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ABSTRACT

Viewing Graph Neural Networks as network dynamical systems on graphs has
proven a fruitful inspiration for designing interesting GNN architectures. This
work introduces the Dirac-Bianconi Graph Neural Network (DBGNN) based on
Bianconi’s topological Dirac equation on graphs. While heat equations based on
network Laplacian tend to smooth out differences, Dirac equations typically fea-
ture long-range propagation. Indeed, we find that the DBGNN layer does not lead
to an equilibration, or smoothing, of nodal features, even after hundreds of steps.
A further distinguishing feature of the topological Dirac equation is that it treats
edges and nodes on the same footing. Consequently, we expect DBGNN to be
useful in contexts where edges encode more than mere logical connectivity, but
have physical properties as well. We show competitive performance on a long-
range benchmark dataset for molecular properties, using a roughly 10x smaller
model, and superior performance for predicting the dynamic stability of power
grids. In the case of power grids, DBGNN achieves robust out-of-distribution
generalization, showing that structural relations are learned.

1 INTRODUCTION

Neural network architectures for graph-structured data have been motivated in various ways (Wu
et al., 2021). Spectral approaches see the eigenbasis of the graph Laplacian L as playing a similar
role as that of Fourier modes in spatial data. Operating on the representation of the data in the
eigenspace of the Laplacian is then seen as an analog of operating on the Fourier transform of data
on regular grids.

Spatial convolution approaches instead build on the idea of aggregating features by considering
spatial neighborhoods. Message passing is one of the most general implementations of this idea.
For the edge connecting the nodes i and j, we construct a message eij from the inputs xin

i , xin
j at

its ends. Then, every node aggregates messages on the edges connected to it to produce an output.
Denoting general, potentially non-linear, functions with f ,g,h, we have

eij = g
(
xin
i , x

in
j

)
, (1)

xout
i = f

(
xin
i ,
∑

n∈Nn

h(eij , x
in
j )

)
. (2)

This type of structure resembles that of a dynamical system on a network. Taking this analogy
seriously, a rich literature using GNNs inspired by dynamical systems has been developed, often
with the hope of overcoming shortcomings in earlier architectures. A notable example is the work by
Rusch et al. (2022), who introduce neural networks based on inertial Kuramoto oscillator networks
(Kuramoto, 1975; Acebrón et al., 2005; Rodrigues et al., 2016). They argue that over-smoothing,
the observation that many GNN architectures tend to average out features across the graph when
iterated too deeply, is analogous to synchronization in such systems. The fact that, given a natural
parameter condition, the synchronous manifold is unstable for oscillator dynamics then suggests that
their architecture should not suffer from over-smoothing.
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This is far from the only example of GNN architectures inspired by theoretical physics. Notable
works draw from geometric curvature (Topping et al., 2021), discrete dynamical systems (Oono
& Suzuki, 2019), ordinary differential equations (Poli et al., 2019), as well as partial differential
equations and their discretization schemes (Chamberlain et al., 2021a;b; Eliasof et al., 2021).

In this work, we follow a similar spirit with an eye toward applications for complex dynamical
systems. One motivating application is the prediction of the stability properties of power grids.
Ringsquandl et al. (2021) show that for power grids, GNNs with 13 or more layers are needed to
achieve good performance. This is in contrast to many common benchmark datasets, where GNNs
with only 2–3 layers perform best, and it suggests that architectures that tend to over-smooth will
struggle in this context. Furthermore, power grids are characterized by node and edge features that
are of comparable nature and importance. The same physical laws apply to the edges and nodes.
This suggests the need to treat edges and nodes on a similar footing, rather than considering the
former as merely a (possibly weighted) coupling for the latter. Finally, we know that complex
topological aspects of the graph topology play a role in shaping dynamical properties in power
grids, in some cases much more so than features on the nodes. A striking example is shown by
Nitzbon et al. (2017), who find that certain desynchronization modes of their power grid model
only occur in specific topological settings, irrespective of the node features.

The physical system upon which we will draw for inspiration is the topological Dirac equation on
networks, recently introduced by Bianconi (2021). The Dirac equation is one of the foundational
equations of quantum mechanics. It describes the evolution of the Dirac field, which describes
most elementary particles, such as electrons, protons, and quarks. The Dirac equation is based on
the Dirac operator, a square root of the Laplacian. This is obtained by mixing spatial derivatives
with transformations in ‘internal space’, i.e., transformations between different components of the
Dirac field. Bianconi (2021) builds on earlier work on quantum information processing by Lloyd
et al. (2016) introducing a Dirac operator on simplicial complexes, to introduce a Dirac operator for
graphs.

There are two properties of the topological Dirac equation that make it of interest to us. The first is
that the topological Dirac equation of Bianconi (2021) is based on treating edges and nodes on the
same footing. The internal space of the Dirac field is split between edges and nodes, and Bianconi’s
Dirac operator mixes the two. The second interesting property is that its square is given by a pair
of ordinary graph Laplacians. The graph Laplacian is analogous to a second-order differential op-
erator. The evolution of a density on the nodes under the Laplacian induces diffusion, differences
tend to equilibrate. This can be seen as a natural origin of over-smoothing suffered by some GNN
architectures. The Dirac operator, on the other hand, is first-order, and we can expect that evolution
driven by the Dirac operator induces long-range directional propagation instead.

Our main contribution is the development of a Dirac-Bianconi Graph Neural Network (DBGNN)
based on a modified generalized Dirac-Bianconi equation. We consider a simple Euler discretization
of the Dirac-Bianconi equation, add learnable weights in feature space, add a nonlinearity, and let the
resulting equation evolve for several time steps, before reading out the prediction from the evolved
features. This enables potential long-range propagation of features that contribute to the prediction.
We show that this architecture achieves great performance for a challenging power grid task, and
validate it with good performance for molecular property prediction.

The paper is structured as follows. We start by introducing Bianconi’s Dirac operator for graphs, as
well as the topological Dirac equation and our generalization thereof. This provides the basis for a
detailed introduction of the DBGNN layer. Thereafter, we show experimental results and compare
the performance to benchmark models, closing with the discussion and further outlook.

Notation: Graphs G consist of nodes N and edges E . Each edge occurs twice, with the two
possible orientations, and we write an edge e as an ordered pair [i, j] ∈ E of nodes i, j ∈ N . The
set of neighbors of node i is denoted as Ni. The space of features on an edge/node is called Fe/n,
the space of all edge features of our graph G is F E

e , and FN
n for node features.
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2 DIRAC OPERATOR FOR GRAPHS

In differential geometry, any square root of the Laplacian (typically on a vector bundle over a Rie-
mannian manifold) is called a Dirac operator. While the eigenvalues of the Laplacian operator show
how diffusive processes disperse, they do not distinguish different directions in the manifold. In
contrast, those of the Dirac operators typically do so by coupling directions in space to different
directions in the bundle. This can be illustrated with the simplest example. For the tangent bundle
over R, the Dirac operator −i∂x has eigenvalues ±1 for the eigenmodes e±it. The Laplace operator
has the same eigenmodes, but both correspond to the eigenvalue 1. Exponentiating the Laplacian
leads to the heat kernel, which smooths out differences and leads to equilibration in the long run:
All states converge to the kernel of the Laplace operator. In contrast, exponentiating −i∂x simply
induces shifts along the real axis: e−si∂xf(x) = f(x − s), as can be readily verified by taking the
Fourier transform.

The structure of a graph can be described using the incidence matrix:

Bie =


+1 if e = [i, j]

−1 if e = [j, i]

0 otherwise.
(3)

In the context of homological algebra this is called the boundary operator. It is a straightforward
calculation to see that BB† is the usual Laplacian matrix for the graph. B†B is the so-called one-
down Laplacian and connects edges to edges. These boundary operators play a central role in the
extension of GNNs to simplicial complexes, a principled approach to give an analogy of the message
passing framework to this setting is given in Bodnar et al. (2021).

In our context, the relationship between incidence matrix and Laplacian suggests that the incidence
matrix should play a role similar to that of the Dirac operator. However, as it maps between edges
and nodes, it cannot be used directly to update features. Furthermore, it is not immediately obvious
how to interpret the expectation that different directions should couple to different internal states. A
graph does not by itself provide a notion of direction that extends beyond a single edge.

The insight of Bianconi (2021) is that this can be overcome by considering edges and vertices on an
equal footing. As B maps from the edge space to the node space, and B† vice versa, this allows to
introduce a natural Dirac operator:

∂DB =

(
0 bB

(bB)† 0

)
(4)

where b ∈ C is some complex number. This is illustrated in Figure 1a. The square of ∂DB is then
block diagonal, with the usual and the one-down Laplacian on the diagonal:

∂2
DB = 2|b|2

(
BB† 0
0 B†B

)
. (5)

If we attach a feature xi, eij ∈ R to each node and each edge respectively, and introduce the notation,
eji = −eij for all edges [i, j] ∈ E , the Dirac-Bianconi operator acts simply as

∂DB

(
x
e

)
=

(
x′

e′

)
with

x′
i = b

∑
j∈Ni

eij
e′ij = b∗(xi − xj)

. (6)

Thus, the edge feature space serves to encode directional information on the state of the features of
the original graph. In this form, the operator still resembles the action of a standard message-passing
architecture.

As ∂DB squares to the usual graph Laplacians, iterating this operator does not introduce interesting
non-diffusive dynamics on the feature space of the graph by itself, however the dynamical equations
induced by it are different to those obtained with the Laplacian. The concrete equation considered
by Bianconi (2021) includes a mass term β. Then letting edge and nodes states depend on t ∈ R,
the topological Dirac equation is given by

i∂t

(
x
e

)
=

(
∂DB +

(
β 0
0 −β

))(
x
e

)
(7)
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(a) Action of Bianconi’s Dirac Operator. (b) Generalized Dirac Bianconi dynamics.

Figure 1: Linear dynamics mixing node and edge spaces, using the Dirac operator for networks.

This is a wave equation in the sense that the right-hand side is Hermitian, and thus the time evolution
has purely imaginary eigenvalues. However, this equation does not capture directionality in the
same way as the usual Dirac operators of quantum mechanics. For example, on a regular lattice,
the operator does not distinguish edges that are parallel or orthogonal to each other. However, it
does mix edge features and node features in non-trivial ways. In addition, its eigenstates encode
topological features of the graph on both the edges and the nodes.

Following the spectral analysis of Bianconi (2021), we can also see that this evolution can-
not induce equilibration in the same way as Laplacian evolution does. The Hermitian operator
∂DB + diag(β,−β) has positive and negative eigenvalues that are bounded away from 0 by |β|2,
thus it has no kernel and no steady state to which one could converge. As long as β is non-zero, dy-
namics based on ∂DB +diag(β,−β) will always have decaying and expanding directions in feature
space. When multiplied with the imaginary unit, these are turned into rotating and counterrotating
oscillations. This is similar to the considerations in Rusch et al. (2022), which are based on the
instability of the homogeneous state (typically known as ‘synchronous state’ for oscillators).

We consider the Euler discretization of equation 7 and introduce higher-dimensional feature spaces
of dimension dn for nodes and dimension de for edges, Fn = Rdn and Fe = Rde . Consider coupling
matrices W ne ∈ Fn⊗Fe and W en ∈ Fe⊗Fn, and mass matrices W n

β ∈ Fn⊗Fn, W e
β ∈ Fe⊗Fe,

we can write
xi(t+ 1) = xi(t) +W ne

∑
j∈Ni

eij(t) +W n
β xi(t), (8)

eij(t+ 1) = eij(t) +W en(xi(t)− xj(t))−W e
βeij(t).

We call this equation the generalized linear Dirac-Bianconi equation, illustrated in Figure 1b. Here
FN
n = Rdn|N | denotes the total node feature space, and F E

e the total edge feature space. However,
after applying ∂DB we also have the space of one edge feature space per node, FN

e and one edge
feature space per edge F E

n . The action of W ne and W en then maps us back to the original FN
n and

F E
e .

This equation contains both the wave behavior, as well as expanding/contracting dynamics as a
special case. The oscillatory behavior occurs if we mimic the imaginary unit by making the right-
hand side of equation 8 antisymmetric: βn/e = −β†

n/e, and W ne = −W en†.

This should be compared to a simple linear MPNN style dynamics with edge weights:

xi(t+ 1) = xi(t) +WMPNN
n

∑
j∈Ni

eij(t) + βnxi(t), (9)

eij(t) = WMPNN
e (xi(t)− xj(t))

while the edge messages change in time, there is no time evolution of edge features themselves. The
messages can trivially be eliminated, while this is not the case for equation 8. This changes the way
the dynamics spreads into the network, see Figure 2. Notably, this is true, even if the dataset has no
non-trivial edge features.

The equation 8 is of the general form considered in Bodnar et al. (2021), however, the specific
form here has not been considered there. From the perspective of simplicial topology, the key
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Figure 2: Feature activation versus steps of the linear DB equation 8 (left) and the MPNN equation 9
(right) on a path graph, dn = df = 1, same random weights. The initial condition has all features
zero, except at node 1 where the node features are randomly activated. Linear DB shows activation
traveling down the graph linearly while MPNN shows diffusion.

differentiator is that we use the boundary and coboundary operator, together with a simultaneous
update of nodes and edges, but no Laplacian. For simplicial two-complexes this has been considered
in Bunch et al. (2020), but we are not aware of prior work that takes this approach for graphs.

3 DIRAC-BIANCONI GRAPH NEURAL NETWORKS

In the following, we will use the generalized linear Dirac-Bianconi equation to define a novel GNN
layer for problems in which long-range interactions in the graph are expected to play a profound
role, and where node features and edge features are on a similar footing.

Based on the above considerations, we define the DB 1-Step layer as one step of the linear DB
equation 8, followed by a dropout and a nonlinearity. The matrices W ne ∈ Fn ⊗ Fe, W en ∈
Fe ⊗ Fn, W n

β ∈ Fn ⊗ Fn and W e
β ∈ Fe ⊗ Fe are learnable weights. This layer is sketched in

Figure 3 A). We concatenate T such layers with shared weights to obtain the DB T-Step layer of
Figure 3 B). The full Dirac Bianconi Graph Neural Network (DBGNN) with K T-Step layers then
is constructed as in Figure 4:

• First we map the input features linearly to the hidden feature spaces Fn = Rdhidden
n and

Fe = Rdhidden
e for nodes and edges respectively.

• Then we alternate DB T-step layers and skip connections that mix in the input features using
a linear map K times. This allows different dynamics that see both, the initial conditions
as well as the features processed by the previous layers.

• Finally, use MLP maps from the hidden features dimension to the output dimension, op-
tionally followed by pooling and another MLP layer.

Such a DBGNN makes KT/2 node to node hops on the graph.

Figure 3: A) Dirac Bianconi 1-Step, B) Dirac Bianconi T-Step
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Figure 4: Dirac Bianconi Graph Neural Network (DBGNN)

Evolution of Dirichlet energy of DBGNN A common way to understand whether an architecture
is suffering from over-smoothing, is to study the various variations of the Dirichlet energy (Zhou
et al., 2021; Wang et al., 2022; Rusch et al., 2022; Chen et al., 2023; Liu et al., 2023; Fu et al., 2023;
Di Giovanni et al., 2023), its definition and computation is given in Appendix A.2. To understand
the intrinsic equilibration properties of the DBGNN when compared to convolutional GNNs we
evaluated the DE for roughly 500 steps of untrained networks. The result is shown in Figure 5.
From the spectral analysis of equation 7, we find that no equilibration occurs for DBGNNs, while
GCNs quickly lose heterogeneity.

(a) DBGNN with 42 layers and 12 steps per layer (b) GCN with 100 layers

Figure 5: Evolution of normalized Dirichlet energy of node feature embeddings for a sample of
dataset20 with five different seeds and without any training.

Long-range capabilities, the role of edge asymmetry and non-linearities To analyze the long-
range capabilities of DBGNN, we analyze how the layers can spread a localized feature into a
graph. There are two aspects in comparison to the MPNNs that could enable deep spreading, one
is the intrinsic wave dynamics of the linear DB equation, the other is that we apply a non-linearity
to the edges. This second aspect resembles the approach of Bodnar et al. (2022). It is notable that
with a ReLU activation function on the edges, either xi − xj or xj − xi is completely suppressed.
This induces a strong directionality into the behavior of the layer which could enable long-range
propagation.

To investigate the effect of the edge non-linearity and the edge updating separately, we will compare
equation 8 and the iterated DB 1-Step layer, with equation 9 and an MPNN equation 10 with and
without edge non-linearity:

xi(t+ 1) = σ(W ne
∑

j∈N (i)

eij +W n
β xi(t)) (10)

eij(t) = σ(W en(xi(t)− xj(t))) or eij(t) = W en(xi(t)− xj(t)),

for the same randomly initialized weights drawn from a normal distribution with spread 0.1. As
discussed in the introduction, equation 8 can induce both oscillatory and non-oscillatory behavior
depending on the weights. We here investigate the properties of the oscillatory regime, in which we
might expect propagating waves. To do so we constrain the weights to be W ne = −W en† and
W

n/e
β antisymmetric.
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Figure 6: Oscillatory regime: Feature activation versus steps of the linear DB equation 8 (top left),
the non-linear DB 1-Step layer equation 8 + ReLU (top right), the linear MPNN layer equation 9
(bottom left), and MPNN equation 10 without (middle) and with non-linear messages (bottom right).
dn = df = 4, same random weights.

We evolve these models on a 5x20 graph, where one of the short edges has all nodes initialized
randomly, and all other edge and node features are identically zero. Figure. 6 shows exemplary
trajectories for a model with four edge and node features. The linear DB equation shows a leading
edge, a concentrated wave of activation that spreads quickly into the network before dissipating,
with ripples radiating into the rest of the network. Due to the oscillatory initialization, the linear
MPNN equation also shows oscillatory behavior; however, this does not lead to spreading into the
network. Adding the non-linearities stabilizes the leading edge of the DB equation which now
reaches the other end of the graph, and also sharpens the ripples into a coherent excitation that travels
slower down the graph. For MPNN the nonlinearities suppress the oscillations, we are left with
pure diffusion. For higher dimensional internal spaces, as well as for many non-oscillatory random
weights, most configurations of all layers exhibit slow diffusion into the system. Occasionally, we
can randomly generate coherent travelling excitations in DBGNN, they are not observed in MPNN.
We provide examples of these trajectories in the appendix. We conclude from this that the wave
aspects of DBGNN enable deep propagation of signals into the graph, while the edge non-linearities
play a minor role.

4 EXPERIMENTAL RESULTS

We test our DBGNN on three hard tasks related to complex systems: one on power grids, two on
molecular structure. The power grid dataset is especially challenging because the topological prop-
erties across large distances are of great importance, whereas there are no edge features and only one
nodal features. On the contrary, the molecular datasets consist of a variety of nodal and edge features.

Dynamic stability of power grids The most sophisticated dataset dealing with the dynamic sta-
bility of power grids is published in Nauck et al. (2023), which is based on Nauck et al. (2022b;a).
There is a total of 20,000 grids: 10 000 small grids of size 20 (dataset20), and 10 000 medium-sized
grids of size 100 (dataset100). Besides training and evaluating the models on the same grid sizes,
we also analyze the out-of-distribution generalization by training the models on grids of size 20
and evaluating them on grids of size 100. We refer to this task as tr20ev100. Training models on
smaller grids and evaluating them on larger grids is important for real-world applications, because
the computational effort increases at least quadratically with the size of the grid.

The results are provided in Table 1, where we compare them to the current benchmark performances.
DBGNN achieves the best performance at all tasks and significantly outperforms the other models
at the out-of-distribution generalization. One of the reasons for the superior performance might be
related to the capability of going deep without encountering the problem of over-smoothing. The
final DBGNN consists of 4 DB 12-step layers, resulting in 48 total steps. To investigate the absence
of smoothing further, we compute the Dirichlet energy for one sample of dataset20 in the forward
pass using the node embeddings at each step. Figure 7 shows that in trained models, the Dirichlet
energy stays high throughout the forward pass, confirming the intuition that DBGNNs do not suffer
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Figure 7: Evolution of normalized Dirichlet energy of node feature embeddings in a trained DBGNN
layer for a sample of dataset20 with five different seeds.

from oversmoothing even at considerable depth. Some seeds go through periods of considerable
”sharpening”, especially following the change of dynamics after every T steps.

Table 1: Performance of SNBS prediction measured by R2 score in % using the benchmark models
from Nauck et al. (2023).The column tr20ev20 and tr100ev100 denotes that the models are trained
and evaluated on the same datasets. Out-of-distribution performance is measured by evaluating the
models on dataset100 after training them on dataset20 (tr20ev100).

Model In-distribution tasks Out-of-distribution task

tr20ev20 tr100ev100 tr20ev100

ArmaNet 82.22 ± 0.12 88.35 ± 0.12 67.12 ± 0.80

GCNNet 70.74 ± 0.15 75.19 ± 0.14 58.24 ± 0.47

TAGNet 82.50 ± 0.36 88.32 ± 0.10 66.32 ± 0.74

DBGNN 84.16 ± 0.25 88.99 ± 0.24 72.75 ± 0.63

Binding affinity prediction Predicting protein-ligand binding affinity is one of the challenging
and time-consuming tasks in the early stages of drug discovery. Accurate and robust binding affinity
prediction algorithms are needed to speed up the process of identifying potential drug candidates by
screening extensive ligand libraries for a given protein target. At present, several deep learning-based
models are proposed to predict the protein–ligand binding affinity and achieve good performance.
While deep learning models, especially graph neural networks methods (Wang et al., 2023; Gorantla
et al., 2023; Jiang et al., 2020) have shown promise, however, they suffer from generalizability
issues (Gorantla et al., 2023).

Here, we evaluate our DBGNN on the binding affinity prediction task using a graph-based deep
learning framework similar to earlier works (Gorantla et al., 2023; Jiang et al., 2020) on a publicly
available dataset known as Davis (Davis et al., 2011). Previously, (Jiang et al., 2020) studied both
Graph convolutional network (GCN) and graph attention network (GAT) role in binding affinity
prediction task and showed that GCN performed better than GAT on the Davis (Davis et al., 2011)
dataset. We use a refined Davis dataset used by Gorantla et al. (2023) comprising 22 644 binding
interactions of 333 protein targets and 68 ligands. The graph-based deep learning framework for
binding affinity prediction takes protein sequence and ligand Simplified Molecular Input Line Entry
System (SMILES) string as input and then converts these input sequences and SMILES data into
protein and ligand graphs, respectively. The protein and ligand graphs are passed through GNNs
to extract features and obtain encodings. These encodings are then combined and passed through a
fully-connected neural network for binding affinity prediction. For ligands, the graphs are obtained
from SMILES string which is a linearised version of the chemical structure, with atoms as nodes
and bonds as edges. In the case of protein sequences, graphs are constructed from contact maps
which contain information on which amino acids in the protein sequence are in contact or not. The
Pconsc4 (Michel et al., 2019) contact map prediction algorithm is used to obtain protein graphs, with
amino acid residues in the sequence as nodes, and their contact information is present in the edges.
We keep the framework proposed by Gorantla et al. (2023); Jiang et al. (2020) and only replace
3 GCN layers with 1 DBGNN layer for extracting protein and ligand features. We perform a short
hyperparameter study optimizing the learning rates and show the properties of the final configuration
in Table 5.
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Table 2: Performance comparison of DBGNN and GCN models on binding affinity prediction task.

Model Spearman CI Pearson RMSE

DBGNN (1 layer) 0.67 ± 0.02 0.88 ± 0.01 0.83 ± 0.02 0.47 ± 0.02

GCN (3 layers) 0.68 ± 0.02 0.88 ± 0.01 0.83 ± 0.02 0.47 ± 0.03

Peptide property prediction To assess the performance of DBGNN model on long-range interac-
tions, we use Peptides-struct dataset from the long-range benchmark dataset Dwivedi et al. (2022b).
Peptides, defined as short chains of amino acids and play crucial roles in numerous biological pro-
cesses. Given the intricate relationships between peptides and their biological functions, computa-
tional prediction of peptide properties is crucial for advancing drug development, and biomolecular
engineering. The Peptides-struct dataset is a multi-label graph regression task using the 3D struc-
ture of peptides. The primary objective here is to predict aggregated 3D properties of peptides at the
graph level. These properties include inertia mass, inertia valence, length, sphericity, and plane best
fit. These properties have been normalized to a zero mean and unit standard deviation for consis-
tency. Peptides-struct encompasses 15,535 graphs, with an average of 150.94 nodes per graph and
an average diameter of 56.99. We compare the performance to GINE and GCN-based models from
Dwivedi et al. (2022b) in Table 3. The results of better performing transformer-based models are
given in the appendix Table 7. The used DBGNN has 63 911 parameters, whereas the GCN models
have about 500 000. Nevertheless, DBGNN outperforms the other models.

Table 3: Performance comparison on long-range benchmark dataset Peptides-struct. The perfor-
mances are taken from Dwivedi et al. (2022a)

model train MAE test MAE

GCN 0.2939 ± 0.0055 0.3496 ± 0.0013

GCNII 0.2957 ± 0.0025 0.3471 ± 0.0010

GINE 0.3116 ± 0.0047 0.3547± 0.0045

GatedGCN 0.2761 ± 0.0032 0.3420 ± 0.0013

GatedGCN+RWSE 0.2578 ± 0.0116 0.3357± 0.0006

DBGNN 0.2868 ± 0.013 0.3288 ± 0.0046

5 CONCLUSION

We introduced a new graph neural network layer based on a straightforward generalization of the
topological Dirac-Bianconi equation on networks. We show that this model has no intrinsic tendency
to equilibrate features on the network. This has the potential to enable handling long-range depen-
dencies, and to treat edge and node features on an equal footing. By incorporating multiple steps
with weight sharing within one layer we enable the layer to efficiently learn dynamics that probe
the graph deeply. The DBGNN is a straightforward adaptation of the topological Dirac-Bianconi
equation, and thus offers the potential for many further modifications. In its current shape, DBGNN
already outperforms other layers at predicting the dynamic stability of power grids and consider-
ably improves performance for out-of-distribution generalization. Further, DBGNN also achieves
competitive performance for molecular property predictions.

By analyzing the internal node embeddings using the Dirichlet energy, we can show that DBGNN
appears to be not suffering from the over-smoothing problem. Further, when the dynamics change
after taking many steps, we observe a sudden sharpening of features, a phenomenon that remains
to be better understood. We have shown evidence that the long-range capabilities result from the
underlying Dirac Bianconi dynamics, rather than the edge non-linearity.

The experiments as performed were conducted without adapting the model to the task at hand.
As DBGNN is close to standard MPNN style networks, the vast array of modifications that exist for
these can be adapted in a straightforward manner here. It remains to be seen if they can also enhance
DBGNN style networks. One particularly interesting question is, whether long-range modifications
to GCNs, such as Gutteridge et al. (2023), can further enhance the long-range behavior of DBGNNs.

Overall the expanded long-range capabilities present newfound opportunities in the domains of
power grid analysis and molecular predictions, offering a heightened potential for scientific ex-
ploration and understanding.
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A APPENDIX

A.1 DATA AVAILABILITY

All data and code to train the models and generate the figures will pre provided upon publication on
GitHub and Zenodo. The supplementary material to this submission contains code and data to train
DBGNN on the power grid dataset of 20 nodes.

A.2 DIRICHLET ENERGY

The Dirichlet energy is a measure of the heterogeneity of features across the graph. The normalized
Dirichlet energy (DE) is computed by:

Dirichlet energy =
tr(x(k)⊤Lx(k))

tr(x(k)⊤x(k))
, (11)

where x(k) denotes the node embedding after k steps, and tr denotes the trace operator. The
interpretation becomes apparent by rewriting the Dirichlet energy in terms of the edge differences:

Dirichlet energy =

∑
(i,j)∈E ||xi(k)− xj(k)||2∑

i∈N ||xi(k)||2
, (12)

where xi(k) ∈ Fn denotes the state of node i after k steps.

A.3 HYPERPARAMETERS FOR REPRODUCIBILITY

The following tables provide the hyperparameters to reproduce the main results. For the power grid
dataset, the information is given in Table 4, for the binding affinity task, the information is given in
Table 5, and for the peptides structure task in Table 6.

Table 4: Properties of DBGNN after hyperparameter studies for power grid datasets

parameter dataset with grids of size 20 dataset with grids of size 100

number of layers (K) 4 4
number of steps (with shared
weights) per layer (T)

12 12

dhidden
n 500 500

dhidden
e 10 10

dropout for node convolution 6.1× 10−2 4× 10−2

dropout for edge convolution 0 0
batch size 250 250
epochs 10 000 5 000
learning rate (LR) ≈ 3.594× 10−4 6× 10−4

scheduler: LR decay factor 0.65 (period: 500 epochs) 0.7 (period: 500 epochs)

A.4 IMPLEMENTATION AND COMPUTATION DETAILS

For the Julia implementation of DBGNN (Bezanson et al., 2017) the packages GraphNeuralNet-
works.jl(Lucibello, 2023) and Flux.jl (Innes et al., 2018) are used. Furthermore, Cuda.jl (Besard
et al., 2019) and MLDatasets.jl are used. Furthermore, we provide a PyTorch Paszke et al. (2019) im-
plementation using PyTorch Geometric Fey & Lenssen (2019). We run all experiments on NVIDIA
V100 accelerators.

A.5 POWER GIRD EXPERIMENTAL DETAILS

The dynamics of power grids feature complex collective phenomena extending across the whole
system (Witthaut et al., 2022). The chosen task is based on the so-called single-node basin stability
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Table 5: Properties of DBGNN after hyperparameter studies for binding affinity task

parameter value

number of layers (K) 1
number of steps per layer (T) 10
dhidden
n (ligand graph) 156

dhidden
n (protein graph) 108

dhidden
e 2

dropout for node convolution 0.2
dropout for edge convolution 0
batch size 128
epochs 6000
learning rate (LR) 0.0001

Table 6: Properties of DBGNN after hyperparameter studies for peptides structure datasets

parameter value

number of layers (K) 1
number of steps (with shared weights) per layer (T) 24
dhidden
n 100

dhidden
e 100

dropout for node convolution 1× 10−2

dropout for edge convolution 1× 10−2

batch size 20
epochs 3 000
learning rate (LR) ≈ 6.608× 10−5

scheduler: LR decay factor None

originally introduced by Menck et al. (2013) which describes the nodal dynamic stability. It is the
result of expensive Monte-Carlo simulations and quantifies the probabilistic behavior of the entire
power grid after applying nodal perturbations.

For the power grid models, the nodal input features are categorical representations of sources or
sinks. The power lines are considered homogeneous; hence, the input edge features are simply set
to 1. The absence of diverse features puts the focus on topological properties.

The datasets both contain individual train, validation and test sets (70:15:15). The only input feature
per node, describing if a node is considered to be a source (P = 1) or sink (P = −1) is based
on the injected power P . Since homogeneous coupling is used, there are no edge features. The
performance on the nodal regression setup is evaluated using the coefficient of determination (R2).

Training details Different hyperparameters are investigated to identify promising configurations.
Among others, we explore the depths and widths of the models and also vary batch size, learning
rate, scheduling, and dropout. DBGNNs contain K different DB T-step layers. The steps within
each of the DB T-step layers share weights. In the case of the power grids, we did not find skip
connections helpful. The resulting configurations of the hyperparameter studies are provided in
Table 4.

A.6 BINDING AFFINITY EXPERIMENTAL DETAILS

We use a refined Davis dataset used by Gorantla et al. (2023) comprising 22 644 binding interac-
tions of 333 protein targets and 68 ligands. The graph-based deep learning framework for binding
affinity prediction takes protein sequence and ligand Simplified Molecular Input Line Entry Sys-
tem (SMILES) string as input and then converts these input sequences and SMILES data into pro-
tein and ligand graphs, respectively. The protein and ligand graphs are passed through GNNs to
extract features and obtain encodings. These encodings are then combined and passed through a
fully-connected neural network for binding affinity prediction. For ligands, the graphs are obtained
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Figure 8: Non-oscillatory regime: Feature activation versus steps of the linear DB equation 8 (top
left), the non-linear DB 1-Step layer equation 8 + ReLU (top right), the linear MPNN layer equa-
tion 9 (bottom left), and MPNN equation 10 without (middle) and with non-linear messages (bottom
right). dn = df = 4, same random weights.

from SMILES string which is a linearized version of the chemical structure, with atoms as nodes
and bonds as edges. In the case of protein sequences, graphs are constructed from contact maps
which contain information on which amino acids in the protein sequence are in contact or not. The
Pconsc4 (Michel et al., 2019) contact map prediction algorithm is used to obtain protein graphs, with
amino acid residues in the sequence as nodes, and their contact information is present in the edges.
We keep the framework proposed by Gorantla et al. (2023); Jiang et al. (2020) and only replace 3
GCN layers with 1 DBGNN layer for extracting protein and ligand features. We perform a short hy-
perparameter study optimizing the learning rates and show the properties of the final configuration
in Table 5.

A.7 PEPTIDES STRUCTURE EXPERIMENTAL DETAILS

The second molecular dataset contains node as well as edge features and long-range dependencies.
Given the nature of the task, namely predicting peptide properties, longer range interactions are
expected to be relevant. Table 7 contains the results of transformer-based GNNs for the peptides
task.

Table 7: Performance comparison on longe-range benchmark dataset Peptides-struct. The results
are from Dwivedi et al. (2022a).

model train MAE test MAE

Transformer+LapPE 0.2403 ± 0.0066 0.2529 ± 0.0016

SAN+LapPE 0.2822± 0.0108 0.2683 ± 0.0043

SAN+RWSE 0.2680 ± 0.0038 0.2545 ± 0.0012

A.8 NON-OSCILLATORY RANDOM WEIGHTS

Figure 8 provides exemplary trajectories with random inital weights for which MPNN and DBGNN
do not differ substantially. We suspect that random initialization leads to a washing out of the direc-
tionality required to generate coherent propagation. How to generate travelling activation robustly
remains an open research question.

We also provide a supplementary movie that shows how a DBGNN layer can have activation travel-
ling along a ladder graph, and being reflected at the far edge. The trajectory is provided in Figure 9.
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Figure 9: Oscillatory regime, full DB 1-Step layer equation 8 + non-linearity, ladder graph, dn =
df = 4.
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