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ABSTRACT

Building interactable replicas of articulated objects is a key challenge in computer
vision. Existing methods often fail to effectively integrate information across
different object states, limiting the accuracy of part-mesh reconstruction and part
dynamics modeling, particularly for complex multi-part articulated objects. We
introduce ArtGS, a novel approach that leverages 3D Gaussians as a flexible and
efficient representation to address these issues. Our method incorporates canonical
Gaussians with coarse-to-fine initialization and updates for aligning articulated
part information across different object states, and employs a skinning-inspired
part dynamics modeling module to improve both part-mesh reconstruction and
articulation learning. Extensive experiments on both synthetic and real-world
datasets, including a new benchmark for complex multi-part objects, demonstrate
that ArtGS achieves state-of-the-art performance in joint parameter estimation
and part mesh reconstruction. Our approach significantly improves reconstruction
quality and efficiency, especially for multi-part articulated objects. Additionally, we
provide comprehensive analyses of our design choices, validating the effectiveness
of each component to highlight potential areas for future improvement.

1 INTRODUCTION

Articulated objects, central to everyday human-environment interactions, have emerged as a major
focus in recent computer vision research (Weng et al., 2024; Luo et al., 2024; Liu et al., 2024b;
Deng et al., 2024; Yang et al., 2023a; Liu et al., 2024a). The ability to accurately reconstruct
these objects and create interactable digital replicas is essential for various applications, including
augmented reality, scene understanding, and particularly for supporting robotics learning in simulative
environments (Geng et al., 2023b;a; Liu et al., 2022a). By building high-fidelity digital twins of
articulated objects, we bridge the gap between synthetic data and real-world scenarios, thus facilitating
the sim-to-real transfer of robotic systems (Torne et al., 2024; Kerr et al., 2024). As we advance
towards more sophisticated robotic systems and immersive virtual environments, there is a growing
need for improved and efficient modeling techniques for the reconstruction of articulated objects.

The problem of reconstructing articulated objects has been extensively stuidied (Liu et al., 2023a;b;
Weng et al., 2024; Deng et al., 2024; Yang et al., 2023a), with a key challenge being the learning
of object geometry when only partial views of the object are available at any given state. To
accurately reconstruct object parts (e.g., a closed drawer), it is essential to integrate observations
from multiple object states during interactions (e.g., the opening process of the drawer). This
necessitates the simultaneous learning and alignment of fine-grained object parts across different
states, which must be achieved jointly during the reconstruction of object geometries. Such a
requirement presents significant challenges in object modeling, especially for complex everyday
articulated objects that often consist of multiple interactable parts. Additionally, uncertainties in
object geometry reconstruction introduce further challenges in modeling articulation, as errors in
geometry modeling can result in inaccurate learning of articulation parameters. These challenges
highlight the need for improved models that handle the complexities of multi-part articulated objects.

Recent approaches attempt to address these challenges using part priors from pre-trained models.
These models provide either part segmentation masks via models like SAM (Kirillov et al., 2023),
or 2D pixel correspondences for aligning pixels across states (Sun et al., 2021). However, these
methods rely heavily on priors from pre-trained models, often using single-state inputs and neglecting
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critical motion information (Mandi et al., 2024) and struggling with the complexity of multi-part
objects when accurately matching pixels across states becomes difficult (Weng et al., 2024). These
limitations result in unstable and inconsistent learning of object parts, posing significant challenges
to the joint learning of part motion and geometry.

To address these challenges, we propose ArtGS, which introduces several key innovations for handling
complex multi-part articulated objects. Specifically, we adopt the commonly used two-state setting for
learning articulated objects, as established in prior works (Liu et al., 2023a; Weng et al., 2024). Central
to our approach is the use of 3D Gaussians (Kerbl et al., 2023) as the foundational representation,
chosen for their ability to explicitly maintain spatial information while offering efficiency and high
reconstruction quality. To effectively model object dynamics and integrate information across multiple
object states, we employ canonical Gaussians with a carefully designed coarse-to-fine initialization
and update scheme. These Gaussians act as a bridge between different input object states, enabling
accurate deformation modeling that improves both mesh reconstruction and articulation learning.
Building on the canonical Gaussians, we draw inspiration from Gaussian skinning (Song et al.,
2024) and introduce a center-based clustering module for part and dynamics learning. This approach
leverages motion priors of Gaussians, which are summarized during the learning process, serving
as a guide to better align object parts between states and improve articulation learning. These
designs allow our method to achieve state-of-the-art performance in joint parameter estimation and
part mesh reconstruction, excelling on both existing benchmarks and our newly curated complex
multi-part articulated object reconstruction benchmark. Our approach outperforms existing methods
in both synthetic and real-world scenarios, with significant improvements in axis modeling and
overall efficiency. Through extensive experiments, we demonstrate the effectiveness of our model in
efficiently delivering high-quality reconstruction of complex multi-part articulated objects. We also
provide comprehensive analyses of our design choices, highlighting the critical role of these modules
and identifying areas for future improvement.

Contributions Our main contributions of this work can be summarized as follows:

• We propose ArtGS, a novel and efficient method for articulated object reconstruction that achieves
state-of-the-art performance, particularly for complex multi-part objects.

• We introduce coarse-to-fine canonical Gaussian initialization and skinning-inspired part dynamics
modeling with self-guided motion priors to improve object part and articulation learning, effectively
addressing the limitations of existing methods in using object motion information.

• We conduct extensive experiments on both synthetic and real-world articulated objects, demon-
strating the effectiveness, efficiency, scalability, and robustness of our approach. We also provide
comprehensive ablation studies to validate our designs and highlight areas for future improvement.

2 RELATED WORK

Dynamic Gaussian Modeling Recent advancements have shown the potential of Gaussian Splat-
ting (Kerbl et al., 2023) for 4D reconstruction (Jung et al., 2023; Katsumata et al., 2023; Wu et al.,
2024; Luiten et al., 2024; Li et al., 2024; Lu et al., 2024; Lei et al., 2024; Guo et al., 2024; Qian
et al., 2024; Bae et al., 2024). A central focus of these efforts is the deformation modeling of 3D
Gaussians. While effective for dynamics capturing, most approaches learn transformations implicitly,
limiting their capability for controllable dynamics modeling. To address this issue, recent studies use
superpoints (Huang et al., 2024b; Wan et al., 2024) for improved dynamics modeling and control.
However, as superpoint learning is based primarily on rendering without considering object physics,
these methods fail to reliably capture accurate physical parameters (e.g., joints and axes). Another
line of works (Xie et al., 2024; Jiang et al., 2024) introduce controllable Gaussians by integrating
physics-based modeling for graphics simulations. These models require intricate priors of objects
(e.g., material properties), making them impractical for reconstructing everyday articulated objects.
To overcome these challenges, our work combines the explicit 3D Gaussian modeling with proper
articulation modeling, enabling efficient and high-quality reconstruction with precise articulation
parameter estimation for more practical digital-twin construction of articulated objects.

Articulation Parameter Estimation Estimating joint articulation parameters for articulated ob-
jects has been extensively studied, with approaches broadly categorized into two main categories.
First, prediction-based methods estimate joint parameters from sensory inputs of different object
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configurations (Huang et al., 2014; Katz et al., 2013) or use end-to-end models (Hu et al., 2017; Yi
et al., 2018; Li et al., 2020; Wang et al., 2019; Sun et al., 2023; Liu et al., 2022b; Weng et al., 2021;
Sturm et al., 2011; Chu et al., 2023; Martín-Martín et al., 2016; Liu et al., 2023c; Gadre et al., 2021;
Mo et al., 2021; Jain et al., 2021; Yan et al., 2020; Lei et al., 2023) to predict part segmentation,
kinematic structure, as well as joint parameters. Second, reconstruction-based methods optimize
articulation parameters by reconstructing multi-view images or videos (Wei et al., 2022; Tseng et al.,
2022; Mu et al., 2021; Lewis et al., 2022; Liu et al., 2023a; Lei et al., 2024; Deng et al., 2024;
Swaminathan et al., 2024; Noguchi et al., 2022; Zhang et al., 2021; Pillai et al., 2015; Liu et al.,
2023b). Most of these methods treat articulation parameter estimation as a separate task, without
generating high-quality, interactable part-mesh reconstructions. ArtGS aims to address this gap by
integrating part-mesh reconstruction and articulation parameter estimation, enabling the creation of
high-quality, interactable replicas.

Articulated Object Reconstruction Articulated object reconstruction, differing from human and
animal motion modeling (Joo et al., 2018; Loper et al., 2023; Mihajlovic et al., 2021; Noguchi et al.,
2021; Yang et al., 2021b;a; Romero et al., 2022; Zuffi et al., 2017; Yang et al., 2024; Xu et al., 2020;
Tan et al., 2023; Yang et al., 2022; 2023b; Song et al., 2023a; Yang et al., 2023a; Song et al., 2023b),
focus on the piece-wise rigidity of each part, requiring both part-level geometry reconstruction
and joint articulation parameter estimation. While end-to-end models predict joint parameters and
segment object parts from single-stage (Heppert et al., 2023; Wei et al., 2022; Kawana et al., 2021) or
interaction observations(Jiang et al., 2022; Ma et al., 2023; Nie et al., 2022; Hsu et al., 2023), they
struggle to generalize to unseen objects. Per-object optimization approaches (Liu et al., 2023a;b;
Weng et al., 2024; Deng et al., 2024; Swaminathan et al., 2024), using multi-state observations for
articulation modeling, offer better adaptability to unknown objects but face scaling issues of multiple
joints. Methods like DTA (Weng et al., 2024) attempt to handle multi-part objects but still struggle
with those having more than three movable parts. We address the reliability, flexibility, and scalability
issues of previous works with our canonical Gaussian design and skinning-inspired part dynamics
modeling, achieving higher accuracy, robustness, and efficiency for articulated object reconstruction.

3 PRELIMINARIES

3D Gaussian Splatting 3D Gaussian Splatting (3DGS) represents a static 3D scene using 3D
Gaussians (Kerbl et al., 2023). Each Gaussian Gi is associated with a center µi, covariance matrix
Σi, opacity σi and spherical harmonics coefficients hi. The final opacity of a 3D Gaussian at a spatial
point x can be calculated as:

αipxq “ σi exp

ˆ

´
1

2
px ´ µiq

TΣ´1
i px ´ µiq

˙

, where Σi “ RiSiS
T
i R

T
i . (1)

As the physical meaning of a covariance matrix is only valid if it is positive semi-definite, we
decompose the covariance matrix Σi following Eq. (1) into a scaling diagonal matrix Si and a
rotation matrix Ri parameterized by a quaternion ri. A scene is then described with a collection
of such Gaussians G “ tGi : µi, ri, si, σi,hiu

N
i“1. We render an image I and optionally its depth

image D from the 3D scene G by projecting each Gaussian onto the 2D image plane and aggregating
them using α-blending:

I “

N
ÿ

i“1

Tiα
2D
i SHphi,viq, D “

N
ÿ

i“1

Tiα
2D
i di, where Ti “

i´1
ź

j“1

p1 ´ α2D
j q. (2)

α2D
i is a 2D version of Eq. (1), with µi, Σi, x replaced by the projected µ2D

i , Σ2D
i , and the pixel

coordinate u. SHp¨q is the spherical harmonic function, vi is the view direction from the camera
to µi, di is the depth of the i-th Gaussian. Given Nv input view images tĪi, D̄iu

Nv
i“1, 3DGS learns

Gaussians G with:
Lrender “ p1 ´ λSSIMqLI ` λSSIMLD-SSIM ` LD, (3)

where LI “ ||I ´ Ī||1 is the L1-loss, LD-SSIM is the D-SSIM loss (Kerbl et al., 2023), λSSIM is the
weight of D-SSIM loss, and LD “ log

`

1 ` ||D ´ D̄||1
˘

is the optional depth supervision.
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State 0

State 1

Multi-view RGB-D
Stage 1:

Obtain Coarse Canonical Gaussians

Single-state

Gaussians

Reconstruction

Stage 2:

Jointly Optimize Canonical Gaussians and Articulation Model

Articulation

Model

Render

Clustering

Matching

State 0

State 1

Rendering Loss

Chamfer Distance Loss

Figure 1: The overview of ArtGS. Our method is divided into two stages: (i) obtaining coarse canonical
Gaussians Gc

init by matching the Gaussians G0
single and G1

single trained with each single-state individually and
initializing the part assignment module with clustered centers, (ii) jointly optimizing canonical Gaussians Gc

and articulation model (including the articulation parameters Ψ and the part assignment module in Sec. 4.2).

Mesh Extraction from Gaussians To extract meshes from Gaussian splats G, we can render depth
maps and utilize Truncated Signed Distance Function (TSDF) to fuse the reconstructed depth maps,
and extract the object mesh M with marching cubes (Huang et al., 2024a). This process can be done
with Open3D (Zhou et al., 2018) with proper choice of voxel size and truncated threshold.

4 METHOD

Given Nv RGB-D images of an unknown articulated object tĪt
i , D̄

t
iu

Nv
i“1 at two joint states t P t0, 1u,

we aim to reconstruct its part-level meshes M and joint articulation parameters Ψ. We define a set
of learnable canonical Gaussians Gc which can be transformed into joint state Gaussians Gt via a
per-Gaussian SE(3) transformation T cÑt, parameterized by Ψ. Formally,

Gt “ T cÑt ¨ Gc and Gc “ pT cÑtq´1 ¨ Gt for t P t0, 1u. (4)

We impose the continuity of motion between the joint states by setting the canonical Gaussians Gc at
the mid-state (c : t = 0.5), enforcing that T cÑ0 “ pT cÑ1q´1. This simplifies the articulation learning
and connects the two input joint states through the canonical Gaussians Gc, solving potential issues of
occlusion and misinformation when reconstructing object meshes separately on the two joint states.

Using this motion model, we leverage multi-view RGB-D images from the two input states to learn
both the canonical Gaussian Gc, the transformation T cÑ1 or equivalently the joint parameters Ψ,
and extract object meshes Mt for different joint states following Sec. 3. An overview of ArtGS is
presented in Fig. 1, with details on key designs provided in the following sections.

4.1 COARSE-TO-FINE CANONICAL GAUSSIAN INITIALIZATION WITH MOTION ANALYSIS

The initialization of the canonical Gaussians Gc is crucial for articulation learning. A good initial-
ization leverages the consistency between input joint states, improving mesh reconstruction and
articulation modeling. In contrast, a random initialization leads to undesirable local minima, adversely
affecting the learning process (see in Fig. 4). To tackle this issue, we propose a coarse-to-fine strategy
for the canonical Gaussian initialization, incorporating preliminary motion information from the two
input joint states to enhance subsequent articulation modeling.

Coarse Initialization by Matching Single-state Gaussians In this phase, we first separately train
two sets of single-state Gaussians Gt

single with input multi-view images following Eq. (3). We then
apply Hungarian Matching to obtain matched Gaussian pairs between G0

single and G1
single, based on

the distance between Gaussian centers. We take the mean of each pair of matched Gaussians as the
coarse canonical Gaussian initialization Gc

coarse. To reduce the significant computation time associated

4
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with matching a large number of Gaussians, we use Farthest Point Sampling (FPS) to downsample
the learned single-state Gaussians to a set of 5K Gaussians prior to matching.

Initialization Refinement with Motion Analysis To support geometry reconstruction and articula-
tion modeling, relying solely on 5K matched coarse Gaussians alone is insufficient. Therefore, we
refine the coarse initialization Gc

coarse guided by the motion information of object parts. Intuitively,
single-state Gaussians, G0

single and G1
single, should exhibit consistency for static object parts discrepan-

cies for movable parts, i.e., the static parts of these Gaussians are well-learned. Based on this insight,
we refine the set of coarse canonical Gaussians Gc

coarse by including Gaussians corresponding to static
parts, allowing more focused learning of movable parts during articulation modeling. In practice, we
classify each Gaussian Gi in a joint state t as static or dynamic by calculating its minimum Chamfer
Distance to all Gaussians in the opposite state t̄:

CDtÑt̄
i “ min

j
||µt

i ´ µt̄
j ||2, Gi P Gt

single, Gj P G t̄
single and CDtÑt̄

“ Mean
i

´

CDtÑt̄
i

¯

. (5)

If the distance CDtÑt̄
i exceeds a threshold ϵstatic, Gi is classified as dynamic; otherwise it is static.

To determine which state, t or t̄, contains more motion information, we compare the mean distance
CDtÑt̄ of all Gaussians in state t following Eq. (5) and classify the higher state as the more motion
informative state. For instance, a cabinet with open drawers provides clearer identification of movable
parts than one with closed drawers. With this information, we add the static Gaussians from the more
motion informative state to refine Gc

coarse into the final initialization of the canonical Gaussian Gc
init.

4.2 PART DISCOVERY FOR ARTICULATION MODELING

Following Eq. (4), we use a part-based formulation for articulation modeling. Specifically, given
the number of parts K, we aim to decompose the Gaussians into K parts and learn the articulation
paramerters Ψ “ tT cÑ1

k uKk“1. In contrast to existing works that leverage prior information for part
discovery (Mandi et al., 2024; Weng et al., 2024), we discover parts in an unsupervised manner
during learning.

Center-based Part Modeling and Assignment Given input canonical Gaussians Gc “ tGiu
N
i“1,

our objective is to compute part-level masks M P RNˆK that assign each Gaussian Gi to a specific
part. A common approach to generating these assignment masks is through unsupervised segmentation
modules using MLPs or slot-attention (Locatello et al., 2020). However, these models implicitly
segment parts and fail to leverage the explicit spatial and dynamic information present in 3D Gaussians.
We observe that such methods struggle with parts that exhibit similar motion patterns, leading to
incorrect assignments. To address this issue, we adopt a center-based part modeling approach that
explicitly utilizes spatial information, inspired by sparse control points from SC-GS (Huang et al.,
2024b) and quasi-rigid blend skinning in REACTO (Song et al., 2024). Specifically, we define K
learnable centers Ck “ ppk,Rk,λkq with center location pk P R3, rotation matrix Rk P R3ˆ3, and
scale vector λk P R3. For a given Gaussian Gi P Gc, we compute the Mahalanobis distance Dik

between Gi and center Ck as:

Xk
i “

rRkpµc
i ´ pkqs

λk
Dik “ pXk

i qT ¨Xk
i and M “ GumbelSoftmax

ˆ

´D ` W∆

τ

˙

(6)

where Dk
i is the distance matrix for part assignment. One challenge of using the distance matrix

for part assignment is identifying sharp boundaries when two parts overlap spatially (e.g., in the
case of a closed drawer). To improve boundary identification, we introduce a residual term W∆ “

MLPpµ,X,Dq, predicted by a shallow MLP that concatenates the absolute position of each Gaussian
and the distance matrix D as input. This residual is added to the original distance matrix D to refine
the part assignment mask following Eq. (6). Notably, we use Gumbel Softmax to ensure that each
Gaussian is assigned to only one part, which simplifies the optimization of joint parameters. Detailed
implementation can be found in Appendix A.

Center Initialization by Clustering Coarse Gaussians We empirically find that the initialization
of centers pk and scale λk have great impacts on the correctness of part discovery in later learning
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process (see Fig. 4). Therefore, similar to the canonical Gaussian initialization described in Sec. 4.1,
we utilize the motion type of each joint as additional information for providing good initializations of
part centers. Specifically, we select the input joint state with more motion information to identify
static and dynamic parts. For static parts, we take the mean of the Gaussians as the part center. For
movable parts, we do spectral clustering on the positions of movable Gaussians (K ´ 1 clusters) and
take the mean of each cluster for part center initialization. We use the distance from the farthest point
to the center of each cluster as the initial scale.

4.3 SELF-GUIDED ARTICULATION TYPE AND PARAMETER LEARNING

After obtaining object part representations, we define the per-part articulation parameters via
dual-quaternions. Formally, the joints articulation parameters Ψ “ tT cÑ1

k uKk“1 “ tqcÑ1
k :

pqk,r, qk,dquKk“1, where qk,r and qk,d are the real and dual part of the dual-quaternion that determine
the rotation and translation of the joint transformation respectively. For notational simplicity, we use
qt
k for qcÑt

k in the following texts. With the mid-state assumption in Sec. 4, we have q0
k “ pq1

kq´1

is the inverse of dual-quaternion q1
k. Given object masks M obtained in Sec. 4.2, the per-gaussian

dual-quaternion qi for Gaussian Gi P Gc is given by:

qt
i “ p

K
ÿ

k“1

Mik ¨ qt
k,r,

K
ÿ

k“1

Mik ¨ qt
k,dq. (7)

where pq1
kq´1 is the inverse of dual-quaternion q1

k. With the per-gaussian transformation given qt
i ,

we transform the canonical Gaussian Gc to get the two joint state Gaussians Gt with:
µt

i “ RcÑt
i ¨ µc

i ` tcÑt
i , rti “ qt

i,r b rci , (8)

where RcÑt
i and tcÑt

i is the per-gaussian rotation matrix and translation vector derived from qt
i , and

b denotes quaternion multiplication operation. We assume that the scale si and opacity σi of the
Gaussian Gi remains consistent under transformation.

To enhance the learning of articulation parameters, we adopt a warm-up strategy for predicting
the joint type of each part. During the warm-up stage, we optimize the articulation parameters
Ψ “ tq1

kuKk“1 without any constraints. Next, we develop a heuristic for joint type prediction based
on the learned rotation qk,r. Specifically, we classify the joint as revolute if the rotation degree of
qk,r exceeds a threshold ϵrevol, and otherwise prismatic. With predicted joint types, we constrain
the joint transformation for each part. Specifically, we manually set the rotation quaternion qk,r
of prismatic joints as identity quaternion, which will be transferred into an identity rotation matrix
I . This operation allows the model to focus on the optimization of the translation term qk,d of the
prismatic joint, thereby obtaining a more accurate estimate of the joint parameters.

4.4 OPTIMIZATION

We train our model using the rendering loss with depth supervision Lrender described in Sec. 3
on the reconstructed Gt for the two joint states as discussed in Sec. 4.3. To reduce the chances
of learning artifacts during update, we use the single-state reconstructed Gaussians Gt

single as an
additional supervision:

LCD “
1

N

N
ÿ

i“1

min
j

||µt
i ´ µt

j ||2 , Gi P Gt, and Gj P Gt
single, (9)

where we calculate the single-direction Chamfer Distance between the deformed Gaussians Gt and
single-state reconstructed Gaussians Gt

single as the loss signal. As these single-state Gaussians are only
a rough estimate, we only introduce this loss in the first 1K to 5K steps. Additionally, to regularize
the learning of part centers pk, we add another regularization loss as:

Lreg “
1

K

K
ÿ

k“1

||pk ´ p̂k||2, where p̂k “

N
ÿ

i“1

Mik
řN

i“1 Mik

µi, (10)

which enforces that the centers pk should be close to the average spatial position of Gaussians in
canonical Gaussians Gc that belong to part k. Above all, our supervision could be summarized as:

L “ Lrender ` λCDLCD ` λregLreg. (11)
We provide more implementation and model training details in Appendix A.
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5 EXPERIMENTS

Datasets We evaluate our method on three datasets: (1) PARIS, a two-part dataset proposed by Liu
et al. (2023a), which features articulated objects consisting of one static and one movable part. It
includes 10 synthetic objects from the PartNet-Mobility dataset (Xiang et al., 2020) and 2 real-world
objects captured using the MultiScan (Mao et al., 2022) toolset. (2) DTA-Multi, a dataset proposed
by Weng et al. (2024), containing 2 synthetic multi-part articulated objects from PartNet-Mobility,
each with one static part and two movable parts. (3) ArtGS-Multi, our newly curated dataset, featuring
5 complex articulated objects from PartNet-Mobility with 3 to 6 movable parts.

Metrics Following the evaluation protocols of PARIS (Liu et al., 2023a) and DTA (Weng et al.,
2024), we assess the performance of all methods using both mesh reconstruction and articulation
estimation metrics. For mesh reconstruction, we compute the bi-directional Chamfer Distance
between the reconstructed mesh and the ground truth mesh with 10K uniformly sampled points from
each mesh. We report the Chamfer Distance for the whole object (CD-w), the static parts (CD-s), and
the movable parts (CD-m). For articulation estimation, we evaluate the predicted articulation using
the angular error (Axis Ang.) and the distance (Axis Pos., revolute joint only) between the predicted
and ground-truth joint axes. We also report the part motion error (Part Motion) which measures
the rotation geodesic distance error (in degrees) for revolute joints and Euclidean distance error (in
meters) for prismatic joints.

5.1 RESULTS ON SIMPLE ARTICULATED OBJECTS

Experimental Setup We use the PARIS dataset as the benchmark and select Ditto (Hsu et al.,
2023), PARIS (Liu et al., 2023a), CSG-reg (Weng et al., 2024), 3Dseg-reg (Weng et al., 2024), and
DTA (Weng et al., 2024) as baselines for quantitative evaluation. Following the evaluation setting
from DTA (Weng et al., 2024), we report all metrics with mean ˘ std over 10 trials calculated at the
high-visibility joint state. We re-train DTA on the same device (NVIDIA RTX 3090) for training
time comparison. Additional results on all joint states are provided in Tab. 5.

Results As shown in Tab. 1, our method significantly outperforms existing approaches across all
metrics, especially for joint articulation parameter estimation, where ArtGS achieves substantially
lower errors. This improvement stems from our motion model with Gaussian Splatting, which
explicitly deforms Gaussians for more precise part transformation modeling, leading to more precise
joint parameter estimation. For mesh reconstruction, ArtGS excels in reconstructing movable parts,
yielding lower CD-m values, especially for real-world objects. While DTA performs well on CD-
w and CD-s due to its state-by-state reconstruction, we show in Fig. 2 that it struggles with the
low-visibility state. In contrast, ArtGS achieves significantly better results on the low-visibility
state while maintaining competitive results on the high-visibility state. This is attributed to the
canonical Gaussians modeling that connects the two input joint states for mutually improved mesh
reconstruction. Additionally, ArtGS shows consistently better results on real-world objects with
significantly faster training time, positioning it as an efficient solution for building digital twins of
real-world articulated objects.

5.2 RESULTS ON COMPLEX ARTICULATED OBJECTS WITH MULTIPLE MOVABLE PARTS

Experimental Setup We use DTA-Multi and ArtGS-Multi as benchmarks for evaluating complex
articulated object reconstruction. On DTA-Multi, we compare our model against PARIS and DTA,
while on ArtGS-Multi we use DTA as the main baseline given its strong performance. Similar
to Sec. 5.1, we report all metrics with a mean over 10 trials for DTA-Multi and 3 trials for ArtGS-
multi because of the training time required for baselines. For ArtGS-multi, we report the average
of all movable parts for articulation estimation and mesh reconstruction due to the large number of
parts. Considering the potential error prediction with no mesh for one of the parts, we manually set
the Chamfer Distance of the empty prediction to 1000.

Results As demonstrated in Tab. 2 and Tab. 3, our method consistently outperforms existing
methods by a large margin in both mesh reconstruction and articulation estimation. Notably, on
ArtGS-Multi, the baseline model DTA struggles with movable part identification and axis prediction
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Table 1: Quantitative evaluation on PARIS. Metrics are reported as mean ˘ std over 10 trials at the joint state
with higher visibility, following (Weng et al., 2024). PARIS˚ (Liu et al., 2023a) is augmented with depth for
fair comparison. DTA is re-trained for time efficiency comparison. Lower (Ó) is better on all metrics and we
highlight best and second best results. Objects with : are seen categories trained in Ditto. F indicates wrong
motion type predictions. Axis Pos. is omitted for prismatic joints (Blade, Storage, and Real Storage).

Metric Method
Synthetic Objects Real Objects

FoldChair Fridge Laptop: Oven: Scissor Stapler USB Washer Blade Storage: All Fridge Storage All

Axis
Ang

Ditto 89.35 89.30 3.12 0.96 4.50 89.86 89.77 89.51 79.54 6.32 54.22 1.71 5.88 3.80
PARIS* 15.79˘29.3 2.93˘5.3 0.03˘0.0 7.43˘23.4 16.62˘32.1 8.17˘15.3 0.71˘0.8 18.40˘23.3 41.28˘31.4 0.03˘0.0 11.14˘16.1 1.90˘0.0 30.10˘10.4 16.00˘5.2

CSG-reg 0.10˘0.0 0.27˘0.0 0.47˘0.0 0.35˘0.1 0.28˘0.0 0.30˘0.0 11.78˘10.5 71.93˘6.3 7.64˘5.0 2.82˘2.5 9.60˘2.4 8.92˘0.9 69.71˘9.6 39.31˘5.2

3Dseg-reg - - 2.34˘0.11 - - - - - 9.40˘7.5 - - - - -
DTA 0.03˘0.0 0.09˘0.0 0.07˘0.0 0.22˘0.1 0.10˘0.0 0.07˘0.0 0.11˘0.0 0.36˘0.1 0.20˘0.1 0.09˘0.0 0.13˘0.0 2.08˘0.0 13.64˘3.6 7.86˘1.8

Ours 0.01˘0.0 0.03˘0.0 0.01˘0.0 0.01˘0.0 0.05˘0.0 0.01˘0.0 0.04˘0.0 0.02˘0.0 0.03˘0.0 0.01˘0.0 0.02˘0.0 2.09˘0.0 3.47˘0.3 2.78˘0.2

Axis
Pos

Ditto 3.77 1.02 0.01 0.13 5.70 0.20 5.41 0.66 - - 2.11 1.84 - 1.84
PARIS* 0.25˘0.5 1.13˘2.6 0.00˘0.0 0.05˘0.2 1.59˘1.7 4.67˘3.9 3.35˘3.1 3.28˘3.1 - - 1.79˘1.5 0.50˘0.0 - 0.50˘0.0

CSG-reg 0.02˘0.0 0.00˘0.0 0.20˘0.2 0.18˘0.0 0.01˘0.0 0.02˘0.0 0.01˘0.0 2.13˘1.5 - - 0.32˘0.2 1.46˘1.1 - 1.46˘1.1

3Dseg-reg - - 0.10˘0.0 - - - - - - - - - - -
DTA 0.01˘0.0 0.01˘0.0 0.01˘0.0 0.01˘0.0 0.02˘0.0 0.02˘0.0 0.00˘0.0 0.05˘0.0 - - 0.02˘0.0 0.59˘0.0 - 0.59˘0.0

Ours 0.00˘0.0 0.00˘0.0 0.01˘0.0 0.00˘0.0 0.00˘0.0 0.01˘0.0 0.00˘0.0 0.00˘0.0 - - 0.00˘0.0 0.47˘0.0 - 0.47˘0.0

Part
Motion

Ditto 99.36 F 5.18 2.09 19.28 56.61 80.60 55.72 F 0.09 39.87 8.43 0.38 4.41
PARIS* 127.34˘75.0 45.26˘58.5 0.03˘0.0 9.13˘28.8 68.36˘64.8 107.76˘68.1 96.93˘67.8 49.77˘26.5 0.36˘0.2 0.30˘0.0 50.52˘39.0 1.58˘0.0 0.57˘0.1 1.07˘0.1

CSG-reg 0.13˘0.0 0.29˘0.0 0.35˘0.0 0.58˘0.0 0.20˘0.0 0.44˘0.0 10.48˘9.3 158.99˘8.8 0.05˘0.0 0.04˘0.0 17.16˘1.8 14.82˘0.1 0.64˘0.1 7.73˘0.1

3Dseg-reg - - 1.61˘0.1 - - - - - 0.15˘0.0 - - - - -
DTA 0.10˘0.0 0.12˘0.0 0.11˘0.0 0.12˘0.0 0.37˘0.6 0.08˘0.0 0.15˘0.0 0.28˘0.1 0.00˘0.0 0.00˘0.0 0.13˘0.1 1.85˘0.0 0.14˘0.0 1.00˘0.0

Ours 0.03˘0.0 0.04˘0.0 0.02˘0.0 0.02˘0.0 0.04˘0.0 0.01˘0.0 0.03˘0.0 0.03˘0.0 0.00˘0.0 0.00˘0.0 0.02˘0.0 1.94˘0.0 0.04˘0.0 0.99˘0.0

CD-s

Ditto 33.79 3.05 0.25 2.52 39.07 41.64 2.64 10.32 46.90 9.18 18.94 47.01 16.09 31.55
PARIS* 10.20˘5.8 8.82˘12.0 0.16˘0.0 3.18˘0.3 15.58˘13.3 2.48˘1.9 1.95˘0.5 12.19˘3.7 1.40˘0.7 8.67˘0.8 6.46˘3.9 11.64˘1.5 20.25˘2.8 15.94˘2.1

CSG-reg 1.69 1.45 0.32 3.93 3.26 2.22 1.95 4.53 0.59 7.06 2.70 6.33 12.55 9.44
3Dseg-reg - - 0.76 - - - - - 66.31 - - - - -

DTA 0.18˘0.0 0.62˘0.0 0.30˘0.0 4.60˘0.1 3.55˘6.1 2.91˘0.1 2.32˘0.1 4.56˘0.1 0.55˘0.0 4.90˘0.5 2.45˘0.7 2.36˘0.1 10.98˘0.1 6.67˘0.1

Ours 0.26˘0.3 0.52˘0.0 0.63˘0.0 3.88˘0.0 0.61˘0.3 3.83˘0.1 2.25˘0.2 6.43˘0.1 0.54˘0.0 7.31˘0.2 2.63˘0.1 1.64˘0.2 2.93˘0.3 2.29˘0.3

CD-m

Ditto 141.11 0.99 0.19 0.94 20.68 31.21 15.88 12.89 195.93 2.20 42.20 50.60 20.35 35.48
PARIS* 17.97˘24.9 7.23˘11.5 0.15˘0.0 6.54˘10.6 16.65˘16.6 30.46˘37.0 10.17˘6.9 265.27˘248.7 117.99˘213.0 52.34˘11.0 52.48˘58.0 77.85˘26.8 474.57˘227.2 276.21˘127.0

CSG-reg 1.91 21.71 0.42 256.99 1.95 6.36 29.78 436.42 26.62 1.39 78.36 442.17 521.49 481.83
3Dseg-reg - - 1.01 - - - - - 6.23 - - - - -

DTA 0.15˘0.0 0.27˘0.0 0.13˘0.0 0.44˘0.0 10.11˘19.4 1.13˘0.5 1.47˘0.0 0.45˘0.0 2.05˘0.3 0.36˘0.0 1.66˘2.0 1.12˘0.0 30.78˘2.6 15.95˘1.3

Ours 0.54˘0.1 0.21˘0.0 0.13˘0.0 0.89˘0.2 0.64˘0.4 0.52˘0.1 1.22˘0.1 0.45˘0.2 1.12˘0.2 1.02˘0.4 0.67˘0.2 0.66˘0.2 6.28˘3.6 3.47˘1.9

CD-w

Ditto 6.80 2.16 0.31 2.51 1.70 2.38 2.09 7.29 42.04 3.91 7.12 6.50 14.08 10.29
PARIS* 4.37˘6.4 5.53˘4.7 0.26˘0.0 3.18˘0.3 3.90˘3.6 5.27˘5.9 1.78˘0.2 10.11˘2.8 0.58˘0.1 7.80˘0.4 4.28˘2.4 8.99˘1.4 32.10˘8.2 20.55˘4.8

CSG-reg 0.48 0.98 0.40 3.00 1.70 1.99 1.20 4.48 0.56 4.00 1.88 5.71 14.29 10.00
3Dseg-reg - - 0.81 - - - - - 0.78 - - - - -

DTA 0.27˘0.0 0.70˘0.0 0.32˘0.0 4.24˘0.1 0.41˘0.0 1.92˘0.0 1.17˘0.0 4.48˘0.2 0.36˘0.0 3.99˘0.4 1.79˘0.1 2.08˘0.1 8.98˘0.1 5.53˘0.1

Ours 0.43˘0.2 0.58˘0.0 0.50˘0.0 3.58˘0.0 0.67˘0.3 2.63˘0.0 1.28˘0.0 5.99˘0.1 0.61˘0.0 5.21˘0.1 2.15˘0.1 1.29˘0.1 3.23˘0.1 2.26˘0.1

Time
(min)

DTA 29 30 31 29 28 29 31 28 27 28 29 29 29 29
Ours 9 8 7 7 7 7 7 8 7 8 8 9 9 9

DTA Ours GT DTA Ours GT

State 0 State 1

Figure 2: Qualitative visualizations of PARIS objects. We present reconstruction comparisons between DTA
and our model on Real Storage (Top) and Synthetic Blade (Bottom). DTA struggles with mesh reconstruction at
the low-visibility state, as it processes each state separately. In contrast, our method leverages the connection
between states to improve the reconstruction for both low- and high-visibility states.

as the number of parts increases, whereas our model maintains high performance regardless of part
count. We also provide a qualitative comparison in Fig. 3 for better visualization. Moreover, our
method maintains the same time efficiency while the training time of existing methods scales with
the number of parts. These results underscore the robustness and effectiveness of our method in
modeling complex, multi-part articulated objects.

5.3 ABLATIVE STUDIES

Experimental Setup To verify the effectiveness of our model design, we meticulously design four
ablations of ArtGS to identify the impact of key components in our method: (i) Randomly initializing
canonical Gaussians (w/o Cano. Init.), (ii) predicting part assignments with MLP (w/ MLP Seg)
or Slot-Attention (w/ SA Seg), (iii) randomly initializing part centers Ck (w/o Center Init.), (iv)
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Table 2: Quantitative evaluation on DTA-Multi. We report averaged metrics over 10 trials with different
random seeds. Lower (Ó) is better on all metrics. Joint 1 of “Storage-m” is prismatic with no Axis Pos.

Object Method Axis Ang 0 Axis Ang 1 Axis Pos 0 Axis Pos 1 Part Motion 0 Part Motion 1 CD-s CD-m 0 CD-m 1 CD-w Time (min)

Fridge-m
PARIS 34.52 15.91 3.60 1.63 86.21 105.86 8.52 526.19 160.86 15.00 -
DTA 0.25 0.06 0.01 0.01 0.23 0.08 0.63 0.44 0.53 0.88 32
Ours 0.02 0.00 0.00 0.00 0.02 0.03 0.62 0.07 0.18 0.75 8

Storage-m
PARIS 43.26 26.18 10.42 - 79.84 0.64 8.56 128.62 266.71 8.66 -
DTA 0.17 0.40 0.04 - 0.13 0.00 0.86 0.20 0.25 0.97 32
Ours 0.01 0.02 0.01 - 0.01 0.00 0.78 0.19 0.27 0.93 8

Table 3: Quantitative evaluation on ArtGS-Multi. Metrics are averaged over 3 trials. Due to the large number
of parts, we report the average metric for all movable parts. Lower (Ó) is better on all metrics. “Table-31249”
has 3 prismatic joints with no Axis Pos.

Object Method Axis Ang Axis Pos Part Motion CD-s CD-m CD-w Time (min)

Table
25493 (4 parts)

DTA 24.35 - 0.12 0.59 104.38 0.55 34
Ours 1.16 - 0.00 0.74 3.53 0.74 8

Table
31249 (5 parts)

DTA 20.62 4.2 30.8 1.39 230.38 1.00 37
Ours 0.04 0.00 0.01 1.22 3.09 1.16 8

Storage
45503 (4 parts)

DTA 51.18 2.44 43.77 5.74 246.63 0.88 35
Ours 0.02 0.00 0.03 0.75 0.13 0.88 8

Storage
47468 (7 parts)

DTA 19.07 0.31 10.67 0.82 476.91 0.71 45
Ours 0.14 0.02 0.62 0.67 3.70 0.70 8

Oven
101908 (4 parts)

DTA 17.83 6.51 31.80 1.17 359.16 1.01 35
Ours 0.04 0.01 0.23 1.08 0.25 1.03 8

DTA Ours GT DTA Ours GT

State 0

State 1

Figure 3: Qualitative results on multi-part objects. We present reconstruction comparisons between DTA and
our model on Storage-47648 (Left) and Table-31249 (Bottom). On ArtGS-Multi, DTA struggles with movable
part identification and axis prediction as the number of parts increases, whereas our model maintains high
performance regardless of part count, achieving high-quality reconstruction of part mesh and joint articulation.

clustering all Gaussians instead of clustering movable Gaussians for part center initialization (w/o
Motion Prior), and (v) learning articulation parameters without the joint prediction warmup stage (w/o
Joint Pred.). We select two representative objects: “Storage-47648” with 4 revolute and 2 prismatic
joints and “Oven-101908” with 3 revolute joints for ablative analysis. Similar to Sec. 5.2, we report
the average of all parts over 10 trials for all metrics.

Results and Discussions As shown in Tab. 4 and Fig. 4, we make the following observations:

• Canonical Gaussians Initialization. Omitting this initialization strategy significantly degrades
the model performance across all metrics, particularly for movable parts. As illustrated in Fig. 4
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Table 4: Ablative experiments. Lower (Ó) is better on all metrics.

Method
Storage 47648 (7 parts) Oven 101908 (4 parts)

Axis Ang Axis Pos Part Motion CD-s CD-m CD-w Axis Ang Axis Pos Part Motion CD-s CD-m CD-w

Full 0.14 0.02 0.62 0.67 3.70 0.70 0.04 0.01 0.23 1.08 0.25 1.03
w/o Cano. init. 24.15 0.73 20.61 0.83 495.07 1.25 57.87 2.95 54.45 1.73 1030.19 2.36
w/o Center Init. 52.78 0.83 33.04 1.09 344.19 1.69 28.94 2.36 22.46 1.41 8.86 2.13
w/o Motion Prior 26.74 0.22 21.16 258.23 599.46 1.15 40.08 0.98 41.06 1.75 503.44 2.35
w/o Joint Pred. 0.16 0.02 0.72 0.67 3.90 0.71 0.04 0.01 0.23 1.08 0.25 1.03
w/ MLP Seg 21.84 3.46 31.43 1.82 664.25 1.28 12.08 3.33 27.28 7.78 126.95 2.19
w/ SA Seg 25.43 0.7 23.22 1.52 459.89 1.16 58.04 4.53 51.28 1.26 496.64 2.35

(5) w/o Cano. Init.(3) Full (4) w/o Motion Prior

Optimized Canonical Gaussians

(1) Full (2) w/o Motion Prior

Initialized Coarse Canonical Gaussians

Figure 4: Abaltion Studies. We visualize the initialized and optimized canonical Gaussians with their part
assignment and centers for the full model, w/o Motion Prior and w/o Cano. Init. We highlight center error, part
assignment error, and canonical Gaussian error with red, green, and blue bounding boxes separately.

(5), the absence of our initialization strategy leads to malformed canonical Gaussians, making the
model converge to suboptimal local minima during optimization.

• Center-based Part Modeling and Assignment. Replacing our center-based part assignment module
with MLP or Slot-Attention ("w/ MLP Seg" and "w/ SA Seg") leads to substantial performance
drops, especially in joint parameter estimation and movable part reconstruction. This demonstrates
the superiority of our center-based approach in accurately segmenting articulated parts.

• Center Initialization. Random center initialization performs well for static parts but poorly for
movable parts. Clustering all Gaussians fails to reconstruct both static and movable parts due to
incorrect center initialization. As illustrated in Fig. 4 (1), clustering on movable Gaussians still
produces an incorrect center but provides a good starting point for optimization. Our ArtGS will
refine the centers in the optimization process as shown in Fig. 4 (3). In contrast, clustering on all
Gaussians results in entirely wrong center initialization (Fig. 4 (2)), which is difficult to correct
(Fig. 4 (4)), leading to even worse performance than random initialization. This highlights the
importance of our center initialization strategy in achieving accurate part articulation modeling.

• Joint Prediction Warmup. This technique primarily affects prismatic joints, as we do not constrain
the transformation of revolute joints. As shown in Tab. 4, predicting the joint type and then refining
joint parameters with type constraints slightly improves the articulation reconstruction.

In summary, these ablation studies confirm that each component contributes significantly to its overall
performance, playing crucial roles in achieving accurate joint parameter estimation and high-quality
part mesh reconstruction. We provide further discussions in Appendix B and Appendix C.

6 CONCLUSION

In conclusion, we propose ArtGS, a novel approach for reconstructing articulated objects from two
states of multi-view images. By leveraging 3D Gaussians and introducing novel techniques for
state alignment and part dynamics modeling, our approach overcomes key limitations of existing
methods. The performance improvements in joint parameter estimation and part mesh reconstruction,
particularly for complex multi-part objects, demonstrate the effectiveness of our innovations. Our
comprehensive experiments across synthetic and real-world datasets validate the robustness and
efficiency of ArtGS, while also revealing promising directions for future research. As the demand
for accurate digital replicas of articulated objects continues to grow in fields such as robotics and
augmented reality, ArtGS provides a solid foundation for bridging the gap between physical and
virtual environments. Moving forward, we anticipate that the principles introduced in this work
will inspire further advancements in the field, ultimately enabling more sophisticated and realistic
simulations for a wide range of applications.
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A IMPLEMENTATION AND TRAINING DETAILS

Canonical Gaussian Initialzation We train single-state Gaussians G0 and G1 for 10K steps with
loss L “ p1´λSSIMqLI`λSSIMLD-SSIM`λoLo, where λSSIM “ 0.2, λo “ 0.01 is used in experiments
and Lo is an opacity entropy loss calculated as:

σ̂i “ 1tσi ą 0.5u, Lo “ ´
1

N

N
ÿ

i“1

rσ̂iσi ` p1 ´ σ̂iq logp1 ´ σiqs,

which encourages Gaussian opacities σi to approach either 0 or 1, controlling Gaussian count and
accelerating training. We then obtain coarse canonical Gaussians by matching G0 and G1 as described
in Sec. 4.1. This stage takes about 2 minutes per object.

Part Discovery for Articulation Modeling As described in Sec. 4.2, given canonical Gaussians
Gc “ tGiu

N
i“1 and K learnable part centers Ck “ ppk,Rk,λkq, we calculate part-level masks M

using Eq. (6). We use a learnable hash grid H to encode Gaussian positions and predict the residual
term in Eq. (6) as:

Xk
i “

rRkpµc
i ´ pkqs

λk
, Dik “ pXk

i qT ¨ Xk
i

W∆ik “ MLPpµc
i , Hpµc

i q, tXk
i uKk“1, tDikuKk“1q, M “ GumbelSoftmax

ˆ

´D ` W∆

τ

˙

Since the part assignment and articulation parameters are far from optimal at the beginning of training,
using hard assignment for Gumbel-Softmax hinders the joint optimization of the part assignment and
articulation parameters. To address this problem, we anneal the temperature τ from 1 to 0.1 over 10K
steps, using soft assignment that is similar to Softmax when τ ą 0.1 and hard assignment otherwise
for training stability. This approach allows for more flexible assignments during the early stages of
training, facilitating better joint optimization, and gradually transitioning to decisive part assignment
as the model converges.

Optimization To enhance the learning of articulation parameters, we adopt a warm-up strategy
to predict the joint type of each part. This process requires 3K-5K steps that take 30 to 50 seconds.
Then we train ArtGS with joint type constraint for 20K steps, taking 5-7 minutes per object. For
hyper-parameters, we set the threshold ϵstatic to identify static/movable Gaussians as ϵstatic “ 0.02 ¨

maxi CDtÑt̄
i for two-part objects and ϵstatic “ 0.05 ¨ maxi CDtÑt̄

i for multi-part objects. We use
ϵrevol “ 100 for predicting joint types following PARIS (Liu et al., 2023a). λcd and λreg are set as
100 and 0.1 separately. In addition, the CD loss in Eq. (9) aims to decrease the distance between a
deformed Gaussian Gt

i and its nearest Gaussians Ĝt
i in Gt

single. Since the deformed Gaussians and
canonical Gaussians for a prismatic joint have a large overlap, the nearest Gaussian may be in the
opposite direction of the ideal one, making it ineffective for prismatic joints. Thus the CD loss is only
used for regularizing the objects that only have revolute joints. Moreover, the densification strategy
of Gaussians is cloning or splitting one Gaussian when the gradient of its center µ is greater than
a threshold ϵdensify. This is effective for static scenes but meets challenges for dynamic scenes. In
the early stage of training, the large gradient is often due to deformation error. To prevent excessive
increase of Gaussian quantity due to deformation error, we raised this threshold ϵdensify from 0.0002
used in previous works (Kerbl et al., 2023; Huang et al., 2024b) to 0.001.

B ADDITIONAL DISCUSSIONS

We present a comprehensive analysis of ArtGS and DTA through additional quantitative and qualita-
tive results.

Visibility Problem Our results uncover an intriguing inconsistency in DTA’s performance across
different states of the same object. As illustrated in Tab. 5, DTA demonstrates good reconstruction
quality in the high-visibility state but shows markedly poor performance in the low-visibility state.
This limitation is particularly pronounced for objects with prismatic joints, such as real storage and
blade. In these cases, DTA struggles to accurately capture the geometry and articulation of partially
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Table 5: Quantitative evaluation of each state on PARIS data. We report the average of metrics over 10 trials
of each state. "metric-0/1" represents the metric evaluated at state 0/1 and "metric-m" is the average of two
states. We highlight best results on average of two states. Axis Pos. is omitted for prismatic joints (Blade,
Storage, and Real Storage).

Metric Method
Synthetic Objects Real Objects

FoldChair Fridge Laptop Oven Scissor Stapler USB Washer Blade Storage All Fridge Storage All

Axis
Ang

DTA-0 0.03 0.09 0.07 0.22 0.10 0.06 0.11 0.36 0.20 0.07 0.13 2.08 13.64 7.86
Ours-0 0.01 0.03 0.01 0.01 0.05 0.01 0.04 0.02 0.03 0.01 0.02 2.09 3.47 2.78
DTA-1 0.04 0.10 0.07 0.23 0.10 0.07 0.11 0.36 0.26 0.09 0.14 2.07 8.08 5.08
Ours-1 0.01 0.03 0.01 0.01 0.05 0.01 0.04 0.02 0.03 0.01 0.02 2.09 3.47 2.78
DTA-m 0.04 0.10 0.07 0.22 0.10 0.06 0.11 0.36 0.23 0.08 0.14 2.08 10.86 6.47
Ours-m 0.01 0.03 0.01 0.01 0.05 0.01 0.04 0.02 0.03 0.01 0.02 2.09 3.47 2.78

Axis
Pos

DTA-0 0.01 0.01 0.01 0.01 0.03 0.02 0.00 0.04 - - 0.02 0.59 - 0.59
Ours-0 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 - - 0.00 0.47 - 0.47
DTA-1 0.01 0.01 0.01 0.01 0.02 0.02 0.00 0.05 - - 0.02 0.59 - 0.59
Ours-1 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 - - 0.00 0.47 - 0.47
DTA-m 0.01 0.01 0.01 0.01 0.03 0.02 0.00 0.04 - - 0.02 0.59 - 0.59
Ours-m 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 - - 0.00 0.47 - 0.47

Part
Motion

DTA-0 0.10 0.12 0.11 0.12 0.38 0.08 0.15 0.28 0.00 0.00 0.13 1.85 0.14 1.00
Ours-0 0.03 0.04 0.02 0.02 0.04 0.01 0.03 0.03 0.00 0.00 0.02 1.94 0.04 0.99
DTA-1 0.09 0.13 0.11 0.13 0.37 0.08 0.14 0.28 0.00 0.00 0.13 1.85 0.09 0.97
Ours-1 0.03 0.04 0.02 0.02 0.04 0.01 0.03 0.03 0.00 0.00 0.02 1.94 0.04 0.99
DTA-m 0.09 0.12 0.11 0.12 0.38 0.08 0.15 0.28 0.00 0.00 0.13 1.85 0.12 0.99
Ours-m 0.03 0.04 0.02 0.02 0.04 0.01 0.03 0.03 0.00 0.00 0.02 1.94 0.04 0.99

CD-s

DTA-0 0.18 0.62 0.32 4.60 3.30 2.68 2.32 4.77 0.55 4.71 2.41 2.36 10.98 6.67
Ours-0 0.26 0.52 0.59 3.88 0.62 3.85 2.25 6.41 0.54 7.47 2.64 1.64 2.93 2.29
DTA-1 0.19 0.63 0.30 4.58 3.55 2.91 2.90 4.56 0.45 4.90 2.50 2.59 9.60 6.10
Ours-1 0.26 0.48 0.63 4.00 0.61 3.83 2.56 6.43 0.54 7.31 2.67 2.01 4.02 3.02
DTA-m 0.19 0.62 0.31 4.59 3.43 2.79 2.61 4.66 0.50 4.80 2.46 2.48 10.29 6.39
Ours-m 0.26 0.50 0.61 3.94 0.61 3.84 2.41 6.42 0.54 7.39 2.65 1.82 3.48 2.65

CD-m

DTA-0 0.15 0.27 0.16 0.44 17.38 2.34 1.47 0.37 2.05 0.36 2.50 1.12 30.78 15.95
Ours-0 0.54 0.21 0.14 0.89 0.65 0.88 1.22 1.54 1.12 1.03 0.82 0.66 6.28 3.47
DTA-1 0.13 0.30 0.13 0.45 10.11 1.13 1.51 0.45 61.38 0.36 7.60 1.85 365.74 183.80
Ours-1 0.12 0.21 0.13 0.76 0.64 0.52 1.43 0.45 1.01 1.02 0.63 1.31 87.81 44.56
DTA-m 0.14 0.28 0.15 0.44 13.75 1.73 1.49 0.41 31.72 0.36 5.05 1.48 198.26 99.88
Ours-m 0.33 0.21 0.14 0.82 0.65 0.70 1.33 1.00 1.06 1.02 0.73 0.99 47.05 24.02

CD-w

DTA-0 0.27 0.70 0.35 4.24 0.42 2.13 1.17 4.59 0.36 4.09 1.83 2.08 8.98 5.53
Ours-0 0.43 0.58 0.47 3.58 0.69 3.13 1.28 6.12 0.61 5.13 2.20 1.29 3.23 2.26
DTA-1 0.26 0.70 0.32 4.27 0.41 1.92 1.52 4.48 0.38 3.99 1.83 2.19 9.03 5.61
Ours-1 0.30 0.59 0.50 3.71 0.67 2.63 1.87 5.99 0.65 5.21 2.21 1.45 2.45 1.95
DTA-m 0.26 0.70 0.34 4.25 0.41 2.02 1.34 4.53 0.37 4.04 1.83 2.13 9.01 5.57
Ours-m 0.36 0.59 0.48 3.64 0.68 2.88 1.58 6.05 0.63 5.17 2.21 1.37 2.84 2.11

occluded parts. The observed inconsistency and state-dependent performance fluctuations underscore
the necessity for a more robust approach that effectively connects and leverages information from mul-
tiple states. This is precisely where ArtGS’s strengths become evident. By establishing connections
between different articulation states, ArtGS achieves more consistent and high-quality reconstructions
across varying object configurations. Jointly optimizing over multiple states allows ArtGS to: 1)
Leverage complementary information from different articulation states, 2) Maintain consistency in
part assignment and geometry across states, 3) Better handle occlusions and low-visibility scenarios
by inferring occluded geometries from other states. These capabilities enable ArtGS to produce
more accurate and reliable reconstructions, particularly in challenging scenarios. The superior perfor-
mance of ArtGS demonstrates its potential for robust articulated object reconstruction in real-world
applications.

Significance of Part Assignment Through analysis of both qualitative (Fig. 7) and quantitative
(Tab. 3) results, we have identified that the model’s ultimate performance is primarily determined
by the accuracy of part assignment. When the model fails to correctly divide an object into parts, it
becomes impossible to obtain reasonable joint parameter estimation. Conversely, even when joint
parameter estimation is inaccurate, the model may still correctly separate the object’s parts. This
insight reveals that accurate part assignment is a crucial prerequisite for high-quality articulated object
reconstruction. Our findings emphasize that to enhance the reconstruction of articulated objects,
the ability to reasonably separate parts is of paramount importance. ArtGS addresses this challenge
through the center-based segmentation and improved initialization by clustering. These techniques
work in synergy to significantly improve the part segmentation capabilities of ArtGS. By enhancing
the model’s ability to correctly identify and separate object parts, we lay a solid foundation for
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Table 6: Quantitative evaluation of Axis Pos metric on PARIS. Metrics are reported as mean ˘ std over 10
trials on average of 2 states. We report the value timed by 1000 and highlight the best results.

Metric Method FoldChair Fridge Laptop Oven Scissor Stapler USB Washer All
Axis
Pos

DTA 0.53˘0.3 0.62˘0.3 1.10˘0.7 1.49˘1.0 2.48˘2.8 2.21˘1.8 0.35˘0.2 4.53˘2.8 1.66˘1.2

Ours 0.48˘0.2 0.44˘0.2 0.39˘0.3 0.55˘0.4 0.16˘0.1 0.93˘0.4 0.08˘0.1 0.33˘0.3 0.42˘0.3

subsequent stages of the reconstruction process, including joint parameter estimation and final mesh
reconstruction.

C LIMITATIONS

Stability of Randomness. ArtGS exhibits enhanced robustness and stability across different random
seeds, primarily due to our innovative initialization strategy for canonical Gaussians and our part
assignment module. We observe that stability issues often stem from the initialization of three
key components: canonical Gaussians Gc, part centers C in the part assignment module, and joint
articulation parameters Ψ. As demonstrated in Sec. 5.3, faulty initialization of Gc and C can lead
to significant performance degradation, particularly for complex objects with multiple movable
parts. While our current initialization strategy has greatly improved stability, severe initialization
errors in center C may still result in part mis-segmentation. We can integrate prior models such as
SAM (Kirillov et al., 2023) to enhance the ability to correct center initialization errors. Although
ArtGS works with randomly initialized Ψ, we have observed that improved initialization of Ψ
brings enhanced performance. Future work could explore the integration of heuristic algorithms or
feed-forward articulation estimation models to provide better initial estimation for Ψ.

Limited States Our current approach is limited to modeling articulated objects using only two
states, which may not fully capture the complexity of real-world multi-part objects. Moreover, as
the number of parts increases, distinguishing parts with similar joint axes and motion patterns (such
as parallel drawers) becomes increasingly challenging, complicating the segmentation process. To
address this, two main avenues could be explored for future research: 1) Multi-state Extension:
Develop a methodology to extend ArtGS to handle multiple states that interact with different parts,
potentially by identifying movable parts with a sequential state update mechanism. This would
involve iteratively updating the model as new state information becomes available, allowing for
a more comprehensive representation of the object’s articulation space. 2) Continuous Temporal
Reconstruction: Adapt ArtGS to reconstruct articulated objects from monocular video sequences.
This approach would leverage temporal information to infer a continuous range of articulation states,
providing a more nuanced understanding of the object’s movement capabilities.

Mesh Reconstruction Fidelity Our current implementation utilizes the original Gaussian Splatting
technique, which, while effective, has limitations in terms of mesh reconstruction quality compared
with NeRF-based methods(Wang et al., 2021; Yariv et al., 2021; Wen et al., 2023). Integrating recent
advancements in reconstruction with Gaussian Splatting (Huang et al., 2024a; Chen et al., 2024) may
help to improve the reconstruction fidelity of ArtGS.

D ADDITIONAL EXPERIMENTS

D.1 ADDITIONAL QUANTITATIVE COMPARISONS

We provide additional comparisons with previous methods in this section.

Scaled Axis Pos Metric. Following DTA and PARIS, we multiply the ’Axis Pos’ metric by
10 in Tab. 1 and Tab. 5. While this metric shows minimal variation among current methods for
synthetic objects, we also report the Axis Pos metric multiplied by 1000. As shown in Tab. 6, ArtGS
demonstrates superior performance compared to DTA.
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Table 7: Quantitative evaluation for perception-based metrics on PARIS data. We report the results on
average of two states. We highlight best results.

Metric Method
Synthetic Objects Real Objects

FoldChair Fridge Laptop Oven Scissor Stapler USB Washer Blade Storage All Fridge Storage All

PSNR
PARIS 31.50 37.67 37.26 35.30 38.37 38.49 39.07 40.08 38.29 36.18 37.22 25.29 27.13 26.21
Ours 34.46 37.11 34.09 37.06 38.29 39.13 39.64 38.50 41.16 37.24 37.67 27.05 25.38 26.22

SSIM
PARIS 0.985 0.994 0.991 0.980 0.996 0.995 0.992 0.991 0.996 0.993 0.991 0.898 0.953 0.926
Ours 0.997 0.993 0.988 0.995 0.998 0.999 0.998 0.995 0.999 0.992 0.995 0.939 0.930 0.935

LPIPSvgg
PARIS 0.045 0.032 0.020 0.045 0.015 0.019 0.029 0.029 0.017 0.095 0.035 0.188 0.139 0.164
Ours 0.036 0.041 0.045 0.054 0.014 0.011 0.016 0.052 0.004 0.097 0.037 0.114 0.188 0.151

Table 8: Quantitative comparison for whole mesh reconstruction on PARIS data. We report the average of
CD-w over 10 trials. We bold best results on average of two states.

Metric Method
Synthetic Objects Real Objects

FoldChair Fridge Laptop Oven Scissor Stapler USB Washer Blade Storage All Fridge Storage All

CD-w
DTA 0.26 0.70 0.34 4.25 0.41 2.02 1.34 4.53 0.37 4.04 1.83 2.13 9.01 5.57

TSDF with gt depth 0.30 0.56 0.47 3.60 0.49 2.78 1.60 5.73 0.54 5.13 2.12 3.15 131.86 67.51
Ours 0.36 0.59 0.48 3.64 0.68 2.88 1.58 6.05 0.63 5.17 2.21 1.37 2.84 2.11

Perception-based Metrics. To evaluate rendering quality, we assess perception-based metrics
including LPIPS Zhang et al. (2018), SSIM Wang et al. (2004), and PSNR, with results shown
in Table 7. While our primary focus aligns with previous methods on mesh reconstruction and
articulation estimation, ArtGS achieves comparable or superior performance relative to PARIS.

Limited Improvement for CD-w on Simple Synthetic Objects. Our method’s performance on
simple synthetic objects, particularly in terms of CD-w metric, is constrained by our use of TSDF for
mesh extraction from Gaussian Splatting-rendered depths. To analyze this limitation, we compare
against meshes reconstructed using ground-truth depth with TSDF. As shown in Tab. 8, even with
ground-truth depth input, TSDF-based reconstruction cannot surpass algorithms using marching
cubes with NeRF, primarily due to the fundamental differences between TSDF and marching cubes
algorithms on simple geometries. However, for complex or real-world objects where articulation re-
construction becomes more critical, the advantages of our model become evident. Additionally, TSDF
with ground truth depth on real-world objects may produce poor-quality meshes (e.g., real_storage)
due to depth sensor noise, while our ArtGS achieves high-quality reconstruction. Importantly, our pri-
mary objective is to create digital twins of real-world articulated objects, where ArtGS demonstrates
significant performance improvements, particularly for complex and real-world scenarios.

D.2 FAILURE CASES

Incorrect Initialization of Part Centers. For real-world objects with multiple parts, clustering-
derived part centers may be inaccurate (Fig. 5 (a)) due to sensor noise, occlusion, and varying
illumination conditions. These incorrectly initialized centers often persist through optimization,
degrading performance for parts with misaligned centers (Fig. 5 (c)). Manual correction of erroneous
part centers prior to training (Fig. 5 (b)) yields improved results (Fig. 5 (d)). As discussed in
Appendix C, incorporating prior models like SAM for automatic, accurate part center initialization
remains a promising direction for future work.

Similar Motions. Our method exhibits limitations when handling parts with identical motion across
states, as demonstrated in case 2 of Fig. 5 where two drawers are pulled with the same distance. In
such scenarios, the model tends to learn a single joint to fit both parts, failing to distinguish between
the independently movable parts. As discussed in Appendix C, expanding ArtGS to incorporate
additional states would provide richer motion information, potentially enabling better part separation.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Input Image (a) Init. Cano. (b) M – Init. Cano. (c) Opt. Cano. (d) M – Opt. Cano.

Input Image (e) Init. Cano. (f) Opt. Cano.

Case 1

Case 2

Figure 5: Failure cases. We illustrate failure cases of our ArtGS. ’Init./Opt. Cano.’ represents initialized and
optimized Canonical Gaussians, while the prefix ’M’ indicates manual correction of erroneous part centers.

Opt.

Cano.

Init.

Cano.

Figure 6: Evolution of canonical Gaussians. We visualize the evolution of canonical Gaussians, showing both
their part assignments and centers. Our initialization strategy begins with dense static Gaussians and sparse
dynamic Gaussians. As training progresses, the Gaussians undergo densification while simultaneously refining
their part centers and assignments. These visualization results demonstrate the effectiveness of ArtGS.

D.3 EVOLUTION OF CANONICAL GAUSSIANS

We visualize the evolution of canonical Gaussians in Fig. 6, showing both their part assignments and
centers. Our initialization strategy begins with dense static Gaussians and sparse dynamic Gaussians.
As training progresses, the Gaussians undergo densification while simultaneously refining their part
centers and assignments. These visualization results demonstrate the effectiveness of ArtGS.

D.4 ADDITIONAL QUALITATIVE COMPARISONS

We provide additional qualitative comparisons on different datasets in the following pages.
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State 0

State 1

DTA Ours GT

State 0

State 1

State 0
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Table-25493

Storage-45503

Oven-101918

Figure 7: Additional qualitative results on ArtGS-Multi.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

T = 0 T = 0.25 T = 0.5 T = 0.75 T = 1

Ours

PARIS

Ours

PARIS

Ours

PARIS

Ours

PARIS

Figure 8: Interpolation results on PARIS data.
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