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ABSTRACT

Meaningfully comparing language models is challenging with current explana-
tion methods. Current explanations are overwhelming for humans due to large
vocabularies or incomparable across models. We present TopEx, an explana-
tion method that enables a level playing field for comparing language models via
model-agnostic topics. We demonstrate how TopEx can identify similarities and
differences between DistilRoBERTa and GPT-2 on a variety of NLP tasks.

1 HOW DO WE COMPARE LANGUAGE MODELS?

Language models (LMs) often exhibit differences in behavior even when trained on the same dataset.
Architecture, pre-training, and hyperparameter choices can all lead to varying behaviors in the LM.

However, understanding these differences beyond comparing performance metrics is challenging.
Existing post-hoc interpretability approaches primarily focus on explaining individual models as
opposed to comparing models. These explanations can be generally categorized by how behavior
is explained: (a) feature-based, using feature attributions (Shapley et al., 1953; Sundararajan et al.,
2017); (b) example-based, using previously observed samples or generated counterfactuals; or (c)
concept-based, using concepts extracted from a model’s latent space (Madsen et al., 2022). Meth-
ods that fall under (b) and (c) cannot be used for comparison, as the examples and concepts are
model-specific and not easily comparable across models. Methods under (a) can be used to compare
models, but the tens of thousands of unique tokens renders such comparisons uninterpretable.

In order to meaningfully explain and compare LMs, we propose TopEx — a topic-based explanation
method. TopEx condenses feature attributions into a model-independent explanation using topic
modeling, a popular statistical method that assigns words to meaningful categories.

2 TOPIC-BASED EXPLANATIONS (TOPEX)

In this section, we outline our approach for generating topic-based explanations, which consists
of two main steps: (1) calculation of feature-based scores followed by (2) aggregation into topics.
Given two LMs trained on the same dataset, we first generate word-level importance scores for each
model. We extract Shapley values1 (Lundberg & Lee, 2017) for all instances and aggregate these
scores into global importance scores gw for each word w. We then map these word-level importance
scores gw to topic-level importance scores Gt as follows:

Gt =
∑

w∈topict
P (topict|w)gw (1)

Specifically, for all words in a given topic t, we sum over word importance scores, weighted by word
membership in each topic P (topict|w).2 Here, the weight comes from the topic model, which could
come from an existing topic lexicon such as LIWC Pennebaker et al. (2001) or be automatically
learned with e.g. Latent Dirochlet Allocation (LDA) (Blei et al., 2003). Details on token-to-word
aggregation and topic weighting schemes are in Appendix B and C respectively.

1Note that our approach works with any feature-based explanation.
2When a word in our vocabulary is not in any topics, (e.g. punctuation, LDA stopwords or words not in

LIWC) we naively treat it as a different topic. We leave other approaches, such as clustering, for future work.
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The
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fries.

FOOD
burgers       0.54
fries            0.52
milkshake   0.00
tasty            1.01
                    2.07

MONEY
cost             0.00
pricey         1.46
dollar          0.00

           1.46
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 0.52

Input
Samples

Feature
Importance

FOOD       2.07
MONEY   1.46

Topic-based
Explanation

Word Importance
Aggregation

pricey:{-1.46}       1.46
tasty:{0.73, 1.29}  1.01
burgers:{0.54}       0.54
fries:{0.52}            0.52
they:{-0.19}           0.19
were:{0.13}            0.13
the:{-0.12}             0.12
have:{0.07}            0.07

Figure 1: Generating a global explanation via TopEx. We extract an importance score for each token
using Shapley values, aggregate to average global word importances, and map these importance
scores to the corresponding topics for each word.

Figure 1 demonstrates our method on an example sentence. The first step of TopEx computes word-
level importance scores. For example, the word “tasty” gets a an aggregate score of 1.01 as an
average of its feature attribution scores 0.73 and 1.29. The second step of TopEx computes topic-
level importance scores. For example, scores for food-related words such as “burgers” and “fries”
are aggregated with “tasty” to get the final “food” topic score. The resulting topic-based explanation
is a concise summary of the model that can be used to directly compare with other models.

3 TOPEX EXPLAINS DIFFERENCES BETWEEN MODELS

We compare fine-tuned DistilRoBERTa (Sanh et al., 2019) and GPT-2(Radford et al., 2019) on the
Yelp Reviews dataset (Zhang et al., 2015) and the GoEmotions dataset (Demszky et al., 2020). From
our topic-based explanations of these models, GBERT and GGPT, we calculate the distance between
explanations as G∆ = ∥GBERT − GGPT∥1. The two topics with the most different and most similar
importance scores are highlighted in Figure 2. We can see that DistilRoBERTa focuses more than
GPT-2 on descriptions of dining when classifying a 5-star rating, while GPT-2 looks more at nega-
tivity than DistilRoBERTa. In this case, GPT-2 may be determining bad reviews through negative
words, while DistilRoBERTa has learned to better recognize descriptions of dining experiences char-
acteristic of 5-star reviews. Experiment details and additional results are given in Appendix D and E.

Conclusion. The vast array of possible LM architectures and training schemes motivates the need
to deeper understand differences in model behavior beyond performance metrics. In this work, we
present TopEx, a method that enables direct model comparisons via model-agnostic topics that can
reveal why and how models behave differently.

Yelp (5-star)

GoEmo (fear)

AFFECT WEPRONOUNSNEG. EMOTIONLIWC TOPIC

Figure 2: We explain differences in behavior of DistilRoBERTa and GPT-2 via G∆. We show the
two topics with most different (max(|G∆|)) and most similar (min(|G∆|)) importances between
models, using LDA topics for Yelp and LIWC topics for GoEmotions. Topic visualizations in blue
indicate G∆

t > 0 (i.e. the topic is more important for DistilRoBERTa), while red indicates G∆
t < 0

(i.e. the topic is more important to GPT-2).
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A APPENDIX

We include additional information detailing TopEx. Appendix B explains token-level to word-level
importance score aggregation, Appendix C details topic membership weighting, Appendix D pro-
vides experiment details, and Appendix E shows additional results and topic visualizations.

B TOKEN-TO-WORD AGGREGATION

This section details the aggregation from token-level Shapley values, [vi1, v
i
2, . . . , v

i
Ki

] to global
word-level importance scores, [g1, g2, . . . , gV ], where Ki is the total number of tokens in the ith
input and V is the size of our vocabulary.

For each of our models, we extract Shapley values, vi = [vi1, v
i
2, . . . , v

i
Ki

], computed with Partition
SHAP (Lundberg & Lee, 2017) for each token xi

k in the ith input si = [xi
1, x

i
2, . . . , x

i
Ki

]. We
then calculate the Shapley values for each word x̂i

w by summing over its constituent tokens. We
write the ith word-level input as ŝi = [x̂i

1, . . . , x̂
i
Wi

] with corresponding word-level Shapley values
v̂i = [v̂i1, . . . , v̂

i
Wi

] for the Wi words in the ith input. This calculation of local word-level Shapley
values is shown in Equation 2.

From local word-level Shapley values, we derive global word-level importance scores by aggregat-
ing the absolute value of local word-level Shapley values over each word as shown in Equation 3.
Note that we choose to take the absolute value to aggregate over magnitude of importance.

v̂ij =
∑

xk∈x̂j

vik (2) gw = C(w)

N∑
i=1

|ŝi|∑
j=1

1[x̂j=w]|v̂ij | (3)

The weighting C(w) in Equation 3 can be set to balance between the impact of word frequency and
word importance when aggregating local to global explanations. One choice for C(w) is simply
C(w) = 1, which is the traditional way of aggregating local explanations through summation.

An alternative is the inverse of the number of times a word appears in the dataset,

C(w) =
1∑N

i=1

∑|ŝi|
j=1 1[x̂j=w]

, (4)

which removes the effect of word frequency from the global word importance. Results in Ap-
pendix E use the above weighting and thus do not take into account word frequency when mapping
to word-level importance scores.

B.1 PRESERVING ADDITIVITY

Note that we can slightly modify the above equations to first compute local topic-level importance
scores that preserve Shapley additivity, and then aggregate from local to global topic-based expla-
nations, generating a faithful explanation.

Equation 5 describes aggregation from local word-level Shapley values v̂i = [v̂i1, . . . , v̂
i
Wi

] to a
local word-level importance score, liw for word w in the ith input. We then aggregate from the
local word-level importance score to a local topic-level importance score, lit for the tth topic, shown
in Equation 6. Lastly, Equation 7 details how to aggregate local topic-level importance scores,
Li = [Li

1, . . . , L
i
T ] to compute a global topic-level explanation.

liw =

|ŝi|∑
j=1

1[x̂j=w]v̂
i
j (5) Li

t =
∑

w∈topict

P (topict|w)liw (6) Gt =

N∑
i=1

|Li
t| (7)

This modified aggregation provides a way to compute a topic-based explanation for a single in-
stance that preserves the additive property of Shapley values, as local topic-based explanations for
an instance will sum to the model’s output for that instance. Additionally, the sum of the topic
importances equals the total effect.
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C TOPIC MEMBERSHIP WEIGHTING

We describe the value of P (topict|w) in Equation 1 and 6 for various topic modeling methods.
When using LDA topics, this weight is learned by the topic model, and comes from P (w|topict).
To derive a topic distribution, P (topict|w), from the topic model’s word distibution, P (w|topict),
for each topic, we simply renormalize the word distributions:

P (topict|w) =
P (w|topict)P (topict)

P (w)
∝ P (w|topict)∑

w P (w|topict)
. (8)

This works under the assumption that P (topict) is equal for all topics, which holds for LDA due to
the use of the symmetric Dirichlet distribution.

For LIWC and other unweighted topic lexicons, this membership weight is 1/Tw, where Tw is the
number of topics a word appears in.

D EXPERIMENT DETAILS

Datasets We fine-tune DistilRoBERTa and GPT-2 on three classification tasks: the Yelp Reviews
dataset (Zhang et al., 2015), a polarity detection task based on the number of stars associated with
a text review; the GoEmotions dataset (Demszky et al., 2020), an emotion classification task where
we scope to only the six Ekman emotions; and the Blog Authorship Corpus (Schler et al., 2006), an
authorship attribution task where we scope to age and gender3.

Models Both models were trained with Adam using 3 epochs, a learning rate of 5.00e−5, and
half precision. DistilRoBERTa was trained with a batch size of 64 and GPT-2 was trained with a
batch size of 32. The maximum token length was always set to 512 so that both DistilRoBERTa and
GPT-2 were trained on the same data. For GoEmotions, we add an output layer of size 6 use binary
cross entropy loss for multilabel classification. Similarly, for Blog Authorship we use binary cross
entropy loss and an output layer of size 5 (for two genders and 3 age groups). For Yelp we use an
output layer of size 5 and train using cross entropy loss for single label classification into 1-5 stars.

Table 1 shows the resulting accuracies and F1 scores for these tasks. For multilabel classification
datasets (Blog and GoEmotions), the table contains the average accuracy and F1 score across all
classes. For Yelp Reviews, we combine 1-2 star classifications (negative reviews) and 3-4 star
classifications (positive reviews) and report performance metrics on polarity classification.

Topic Modeling To get our LDA topics, we run MALLET (Graham et al., 2012) with 30 topics,
α = 5.0, and β = 0.01. We use the 100 most frequent words in each dataset as stopwords. We use
the standard LIWC lexicon (Pennebaker et al., 2001) and treat each category as a unique topic with
identical weighting for words within each category.

E FULL RESULTS

For models trained on Yelp Reviews and the Blog Authorship Corpus, we use TopEx with Partition
SHAP Lundberg & Lee (2017) for feature attribution and LDA for topic modeling. For models
trained on GoEmotions, we use TopEx with Partition SHAP for feature attribution and LIWC topics.

Table 2 shows the three most important topics and least important topics for each model, along
with the corresponding topic importance score. These scores are L1 normalized for direct numerical
comparison between models. We also calculate ||GBERT||1 − ||GGPT||1 = G∆ to measure topic-
wise differences in importance. The topics with the greatest magnitude in this residual explanation
are shown in the rightmost column of Table 2. Specifically, we show the three topics with the
most different importance scores (max(|G∆|)) and the most similar importance scores (min(|G∆|))
between models.

3Gender was measured by a binary label, and we note this does not cover the entire population of possible
bloggers.
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Table 1: Accuracy and F1 score for trained models on the three benchmark datasets. For multilabel
classification datasets (Blog and GoEmotions), we report the average accuracy and F1 score across
all classes as well as per class metrics. For the Yelp dataset, we report the accuracy on the standard
polarity task as well as accuracy for predicting 5-star reviews.

DistilRoBERTa GPT-2

F1 Accuracy F1 Accuracy

Blog (Avg.) 69.2 46.9 69.0 45.9
Blog (Female) 69.2 69.4 70.3 69.8
Blog (23-33) 72.6 72.7 71.4 72.1

Yelp (Polarity) 93.3 91.9 92.5 90.9
Yelp (5-star) 76.2 78.1 74.1 76.2

GoEmotions (Avg.) 53.5 87.2 58.7 88.0
GoEmotions (Joy) 60.4 97.7 62.3 97.9
GoEmotions (Fear) 69.8 99.1 68.4 99.1

Table 2: TopEx on three benchmark datasets. We do a manual evaluation of LDA results to name
topics, and show further topic visualizations Appendix E.1

GBERT GGPT GBERT −GGPT

Topic Importance Topic Importance Topic Importance

Blog
(Female)

technology 4.82e−2 technology 4.46e−2 animals −4.91e−3
texting 4.20e−2 animals 4.35e−2 technology 3.57e−3
travel 3.90e−2 texting 4.29e−2 “xbubzx” −3.31e−3

descriptors 1.02e−2 descriptors 9.33e−3 games −7.79e−6
longing 1.07e−2 longing 1.20e−2 school/work 1.28e−4
temporal 1.48e−2 temporal 1.46e−2 temporal 2.04e−4

Blog
(23-33)

technology 5.59e−2 technology 5.01e−2 texting −6.54e−3
animals 4.06e−2 animals 4.54e−2 technology 5.87e−3
books/movies 4.01e−2 texting 4.26e−2 animals −4.87e−3

descriptors 1.01e−2 descriptors 8.95e−3 politics −4.17e−5
longing 1.08e−2 longing 1.20e−2 music −2.85e−4
temporal 1.41e−2 temporal 1.30e−2 economy 3.20e−4

Yelp
(5-star)

atmosphere 6.51e−2 review 6.18e−2 dining 1.21e−2
review 5.60e−2 atmosphere 6.10e−2 negativity −1.19e−2
entertainment 5.55e−2 entertainment 4.74e−2 conversation −1.17e−2

time 1.31e−2 visiting 1.75e−2 american food −5.14e−5
visiting 1.50e−2 time 1.81e−2 labor −4.84e−4
location 2.03e−2 breakfast 2.20e−2 french −5.82e−4

GoEmo
(Fear)

AFFECT 0.172 AFFECT 8.92e−2 NEGEMO 9.01e−2
NEGEMO 0.161 NEGEMO 7.11e−2 AFFECT 8.27e−2
ANX 0.102 ADJ 4.84e−2 ANX 6.32e−2

FILLER 1.57e−5 WE 1.11e−4 PPRON −1.10e−5
WE 3.93e−5 FILLER 1.43e−4 WE −7.21e−5
YOU 5.31e−5 YOU 2.56e−4 SHEHE −1.10e−4

GoEmo
(Joy)

AFFECT 0.174 AFFECT 0.122 POSEMO 5.38e−2
POSEMO 0.161 POSEMO 0.107 AFFECT 5.16e−2
ADJ 6.38e−2 ADJ 4.59e−2 ADJ 1.80e−2

WE 8.89e−5 WE 6.97e−5 WE 1.92e−5
SHEHE 1.68e−4 THEY 2.04e−4 ARTICLE 1.96e−5
YOU 1.99e−4 FILLER 2.33e−4 INGEST −3.17e−5
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Figure 3: Visualizations for LDA topics on the Yelp Reviews dataset
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Figure 4: Visualizations for LDA topics on the Blog Authorship Corpus

E.1 TOPIC VISUALIZATIONS

We show word clouds to visualize all LDA topics shown in Table 2. Topics are named based on
manual evaluation of the top 15-20 words within each topic. We find all topics had some unifying
theme and were easy to name. Figure 3 contains the Yelp Reviews topics and Figure 4 contains the
Blog Authorship Corpus topics.
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