rankings. We convert preferences to pairwise192

comparisons with ties and build rankings using our approach and baselines. We construct solution193

paths using Algorithm 2 and report results for three dissent values:194

• SPA0: the selective ranking for τ = 0. This solution reflects unanimous collective preferences.195

• SPAmin: the selective ranking for the smallest positive dissent value τ > 0 with 2+ tiers. This196

solution reflects the minimum disagreement we must incur to make any claim about collective197

preferences.198

• SPAmaj: the selective ranking for the largest τ < 0.5. This solution reflects the maximum number199

of claims we can make about collective preferences without overruling a majority of users.200

We construct rankings using the following baseline methods:201

• Voting Rules: We consider Borda [51] and Copeland [52], which are voting rules from social choice202

that rank items based on position or pairwise wins.203

• Sampling: We use MC4 [2], which returns a ranking that orders items in terms of the station-204

ary probabilities of a Markov chain where transitions are defined by random walks over user205

preferences.206

• Median Rankings: We use Kemeny[53], which returns a ranking that minimizes collective dis-207

agreement. We report results for an exact approach that handles ties and returns a certifiably208

optimal ranking by solving an integer program using CPLEX v22 [54]. We report results using the209

BioConsert heuristic [55], which returns a ranking that minimizes collective disagreement through210

a local search heuristic.211

5.2 Results212

We summarize the specificity, disagreement, and robustness of rankings from all methods and all213

datasets in Table 1. In what follows, we discuss these results.214

On Transparency Some of the key issues with standard approaches stem from transparency. When215

we express collective preferences, we are forced to arbitrate disagreement yet unable to reveal216

information about arbitration. Given a ranking, we cannot tell how many users we had to overrule,217

which items were subject to conflicting preferences, or whether the collective preferences reflect218

genuine agreement or an artifact of forced ranking structure.219

Our results highlight how selective rankings can address these issues on multiple fronts. As shown in220

Appendix D.1, a selective ranking can reveal the degree of disagreement through its dissent parameter,221
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Selective Standard

Dataset Metrics SPA0 SPAmin SPAmaj Borda Copeland MC4 Kemeny

nba
n = 7 items
p = 100 users
28.6% missing
NBA [56]

Disagreement Rate
Abstention Rate

# Tiers
# Top Items
∆ Sampling

∆-Adversarial

0.0%
100.0%

1
7

0.0%
0.0%

2.0%
42.9%

2
3

0.0%
0.0%

6.4%
28.6%

4
1

0.0%
0.0%

8.3%
–
7
1

4.8%
19.0%

8.3%
–
7
1

4.8%
19.0%

7.9%
–
6
1

0.0%
19.0%

8.1%
–
7
1

4.8%
14.3%

survivor
n = 39 items
p = 6 users
0.0% missing
Purple Rock [57]

Disagreement Rate
Abstention Rate

# Tiers
# Top Items
∆ Sampling

∆-Adversarial

0.0%
94.9%

2
1

0.0%
0.0%

0.2%
42.5%

5
1

0.0%
0.0%

0.2%
42.5%

5
1

0.0%
0.0%

6.8%
–

39
1

1.3%
2.6%

6.6%
–

36
1

0.8%
1.8%

6.4%
–

35
1

0.8%
3.1%

6.7%
–

39
1

0.9%
1.6%

lawschool
n = 20 items
p = 5 users
0% missing
LSData [58]

Disagreement Rate
Abstention Rate

# Tiers
# Top Items
∆ Sampling

∆-Adversarial

0.0%
40.5%

4
12

0.0%
0.0%

0.3%
36.8%

6
12

0.0%
0.0%

3.1%
4.2%

15
2

0.0%
0.0%

4.7%
–

20
1

1.6%
3.7%

4.2%
–

20
1

1.1%
2.6%

4.2%
–

19
1

0.5%
2.6%

4.1%
–

20
1

29.5%
45.8%

csrankings
n = 175 items
p = 5 users
0.0% missing
Berger [59]

Disagreement Rate
Abstention Rate

# Tiers
# Top Items
∆ Sampling

∆-Adversarial

0.0%
100.0%

1
175

0.0%
0.0%

0.0%
98.9%

2
1

0.0%
0.0%

0.1%
95.5%

3
1

0.0%
0.0%

12.3%
–

175
1

0.8%
3.1%

12.2%
–

168
1

0.8%
1.7%

12.2%
–

170
1

0.1%
0.1%

13.7%∗

–
175∗

1∗
9.0%∗

11.1%∗

sushi
n = 10 items
p = 5, 000 users
0.0% missing
Kamishima [60]

Disagreement Rate
Abstention Rate

# Tiers
# Top Items
∆ Sampling

∆-Adversarial

0.0%
100.0%

1
10

0.0%
0.0%

13.6%
64.4%

2
8

0.0%
0.0%

42.6%
0.0%

10
1

0.0%
0.0%

42.6%
–

10
1

0.0%
2.2%

42.6%
–

10
1

0.0%
2.2%

42.6%
–

10
1

2.2%
11.1%

42.6%
–

10
1

2.2%
11.1%

Table 1: Comparability, disagreement, and robustness of rankings for all methods on all datasets.
We report the following metrics for each ranking: Disagreement Rate, i.e., the fraction of collective
preferences that conflict with user preferences; Abstention Rate, i.e., the fraction of collective
preferences that abstain from comparison; # Tiers, the number of tiers or ranks. # Top Items, i.e., the
number of items in the top tier or rank. ∆-Sampling, the average fraction of collective preferences that
are inverted when we drop 10% of individual preferences; and ∆-Adversarial, the maximum fraction
of collective preferences that are inverted when we flip 10% of individual preferences, respectively.

and identify items where users disagree through its structure. Given a selective ranking, we are222

only allowed to compare items across tiers and are guaranteed that any comparison will overrule at223

most τ fraction of users. We can immediately tell that at least τ fraction of users express conflicting224

preferences over items within the same tier (e.g., Duke and Columbia).225

In contrast to existing methods, selective aggregation only reveals a single winner or total order when226

collective preferences align with a majority of users. In Table 1, we see that preference aggregation227

tasks may not admit a single winner or a total order. In effect, we recover a selective ranking that228

identifies a single winner on 4 out of 5 datasets, and a total order on only 1 out of 5. In many cases,229

the inability to identify a winner or total order is meaningful. On the law dataset, for example, the230

most granular selective ranking SPAmaj identifies two “top" schools (Stanford and Yale). On the231

sushi dataset, we recover selective rankings that identify both a single winner and a total order232

for τ = 0.48. In practice, this means any ranking of population preferences over sushi is highly233

contentious.234

On Robustness One of the main limitations of representing collective preferences as a ranking235

is that it may change dramatically as a result of changes to individual preferences [48–50]. This236

sensitivity is structural: given a ranking over n items, changes to individual preferences can affect237

any of the
(
n
2

)
pairwise preferences. In contrast, selective rankings limit sensitivity by grouping items238

into m ≤ n tiers, which can induce robustness by restricting the number of comparisons that are239

subject to change.240

In Table 1, we highlight this behavior by reporting the expected number of collective preferences241

that are inverted when we build a ranking from a dataset with a small number of missing or noisy242

preferences. Specifically, we report ∆-Sampling and ∆-Adversarial which measure the expected rate243

of inversions from sampling or gaming. Given each dataset and each method, we construct these244

estimates by applying each method to build a modified ranking from a dataset where we drop or245

flip 10% of individual preferences. We repeat this process 100 times and measure the number of246

collective preferences that change between the original ranking and the ranking we obtain for the247

modified dataset.248

On the Arbitrariness of Arbitration Although methods for preference aggregation must arbitrate249

conflicting preferences, many are not built to arbitrate these differences with explicit guarantees. In250

Table 1, only SPA and Kemeny can pair rankings with formal guarantees on the arbitration process.251
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Kemeny can return a ranking that is guaranteed to minimize collective disagreement by solving a252

combinatorial optimization problem. In our experiments, we are able to recover a certifiably optimal253

ranking quickly for 4/5 datasets using a commercial solver on a single-core CPU with 128GB RAM.254

On the csrankings dataset, however, we are forced to use a heuristic approach [55] because the255

optimization problem contains a prohibitively large number of constraints.256

6 Learning by Agreeing to Disagree257

One of the most common use cases for preference aggregation in machine learning arises when we258

align models with the collective preferences of their users. – e.g., to predict the toxicity of an online259

comment or the helpfulness of a chatbot response. In the simplest case, we would recruit users to260

annotate a set of training examples. We would then aggregate their annotations to obtain aggregate261

training labels we could use to fit or fine-tune a model [61]. We often apply this pattern in tasks where262

we wish to predict outcomes where individuals express conflicting preferences due to ambiguity [26]263

or subjectivity [20, 30]. In such cases, standard aggregation methods such as majority vote can lead264

to models whose predictions reflect the collective preferences of the majority [3, 12]. In what follows,265

we explore how selective aggregation can mitigate these effects by returning training labels that better266

account for all annotators’ views.267

Setup We consider a task to build a classifier to detect toxic conversations with a language model.268

We work with the DICES dataset [62], which contains individual toxicity labels for n = 350 chatbot269

conversations from p = 123 users. Here, each label is defined as yki ∈ {1,−1, 0} if user k labels270

conversation i as {toxic, benign, unsure} respectively. We randomly split users into two groups:271

a group of ptrain = 5 users whose labels we use to train our model; and a group of ptest = 118 users272

whose labels we use to evaluate the predictions of the model at an individual level once it is deployed.273

We set the relative size of each group to reflect a practical setting where a company would collect274

labels from a small subset of users to train a model that assigns predictions to a large population.275

We aggregate the toxicity labels from each user in the training set to create three sets of aggregate276

training labels to train our model. In this case, we drop all annotations where a user rates a conversation277

as “unsure" – i.e., where yi,k = 0 – and only aggregate annotations for conversations that are labeled278

as toxic or non-toxic – i.e., yi,k ∈ {−1, 1}.279

• yMaj
i := I

[∑
k∈[p] I

[
yki = 1

]
≥

∑
k∈[p] I

[
yki = −1

]]
, which denote aggregate labels from ma-280

jority vote [63].281

• yBorda
i ∈ [280], which denote aggregate labels from a pairwise variant of Borda [64]. As rankings282

are not provided, an item’s score is calculated as its total number of pairwise wins, summed across283

all users.284

• ySPA
i ∈ [15], which denotes aggregate labels from SPA for the large dissent parameter τ < 0.5.285

• yExp
i ∈ [4], which denote ratings elicited from an in-house expert. This reflects a baseline where we286

train a model using annotations from a single human expert.287

We process the training labels from each method to ensure that we can use a standard training288

procedure across similar methods. We use the training labels from each method to fine-tune a289

BERT-Mini model [65] and denote these models as fSPA, fMaj, fBorda, fExpert. We evaluate how each290

method performs with respect to individuals and users in a specific group in terms of the following291

measures:292

BERk(f
all) := 1

2FPRk(f
all) + 1

2FNRk(f
all)

LabelError(yall) := 1
p

p∑
k=1

BERk(y
all)

PredictError(f all) := 1
p

p∑
k=1

BERk(f
all)

We evaluate the performance of each in terms of the balanced error rate for clarity as the data for293

each user exhibits class imbalance that changes across users. We include additional details on our294

setup in Appendix D.5.295
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(a) Group-level errors on DICES. LabelError = avg.
disagreement with annotators; PredictError = avg. dis-
agreement of model predictions. Train: ptrain=5; Test:
ptest=118. SPA is lowest on both.
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(b) CDF of user-level BER on held-out users
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Results We summarize our results at a group level and individual level in Section 6.296

Our results highlight how SPA aggregates labels in a way that minimizes collective disagreement –297

achieving a label error of 28.2% (c.f. 37.8% with yMaj). Moreover, the improved alignment in training298

labels can propagate into an improved alignment in the predictions of the model. In this case, fSPA299

has a prediction error of 29.9% on training users and 39.9% on test users (c.f. 38.4 % and 44.5 % for300

fBorda).301

We also show how the prediction error is distributed across the ptrain = 5 annotators in the train302

set – i.e., users whose preferences we would typically observe, as well as the ptest = 118 held-out303

annotators, whose preferences we would not typically be able to observe. In this case, roughly 60%304

of users achieve an individual BER of 40% or less under ySPA, compared to roughly 20% of users for305

yBorda and yMaj.306

Our results highlight a benefit from building models using labels that encode collective preferences.307

In this case, the large values of label error for yExp imply that many users disagree with the expert.308

These findings capture the performance of each approach in a task where we threshold the predictions309

of each method to optimize the BER. In practice, we observe similar findings at other salient operating310

points – e.g., requiring a collective TPR of ≥ 90%. In such cases, baselines such as majority vote311

may underperform as their labels can only capture binary information.312

7 Concluding Remarks313

In many applications where we aggregate human preferences, disagreement is “signal, not noise” [18].314

In this work, we developed foundations to aggregate preferences in a way that can reveal disagreement315

and allow us to control it. Selective aggregation compares only on consensus, resisting adversarial316

flips and missing data by abstaining on contested pairs. The main limitation of our work stems from317

algorithm design: the algorithms we have developed in this work are designed to be simple, versatile,318

and safe. To this end, they behave conservatively in tasks where datasets contain a large number319

of missing preferences. Such datasets are common in tasks where it is costly to elicit preferences320

or where we must elicit preferences over a large collection of items. In these cases, we can still321

represent collective preferences as a selective ranking, but the output may collapse into a single322

tier. This behavior is intentional: it signals that any claim about the collective preferences could be323

invalidated once the missing preferences are elicited. At the same time, it is impractical in large-scale324

applications that rely on sparse data and elicit only a few preferences from each user. Looking325

forward, we can extend our paradigm to such settings by adopting probabilistic assumptions [see e.g.,326

39] and by developing procedures to streamline preference elicitation.327
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A Supplementary Material for Section 2562

A.1 Notation563

We provide a list of the notation used throughout the paper in Table 2.564

Object Symbol Description
Items i ∈ [n] := {1, . . . , n} The objects being ordered, for which users have expressed preferences.
Users k ∈ [p] := {1, . . . , p} Individuals expressing preferences for given items.
Individual preferences πk

i,j ∈ {−1, 0, 1} Pairwise preference between items i and j for user k.
Tiered ranking T A partial ordering of n items into m tiers
Collective preference πi,j(T ) ∈ {−1, 0, 1} The preference between items i and j in a given ranking.
Selective ranking Sτ The partial order returned by solving SPAτ (D).
Dissent parameter τ ∈ [0, 1

2 ) The admitted dissent between two items i and j.

Table 2: Notation

A.2 Encoding Individual Preferences as Pairwise Comparisons565

Representation Notation Conversion
Labels yki ∈ {0, 1} πk

i,j = I
[
yki > ykj

]
− I

[
yki < ykj

]
Ratings yki ∈ [m] πk

i,j = I
[
yki > ykj

]
− I

[
ykj > yki

]
Rankings rk : [n]→ [n] πk

i,j = I
[
rk(i) > rk(j)

]
− I

[
rk(i) < rk(j)

]
Table 3: Data structures that capture ordinal preferences over n items. Each representation can be
converted into a set of

(
n
2

)
pairwise preferences in a way that ensures (and assumes) transitivity.

Item-level representations require fewer queries but may be subject to calibration issues between
annotators.

One of the benefits in developing machinery to aggregate preferences is that it can provide practitioners566

with flexibility in deciding how to elicit and aggregate the preferences. In practice, such choices567

involve trade-offs that we discuss briefly below. Specifically, eliciting pairwise preferences from568

users requires more queries than other approaches [66]. However, it may recover a more reliable569

representation of ordinal preferences than ratings or rankings [i.e., 67]. In tasks where we work with a570

few items, we can elicit preferences as ratings, rankings, or pairwise comparisons. In tasks where we571

elicit rankings, we can convert them into pairwise comparisons without a loss of information. In this572

case, eliciting pairwise comparisons can test implicit assumptions such as transitivity. In tasks where573

we elicit labels and ratings, the conversion is lossy – since we are converting cardinal preferences574

to ordinal preferences. In practice, this conversion can resolve issues related to calibration across575

users [see e.g, 68, 69]. In theory, it may also resolve disagreement [34].576
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B Supplementary Material for Section 3577

This appendix provides supplementary material for Section 3, including proofs of the claims in this578

section and a description of the solution path algorithm.579

B.1 Proof of Correctness580

Lemma B.1. Consider the graph before running condensation or topological sort, but after581

pruning edges with weights below τp. Items can be placed in separate tiers without violating582

Disagreements(T ) ≤ τp if and only if there is no cycle in the graph involving those items.583

Proof. We start by connecting the edges in a graph to conditions on the items in a tiered ranking and584

eventually expand that connection to show the one-to-one correspondence between cycles and tiers.585

First note that for any items i, j: wi,j > τ ⇐⇒
∑p

k=1 1
[
πk
i,j ̸= 1

]
> τp. This follows trivially586

from the definition of wi,j :=
∑p

k=1 1
[
πk
i,j ̸= 1

]
. From this, we know that if and only if there exists587

an arc (i, j) that is not pruned before condensation, we cannot have a tiered ranking with πT
i,j = −1588

without violating Disagreements(T ) ≥ τp.589

If there exists a cycle in this graph, then we know the items in that cycle must be placed in the same590

tier. To show this, consider some edge i, j in the cycle. We know item j cannot be in a lower tier than591

i without violating the disagreements property, from the above. So item j must be in the same or a592

higher tier. But item j has an arrow to another item, k, which must be in the same or a higher tier593

than both j and i, and so on, until the cycle comes back to item i. This corresponds to the constraint594

that all items must be in the same tier.595

If a set of items is not in a cycle, then these items do not need to be placed in the same tier. If the596

items are not in a cycle, then there exists a pair of items (i, j) such that there is no path from j to i.597

Thus i can be placed in a higher tier than j without violating any disagreement constraints. Thus not598

all items in this set need to be placed in the same tier.599

Thus we have shown that for a graph pruned with a given value of τ , items can be placed in separate600

tiers for a tiered ranking based on that same parameter τ , if and only if there is no cycle in the graph601

involving all of these items.602

603

We draw on this Lemma to prove the main result:604

Theorem B.2. Given a preference aggregation task with n items and p users, Algorithm 1 returns the605

optimal solution to SPAτ for any dissent parameter τ ∈ [0, 1
2 ).606

Proof of Theorem B.2. Consider that items in our solution are in the same tier if and only if they607

are part of a cycle in the pruned graph (i.e., if and only if they are in the same strongly connected608

component). So items are in the same tier if and only if they must be in the same tier for the solution609

to be feasible. No other feasible tiered ranking could have any of these items in separate tiers. So no610

other tiered ranking could have any more tiers, or any more comparisons. To do so would require611

placing some same-tier items in different tiers. Thus, our solution is maximal with respect to the612

number of tiers, and with respect to the number of comparisons.613

B.2 Proof of Uniqueness614

Theorem B.3. The optimal solution to SPAτ is unique for τ ∈ [0, 0.5).615

Proof of Theorem B.3. Let T denote an optimal solution to SPAτ . We will show that the optimality616

T is fully specified by: (1) the items in each tier and (2) the ordering between tiers. That is, if we617

were to produce a tiered ranking T ′ that assigns different items to each tier, or that orders tiers in a618

different way would be suboptimal or infeasible.619

Consider a tiered ranking T that is feasible with respect to SPAτ for some τ ∈ [0, 0.5). Let T ′ denote620

a tiered ranking where we swap the order of two tiers in T . We observe that the T ′ must violate a621
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constraint. To see this, consider any pair of items i, j such that πi,j(T ) = 1 before the swap, but622

πj,i(T
′) = 1 after the swap. One such pair must exist for any swapping of tier orders, because all623

tiers are non-empty. Because we elicited complete preferences, one of the following conditions must624

hold:625 ∑
k∈[p]

I
[
πk
i,j ̸= 1

]
> τp (1)

∑
k∈[p]

I
[
πk
j,i ̸= 1

]
> τp (2)

Assuming that T was an optimal solution to SPAτ , we observe that the condition in Eq. (1)626

must be violated because the original optimal solution was valid. Thus, we must have that627 ∑
k∈[p] I

[
πk
j,i ̸= 1

]
> τp. This implies that Disagreements(T ′) > τp for this tiered ranking.628

Thus, swapping the order of tiers violates constraints because τ < 0.5.629

Now note that any separation of items from within the same tier is not possible without violating a630

constraint. This follows from Lemma B.1, which states that items that are part of a cycle in our graph631

representation of the problem1, must be in the same tier for a solution to be valid. And, as specified632

in our algorithm, we know our optimal solution has tiers only where there are cycles in the graph633

representation of the problem. So any tiers in the optimal solution cannot be separated.634

We can still merge two tiers together without violating constraints, but such an operation reduces635

the number of comparisons and would no longer be optimal. And after merging two tiers, the only636

valid separation operation would be simply to undo that merge (since any other partition of the637

items in that merged tier, would correspond to separating items that were within the same tier in638

the optimal solution). So we cannot use merges as part of an operation to reach a valid alternative639

optimal solution.640

So we know that for the optimal solution, we cannot separate out any items within the same tier, and641

we cannot reorder any of the tiers. Merging, meanwhile, sacrifices optimality. Thus, the original642

optimal solution is unique.643

B.3 Constructing All Possible Selective Rankings644

We start with a proof for Proposition B.5.645

Proof of Proposition B.5. Recall that in Algorithm 1, an edge (i, j) with weight wi,j is excluded if646

at least τp users disagree with the preference j ≻ i. We observe that wi,j =
∑

k∈[p] I
[
πk
i,j ≥ 0

]
647

corresponds the number of users who disagree with the preference j ≻ i. Given a dataset, denote the648

set of dissent values that could lead to different outputs as:649

W = {0} ∪

τ ′ | ∃i, j : τ ′ =

1

p

∑
k∈[p]

I
[
πk
i,j ≥ 0

] < 1
2


This corresponds to the set of unique wi,j/p for all i, j, with the value 0 included as well. To see this,650

note wi,j =
∑

k∈[p] I
[
πk
i,j ≥ 0

]
. We will now show the following Lemma, which will resolve the651

original claim.652

Lemma B.4. Given any two adjacent elements a, b ∈ W ∪ { 12}. All dissent values in τ ∈ [a, b) lead653

to the same selective ranking as the selective ranking for τ = a.654

Proof. To show this, note that there exists no edge i→ j such that ap < wi,j < bp. If there did exist,
then we would have

a <
wi,j

p
< b.

This would imply that W would have to include an additional between a and b. But a and b are655

adjacent inW . This is a contradiction.656

1after pruning edges of weight below τ
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Since there exists no edge i→ j such that ap < wi,j < bp, there exists no edge such that the decision657

to include its arc in the graph changes based on what value of dissent we select in [a, b). Recall that658

we exclude i→ j iff wij ≥ τp659

Now that we know that for any two adjacent values a, b inW ∪ { 12}, all dissent values in [a, b) lead660

to the same tiered ranking as with dissent value a, we know that for any dissent value τ ∈ [0, 1
2 ), the661

largest value of τ ′ ∈ W that is ≤ τ will lead to the same tiered ranking. Simply substitute τ in for a,662

and the smallest value above τ inW ∪ { 12} for b (such a value exists, on both sides, because 0 and 1
2663

are both ∈ W ∪ { 12}, and τ ∈ [0. 12 )).664

Thus we have shown the required claim.665

666

Recovering All Selective Rankings Algorithm 1 is meant to recover a selective ranking in settings667

where we can set the value of τ a priori (e.g., τ = 0% to enforce unanimity). In many applications,668

we may wish to set τ after seeing the entire path of selective rankings. In a funding task where we669

only have the resources to fund 3 proposals, for example, we can choose the smallest value of τ from670

the solution path such that the top tier contains ≤ 3 proposals. In cases where a top three does not671

exist, this can lead us to save resources or increase our budget. In a prediction task where labels672

encode collective preferences, we could aggregate annotations with a selective ranking and treat τ as673

a hyperparameter to control overfitting.674

In these situations, we can produce a solution path of selective rankings– i.e., a finite set of selective675

rankings that covers all possible solutions to SPAτ for τ ∈ [0, 1
2 ) [c.f. 70]. We observe that a finite676

solution path must exist as each selective ranking is specified by the arcs in Line 3. In practice, we can677

compute all selective rankings efficiently by: (1) identifying a smaller subset of dissent parameters to678

consider as per Proposition B.5; and (2) re-using the graph of strongly connected components across679

iterations.680

Proposition B.5. Given a dataset of pairwise preferences D, let SW denote a finite set of selective681

rankings for dissent parameters in the set:682

W =
{

w
p < 1

2 | w =
∑
k∈[p]

I
[
πk
i,j ≥ 0

]
for i, j ∈ [n]

}
∪ {0}

C
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Figure 4: All possible selective rankings for the task in Fig. 1 where we aggregate the preferences
of p = 5 users over n = 4 items {A,B,C,D}. We show the comparability and disagreement of
each solution to SPAτ on the left, and their selective rankings on the right. Here, the solution for
τ ∈ [0, 1

5 ] reveals that all users unanimously prefer {A,B} to {C,D}. The solution for τ ∈ ( 15 ,
2
5 ],

reveals that we can recover a single winner if we are willing to make claims that overrule at most 1
user, while the solution for τ ∈ ( 25 ,

1
2 ] reveals we can only recover a total order if we are willing to

overrule at most 2 users.
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Let Sτ be a selective ranking for an arbitrary dissent value τ ∈ [0, 1
2 ). Then, SW contains a selective683

ranking Sτ ′ such that Sτ ′ = Sτ for some dissent value τ ′ ≤ τ.684

We describe this procedure in Algorithm 2. Both Algorithms 1 and 2 run in time O(n2p) – i.e., they685

are linear in the number of individual pairwise preferences elicited (see Appendix B.4). As we show686

in Fig. 5, the resulting approach can lead to an improvement in runtime in practice.687

0.8s 1.8s

7.0s

30.7s

0.9s
3.7s

15.0s

50.2s

0

10

20

30

40

50

100 250 500 1000
# Items

R
un

tim
e

Naive
Path

Figure 5: Runtimes to produce all selective rankings for a synthetic task with p = 10 users and n
items (see Appendix B for details). We show results for a naïve approach where we call Algorithm 1
for all possible dissent values, and the solution path algorithm in Appendix B. All results reflect
timings on a consumer-grade CPU with 2.3 GHz and 16 GB RAM.

Algorithm We present an algorithm to construct a solution path of selective rankings in Algorithm 2.688

Algorithm 2 Solution Path Algorithm

Input: D = {πk
i,j}i,j∈[n],k∈[p] preference dataset

1: S = {} initialize solution path

Construct Initial Preference Graph for τ = 0

2: wi,j ←
∑

k∈[p] I
[
πk
i,j ≥ 0

]
for all i, j ∈ [n] wi,j = # preferences claiming i ⪰ j

3: VI ← [n] Vertices represent items

4: AI ← {(i→ j) | wi,j ≥ 0} Arcs for observed preferences

Construct Selective Rankings for All Possible Dissent Values

5: W ← {wi,j for all i, j ∈ [n] | wi,j < ⌈p2⌉} ∪ {0} Set of dissent parameters (see Proposition B.5)

6: for τ ∈ W do
7: AI ← AI/{(i→ j) ∈| wi,j ≥ τp} Add arcs with support ≥ τp

8: VT ← ConnectedComponents((T,AT )) Group items into tiers

9: AT ← {(T → T ′) | ∃i ∈ T, j ∈ T ′ : (i→ j) ∈ AI} Add edges between items to supervertex

10: (l1, . . . , l|VT |)← TopologicalSort((VT , AT )) Sort components based on directed edges

11: Sτ ← (Tl1 , . . . , Tl|VT |)

12: S ← S ∪ {Sτ}
13: end for
Output: S Selective rankings that cover the comparison-disagreement frontier

Given a preference dataset Algorithm 2 returns a finite collection of selective rankings S that achieve689

all possible trade-offs of comparability and dissent. The procedure improves the scalability by690

restricting the values of the dissent parameter τ as per Proposition B.5 in Line 2, and by reducing691

the overhead of computing graph structures. In this case, we construct the preference graph once in692

Line 4, and progressively add arcs with sufficient support in Line 7.693

Algorithm 2 assumes a complete preference dataset – i.e., where we have all pairwise preferences694

from all users. In practice, we can satisfy this assumption by imputing missing preferences to 0 as695

described in Proposition 4.2. Alternatively, we can also add an additional step after Line 7 to check696

that the item graph (VI , AI) remains connected.697

Details on Synthetic Dataset in Fig. 5 We benchmarked Algorithm 2 against Algorithm 1 in698

Fig. 5 on synthetic preference aggregation tasks where we could vary the number of users and items.699

21



We fixed the number of users to p = 10 users. For each user k ∈ [p], we sampled their pairwise700

preferences as πk
i,j ∼ Uniform(1, 0,−1).701

B.4 Proofs of Algorithm Runtime702

Algorithm 1 Line 1 computes a sum while visiting each pairwise preference for each judge, taking703

O(n2p) time. All subsequent steps are linear in the graph size: both ConnectedComponents and704

TopologicalSort are linear in input size, and the other steps are just operations on each edge. So the705

total runtime is O(n2p).706

Algorithm 2 Note that |W| = ⌈p2⌉, because wij only takes integer values and there are ⌈p2⌉ integers707

between 0 and ⌈p2⌉ inclusive of 0 and exclusive of ⌈p2⌉. so the for loop runs ⌈p2⌉ times, and everything708

in the loop runs in time linear in the graph size, so O(n2). Thus the whole runtime of the loop is709

O(n2p). The preprocessing, as before, is O(n2p) time. Note that computing W can be done in710

O(n2p) time: just iterate through all wij for each of the ⌈p2⌉ possible distinct values, and add the711

value to W if it occurs at least once. Thus the total runtime is the sum of a constant number of712

O(n2p) steps, meaning the total runtime is O(n2p).713
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C Supplementary Material for Section 4714

This appendix provides proofs and additional results to support the claims in Section 4.715

C.1 On the Top Tier716

Theorem C.1. Consider a preference aggregation task where at most α < 1
2 of users strictly prefer717

one item over all other items. Given any τ ∈ [0, 1
2 ), the tiered ranking from SPAτ will include at718

least two items in its top tier.719

Proof. We show the contrapositive: having > (1− τ) users rank an item first guarantees having only720

one item in the top tier. Without loss of generality, call an item with > (1− τ) users rating a specific721

item first A. Consider WLOG any other item B. No more than τ users claim either of B ≻ A or722

B ∼ A, because we know > (1− τ) users claim A ≻ B. So for any tiered ranking that places some723

other item B in the same tier as A, we could instead place A above all other items in that tier, and724

have one more item. Since the result of our algorithm must have the maximal number of tiers, we725

cannot have a case where A is in the same tier as any other item.726

Lemma C.2. Consider a preference aggregation task where a majority of users strictly prefer an727

item i0 over all items i ̸= i0. There exists some threshold dissent τ0 ∈ [0, 1
2 ) such that for all τ > τ0,728

every selective ranking we obtain by solving SPAτ will place i0 as the sole item in its top tier.729

Proof. Let α denote the fraction of users who strictly prefer i0 over all items. Since α > 1
2 , we730

observe that at most 1−α < 1− 1
2 users can express a conflicting preference. Given any item i ̸= i0,731

let τ0 = 1− α denote the fraction who users who believe either of i ≻ i0 or i ∼ i0. For any tiered732

ranking that places i0 and i in the same tier, we could instead place i above all other items in that tier,733

and have one more tier. Since our algorithm returns a tiered ranking with the maximal number of734

tiers, we cannot have a case where i is in the same tier as any other item.735

C.2 On Missing Preferences736

Proof of Proposition 4.2. If we are missing preferences, our algorithm’s behavior is to assume all737

missing preferences would be in disagreement with any asserted ordering. This exactly corresponds738

to the actual disagreement if the true values are all asserted equivalence/indifference, and an upper739

bound on dissent if the preferences are directional. By doing this, we guarantee that the disagreement740

property will be satisfied under any possible missingness mechanism, even a worst-case adversarial741

mechanism. We denote missingness as πk(i, j) =? if the preference is missing. This property is742

trivial to show. Consider that743

Disagreements(T ) := max
i,j∈T,T ′

T≻T ′

∑
k∈[p]

I
[
πk
i,j ̸= 1

]
≤ max

i,j∈T,T ′

T≻T ′

∑
k∈[p]

1
[
πk
i,j ∈ {0,−1, ?}

]
= max

i,j∈T,T ′

T≻T ′

∑
k∈[p]

I
[
πk
i,j ∈ {0,−1}

]
if we we set all missing values πk

i,j =? to πk
i,j = 0

Given that overall disagreement when preferences are imputed cannot increase, we have that744

πi,j(S
true
τ ) = πi,j(S

safe
τ ).745

More formally: from the disagreements argument above, we know that Dsafe has the same or more746

disagreements for any preference than does Dtrue. Every selective comparison in Ssafe
τ corresponds747

to a pair of items in distinct strongly connected components under the constraints from Dsafe (see748

Lemma B.1). When we relax to only the constraints from Dtrue, we cannot have more disagreement749

for any preferences, so those items will remain in distinct strongly connected components. Since they750

remain in distinct strongly connected components, Lemma B.1 tells us the two items will not be in751

the same tier.752
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To show that the two items will have the same ordering in both tiered rankings, note that even under753

Dtrue there must be a constraint on one of the two directions of the preference2. And that constraint754

will still hold underDsafe, which is no less constrained thanDtrue. Thus, Strue
τ cannot have a preference755

in the opposite direction from Ssafe
τ756

757

C.3 On the Distribution of Dissent758

A selective ranking only allows comparisons that violate at most τp of preferences in a dataset. In759

practice, these violations may be disproportionately distributed across users or items. For example,760

we may have a task with τ = 1
p where the same user disagrees with all comparisons in a dataset.761

Alternatively, the violations may be equally distributed across users – so that there is no coalition762

of users who agrees with all preferences. In Remark C.3, we bound the number of users who can763

disagree with a selective ranking.764

Remark C.3. A τ -selective ranking contradicts the preferences of at most p2

4 · τp users.765

The result in Remark C.3 only applies in tasks where the number of users exceeds the number of766

selective comparisons. In other tasks – where the number of selective comparisons exceeds the767

number of users – the statement is vacuous as we cannot rule out a worst-case where every user768

disagrees with at least one comparison.769

Proof. We observe that a selective ranking with a single tier makes no claims. Thus we can restrict our770

attention to cases where the τ -selective ranking contains at least two tiers. Given a selective ranking771

with more than 2 tiers, then any user who disagrees with the ranking of items from non-adjacent tiers,772

also disagrees with the ranking of two items in adjacent tiers. So every user with a conflict must773

disagree about the ordering of at least one pair of items in adjacent tiers. This bounds the number of774

users who disagree as τ times the number of distinct pairs of items in adjacent tiers. This is because775

no more than τ proportion of users can disagree with any one pairing.776

The number of distinct, adjacent-tier pairs is of the form
∑|T |−1

l=1 nlnl+1 where tier ; contains nl777

items, and all the tiers together contain all n items (
∑

i=l |T |nl = n). This quantity is maximized778

when we have |T | = 2 tiers that contain n
2 items each (rounding if n is odd). In this case, the779

maximum value is n
4 (or slightly below if n is odd). The worst case is tight, achieved with two tiers,780

each with half the items, and an even number of items.781

C.4 On Stability with Respect to New Items782

We start with a simple counterexample to show that selective rankings do not satisfy the “independence783

of irrelevant alternatives” axiom [4].784

Example C.4 (Selective Rankings do not Satisfy IIA). Consider a preference aggregation task where785

we have pairwise preferences from 2 users for 2 items i and j where both users agree that i ≻ j.786

User 1 : i ≻ j

User 2 : i ≻ j

In this case, every τ -selective ranking would be πi,j(T ) = 1 for any τ ∈ [0, 0.5).787

Suppose we elicit preferences for a third item z, and discover that each user asserts that z is equivalent788

to a different item:789

User 1 : i ∼ z ≻ j ←→ i ≻ j z ≻ j i ∼ z

User 2 : i ≻ j ∼ z ←→ i ≻ j j ∼ z i ≻ z

In this case, every τ -selective ranking would be πi,j(T ) = 0 for all τ ∈ [0, 1
2 ). This violates IIA790

because the relative comparison πi,j(T ) changes depending on the preferences involving z.791

2Given a dataset of complete preferences and τ ∈ [0, 1
2
), at least one of the following must hold:∑

k∈[p] I
[
πk
i,j ̸= 1

]
> τp or

∑
k∈[p] I

[
πk
i,j ̸= −1

]
> τp. This is because for the former claim to be true,

we’d need at least (1− τ)p preferences to be 1, which then forces the latter claim to be false because we’ve set
(1− τ)p > τp values to be something other than -1.
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Proposition C.5. Consider a preference aggregation task where for a given τ ∈ [0, 1
2 ) we construct

a selective ranking Sn using a dataset D of complete pairwise preferences from p users over n items
in the itemset [n]. Say we elicit pairwise preferences from all p users with respect to a new item n+ 1
and construct a selective ranking Sn+1 for the same τ over the new itemset [n+ 1]. Given any two
items i, j ∈ [n], we have that

(πi,j(Sn+1) = πi,j(Sn)) ∨ (πi,j(Sn+1) = 0).

Proof. It is sufficient to show the following:792

• When πi,j(Sn) ̸= −1, we never have πi,j(Sn+1) = −1793

• When πi,j(Sn) ̸= 1, we never have πi,j(Sn+1) = 1.794

Given a dataset of complete pairwise preferences and τ ∈ [0, 1
2 ), at least one of the following795

conditions must hold:796

Condition I:
∑
k∈[p]

I
[
πk
i,j ̸= 1

]
> τp

Condition II:
∑
k∈[p]

I
[
πk
i,j ̸= −1

]
> τp

This is because for Condition I to be False, we would need at least (1 − τ)p preferences to be 1,797

which then forces Condition II to be true because we have set (1− τ)p > τp values to be something798

other than −1.799

Consider WLOG that Condition I holds. If
∑

k∈[p] I
[
πk
i,j ̸= 1

]
> τp, then we know that πi,j(Sn) ̸=800

1. Otherwise we would violate the disagreement constraint in SPAτ . Note that eliciting preferences801

for a new item does not change
∑

k∈[p] I
[
πk
i,j ̸= 1

]
. So we still have

∑
k∈[p] I

[
πk
i,j ̸= 1

]
> τp,802

and we still have πi,j(Sn+1) ̸= 1. Thus, we have that both πi,j(Sn) ̸= 1 and πi,j(Sn+1) ̸= 1.803

We can apply a symmetric argument to show Condition II holds. In this case, we would have that804 ∑
k∈[p] I

[
πk
i,j ̸= −1

]
> τp and see that both πi,j(Sn) ̸= −1 and πi,j(Sn+1) ̸= −1.805

This guarantees that the claim of Proposition 4.3 cannot be violated. When πi,j(Sn) = 0 so too does806

πi,j(Sn+1) = 0. When πi,j(Sn) ̸= −1 we never have πi,j(Sn+1) = −1, when πi,j(Sn) ̸= 1 we807

never have πi,j(Sn+1) = 1. Thus we have proven the claim by cases.808
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Figure 6: Consensus rankings of U.S. law schools from selective preference aggregation and standard
voting rules for the lawschool dataset. On the left, we show selective rankings SPAmin and SPAmaj
for dissent values of τmin = 1

5 and τmax = 2
5 . On the right we see Borda on the full dataset, and

Borda90 after removing 10% of pairwise preferences — illustrating sensitivity to missing data.

D Supplementary Material for Sections 5 and 6809

In what follows, we include additional details and results for the experiments in Section 5 and our810

demonstration in Section 6.811

D.1 Descriptions of Datasets812

Dataset p n Format Description
nba 7 Coaches 100 Voters Ballots 2021 NBA Coach of the Year Award, where sports journalists vote for

the top 3 coaches

lawschool 5 Rankings 26 Schools Rankings Top U.S. law schools ranked by 5 organizations based on academic
performance, reputation, and other metrics in 2023.

survivor 6 Fans 39 Seasons Rankings Rankings task where 6 fans of the show Survivor rank seasons 1-40
from best to worst.

sushi 5,000 Respondents 10 Sushi Types Pairwise Benchmark recommendation dataset collected in Japan, where partici-
pants provided pairwise preferences over 10 different types of sushi:
ebi (shrimp), anago (sea eel), maguro (tuna), ika (squid), uni (sea
urchin), ikura (salmon roe), tamago (egg), toro (fatty tuna), tekka-maki
(tuna roll), and kappa-maki (cucumber roll).

csrankings 5 Subfields 175 Departments Rankings Rankings of computer science departments from csrankings.org based
on research output in AI, NLP, Computer Vision, Data Mining, and
Web Retrieval.

Table 4: Overview of datasets. We consider five datasets from salient use cases of preference
aggregation.

D.2 List of Metrics813

In what follows, we provide detailed descriptions of the metrics in Table 1.814
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Metric Formula Description

AbstentionRate(T )
1

n(n− 1)

∑
i,j∈[n]

I [πi,j(T ) = ⊥] Given a selective ranking over n items T , the ab-
stention rate represents the fraction of pairwise
comparisons where we abstain.

DisagreementRate(T ,D) 1

n(n− 1)p

∑
k∈[p]

∑
i,j∈[n]

I
[
πk
i,j ̸= πi,j(T ), πi,j(T ) ̸= ⊥

]
Given a ranking over n items T , the disagreement
rate represents the fraction of individual prefer-
ences in D that disagree with the collective prefer-
ences in T .

#Tiers(Sτ ) |Sτ | Given a selective ranking Sτ , the number of tiers.
For standard methods, each rank is converted to a
tier.

#TopItems(Sτ ) |T1| Given Sτ = (T1, . . . , Tm), the number of items
in the top tier. For standard methods, each rank is
converted to a tier.

DisagreementPerUser(T ,D) median
k∈[p]

1

n(n− 1)/2

∑
i,j∈[n]

I
[
πk
i,j ̸= πi,j(T )

]
The median fraction of preference violations across
users.

∆ Sampling (T,D) median
b∈{1,...,Nb}

[∑
i,j∈[n] I

[
Ti,j ̸= T b

i,j ∧ Ti,j ̸= 0 ∧ T b
i,j ̸= 0

]∑
i,j∈[n] I [Ti,j ̸= 0]

]
Given the ranking produced on the full dataset T ,
the median proportion of collective preferences
that are inverted when we drop 10% of preferences.
We construct a bootstrap estimate by applying the
method to Nb datasets where we randomly drop
10% of all preferences and obtain Nb rankings
{T 1, . . . , TNb}.

∆ Adversarial (T,D) max
b∈{1,...,Nb}

[∑
i,j∈[n] I

[
Ti,j ̸= T b

i,j ∧ Ti,j ̸= 0 ∧ T b
i,j

]
̸= 0∑

i,j∈[n] I [Ti,j ̸= 0]

]
Given the original ranking T , the maximum pro-
portion of collective preferences inverted when
we flip 10% of individual preferences. We con-
struct a bootstrap estimate where we first apply
the method to Nb datasets where we randomly flip
10% of all preferences and obtain Nb rankings
{T 1, T 2, . . . , TNb}.

Table 5: Metrics used to evaluate comparability, disagreement, and robustness of rankings in Table 1
and Appendix D.4

D.3 Selective Ranking Paths815

We present the solution paths of selective rankings for each dataset in Section 5 in Fig. 7 to Fig. 11.816
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Figure 7: Selective rankings for the nba dataset (n = 7 items and p = 100 users). We show the
tradeoff between comparison and disagreement (left) and the unique rankings over the dissent path
(right).

27



0%

20%

40%

60%

80%

100%

0.0 0.1 0.2 0.3 0.4 0.5
Max Disagreement

C
om

pa
ris

on
 R

at
e

 
Villains

Cagayan
War

Cambodia
Micronesi

Islands
Islands

Philippin
Palau
China

Tocantins
Goliath

X
Amazon
Borneo

Water
Australia
Panama

Rong
Fiji

Caramoan
Samoa

Guatemala
Sur

Stars
Extinctio

Marquesas
Changers

Africa
Island

Vanuatu
World
HHH

Gabon
Island
Pacific
Apart
Idols

Nicaragua

0.0 0.1 0.2 0.3 0.4 0.5
Max Disagreement

Figure 8: Selective rankings for the survivor dataset (n = 39 items and p = 6 users). We show the
tradeoff between comparison and disagreement (left) and the unique rankings over the dissent path
(right).
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Figure 9: Selective rankings for the sushi dataset (n = 10 items and p = 5000 users). We show the
tradeoff between comparison and disagreement (left) and the unique rankings over the dissent path
(right). Note that only a subset of dissent values are shown for clarity, focusing on the largest areas of
change.
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Figure 10: Selective rankings for the csrankings dataset (n = 175 items and p = 5 users). We
show the tradeoff between comparison and disagreement (left) and the unique rankings over the
dissent path (right). We show the top 10 items, sorted by tier and alphabetically within each tier.
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Figure 11: Selective rankings for the lawschool dataset (n = 20 items and p = 5 users). We show
the tradeoff between comparison and disagreement (left) and the unique rankings over the dissent
path (right).
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D.4 Expanded Table of Results817

We include an expanded version of our results for all methods and all datasets in Appendix D.4. This818

table covers the same results as in Table 1, but includes the following additional metrics:819

1. ∆ Abstentions [Intervention], which measures the proportion of strict collective preferences820

(e.g., A ≻ B or A ≺ B) that turn into ties or abstentions in the ranking that we obtain after821

running the method on a modified dataset.822

2. ∆ Specifications [Intervention], which measures the proportion of ties or abstentions that823

turn into ties or abstentions in the ranking that we obtain after running the method on a824

modified dataset.825

We report these values for same interventions we consider in Section 5, namely: Sampling, where we826

run the method on a dataset where we randomly omit 10% of individual preferences; and Adversarial,827

where we run the method on a dataset where we randomly flip 10% of individual preferences. Each828

value corresponds to a bootstrap estimates where we perform the same estimate 100 times. For clarity,829

we list the ∆− Sampling as ∆− Inversions−−Sampling, and ∆− Adversarial−−Inversions.

Selective Standard

Dataset Metrics SPA0 SPAmin SPAmaj Borda Copeland MC4 KemenyExact KemenyHeuristic

nba
n = 7 items
p = 100 users
28.6% missing
NBA [56]

Disagreement Rate
Median Disagreement per User

Abstention Rate
# Tiers

# Top Items
Dissent

∆ Inversions Sampling
∆ Inversions Adversarial

∆ Specifications Sampling
∆ Specifications Adversarial

∆ Abstentions Sampling
∆ Abstentions Adversarial

0.0%
0.0%

100.0%
1
7

0.0000
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

2.0%
0.0%

42.9%
2
3

0.2600
0.0%
0.0%
9.5%
9.5%
0.0%

19.0%

6.4%
4.8%

28.6%
4
1

0.4900
0.0%
0.0%
0.0%
0.0%

28.6%
28.6%

8.3%
4.8%

–
7
1
–

4.8%
19.0%

0.0%
0.0%
0.0%
0.0%

8.3%
4.8%

–
7
1
–

4.8%
19.0%
0.0%
0.0%
0.0%
4.8%

7.9%
9.5%

–
6
1
–

0.0%
19.0%
4.8%
4.8%
0.0%

33.3%

8.1%
9.5%

–
7
1
–

4.8%
14.3%
0.0%
0.0%
0.0%
0.0%

8.1%
9.5%

–
7
1
–

4.8%
14.3%
0.0%
0.0%
0.0%
0.0%

survivor
n = 39 items
p = 6 users
0.0% missing
Purple Rock [57]

Disagreement Rate
Median Disagreement per User

Abstention Rate
# Tiers

# Top Items
Dissent

∆ Inversions Sampling
∆ Inversions Adversarial

∆ Specifications Sampling
∆ Specifications Adversarial

∆ Abstentions Sampling
∆ Abstentions Adversarial

0.0%
0.0%

94.9%
2
1

0.0000
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

0.2%
0.1%

42.5%
5
1

0.1667
0.0%
0.0%
0.0%
5.1%

52.4%
57.5%

0.2%
0.1%

42.5%
5
1

0.3333
0.0%
0.0%
0.0%
0.0%

57.5%
57.5%

6.8%
7.2%

–
39

1
–

1.3%
2.6%
0.0%
0.0%
0.0%
0.0%

6.6%
7.1%

–
36

1
–

0.8%
1.8%
0.4%
0.4%
0.1%
0.4%

6.4%
6.8%

–
35
1
–

0.8%
3.1%
0.1%
0.3%

80.0%
89.5%

6.7%
7.1%

–
39
1
–

0.9%
1.6%
0.0%
0.0%
0.0%
0.4%

6.7%
7.1%

–
39
1
–

0.9%
1.6%
0.0%
0.0%
0.0%
0.4%

lawschool
n = 20 items
p = 5 users
0% missing
LSData [58]

Disagreement Rate
Median Disagreement per User

Abstention Rate
# Tiers

# Top Items
Dissent

∆ Inversions Sampling
∆ Inversions Adversarial

∆ Specifications Sampling
∆ Specifications Adversarial

∆ Abstentions Sampling
∆ Abstentions Adversarial

0.0%
0.0%

40.5%
4

12
0.0000

0.0%
0.0%
0.0%
0.0%

59.5%
59.5%

0.3%
0.0%

36.8%
6

12
0.2000

0.0%
0.0%

11.1%
0.0%

28.2%
0.0%

3.1%
1.6%
4.2%

15
2

0.4000
0.0%
0.0%
0.0%
0.5%

95.8%
95.8%

4.7%
4.2%

–
20

1
–

1.6%
3.7%
0.0%
0.0%
0.0%
0.0%

4.2%
2.6%

–
20

1
–

1.1%
2.6%
0.0%
0.0%
0.0%
1.6%

4.2%
2.6%

–
19
1
–

0.5%
2.6%
0.0%
0.0%

55.8%
64.2%

4.1%
2.1%

–
20
1
–

29.5%
45.8%
0.0%
0.0%
0.0%
0.0%

4.1%
2.1%

–
20
1
–

29.5%
45.8%
0.0%
0.0%
0.0%
0.0%

csrankings
n = 175 items
p = 5 users
0.0% missing
Berger [59]

Disagreement Rate
Median Disagreement per User

Abstention Rate
# Tiers

# Top Items
Dissent

∆ Inversions Sampling
∆ Inversions Adversarial

∆ Specifications Sampling
∆ Specifications Adversarial

∆ Abstentions Sampling
∆ Abstentions Adversarial

0.0%
0.0%

100.0%
1

175
0.0000

0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

0.0%
0.0%

98.9%
2
1

0.2000
0.0%
0.0%
0.0%
0.0%
1.1%
0.0%

0.1%
0.1%

95.5%
3
1

0.4000
0.0%
0.0%
0.0%
0.0%
4.5%
4.5%

12.3%
12.3%

–
175

1
–

0.8%
3.1%
0.0%
0.0%
0.0%
0.0%

12.2%
12.6%

–
168

1
–

0.8%
1.7%
0.1%
0.1%
0.0%
0.1%

12.2%
12.3%

–
170

1
–

0.1%
0.1%

94.4%
94.4%
0.0%
0.0%

–
–
–
–
–
–
–
–
–
–
–
–

13.7%
13.5%

–
175

1
–

9.0%
11.1%
0.0%
0.0%
0.0%
0.0%

sushi
n = 10 items
p = 5, 000 users
0.0% missing
Kamishima [60]

Disagreement Rate
Median Disagreement per User

Abstention Rate
# Tiers

# Top Items
Dissent

∆ Inversions Sampling
∆ Inversions Adversarial

∆ Specifications Sampling
∆ Specifications Adversarial

∆ Abstentions Sampling
∆ Abstentions Adversarial

0.0%
0.0%

100.0%
1

10
0.0000

0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

13.6%
13.3%
64.4%

2
8

0.0020
0.0%
0.0%
0.0%
0.0%

35.6%
0.0%

42.6%
42.2%
0.0%

10
1

0.4998
0.0%
0.0%
0.0%
0.0%

100.0%
100.0%

42.6%
42.2%

–
10

1
–

0.0%
2.2%
0.0%
0.0%
0.0%
0.0%

42.6%
42.2%

–
10
1
–

0.0%
2.2%
0.0%
0.0%
0.0%
0.0%

42.6%
42.2%

–
10
1
–

2.2%
11.1%
0.0%
0.0%
0.0%

15.6%

42.6%
42.2%

–
10
1
–

2.2%
11.1%
0.0%
0.0%
0.0%
0.0%

42.6%
42.2%

–
10
1
–

2.2%
11.1%
0.0%
0.0%
0.0%
0.0%

830

D.5 Supplementary Material for Section 6831

Selective Aggregation with Binary Annotations A key challenge in applying SPA to the DICES832

dataset is that it elicits categorical labels for each item individually, rather than comparative ratings.833

This conversion can create unnecessary equivalence, where a pairwise preference is inferred as a tie834

(πk
i,j = 0). This is not a reflection of a user’s true judgment but an artifact of two limitations: (1)835

users annotate items individually rather than comparing them, and (2) the annotations are restricted836

to {0, 1} instead of granular ratings. For example, a user may believe item A is significantly more837

toxic than item B, but the conversion results in a tie if both were labeled "toxic" a distinction that is838

lost in this setting.839

We address this by running a variant of selective aggregation where we construct aggregate labels840

from users who express a strict preference between items – i ≻ j or j ≻ i. In addition, we assume841
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Figure 12: ROC model curves on the training set for all four methods. We highlight the label for
each method closest to tpr> 90% on labels with a large dot. fSPA is the only method whose chosen
operating point keeps the true-positive rate above 80 % on the model output while controlling FPR.

that users who have not asserted an opinion (because of dataset scope) are “deferring judgment" to842

those who have.843

For each pair of items i, j ∈ [n], we define:844

• si,j :=
∑

k∈[p] I
[
πk
i,j = 1

]
denote number of users who strictly prefer item i to item j845

• sj,i :=
∑

k∈[p] I
[
πk
i,j = −1

]
denote the number of users who strictly prefer item j to item846

i.847

• The aggregate preference weight wi,j as the proportion of users who strictly prefer i to j848

among those who expressed a strict preference, scaled to n items. Note that all item pairs849

had at least 1 preference:850

wi,j := n · si,j
si,j + sj,i

In this setup, the dissent parameter τ no longer maintains its standard interpretation because users851

may not assign a preference to each item, and items may be assigned different weights. As a result,852

we produce selective rankings for all possible dissent parameters that lead to a connected graph in853

Algorithm 2. In this case, the maximum dissent value is set to a threshold value where Line 4 returns854

a disconnected graph.855

D.6 Model Training856

All experiments used 5-fold cross-validation on the training split. We fine-tuned a BERT-Mini model;857

all fine-tuning experiments used 5-fold cross-validation on the training split. We optimized with a858

learning rate of 2× 10−5 for up to 25 epochs, employing early stopping. We trained in mini-batches859

of size 16 and enabled oversampling of minority classes in each batch.860

861
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