
LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

Nurbek Tastan 1 Stefanos Laskaridis 2 * Martin Takáč 1 Karthik Nandakumar 1 3 Samuel Horváth 1

Abstract
Large pre-trained models are commonly adapted
to downstream tasks using parameter-efficient
fine-tuning methods such as Low-Rank Adapta-
tion (LoRA), which injects small trainable low-
rank matrices instead of updating all weights.
While LoRA dramatically reduces trainable pa-
rameters with little overhead, it can still under-
perform full fine-tuning in accuracy and often
converges more slowly. We introduce LoFT, a
novel low-rank adaptation method that behaves
like full fine-tuning by aligning the optimizer’s in-
ternal dynamics with those of updating all model
weights. LoFT not only learns weight updates in
a low-rank subspace (like LoRA) but also prop-
erly projects the optimizer’s first and second mo-
ments (Adam’s momentum and variance) into the
same subspace, mirroring full-model updates. By
aligning the low-rank update itself with the full
update, LoFT eliminates the need for tuning ex-
tra hyperparameters, e.g., LoRA scaling factor α.
Empirically, this approach substantially narrows
the performance gap between adapter-based tun-
ing and full fine-tuning and consistently outper-
forms standard LoRA-style methods, all without
increasing inference cost.

1. Introduction
Fine-tuning large-scale pre-trained models for specific tasks
has become a standard paradigm in natural language pro-
cessing and other domains. However, as model sizes grow
into the billions of parameters, full fine-tuning (i.e., updat-
ing every weight) becomes computationally expensive and
impractical, especially in multi-task (Chronopoulou et al.,
2023) or multi-user (Yi et al., 2023) settings. Parameter-

*Work done independently of Amazon 1Mohamed bin Zayed
University of Artificial Intelligence (MBZUAI), UAE 2Amazon
Science, UK 3Michigan State University (MSU), USA. Correspon-
dence to: Nurbek Tastan <nurbek.tastan@mbzuai.ac.ae>, Samuel
Horváth <samuel.horvath@mbzuai.ac.ae>.

Accepted for presentation at the Tiny Titans: The Next Wave of
On-Device Learning for Foundational Models (TTODLer-FM)
Workshop at ICML 2025.

efficient fine-tuning (PEFT) techniques address this chal-
lenge by updating only a small subset of parameters while
reusing the vast majority of pre-trained weights. Among
these, Low-Rank Adaptation (LoRA) has emerged as a popu-
lar and effective solution. LoRA freezes the original weights
and injects trainable low-rank matrices into selected layers,
substantially reducing the number of learnable parameters.
Remarkably, LoRA often matches – and sometimes can ex-
ceed – the performance of full fine-tuning on certain bench-
marks, all while incurring minimal runtime overhead and no
additional inference latency. This makes it an attractive al-
ternative to other methods like sequential adapters (Houlsby
et al., 2019; Pfeiffer et al., 2021), which typically introduce
new layers and increased latency.

Despite its success, LoRA and similar low-rank approaches
still fall short of full fine-tuning in some settings. Em-
pirical studies have reported a persistent performance gap
and slower convergence rates compared to full-model up-
dates (Biderman et al., 2024; Wang et al., 2024). These
gaps indicate that the optimization dynamics of LoRA differ
in important ways from those of full fine-tuning. Recent
work (Liu et al., 2024; Wang et al., 2025) has attempted
to close this gap by focusing on more accurate gradient
approximations within the low-rank subspace. This is moti-
vated by the observation that LoRA’s updates can omit or
misestimate important directions in the full gradient, lead-
ing to suboptimal solutions. In this work, we demonstrate
that this is only part of the story: optimizer state misalign-
ment – specifically in the first and second moments used
by AdamW (Loshchilov and Hutter, 2019), the de facto
optimizer in large-scale training – also plays a critical role.
When these internal statistics are not properly aligned with
the low-rank constraint, it undermines the effectiveness of
the adaptation.

Finally, a practical complication in standard LoRA is the in-
troduction of a scaling hyperparameter, α, often normalized
by the rank. This scaling factor modulates the contribu-
tion of the low-rank update and must be carefully tuned.
Improper settings can lead to poor performance or even di-
vergence by overpowering the backbone model (Lee et al.,
2025; Malinovsky et al., 2024). Altogether, these challenges
– i.e., the gradient and optimizer state misalignment, as well
as the additional hyperparameter sensitivity – limit LoRA’s
ability to fully replicate the robustness and effectiveness of

1

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

Always Updated

Full Fine-Tuning AdamW

Momentum:

Second moment:

Adam Update:

Momentum:

Second moment:

LoFT Update:

Frozen
Alternating Update

Full Gradients

 : Projection of to
 : Projection matrix to

-update LoFT-AdamW

Figure 1. LoFT visualization. LoFT can be interpreted as the tightest approximation to full fine-tuning under the constraint that each
update lies in the subspace defined by V (when updating U). The LoFT-AdamW update consists of a momentum and second-moment
estimate constructed using projected gradients. The final update is then projected back onto the subspace of V to respect the low-rank
constraint. When V is the updated component instead of U , the roles of U and V are simply exchanged, and the update is applied to W⊤

instead of W .

unconstrained full fine-tuning.

Our main contributions are summarized as follows:

• We identify that not only gradients but also optimizer
states (i.e., first and second moments) suffer from mis-
alignment when approximating full fine-tuning with low-
rank updates.

• We propose Low rank adaptation that mimics Full fine-
Tuning (LoFT), a novel LoRA-based optimizer that ad-
dresses these issues by closely approximating full fine-
tuning across all optimization dimensions. LoFT consists
of five core components: gradient scaling, alternating
updates, optimizer state calibration, construction of a
projected full fine-tuning update followed by low-rank
projection, and projected full fine-tuning-aware clipping.

• To the best of our knowledge, LoFT is the first
low-rank adaptation method that exactly reduces to
AdamW (Loshchilov and Hutter, 2019) in the full-rank
limit.

• We conduct extensive experiments on both synthetic and
real-world tasks across multiple modalities, demonstrat-
ing the effectiveness and generality of LoFT.

2. Method
We focus on the standard fine-tuning setup, where a pre-
trained model is adapted to a downstream task. In full
fine-tuning, each weight matrix W is updated by a full-
rank increment ∆W . To reduce computational cost, LoRA
proposes a low-rank reparameterization

W = W0 +∆W = W0 + UV ⊤,

where W ∈ Rm×n, U ∈ Rm×r, V ∈ Rn×r, and r ≪
min{m,n}. Only U and V are trainable, reducing the gra-
dient and optimizer state footprint toO((m+n)r) compared
to O(mn) in full fine-tuning. LoRA typically introduces
a scaling factor α > 0 to modulate the magnitude of the
low-rank update. However, in our study, we set α = 1 and

attribute the need for this hyperparameter to a misalignment
between LoRA and full fine-tuning, which we address in
the subsequent sections.

2.1. Gradient Descent for Full Fine-Tuning vs. LoRA

Let f(W) : Rm×n → R denote a scalar loss function with
W representing the parameters of a single linear layer. In
standard full fine-tuning with gradient descent, the update is

W+ = W − η∇W f(W), (1)

where η > 0 is the learning rate, and∇W f(W) is the gradi-
ent of the loss with respect to W . With LoRA parametriza-
tion, the update becomes

W+ = W0 + U+(V +)⊤

= W0 + (U − η∇Uf(W))(V − η∇V f(W))⊤.
(2)

Applying the chain rule yields

∇Uf(W) = ∇W f(W)V, ∇V f(W) = ∇W f(W)⊤U.

Substituting these into (2) gives

W+ = W − η
(
∇W f(W)V V ⊤ + UU⊤∇W f(W)

)
+ η2∇W f(W)UV ⊤∇W f(W).

(3)

Equation (3) highlights a key discrepancy between LoRA
and full fine-tuning: the additional η2 term, which depends
quadratically on the gradient. While seemingly small, this
term can materially affect convergence, as we show later in
a controlled experiment. A straightforward way to eliminate
this term is through alternating updates.

Building Block 1: Alternating Updates

Do not update U and V simultaneously, but perform
alternating updates.

2

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

Table 1. The six core building blocks of LoFT for aligning low-rank adaptation with full fine-tuning.

Component Purpose

Alternating Updates (1) Eliminate second-order cross terms from LoRA dynamics.
Gradient Scaling (2) Ensure scale-invariance of low-rank updates.
Optim. States Calibration (3, 4) Align moments estimates across changing low-rank spaces.
Projected Full Update (5) Reconstruct the full-model update and project it onto the low-rank subspace.
Gradient Clipping (6) Match full fine-tuning clipping behavior.

Without loss of generality, assuming we update only U , the
resulting update to W becomes

W+ = W − η∇W f(W)V V ⊤. (4)

However, this update suffers from a scale ambiguity: for
any c ̸= 0, UV ⊤ = (cU)(V/c)⊤, but the update scales
differently with c. To resolve this, observe that the update
direction lies in the column space of V , allowing us to scale
the update using an r × r matrix1

(
V ⊤V

)−1

W+ = W − η∇W f(W)V
(
V ⊤V

)−1
V ⊤

= W − η∇W f(W)PV ,
(5)

where PV = V (V ⊤V)−1V ⊤ is the projection matrix onto
the column space of V . This ensures the update is the clos-
est low-rank approximation to ∇W f(W) under the given
subspace. The associated computational cost isO(r3). This
update defines our second building block.

Building Block 2: Use Scaled Gradients

∇̃Uf(W) = ∇Uf(W)
(
V ⊤V

)−1
,

∇̃V f(W) = ∇V f(W)⊤
(
U⊤U

)−1
.

We are not the first to suggest this; Zhang and Pilanci (2024)
derived a similar result from the perspective of Riemannian
optimization.

2.2. First Moment Misalignment

In practice, gradients are often estimated using momentum.
Specifically, the first moment mk is computed as mk =
β1mk−1 + (1− β1)gk, where β1 ∈ [0, 1) is the momentum
coefficient and gk is the stochastic gradient at step k. For
full fine-tuning, the resulting momentum update is

mW
k = (1− β1)

k∑
i=0

βk−i
1 ∇W f(Wi). (6)

where Wi denotes the parameter value at step i. When
updating U under the LoRA parameterization, the effect on

1We assume V is of full rank. If not, we can use the pseudo-
inverse.

W becomes

mU
k V

⊤ = (1− β1)

k∑
i=0

βk−i
1 ∇̃Uf(Wi)V

⊤

= (1− β1)

k∑
i=0

βk−i
1 ∇W f(Wi)Vi

(
V ⊤
i Vi

)−1
V ⊤
k ,

which does not represent a proper projection due to the
mismatch between Vi and Vk. To address this, we introduce
a recalibration step

mU
k = β1m

U
k−1Ck + (1− β1)∇̃Uf(Wi), (7)

where CV
k

def
= (V ⊤

k−1Vk)(V
⊤
k Vk)

−1 is a calibration matrix.
Substituting this back gives

m̃U
k = mU

k V
⊤

= (1− β1)

k∑
i=0

βk−i
1 ∇W f(Wi)P∩k

j=iVj

= (1− β1)

k∑
i=0

βk−i
1 gVi ,

(8)

where P∩k
j=iVj

=
∏k

j=i PVj
is the projection onto the in-

tersection of the column spaces of Vj for j = i to k. Let

gVi
def
= ∇W f(Wi)P∩k

j=iVj
. This expression provides the

tightest possible estimate of the momentum under the con-
straints of the evolving low-rank subspaces defined by Vi’s.
In implementation, storing previous iterates {Vk−1, Uk−1}
incurs an additional memory cost of O((m+ n)r).

Building Block 3: Recalibrate Momentum

mU
k = β1m

U
k−1C

V
k + (1− β1)∇̃Uf(Wi),

mV
k = β1m

V
k−1C

U
k + (1− β1)∇̃V f(Wi).

3

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

2.3. Second Moment Misalignment

For Adam-style updates, the ideal update to W when U is
being updated given subspace constraints would be

m̃U
k/(1−βk

1)√
ṽU
k/(1−βk

2) + ε
PVk

, s.t. m̃U
k = (1− β1)

k∑
i=0

βk−i
1 gVi ,

ṽUk = (1− β1)

k∑
i=0

βk−i
1 gVi ⊙ gVi ,

(9)
where m̃U

k is as defined in (8), and ṽUk = (1 −
β2)

∑k
i=0 β

k−i
2 gVi ⊙ gVi is the second moment estimate.

The symbol ⊙ denotes element-wise multiplication. Note
that this update is constructed to lie in the subspace defined
by Vk, in accordance with (4).

To compute ṽUk efficiently, we use the following identities
from Slyusar (1999)

(A •B)(C ⊗D) = (AC) • (BD),

(AB)⊙ (CD) = (A • C)(B ∗D)
(10)

where ⊗ is the Kronecker product, • is the transposed
Khatri–Rao product, and ∗ is the standard Khatri–Rao prod-
uct. We define the calibrated second-moment accumulator
as

pUk = β2p
U
k−1(C

V
k ⊗ CV

k)

+ (1− β2)(∇̃Uf(Wi) • ∇̃Uf(Wi)),
(11)

where pUk is a matrix of size nr × r that stores the cross-
terms necessary to reconstruct the second moment after
transformation. The associated memory overhead isO((m+
n)r2), which is the main limitation of our approach. For
this reason, maintaining a small rank r is crucial for memory
efficiency. In practice, this constraint is acceptable as long
as r ≤

√
min{m,n}, which we find to be both reasonable

and sufficient for capturing effective low-rank updates. To
address this limitation in future work, we plan to investigate
variants of LoFT using LLM-specific optimizers where all
optimizer states are linear functions of stochastic gradients,
such as Muon (Jordan et al., 2024).

Building Block 4: Second Moment Alignment

Use cross-terms for second moment accumulation
to enable second moment recalibration

pUk = β2p
U
k−1(C

V
k ⊗ CV

k)

+ (1− β2)(∇̃Uf(Wi) • ∇̃Uf(Wi)),

pVk = β2p
V
k−1(C

U
k ⊗ CU

k)

+ (1− β2)(∇̃V f(Wi) • ∇̃V f(Wi)).

(12)

Using pUk , we compute ṽUk = pUk (Vk ∗ Vk) and apply the
following update.

Building Block 5: Reconstruct Full Update Fol-
lowed by Projection

For the Adam version of LoFT, update U and V as

Uk+1 = Uk − ηk
mU

k Vk/(1−βk
1)√

pUk (Vk∗Vk)/(1−βk
2) + ε

Vk(V
⊤
k Vk)

−1,

Vk+1 = Vk − ηk
mV

k Uk/(1−βk
1)√

pVk (Uk∗Uk)/(1−βk
2) + ε

Uk(U
⊤
k Uk)

−1.

(13)

2.4. Gradient Clipping and Weight Decay

We apply no special modifications to weight decay. Since
only one of U or V is updated at a time, the effect of stan-
dard weight decay correctly reduces the low-rank update
as UV ⊤ → (1 − ληk)UV ⊤. The full AdamW-LoFT al-
gorithm is provided in the appendix. With all six building
blocks described above, LoFT-AdamW exactly recovers full
fine-tuning when r = min{m,n} and Uk, Vk are full-rank.
To our knowledge, LoFT is the first low-rank adaptation
method that provably recovers full fine-tuning in this limit.

Building Block 6: Gradient Clipping

To approximate full fine-tuning during gradient clip-
ping, when updating U , we use ∇̃Uf(W)V ⊤ =
∇W f(W)PW as the effective gradient for the cor-
responding layer W .

2.5. Simulated Experiment

In the previous remark, we argued that for full-rank adapta-
tion, LoFT recovers full fine-tuning. We now demonstrate
that if the target solution is low-rank, LoFT matches the per-
formance of full fine-tuning if the correct rank is selected.
We consider the optimization problem f(W) = ∥W −A∥2F ,

0 50 100 150 200 250 300
Steps

10 10

10 7

10 4

10 1

102

105

Lo
ss

LoRA
LoFT (No Alternate Update)
LoFT (No State Calibration)
LoFT
Full Fine-Tuning

Figure 2. Comparison of LoRA, LoFT, and Full Fine-tuning with
Adam on f(W) = ∥W −A∥2F .

4

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

Table 2. Performance comparison of parameter-efficient fine-tuning methods, LoRA, DoRA, and our method LoFT, on a suite of
commonsense reasoning benchmarks using LLaMA-7B, LLaMA2-7B, and LLaMA3-8B models. The table reports accuracy scores across
multiple tasks with average performance shown in the final column. r denotes the rank used in the respective adaptation method. Bold
and underlined scores highlight the best and second-best performance per task, respectively.

Model Method BoolQ PIQA SIQA HS WG ARC-C ARC-E OBQA avg.

LLaMA-7B

LoRAr=16 65.38 76.71 75.69 79.81 68.03 65.27 80.30 77.40 73.57
DoRAr=16 54.13 73.94 79.38 58.01 79.40 64.68 79.76 79.60 71.11

LoFTr=16 68.62 82.80 78.27 82.69 73.32 64.30 80.26 78.40 76.08
LoFTr=4 67.34 80.96 76.20 80.50 76.40 63.62 79.21 75.40 74.95
LoFTr=2 68.03 79.16 75.84 78.86 76.24 64.51 78.03 71.00 73.96
LoFTr=1 67.09 78.35 74.46 76.14 74.82 58.87 76.85 70.80 72.17

LLaMA2-7B

LoRAr=16 50.09 59.03 76.41 65.45 77.51 64.68 79.12 77.20 68.69
DoRAr=16 71.93 82.92 79.22 88.90 83.03 66.98 82.70 82.00 79.71

LoFTr=16 71.80 83.51 79.02 90.59 82.72 70.65 84.43 81.00 80.46
LoFTr=4 70.49 81.94 79.80 88.85 81.37 69.11 84.88 79.80 79.53
LoFTr=2 70.55 81.18 77.74 83.01 79.01 66.72 82.83 78.80 77.48
LoFTr=1 68.69 80.58 76.36 72.95 76.80 64.08 82.37 77.20 74.88

LLaMA3-8B

LoRAr=16 74.46 88.14 81.37 94.81 85.08 80.72 89.18 86.00 84.97
DoRAr=16 74.56 88.52 80.09 95.17 86.74 79.78 90.19 84.60 84.96

LoFTr=16 75.63 88.85 80.35 95.64 86.11 80.89 91.16 86.40 85.63
LoFTr=4 74.53 88.52 80.04 95.45 85.32 78.92 89.73 84.20 84.59
LoFTr=2 73.76 87.11 79.84 94.72 84.29 79.61 89.98 84.60 84.24
LoFTr=1 69.33 87.49 79.27 93.79 84.06 76.11 87.12 82.20 82.42

where A is a randomly generated matrix with rank(A) = r.
We compare LoFT, LoRA, and full fine-tuning using the
AdamW optimizer. The step size is tuned for full fine-tuning
and reused for all baselines. We initialize W = 0, and
for LoFT we follow the standard LoRA initialization (Hu
et al., 2022), which also yields UV ⊤ = 0 initially. We set
m = 1024, n = 512, and r = 8. In addition to LoFT and
LoRA, we also include ablated variants of LoFT to highlight
the importance of its design components: one without alter-
nating updates, and one without optimizer state calibration.
As shown in Figure 2, LoFT closely matches the perfor-
mance of full fine-tuning. In contrast, omitting any of its
core components leads to significantly slower convergence
and worse final performance, confirming the necessity of
the full LoFT design.

3. Experiments
We conduct extensive experiments across both language
and vision domains to evaluate the effectiveness of our
method. Our primary baselines include LoRA (Hu et al.,
2022), DoRA (Liu et al., 2024), and full fine-tuning, and
we apply these methods to a range of model backbones:
LLaMA-7B (Touvron et al., 2023a), LLaMA2-7B (Touvron
et al., 2023b), LLaMA3-8B (Grattafiori et al., 2024), and
ViT-Base (Wu et al., 2020). The evaluation spans two major
fronts: (i) commonsense reasoning tasks in the language
domain, and (ii) image classification tasks involving highly

imbalanced and domain-specific datasets, including several
medical imaging datasets and DomainNet.

In addition to the typical low-rank configuration (e.g.,
rank ≥ 4), we explore extremely constrained settings by
reducing the rank to as low as 1, demonstrating the robust-
ness of our method under stringent parameter budgets. This
allows us to highlight not just absolute performance but
also the parameter efficiency and scalability of our approach
relative to existing baselines. Further implementation and
dataset details are provided in the appendix.

3.1. Commonsense Reasoning

To evaluate the efficacy of LoFT in the language domain, we
conduct experiments on a suite of commonsense reasoning
benchmarks, including BoolQ, PIQA, SIQA, HellaSwag,
Winogrande, ARC-Challenge (ARC-C), ARC-Easy (ARC-
E), and OpenBookQA (OBQA). We fine-tune three promi-
nent large language models, LLaMA-7B (Touvron et al.,
2023a), LLaMA2-7B (Touvron et al., 2023b), and LLaMA3-
8B (Grattafiori et al., 2024), using parameter-efficient meth-
ods: LoRA, DoRA, and our proposed LoFT, each evaluated
at multiple rank settings, notably including very low ranks
(e.g., 1, 2, 4). Following the setting of (Hu et al., 2023), we
combine the training sets from all eight benchmarks into
a single unified training dataset, and then conduct evalua-
tion separately on each task’s official test set. This unified
training strategy enables more stable fine-tuning and fairer

5

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

Table 3. Comparison of parameter-efficient fine-tuning methods on image classification benchmarks using the ViT-Base model. We
evaluate full fine-tuning (Full FT), LoRA, DoRA, and our proposed method, LoFT, across four datasets: ISIC2019, HAM10000, Diabetic
Retinopathy, and DomainNet. Accuracy (mean ± standard deviation) is reported for each setting.

Model Method ISIC2019 HAM10000 Diabetic
Retinopathy DomainNet avg.

ViT-Base

Full FT 80.69± 0.18 93.22± 0.64 56.07± 0.23 73.46± 1.20 75.86

LoRAr=16 81.02± 1.10 91.56± 0.66 57.87± 0.43 71.39± 0.10 75.46

DoRAr=16 80.35± 0.17 90.78± 0.81 57.66± 0.56 70.18± 2.02 74.74

LoFTr=16 81.06± 0.13 93.13± 0.28 58.33± 0.19 71.97± 0.16 76.12
LoFTr=8 80.36± 0.21 91.78± 0.68 57.89± 0.48 70.11± 0.77 75.04
LoFTr=4 79.31± 0.36 91.45± 0.73 56.98± 0.27 69.32± 0.55 74.27

comparisons across tasks and adaptation methods.

As shown in Table 2, LoFT consistently achieves superior
performance across all model scales and rank configura-
tions. For LLaMA-7B, LoFT at rank 16 achieves the high-
est average accuracy of 76.08%, outperforming both LoRA
(73.57%) and DoRA (71.11%) by notable margins. Even
at lower ranks, LoFT maintains strong performance, only
a 1.1% drop at rank 4 and 3.9% at rank 1, demonstrating
its robustness in extremely low-rank regimes. The trend
continues for LLaMA2-7B, where LoFT at rank 16 reaches
an average accuracy of 80.46%, surpassing LoRA by 11.7%
and slightly edging out DoRA. Remarkably, LoFT remains
highly competitive down to rank 1, scoring 74.88%, which
still outperforms LoRA by a significant margin. For the
largest model, LLaMA3-8B, LoFT achieves the highest av-
erage accuracy of 85.63% at rank 16. The gains over LoRA
and DoRA are less dramatic, but LoFT’s performance re-
mains consistently on top. Importantly, the drop-off in per-
formance with decreasing rank is significantly more graceful
for LoFT.

3.2. Image Classification

To assess the generality of our approach beyond the lan-
guage domain, we evaluate it on image classification tasks
using the ViT-Base model (Wu et al., 2020) pretrained on
ImageNet-21K (Deng et al., 2009). Vision models, unlike
language models, are known to be more sensitive to low-
rank constraints, often requiring higher intrinsic ranks to
preserve performance. Therefore, we restrict our analysis
to ranks r ≥ 4, focusing on whether LoFT can match or
exceed strong baselines under such challenging constraints.

We conduct experiments on four diverse and challenging
datasets:

• ISIC2019 (Codella et al., 2019) and HAM10000
(Tschandl et al., 2018): medical skin lesion classifica-
tion datasets with long-tailed label distributions,

• Diabetic Retinopathy (Graham, 2015): a medical imag-

ing dataset with ordinal severity levels, and
• DomainNet (Peng et al., 2019): a large-scale highly-

skewed benchmark.

We compare our method (LoFT) against full fine-tuning
(Full FT), LoRA, and DoRA using a consistent configuration
(rank r = 16 unless specified otherwise). For each dataset,
we report the mean and standard deviation over three runs.

As shown on Table 3, LoFT at rank 16 achieves the high-
est average accuracy 76.12%, outperforming both LoRA
(75.46%) and DoRA (74.74%), and even slightly surpass-
ing full fine-tuning (75.86%). LoFT also achieves the top
score on two of four individual datasets, including ISIC2019
and Diabetic Retinopathy. Notably, LoRA performs com-
petitively on ISIC2019 but exhibits degraded performance
on HAM10000 and DomainNet, suggesting it may strug-
gle with skewed datasets. DoRA generally underperforms
across datasets, indicating instability in visual domains with
skewed/out-of-domain datasets. In contrast, LoFT main-
tains strong performance, even when the rank is reduced to
8 and 4, with only a 2-point drop in average accuracy at rank
4, further reinforcing its resilience to low-rank degradation
in vision tasks.

4. Conclusion
In this work, we have presented LoFT, a low-rank adapta-
tion framework that aligns the optimizer’s internal dynamics
to full fine-tuning, by means of alternating LoRA updates,
gradient projection and scaling, first and second moments
calibration, and gradient clipping. These mechanisms en-
able significant performance and efficiency gains with mini-
mal loss in accuracy, across various tasks and model sizes,
and pave the way for training even more efficiently for
downstream tasks. Towards this end, we plan to explore
the interplay between our LoFT and quantization to further
boost efficiency and sustainability in training, as well as how
it can be combined with noisy differential privacy updates,
which can enable distributed private training at scale.

6

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

References
Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, and

Jacek Tabor. Lora-xs: Low-rank adaptation with ex-
tremely small number of parameters. arXiv preprint
arXiv:2405.17604, 2024.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Or-
tiz, Mansheej Paul, Philip Greengard, Connor Jennings,
Daniel King, Sam Havens, Vitaliy Chiley, Jonathan
Frankle, Cody Blakeney, and John Patrick Cunning-
ham. LoRA learns less and forgets less. Transac-
tions on Machine Learning Research, 2024. ISSN
2835-8856. URL https://openreview.net/
forum?id=aloEru2qCG. Featured Certification.

Massimo Bini, Leander Girrbach, and Zeynep Akata.
Decoupling angles and strength in low-rank adapta-
tion. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://
openreview.net/forum?id=X1U74IwuxG.

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi, and
Gauri Joshi. Heterogeneous lora for federated fine-tuning
of on-device foundation models. In Proceedings of the
2024 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 12903–12913, 2024.

Alexandra Chronopoulou, Matthew E Peters, Alexander
Fraser, and Jesse Dodge. Adaptersoup: Weight averaging
to improve generalization of pretrained language mod-
els. In Findings of the Association for Computational
Linguistics: EACL 2023, pages 2054–2063, 2023.

Noel Codella, Veronica Rotemberg, Philipp Tschandl,
M Emre Celebi, Stephen Dusza, David Gutman, Brian
Helba, Aadi Kalloo, Konstantinos Liopyris, Michael
Marchetti, et al. Skin lesion analysis toward melanoma
detection 2018: A challenge hosted by the interna-
tional skin imaging collaboration (isic). arXiv preprint
arXiv:1902.03368, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke
Zettlemoyer. Qlora: Efficient finetuning of quantized
llms. Advances in neural information processing systems,
36:10088–10115, 2023.

Ben Graham. Kaggle diabetic retinopathy detection compe-
tition report. University of Warwick, 22(9), 2015.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhi-
nav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Alex Vaughan,

et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient
low rank adaptation of large models. In International
Conference on Machine Learning, pages 17783–17806.
PMLR, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. Towards a uni-
fied view of parameter-efficient transfer learning. In
International Conference on Learning Representa-
tions, 2022. URL https://openreview.net/
forum?id=0RDcd5Axok.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo,
Mona Attariyan, and Sylvain Gelly. Parameter-efficient
transfer learning for nlp. In International conference on
machine learning, pages 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language mod-
els. ICLR, 1(2):3, 2022.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria,
and Roy Lee. LLM-adapters: An adapter family for
parameter-efficient fine-tuning of large language mod-
els. In Houda Bouamor, Juan Pino, and Kalika Bali, edi-
tors, Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 5254–
5276, Singapore, December 2023. Association for Com-
putational Linguistics. doi: 10.18653/v1/2023.emnlp-
main.319. URL https://aclanthology.org/
2023.emnlp-main.319/.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You,
Franz Cesista, Laker Newhouse, and Jeremy Bernstein.
Muon: An optimizer for hidden layers in neural networks,
2024. URL https://kellerjordan.github.io/
posts/muon/.

Damjan Kalajdzievski. A rank stabilization scaling
factor for fine-tuning with lora. arXiv preprint
arXiv:2312.03732, 2023.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M
Asano. VeRA: Vector-based random matrix adaptation. In
The Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/
forum?id=NjNfLdxr3A.

Ariel Lee, Cole Hunter, and Nataniel Ruiz. Platypus: Quick,
cheap, and powerful refinement of llms. In NeurIPS
2023 Workshop on Instruction Tuning and Instruction
Following, 2025.

7

https://openreview.net/forum?id=aloEru2qCG
https://openreview.net/forum?id=aloEru2qCG
https://openreview.net/forum?id=X1U74IwuxG
https://openreview.net/forum?id=X1U74IwuxG
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://aclanthology.org/2023.emnlp-main.319/
https://aclanthology.org/2023.emnlp-main.319/
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. In Pro-
ceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 3045–3059, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimiz-
ing continuous prompts for generation. In Proceedings
of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1:
Long Papers), pages 4582–4597, 2021.

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. To-
wards resolving the implicit bias of gradient descent
for matrix factorization: Greedy low-rank learning.
In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/
forum?id=AHOs7Sm5H7R.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng,
and Min-Hung Chen. Dora: Weight-decomposed low-
rank adaptation. In Forty-first International Conference
on Machine Learning, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In International Conference on
Learning Representations, 2019. URL https://
openreview.net/forum?id=Bkg6RiCqY7.

Grigory Malinovsky, Umberto Michieli, Hasan Abed
Al Kader Hammoud, Taha Ceritli, Hayder Elesedy, Mete
Ozay, and Peter Richtárik. Randomized asymmetric chain
of lora: The first meaningful theoretical framework for
low-rank adaptation. arXiv preprint arXiv:2410.08305,
2024.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Prin-
cipal singular values and singular vectors adaptation of
large language models. Advances in Neural Information
Processing Systems, 37:121038–121072, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. In
International Conference on Learning Representations,
2017.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and
Ahmed Awadallah. Orca-math: Unlocking the po-
tential of slms in grade school math. arXiv preprint
arXiv:2402.14830, 2024.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang,
Kate Saenko, and Bo Wang. Moment matching for
multi-source domain adaptation. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 1406–1415, 2019.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. Adapterfusion:
Non-destructive task composition for transfer learning.
In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics:
Main Volume, pages 487–503, 2021.

Kaustubh Ponkshe, Raghav Singhal, Eduard Gorbunov,
Alexey Tumanov, Samuel Horvath, and Praneeth
Vepakomma. Initialization using update approximation is
a silver bullet for extremely efficient low-rank fine-tuning.
arXiv preprint arXiv:2411.19557, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9,
2019.

VI Slyusar. A family of face products of matrices and its
properties. Cybernetics and systems analysis, 35(3):379–
384, 1999.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mar-
tinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023b.

Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The
ham10000 dataset, a large collection of multi-source der-
matoscopic images of common pigmented skin lesions.
Scientific data, 5(1):1–9, 2018.

Kerem Turgutlu, Jonathan Whitaker, and J. H. Fsdp,
qlora, and llama 3: A recipe for efficient fine-tuning.
https://www.answer.ai/posts/2024-04-
26-fsdp-qdora-llama3.html, 2024. URL
https://www.answer.ai/posts/2024-04-
26-fsdp-qdora-llama3.html. Accessed:
2025-05-21.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-
rank adaptation with gradient approximation. Advances
in Neural Information Processing Systems, 37:54905–
54931, 2024.

Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tie-
niu Tan. LoRA-pro: Are low-rank adapters properly
optimized? In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https:
//openreview.net/forum?id=gTwRMU3lJ5.

8

https://openreview.net/forum?id=AHOs7Sm5H7R
https://openreview.net/forum?id=AHOs7Sm5H7R
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://www.answer.ai/posts/2024-04-26-fsdp-qdora-llama3.html
https://www.answer.ai/posts/2024-04-26-fsdp-qdora-llama3.html
https://www.answer.ai/posts/2024-04-26-fsdp-qdora-llama3.html
https://www.answer.ai/posts/2024-04-26-fsdp-qdora-llama3.html
https://openreview.net/forum?id=gTwRMU3lJ5
https://openreview.net/forum?id=gTwRMU3lJ5

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan,
Peizhao Zhang, Zhicheng Yan, Masayoshi Tomizuka,
Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Vi-
sual transformers: Token-based image representation and
processing for computer vision, 2020.

Liping Yi, Han Yu, Gang Wang, Xiaoguang Liu, and Xi-
aoxiao Li. pfedlora: model-heterogeneous personal-
ized federated learning with lora tuning. arXiv preprint
arXiv:2310.13283, 2023.

Fangzhao Zhang and Mert Pilanci. Riemannian precon-
ditioned LoRA for fine-tuning foundation models. In
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp, editors, Proceedings of the 41st
International Conference on Machine Learning, vol-
ume 235 of Proceedings of Machine Learning Re-
search, pages 59641–59669. PMLR, 21–27 Jul 2024.
URL https://proceedings.mlr.press/v235/
zhang24ax.html.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-efficient
fine-tuning. In The Eleventh International Conference
on Learning Representations, 2023. URL https://
openreview.net/forum?id=lq62uWRJjiY.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi,
Haitz Sáez de Ocáriz Borde, Rickard Brüel Gabriels-
son, Leshem Choshen, Marzyeh Ghassemi, Mikhail
Yurochkin, and Justin Solomon. Asymmetry in
low-rank adapters of foundation models. In Forty-
first International Conference on Machine Learn-
ing, 2024. URL https://openreview.net/
forum?id=txRZBD8tBV.

9

https://proceedings.mlr.press/v235/zhang24ax.html
https://proceedings.mlr.press/v235/zhang24ax.html
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=txRZBD8tBV
https://openreview.net/forum?id=txRZBD8tBV

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

A. Theoretical Properties of LoFT for Matrix Factorization
In Section 2.4, we argue that when UV ⊤ is of full rank, then LoFT recovers full fine-tuning. Furthermore, for the matrix
factorization problem, we showed that if the true solution is of low rank, then LoFT also empirically recovers full fine-tuning.
In this section, we further extend these results. In particular, we focus on the matrix factorization problem

min
U∈Rm×r,V ∈Rn×r

{
f(U, V)

def
=

1

2
∥UV ⊤ −A∥2F

}
. (14)

Let A = ŨΣṼ ⊤ be the SVD decomposition of A. Then, by the Eckart-Young theorem, we have that every solution of (14)
has the following form:

U⋆ = ŨrΣrQ,

V ⋆ = Ṽr

(
Q−1

)T
,

where Ũr,Σr, Ṽr contain the first r singular vectors of A and Q ∈ Rr×r is a full rank matrix. In the next lemma, we show
that if U and V start in the correct space, then LoFT applied to gradient descent with momentum recovers full fine-tuning
with momentum.

Lemma 1. Let U0 = ŨrX0 and V0 = ṼrY0, where X0, Y0 ∈ Rr×r are full rank matrices. Then, LoFT-GD with momentum
applied to the matrix factorization problem exactly recovers GD with momentum applied to f(W) = 1

2∥W −A∥2F initialized
at W0 = U0V

⊤
0 .

Proof. The gradient of f(W) with respect to W has the following form:

∇W f(W0) = W0 −A = Ũr

(
X0Y

⊤
0 − Σr

)
Ṽ ⊤
r .

The left and right spaces correspond to Ũr and Ṽr, respectively. Using (5) and (8), we get

gV0 = gU0 = ∇W f(W0) and m̃V
0 = m̃U

0 = m0 = ∇W f(W0).

Since momentum is also the update, we have by induction that ∀k ≥ 0, Uk = ŨrXk and Vk = ṼrYk, where Xk, Yk ∈ Rr×r.
Therefore,

gVk = gUk = ∇W f(Wk), and

m̃V
k = m̃U

k = mk = (1− β1)

k∑
i=0

βk−i
1 ∇W f(Wi).

One interesting consequence of the above lemma is that if we apply LoFT with step size 1 with the initialization in the
correct space, LoFT finds the optimal solution in a single step. Notice that without scaling, the smoothness constant of (14)
with respect to both optimization variables can be unbounded, since

∥∇Uf(U1, V)−∇Uf(U2, V)∥F = ∥(U1V
T −A)V − (U2V

T −A)V ∥F
= ∥(U1 − U2)V

⊤V ∥F

can be unbounded as ∥V ∥F can be unbounded. In practice, we would need to restrict ∥U∥F and ∥V ∥F to guarantee
smoothness. On the other hand, LoFT scaled version of the gradient satisfies:

∥∇̃Uf(U1, V)− ∇̃Uf(U2, V)∥F = ∥(U1V
T −A)V

(
V ⊤V

)−1 − (U2V
T −A)V

(
V ⊤V

)−1∥F

= ∥(U1 − U2)V
⊤V

(
V ⊤V

)−1∥F
= 1∥U1 − U2∥F .

Therefore, LoFT gradients are smooth with the smoothness constant 1 without any restrictions. The above highlights another
desirable property of LoFT introduced in the following lemma.

10

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

Lemma 2. LoFT-GD with step size η = 1 applied to the matrix factorization (14) corresponds to the Alternating Least
Squares algorithm.

Proof. Without loss of generality, we assume U is updated. Let Ek = UkV
⊤
k −A, then:

Ek+1 = Uk+1V
⊤
k −A =

(
Uk − EkVk

(
V ⊤
k Vk

)−1
)
V ⊤
k −A

= Ek − EkVk

(
V ⊤
k Vk

)−1
V ⊤
k

= Ek (I − PVk
) .

Therefore,

f(Uk+1, Vk) =
1

2
∥Ek+1∥2F =

1

2
∥Ek (I − PVk

) ∥2F = min
U∈Rm×r

1

2
∥UV ⊤

k −A∥2F = min
U∈Rm×r

f(U, Vk).

Analogically, we can derive

f(Uk, Vk+1) = min
V ∈Rn×r

f(Uk, V),

which concludes the proof.

B. Related Work
Parameter-Efficient Fine-Tuning. As aforementioned, the advent of Large Language Models has exploded the computa-
tional and memory requirements of running neural workloads, at training and inference time, thus limiting running such
tasks to a few players. Towards this end, a significant amount of research has focused on efficient ways of fine-tuning
LLMs for downstream tasks. Parameter Efficient Fine-Tuning (PEFT) collectively refers to techniques that only tune a small
number of parameters towards the optimization objective. Such methods take various shapes, ranging from token-level
(i.e., prompt-tuning) (Lester et al., 2021) and intermediate state parameters (i.e., prefix-tuning) (Li and Liang, 2021) to
block-level parameters interspersed in the transformer block, either sequentially (Houlsby et al., 2019; Pfeiffer et al., 2021)
or in parallel (He et al., 2022).

Low-Rank Adaptation. Closer to our method, LoRA (Hu et al., 2022) introduces low-rank adapters parallel to the attention
and linear layers of the transformer block, which build upon the assumption that the changes in model weights during
adaptation exhibit a low-rank structure and thus reparametrize updated weights as such. While seminal, LoRA often falls
short of the full fine-tuning potential of the model. Subsequent work has tried to tackle this in various ways. Specifically,
DoRA (Liu et al., 2024) decomposes the model weights into their directional and magnitude components and fine-tunes
both, but only the former remains low-rank. Similar in nature is DeLoRA (Bini et al., 2025), decouples the direction and
strength of low-rank weight updates via normalization and learnable scaling. On the contrary, Zhu et al. (2024) note the
distinct function of A and B low-rank matrices and propose training only the latter for efficiency, while Hayou et al. (2024)
adopts different learning rates for each matrix. LoRA-Pro (Wang et al., 2025) shows the equivalence of low-rank adaptation
and low-rank gradient and enhances LoRA by minimizing the distance between the true gradient and the low-rank of
matrices A and B in closed form. Zhang and Pilanci (2024) introduce a Riemannian preconditioner to enhance the stability
and efficiency of LoRA with SGD and AdamW optimizers across tasks. PiSSA (Meng et al., 2024), on the other hand,
pinpoints the issue with the initialization of LORA matrices and proposes SVD decomposition and freezing only the residual
components of the weights. All of the above methods attempt to more faithfully approximate the gradients in the low-rank
subspace and close the performance gap of LoRA with full fine-tuning. Contrary to prior work, our primary goal focuses on
the optimization dynamics of low-rank models and aligning the optimizer state to full fine-tuning. By doing so, we are able
to get state-of-the-art results without sacrificing accuracy or efficiency.

More efficient LoRA. While low-rank adaptation significantly drops the computational and memory requirements of
training large-scale LLMs, it still can require a significant amount of resources, especially in constrained edge or cross-device
federated learning settings (Cho et al., 2024). Towards this end, several approaches further optimize low-rank adaptation to
minimize the overhead. Specifically, VeRA (Kopiczko et al., 2024) proposes freezing shared random low-rank matrices and
only training scaling vectors. LoRA-xs (Bałazy et al., 2024), freezes SVD initialized low-rank matrices and only trains a

11

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

small r × r matrix for adaptation. Last, LoRA-SB (Ponkshe et al., 2024) more carefully initializes the low-rank matrices to
more faithfully approximate the full fine-tuning gradient directions during adaptation. Contrary to such approaches, LoFT
can scale to truly low ranks by careful tuning of the optimization process, rather than altering the adaptation modeling.

C. Implementation Details
Compute Information. All experiments reported in this paper were conducted using a single NVIDIA A100-SXM4-40GB
GPU. This setup was used consistently across all experimental runs. Time of execution and memory usage varied slightly
depending on the model configuration, but all runs were completed on a single-GPU setup. No additional or external
compute (e.g., cloud services) was used during these experiments.

The implementation of LoFT used in our experiments can be found at the following anonymized github repository:
https://anonymous.4open.science/r/loft-D1500/.

C.1. Datasets

Commonsense Reasoning. To evaluate language models’ reasoning capabilities, we use a curated commonsense reasoning
benchmark COMMONSENSE170K (Hu et al., 2023) consisting of 170K diverse examples. These examples are drawn from
multiple existing commonsense QA datasets and span a variety of tasks, including physical reasoning, social intuition,
temporal understanding, and cause-effect inference.

Image Classification. We conduct experiments on four diverse and challenging datasets to evaluate the generalization
ability of our method in the image classification domain:

• ISIC2019 (Codella et al., 2019) is a medical dataset composed of 25300 training and 8238 test dermoscopic images
spanning eight skin lesion categories. It presents a long-tailed distribution, with the largest class heavily overrepresented
relative to rare malignancies such as dermatofibroma or vascular lesions. The dataset is particularly challenging due to
inter-class visual similarity and intra-class variability.

• HAM10000 (Tschandl et al., 2018) contains {8.2K + 1.2K} (training + test) high-resolution dermoscopic images
categorized into seven skin lesion types. In includes lesions from diverse populations and acquisition sources. Similar
to ISIC2019, this dataset suffers from severe class imbalance.

• Diabetic Retinopathy (Graham, 2015) consists of {115K + 14.2K} (training + test) retinal fundus images annotated
with ordinal labels representing five stages of diabetic retinopathy severity. The task involves predicting these severity
levels from fundus scans.

• DomainNet (Peng et al., 2019) is a large-scale dataset designed for domain generalization and adaptation. It contains
approximately 587000 images from 345 categories across six domains: real, clipart, infograph, painting, quickdraw,
and sketch. Its substantial domain shift and high class diversity make it a valuable benchmark for testing superiority of
the methods.

Math Reasoning. To assess mathematical reasoning in large language models, we use the ORCA-MATH dataset (Mitra
et al., 2024), a benchmark of 200K diverse math problems spanning arithmetic, algebra, geometry, calculus, and probability.
Each problem requires multi-step reasoning and symbolic manipulation, making the dataset well-suited for evaluating
fine-tuning strategies.

Language Modeling. To evaluate language modeling and text generation under low-resource conditions, we use the
WIKITEXT2 dataset (Merity et al., 2017), a widely adopted benchmark consisting of over 100K tokens from cleaned
Wikipedia articles. The dataset preserves natural long-range dependencies by retaining full articles and punctuation, making
it suitable for assessing perplexity and generalization in autoregressive models. We follow the original data split and
preprocessing protocol established by Radford et al. (2019).

C.2. Hyperparameters

We report training configurations for the main experiments: commonsense reasoning and image classification. For clarity
and reproducibility, the full hyperparameter settings for each task are presented in tables below. Hyperparameters for the

12

https://anonymous.4open.science/r/loft-D1500/

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

Table 4. Hyperparameter configurations used for LoRA/DoRA (as in (Liu et al., 2024)) and our method, LoFT, across LLaMA model
variants on commonsense reasoning tasks. Unlike prior method that tune the LoRA scaling factor α, LoFT sets α = r consistently across
all models without the need for tuning.

Hyperparameter
LoRA/DoRA LoFT

LLaMA-7B LLaMA2-7B LLaMA3-8B LLaMA-7B LLaMA2-7B LLaMA3-8B

Rank r r r
Alpha scaler α 2×r r
Dropout 0.05 0.05
Optimizer AdamW AdamW
Learning rate 2×10−4 3×10−4 1×10−4 2×10−4 3×10−4 1×10−4

LR scheduler Linear Linear
Batch size 16 16
Micro-batch size 16 16
Warmup steps 100 100
Training epochs 3 3
Low-rank targets Q,K,V,Up,Down Q,K,V,Up,Down

Table 5. Training hyperparameters for ViT-B/16 across four image classification datasets. All methods (Full FT, LoRA, DoRA, and LoFT)
are trained using the same configuration for fair comparison.

Dataset Rank r Batch Size LR Epochs Target Modules LoRA/DoRA α LoFT α

ISIC2019 r 64 5×10−4 3 Q,K,V,Dense 2×r r
HAM10000 r 64 5×10−4 3 Q,K,V,Dense 2×r r
Retinopathy r 64 5×10−4 3 Q,K,V,Dense 2×r r
DomainNet r 256 5×10−4 3 Q,K,V,Dense 2×r r

Common settings: Optimizer = AdamW, LR scheduler = Linear, Warmup ratio = 0.1, Dropout = 0.1, Micro-batch size =
Batch size.

remaining tasks, including math reasoning and language modeling, are detailed separately in Section E.3 and Section E.7,
respectively.

Commonsense Reasoning. We evaluate three generations of LLaMA family models, LLaMA-7B, LLaMA2-7B, and
LLaMA3-8B, to test whether our proposed LoFT approach scales consistently across architectural updates. For each
backbone, we compare against two strong parameter-efficient baselines, LoRA (Hu et al., 2022) and DoRA (Liu et al.,
2024). For these experiments, we follow the training configuration provided in (Liu et al., 2024), specifically those used for
fine-tuning LLaMA models. We adopt the same learning rate, learning rate scheduler, warmup steps, batch size, and the
same Q,K,V,Up,Down matrices for applying LoRA. The full configuration is summarized in Table 4.

Image Classification. We conduct image classification experiments using the ViT-B/16 model across four datasets:
ISIC2019, HAM10000, Diabetic Retinopathy, and DomainNet. The input resolution is fixed to 224×224 pixels, and the
patch size is set to 16. All methods, including full fine-tuning, LoRA, DoRA, and our proposed LoFT, share the same
training configuration to ensure a fair comparison.

Specifically, we fix the learning rate to 5×10−4 across all datasets. The batch size is set to 64 for medical datasets and
increased to 256 for DomainNet due to its scale. All models are trained for 3 epochs using the AdamW optimizer, with a
linear learning rate scheduler and a warmup ratio of 0.1. A dropout rate of 0.1 is applied, and low-rank methods target both
the Q,K,V attention layers and the Dense layers. These hyperparameters are summarized in Table 5.

13

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

D. LoFT Algorithm

Algorithm 1 LoFT-AdamW with Alternating Updates

Require: Pretrained weights W0, low-rank factors U0, V0, learning rate ηk, weight decay rate λ, AdamW parameters β1, β2,
ε

1: Initialize first and second moments: mU
0 ,m

V
0 , p

U
0 , p

V
0 ← 0

2: Set alternating update flag: update_U← False
3: for k = 1, 2, . . . do
4: # Reconstruct full weight matrix
5: Wk ←W0 + UkV

⊤
k

6: # Compute full gradient
7: gW ← ∇W f(Wk)
8: # Project gradients to low-rank factors
9: gU ← gWVk, gV ← g⊤WUk

10: CV
k ← (V ⊤

k−1Vk)(V
⊤
k Vk)

−1, CU
k ← (U⊤

k−1Uk)(U
⊤
k Uk)

−1

11: g̃U ← gU (V
⊤
k Vk)

−1, g̃V ← gV (U
⊤
k Uk)

−1

12: # First moment calibration
13: mU

k ← β1m
U
k−1C

V
k + (1− β1)g̃U

14: mV
k ← β1m

V
k−1C

U
k + (1− β1)g̃V

15: # Second moment calibration
16: pUk ← β2p

U
k−1(C

V
k ⊗ CV

k) + (1− β2)(g̃U • g̃U)
17: pVk ← β2p

V
k−1(C

U
k ⊗ CU

k) + (1− β2)(g̃V • g̃V)
18: # Alternating updates
19: if update_U then
20: # Reconstruct second moment in projected space
21: vUk ← pUk (Vk ∗ Vk)
22: m̃U

k ← mU
k V

⊤
k /(1− βk

1)
23: ṽUk ← vUk /(1− βk

2)
24: # Update U with projection

25: ∆U ← ηk ·
m̃U

k√
ṽUk + ε

Vk(V
⊤
k Vk)

−1

26: Uk+1 ← (1− ληk)Uk −∆U
27: Vk+1 ← Vk

28: else
29: # Reconstruct second moment in projected space
30: vVk ← pVk (Uk ∗ Uk)
31: m̃V

k ← mV
k U

⊤
k /(1− βk

1)
32: ṽVk ← vVk /(1− βk

2)
33: # Update V with projection

34: ∆V ← ηk ·
m̃V

k√
ṽVk + ε

Uk(U
⊤
k Uk)

−1

35: Vk+1 ← (1− ληk)Vk −∆V
36: Uk+1 ← Uk

37: end if
38: # Alternate update direction
39: update_U← not update_U
40: end for

14

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

E. Additional Experimental Results
E.1. Commonsense Reasoning Results

Rank-Wise Comparison To better illustrate LoFT’s robustness and performance scalability, we present a rank-wise
comparison in Figure 3. The left panel compares LoFT against LoRA, and the right panel compares it against DoRA, both
on LLaMA-7B. We observe that LoFT consistently outperforms both baselines across all rank settings, but the gap becomes
especially pronounced at low ranks. Notably, at rank 4, LoFT surpasses DoRA by an impressive +40% and LoRA by
+25%, highlighting LoFT’s extreme efficiency in constrained settings.

Interestingly, while LoRA and DoRA both suffer steep accuracy drops at lower ranks, LoFT exhibits a much flatter accuracy
curve, showing that it retains high performance even with minimal trainable parameters. This makes LoFT particularly
appealing for low-resource deployment scenarios.

These results validate two important properties of our method: (i) LoFT matches or exceeds the performance of existing
PEFT methods even at high capacity (r = 16), and (ii) it remains highly effective at extremely low ranks, highlighting
its efficiency and applicability in constrained settings. Overall, LoFT achieves the best balance between accuracy and
parameter count across diverse commonsense reasoning tasks, while using the same number of parameters as LoRA –
without introducing any additional overhead.

1 2 4 8 16 32
Rank (r)

30

40

50

60

70

80

Av
g.

 A
cc

ur
ac

y (+5.5%) (+22.0%) (+25.2%) (+22.5%)

LLaMA-7B: LoRA vs LoFT

LoRA
LoFT

1 2 4 8 16 32
Rank (r)

(+14.1%) (+14.1%) (+40.0%) (+10.7%)

LLaMA-7B: DoRA vs LoFT

DoRA
LoFT

Figure 3. Rank-wise comparison of LoFT against LoRA (left) and DoRA (right) on LLaMA-7B across commonsense reasoning tasks.
LoFT maintains significantly higher accuracy, especially at low ranks. Percentage gains denote improvement of LoFT over the respective
baseline at each rank.

BoolQ

PIQA

SIQA

HS

WG

ARC-C

ARC-E

OBQA

Rank r = 4

20 40 60 80

BoolQ

PIQA

SIQA

HS

WG

ARC-C

ARC-E

OBQA

Rank r = 2

20 40 60 80

BoolQ

PIQA

SIQA

HS

WG

ARC-C

ARC-E

OBQA

Rank r = 1

20 40 60 80

LoRA DoRA LoFT

Figure 4. Task-wise performance comparison across LoRA (green), DoRA (red), and LoFT (blue) at lower ranks (r = {4, 2, 1}) on
LLaMA-7B. LoFT maintains high performance across all tasks, even under extreme compression, unlike baselines that degrade sharply
on several benchmarks.

15

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

Task-Specific Analysis at Low Ranks To further analyze performance under parameter-constrained settings, we examine
how LoRA, DoRA, and LoFT behave across individual tasks at lower ranks r = {4, 2, 1} using LLaMA-7B. Figure 4 shows
radar plots for all eight commonsense reasoning benchmarks at each of these low ranks. These visualizations reveal that
while LoRA and DoRA suffer inconsistent and often sharp performance drops across tasks, LoFT maintains stable and
competitive accuracy across the board.

In particular, DoRA shows substantial instability at ranks 4 and 2, with near zero scores on certain tasks such as WinoGrande,
whereas LoRA suffers large dips on more complex tasks like HellaSwag and SIQA. In contrast, LoFT retains high task-wise
accuracy, especially on harder benchmarks (e.g., HellaSwag, ARC-C), even at rank 1, demonstrating its robust generalization
when adaptation budgets are extremely constrained.

For completeness, Table 6 provides the exact task-wise accuracy scores for all methods and rank settings shown in Figure 4.
These results quantify how LoRA, DoRA, and LoFT behave across eight commonsense reasoning benchmarks when applied
to LLaMA-7B with rank r ∈ {4, 2, 1}.

As noted above, LoFT maintains high and stable accuracy across all tasks, even under extreme compression (rank 1), whereas
both LoRA and DoRA degrade substantially – especially on more complex tasks like HellaSwag (HS), Winogrande (WG),
and SIQA. Notably, DoRA at r=4 and r=2 exhibits drastic task-level failures, with near-zero performance on WG and
erratic behavior across others, reflecting instability under constrained adaptation. In contrast, LoFT consistently performs
well across ranks, confirming its robustness under limited parameter budgets.

See Table 6 for the exact per-task numbers.

Table 6. Task-wise performance of LoRA, DoRA, and LoFT on commonsense reasoning benchmarks at lower ranks (r = {4, 2, 1}) using
LLaMA-7B. While LoFT maintains stable accuracy across all tasks, both LoRA and DoRA show significant drops – particularly on
complex benchmarks such as HellaSwag and Winogrande – indicating their limited reliability under extreme parameter constraints.

Model Method BoolQ PIQA SIQA HS WG ARC-C ARC-E OBQA avg.

LLaMA-7B

LoRAr=4 66.15 43.47 42.12 24.46 72.85 47.18 53.03 48.80 49.76
LoRAr=2 67.77 66.50 40.63 21.85 53.28 50.26 63.51 52.00 51.97
LoRAr=1 66.15 74.05 73.58 35.24 77.19 59.56 76.43 70.80 66.62

DoRAr=4 32.35 7.13 47.03 27.54 0.00 52.65 66.37 46.60 34.96
DoRAr=2 57.55 70.38 76.41 48.55 9.71 62.03 78.66 75.40 59.84
DoRAr=1 67.16 77.26 76.25 31.38 20.60 57.34 70.50 64.00 58.06

LoFTr=4 67.34 80.96 76.20 80.50 76.40 63.62 79.21 75.40 74.95
LoFTr=2 68.03 79.16 75.84 78.86 76.24 64.51 78.03 71.00 73.96
LoFTr=1 67.09 78.35 74.46 76.14 74.82 58.87 76.85 70.80 72.17

E.2. Image Classification Results

0 100 200 300
Training Iterations

10 1

100

Lo
ss

 (l
og

)

0.157

0.085

0.208

LoRA
LoFT
Full FT

Figure 5. Training loss (log-scale) on HAM10000.

HAM10000. In addition to the final accuracy gains re-
ported in Table 3, we also present the training dynamics
on HAM10000 in Figure 5. Remarkably, LoFT’s training
loss curve closely overlaps with that of full fine-tuning from
the very first iterations, indicating that our updates follow
the same optimization trajectory as Full FT right from the
start. In contrast, LoRA starts with a noticeably higher loss
and converges more slowly, never fully matching Full FT’s
initial descent. This early alignment between LoFT and Full
FT demonstrates that, despite updating far fewer parameters,
LoFT preserves the model’s capacity to adapt rapidly.

Throughout the remainder of training, LoFT maintains a
small gap behind Full FT, which we attribute to the growing
rank of the full fine-tuning solution, as explained by greedy

16

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

low-rank learning theory (Li et al., 2021). Nevertheless, LoFT significantly outperforms LoRA across the full training
trajectory. Interestingly, LoFT ultimately achieves better final performance than full fine-tuning, suggesting that Full FT
may overfit, whereas LoFT benefits from implicit regularization due to the low-rank structure of its updates.

Training Dynamics on the Remaining Datasets. In Figure 5 of the main paper, we presented the training performance
curves on the HAM10000 dataset. Here, in Appendix Figure 6, we show analogous training-loss dynamics (log scale) for
the three remaining image-classification benchmarks: ISIC2019, Diabetic Retinopathy, and DomainNet. Each panel plots
the raw per-step loss (α=0.25) beneath a 10-step centered moving average, with a zoomed inset in the upper-right corner of
the latter two datasets to highlight differences in the final epochs.

Across all three tasks, LoFT (magenta) consistently outperforms LoRA (blue) and closes much of the gap to full fine-tuning
(black). In particular:

• Diabetic Retinopathy: LoFT achieves the lowest training loss of all three methods throughout, demonstrating its
strongest advantage in this medical imaging dataset.

• ISIC2019 & DomainNet: LoFT again reduces loss more quickly than LoRA and tracks very closely to full fine-tuning,
especially in the later stages. While full FT still attains the absolute minimum loss, LoFT narrows the difference
relative to LoRA.

0 200 400 600 800
Training Iterations

100

Lo
ss

 (l
og

)

ISIC2019

0 1000 2000 3000 4000 5000
Training Iterations

100

6 × 10 1

Diabetic Retinopathy

0 5000 10000 15000 20000
Training Iterations

2 × 100

3 × 100

4 × 100

6 × 100
DomainNet

4750 5000 5250

0.55

0.60

0.65

17000 18000 19000
1.2

1.4

LoRA Full FT LoFT

Figure 6. Additional training-loss dynamics for image classification. For the remaining benchmarks, ISIC2019 (left), Diabetic Retinopathy
(center), and DomainNet (right), we plot training loss. LoFT (magenta) consistently outperforms LoRA (blue) and closely tracks full
fine-tuning (black), achieving the lowest loss on Diabetic Retinopathy and substantially narrowing the gap on ISIC2019 and DomainNet.
See Figure 5 in the main paper for the HAM10000 curves.

E.3. Quantized LoFT

Setup. We evaluate exact-match accuracy on the Orca-Math dataset (Mitra et al., 2024) using LLaMA2 and LLaMA3
models. Our experimental setup is largely based on the QLoRA fine-tuning recipe outlined by Answer.ai (Turgutlu et al.,
2024), with a few key modifications. Specifically, we quantize the pre-trained model to 4-bit and fine-tune each model for 3
epochs on 200k training examples using bf16 precision, a global batch size of 32, the AdamW optimizer, and a shortened
context window of 256 tokens. Evaluation is performed on 500 held-out examples using exact-match comparison, following
the original methodology. We adopt the zero-shot and five-shot prompting results directly from the blog post: for LLaMA2,
these are 0.07 and 0.08, and for LLaMA3, 0.23 and 0.27, respectively.

For parameter-efficient fine-tuning, we compare QLoRA (Dettmers et al., 2023) with our proposed method, QLoFT – a
quantized variant of LoFT designed for greater efficiency. We evaluate QLoRA at a fixed rank of 16, yielding 0.15 accuracy
on LLaMA2 and 0.292 accuracy on LLaMA3. Under the same rank (r=16), QLoFT achieves higher accuracy: 0.16 on
LLaMA2 and 0.324 on LLaMA3. To assess robustness under constrained parameter budgets, we further reduce QLoFT’s
rank to 8, 4 and 1. Even with 75% fewer trainable parameters (r=4), QLoFT maintains strong performance – 0.148 on

17

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

LLaMA2 and 0.318 on LLaMA3 – matching or exceeding QLoRA’s results. At r=1, it still performs competitively, reaching
0.164 on LLaMA2 and 0.276 on LLaMA3.

Overall, QLoFT consistently outperforms QLoRA at equivalent ranks across both model backbones, demonstrating better
adaptation capacity with identical parameter budgets. More importantly, the performance drop as the rank decreases is
surprisingly small, highlighting QLoFT’s ability to retain strong accuracy even in highly constrained regimes. On LLaMA3,
the benefits are even more pronounced: QLoFT outperforms QLoRA by over 3 points at r=16, and continues to lead at
r={8, 4}. This suggests that QLoFT better leverages the capacity of larger models, effectively leveraging their increased
capacity for improved tuning.

Ze
ro

-s
ho

t

Fiv
e-

sh
ot

QL
oR

A
(r=

16
)

QL
oF

T
(r=

16
)

QL
oF

T
(r=

8)

QL
oF

T
(r=

4)

QL
oF

T
(r=

1)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ac
cu

ra
cy

0.070
0.080

0.150
0.160 0.154 0.148

0.164
LLaMA2

Ze
ro

-s
ho

t

Fiv
e-

sh
ot

QL
oR

A
(r=

16
)

QL
oF

T
(r=

16
)

QL
oF

T
(r=

8)

QL
oF

T
(r=

4)

QL
oF

T
(r=

1)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.230

0.270
0.292

0.324 0.312 0.318

0.276

LLaMA3

Figure 7. Accuracy comparison on the Orca-Math dataset using LLaMA2 and LLaMA3 models. We compare our method, QLoFT,
quantized version of LoFT, with QLoRA. QLoFT is evaluated at various ranks (r = {16, 8, 4, 1}) and consistently outperforms QLoRA,
demonstrating superior performance in parameter-efficient fine-tuning for mathematical reasoning.

E.4. Ablation Study

In this ablation study, we investigate the contribution of key components in our proposed LoFT method by selectively
disabling them and observing the impact on performance. The goal is to isolate the effectiveness of (i) state calibration, and
(ii) alternate updates. The experiments are conducted on the WikiText-2 dataset using a GPT-2 model in a causal language
modeling setup.

We evaluate four variants:

• LoFT (full method): includes both alternate updates and state calibration.
• LoFT without alternate updates: removes the alternation mechanism while keeping calibration.
• LoFT without state calibration: disables calibration while retaining alternating updates.
• LoFT without either: disables both the alternation and state calibration.

Training and evaluation perplexities are reported in Figure 8. For training curves, we show smoothed perplexity (3-step
centered moving average) with raw values shaded underneath; evaluation perplexity is shown unsmoothed.

The best-performing variant in this specific setting is LoFT without alternate updates, which slightly outperforms the full
LoFT setup. This is likely due to the fact that removing alternation effectively doubles the update frequency of LoFT
parameters, which proves beneficial on WikiText-2 with GPT-2. We can see a significant decrease in performance when
considering variants that do not have state calibration.

These results highlight the importance of state calibration, while they also suggest that LoFT can be slightly improved if we
consider parallel updates. We attribute this to the small step size and gradient clipping, which limit the impact of the cross

18

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

0 100 200 300 400 500
Training Iterations

30

40

50

60

70
Pe

rp
le

xi
ty

Training

100 200 300 400 500
Training Iterations

32.5

35.0

37.5

40.0

42.5

45.0

47.5
Evaluation

LoFT (No Alternation + No State Calibration) LoFT (No State Calibration) LoFT (No Alternate Update) LoFT

Figure 8. Ablation study of the proposed approach on a language modeling task. We train a GPT-2 model on the WikiText-2 dataset and
evaluate the effect of key components of LoFT by incrementally removing (i) state calibration, (ii) alternate update, and (iii) both. Training
perplexity (left) shows smoothed curves with shaded raw values, while evaluation perplexity (right) presents the unsmoothed results.

term that could be problematic in some cases.

E.5. Memory Footprint

We evaluate the memory efficiency of LoFT in comparison to LoRA, DoRA, and DoRA (simple) under two configurations:
rank r=16 and rank r=4. All experiments were conducted using the LLaMA-7B model on commonsense reasoning tasks
(Tables 7 and 8).

At rank r=16, LoFT matches LoRA in terms of trainable parameter percentage (0.4145%) with no increase, while incurring
only a +25.65% increase in memory usage. This memory cost is nearly identical to DoRA (simple), which also maintains a
low overhead (+25.23%), and significantly lower than full DoRA, which increases memory by over 341%.

At the lower rank setting r=4, LoFT maintains parameter parity with LoRA (0.1040%) and achieves a very modest memory
increase of just +6.71%, compared to the large 342% increase with DoRA. While DoRA (simple) also limits memory to
some extent, it still shows over 25% overhead and increases trainable parameters by 12.4%.

Table 7. Comparison of trainable parameter percentage and memory usage for different methods at rank r=16 using LLaMA-7B on
commonsense reasoning tasks.

Method Trainable params (%) + Relative Incr. Memory (GB) + Relative Incr.

LoRA 0.4145 +0.00% 28.50 +0.00%
DoRA 0.4274 +3.11% 125.95 +341.93%
DoRA (simple) 0.4274 +3.11% 35.69 +25.23%

LoFT 0.4145 +0.00% 35.81 +25.65%

Table 8. Comparison of trainable parameter percentage and memory usage for different methods at rank r=4 using LLaMA-7B on
commonsense reasoning tasks.

Method Trainable params (%) + Relative Incr. Memory (GB) + Relative Incr.

LoRA 0.1040 +0.00% 28.15 +0.00%
DoRA 0.1169 +12.40% 124.47 +342.17%
DoRA (simple) 0.1169 +12.40% 35.27 +25.29%

LoFT 0.1040 +0.00% 30.04 +6.71%

19

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

Overall, LoFT offers the same parameter efficiency as LoRA while delivering competitive performance with substantially
lower memory demands than DoRA variants. This makes LoFT a memory-efficient alternative suitable for deployment in
resource-constrained settings.

We refer the reader to (Liu et al., 2024) for detailed definitions of DoRA and DoRA (simple). In our experiments, we
exclusively used DoRA (simple), as recommended by DoRA’s authors. Also, the full DoRA implementation requires
substantially more memory and is impractical to run on a single GPU.

E.6. DomainNet Experiment: Domain-Specific Results

We would like to include the extended results of the experiment on the DomainNet dataset, including domain-specific
performance results.

Table 9 complements the cross-dataset comparison in Table 3 (main paper) by breaking the DomainNet dataset results
down by domain (clipart, infograph, painting, quickdraw, real, and sketch). All runs use the same ViT-Base backbone and
optimization protocol described in Section C.

Table 9. Domain-specific accuracy results on the DomainNet dataset. While overall DomainNet results are presented in the main paper,
this table provides detailed per-domain accuracy for various parameter-efficient fine-tuning methods.

Model Method
DomainNet Dataset

clipart infograph painting quickdraw real sketch avg

ViT-Base

Full FT 78.92 44.09 73.11 69.15 83.92 69.00 69.70

LoRAr=16 77.64 42.86 72.44 66.59 84.50 67.21 68.54

DoRAr=16 73.15 40.14 69.46 60.83 82.60 64.38 65.09

LoFTr=16 78.11 42.95 72.80 68.10 84.55 68.37 69.15
LoFTr=8 76.77 42.04 71.56 65.99 84.30 67.09 67.96
LoFTr=4 73.38 40.15 69.58 60.98 82.83 64.10 65.17

The overall DomainNet numbers reported in Table 3 already show that LoFTr=16 narrows the gap to Full FT and outperforms
both LoRA and DoRA. However, DomainNet’s six domains differ markedly in style and label distribution; the per-domain
breakdown reveals how each method copes with this heterogeneity.

Main observations:

• Full fine-tuning remains strongest on average (69.7%), topping five of six domains.

• LoFT with r=16 trails Full FT by only 0.55pp on average and surpasses the full FT on the real domain (84.55%).

• LoRA lags LoFT on every domain except real, where both methods are statistically tied.

• DoRA and low-rank LoFT variants (r={8, 4}) show the expected accuracy drop, but LoFT retains at least parity with
the corresponding LoRA/DoRA settings.

In the main paper, we reported validation-set accuracy to keep the test labels unseen. For the extended analysis here
we evaluate on the official test split (176743 images) to give a complete picture of domain-level generalization. No
hyper-parameters were tuned on the test set; models are exactly those used in the main paper.

E.7. Comparison with Additional Baseline Methods

Experimental Setup. We first fine-tune the original GPT-2 (137M) on WikiText2 using the same data split and prepro-
cessing as Radford et al. (2019). All methods share the same training hyperparameters: 1 epoch, AdamW optimizer, batch
size 64, learning rate 2×10−4 with linear decay. For adapter-based baselines (Hu et al., 2022; Kalajdzievski, 2023; Zhang
et al., 2023; Wang et al., 2024; Hayou et al., 2024) we set the rank r=4; LoRA+ uses its default temperature and dropout as
in the official repository. After convergence, we evaluate on the WikiText-2 validation set and report perplexity (lower is
better).

20

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

Table 10. Perplexity (PPL) results on the WikiText2 dataset for vari-
ous fine-tuning methods applied to GPT-2. Lower values indicate
better performance. LoFT achieves the best result, outperforming
other parameter-efficient techniques.

Model Method WikiText2 (PPL ↓)

GPT-2

Zero-Shot 60.38
Full FT 29.51

LoRAr=4 34.80
rsLoRAr=4 32.96
AdaLoRAr=4 55.67
LoRA-GAr=4 37.34
LoRA+r=4 36.15

LoFTr=4 31.75

Table 11. Perplexity (PPL) on WikiText2 for GPT-2 Large using
various fine-tuning methods. LoFT achieves the best performance,
outperforming full fine-tuning and other parameter-efficient tech-
niques.

Model Method WikiText2 (PPL ↓)

GPT-2
Large

Zero-Shot 38.87
Full FT 19.42

LoRAr=4 19.78
rsLoRAr=4 19.62
AdaLoRAr=4 23.31
LoRA-GAr=4 21.44
LoRA+r=4 19.73

LoFTr=4 19.26

0 100 200 300 400 500
Training Iterations

102

3 × 101

4 × 101

6 × 101

2 × 102

Pe
rp

le
xi

ty

Training

100 200 300 400 500
Training Iterations

3 × 101

4 × 101

6 × 101

Evaluation

450 500 550
30
40
50

Full-FT LoRA rsLoRA AdaLoRA LoRA-GA LoRA+ LoFT Zero-shot

Figure 9. Training and evaluation perplexity curves for GPT-2 on WikiText-2 dataset. The left panel shows smoothed training perplexity
(3-point moving average) for seven fine-tuning methods (Full-FT, LoRA, rsLoRA, AdaLoRA, LoRA-GA, LoRA+, and LoFT), with the
raw PPL shaded beneath each curve. The right panel reports evaluation PPL for the same methods, with a dashed horizontal line at 60.38
marking the zero-shot baseline. Table for a reference: Table 10.

Limitations of certain baselines. VeRA (Kopiczko et al., 2024) and DoRA (Liu et al., 2024) only handle Linear layers.
Because GPT-2 implements attention weights as Conv1D layers, reproducing these methods would require serious surgery
and a major rewrite; we therefore omit them. In practice, this means VeRA and DoRA cannot be applied unchanged to a
large family of models that rely on Conv1D parameterizations.

Results on GPT-2. Table 10 reports validation perplexity. LoFT yields the lowest PPL (31.75), outperforming all other
parameter-efficient baselines and coming within 2.2 points of full fine-tuning while updating only a small fraction of
parameters. AdaLoRA (Zhang et al., 2023) performs noticeably worse in this low-resource regime. Training and evaluation
curves are visualized in Figure 9: LoFT converges smoothly and tracks Full FT closely throughout training, whereas other
methods plateau higher.

Scaling to GPT-2 Large. We repeat the experiment on GPT-2 Large (812M) with the same data and hyper-parameters
(batch size reduced to 32 to fit memory for full fine-tuning). Table 11 extends the comparison to this larger model. The
zero-shot model perplexity is 38.87. Full fine-tuning brings this down to 19.42, but LoFT achieves an even lower 19.26
while updating only a small fraction of weights. The other adapter-style baselines cluster a few tenths higher (LoRA 19.78,
rsLoRA 19.62, LoRA+ 19.73), and AdaLoRA again lags behind at 23.31. In relative terms, LoFT improves on the vanilla

21

LoFT: Low-Rank Adaptation That Behaves Like Full Fine-Tuning

0 200 400 600 800 1000
Training Iterations

2 × 101

3 × 101

4 × 101

6 × 101
Pe

rp
le

xi
ty

Training

0 200 400 600 800 1000
Training Iterations

2 × 101

3 × 101

4 × 101
Evaluation

800 1000
15
20
25

900 1000 1100
19.25
19.50
19.75

Full-FT LoRA rsLoRA AdaLoRA LoRA-GA LoRA+ LoFT Zero-shot

Figure 10. Training and evaluation perplexity curves for GPT-2 LARGE on WikiText-2 dataset. The left panel shows smoothed training
perplexity (3-point centered moving average) for seven fine-tuning methods (Full-FT, LoRA, rsLoRA, AdaLoRA, LoRA-GA, LoRA+,
and LoFT). The right panel presents evaluation perplexity curves, with a dashed horizontal line at 38.87 marking the zero-shot baseline.
Table for a reference: Table 11.

LoRA baseline by 2.6% and narrows (indeed, slightly surpasses) the gap to full fine-tuning, confirming that the gains
observed on the smaller GPT-2 model persist and even strengthen at a larger scale.

Figure 10 highlights an interesting trend: on GPT-2 Large, Full FT achieves the lowest training perplexity, but its evaluation
perplexity stalls above LoFT, evidence of overfitting as model capacity grows. By contrast, the low-rank structure of LoFT
provides a built-in regularizer: it follows Full-FT during training yet generalizes better, maintaining leading evaluation PPL.
On the smaller GPT-2 (137M), Full-FT still wins on both train and evaluation – there, capacity is not large enough to overfit
the WikiText2 dataset – whereas at 812M parameters, the risk of memorization rises and LoFT’s parameter-efficient updates
prove more robust.

22

