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Abstract

Large language models (LLMs) and vision-language models (LVLMs) have driven
the paradigm shift towards general-purpose foundation models. However, both
of them are prone to hallucinations, which compromise their factual accuracy
and reliability. While existing research primarily focuses on isolated textual- or
visual-centric errors, a critical yet underexplored phenomenon persists in LVLMs:
Even neither of textual- or visual centric errors occur, LVLMs often struggle with
a new and subtle hallucination mode that arising from composition of them. In
this paper, we define this issue as Simple Compositional Hallucination (SCHall).
Through an preliminary analysis, we present two key findings: (1) visual abstrac-
tion fails under compositional questioning, and (2) visual inputs induce degradation
in language processing, leading to hallucinations. To facilitate future research on
this phenomenon, we introduce a custom benchmark, SCBench, and propose a
novel VLR-distillation method, which serves as the first baseline to effectively mit-
igate SCHall. Furthermore, experiment results on publicly available benchmarks,
including both hallucination-specific and general-purpose ones, demonstrate the
effectiveness of our VLR-distillation method.

1 Introduction

Large language models (LLMs) [3, 62, 8] and large vision-language models (LVLMs) [2, 5, 7,
37, 78, 4, 9] have driven the paradigm shift from task-specific to general-purpose approaches,
cementing their role as the de-facto foundation in natural language processing and computer vision
research. However, both LLMs and LVLMs are prone to hallucinations [24, 73, 55, 77, 15], posing
significant risks in real-world applications [74, 68]. In LLMs, hallucination research primarily
addresses discrepancies between model outputs and real-world facts or user inputs—i.e., factuality
hallucination and faithfulness hallucination [21]. Compared to LLMs, LVLMs incorporate visual
understanding, which naturally extends hallucinations to include visual recognition errors—textual
responses inconsistent with the referenced image—particularly in object categories [55, 33, 77],
attributes, and relationships [64, 27]. To suppress these hallucinations, recent work has achieved
promising results through improved architecture [61, 7], inference interventions [29, 22, 66, 28, 18],
and auxiliary training data or strategies [77, 26, 72, 52, 76].

Despite recent progress, most existing studies [33, 55, 34, 11] focus on isolated forms of hallucina-
tion—either textual factuality and faithfulness errors or visual recognition failures (see POPE [33] and
TruthfulQA [34] in Figure 1a). But what if neither occurs on its own? Intuitively, if an LVLM answers
both a simple vision-centric and a simple language-centric question correctly, without hallucination, it
should also succeed when the two are composed into a single query. Yet, unexpectedly, it hallucinates.
We observe that when these seemingly reliable components are combined into a single question, the
LVLM fails—hallucinating where no error existed before. For example, as shown in Figure 1(b),
the LVLM independently recognizes the goldfish in the image and understands that adding more
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Figure 1: (a) Comparison of the research scope of our SCHall with prior work. (b) Example of
SCHall. LVLMs provide accurate answers to simple visual- or textual-centric questions but fail
to reason compositionally when these questions are combined. (c) LVLMs exhibit SCHall on our
compositional benchmark, showing an performance drop of 20% compared to individual questions.

plants increases the oxygen content of the fishbowl. However, when asked the compositional question
“which action would increase the oxygen content of the object”, it hallucinates and produces an
incorrect answer.

In this paper, we define this phenomenon as Simple Compositional Hallucination (SCHall): a
new and subtle hallucination mode that does not arise from textual- or visual-centric questions
individually, but from their compositions—particularly when each component question is simple
and independently hallucination-free. To better investigate the SCHall phenomenon, we construct
a curated benchmark, namely SCBench, comprising triplets: one or more simple visual-centric
questions, a simple textual-centric question, and their corresponding compositional question. To
ensure diversity, the visual questions cover object classification [16, 10], attribute recognition [12, 31],
and OCR recognition [12, 48], while the textual ones span commonsense inference [41, 71], factual
verification [46, 57], and numerical reasoning [44, 65]. Triplets are generated semi-automatically:
simple visual and textual questions are automatically created per image using GPT-3.5 [51], verified to
be correctly answered by most LVLMs, including LLaVA series [37], Qwen-VL series [2], MiniGPT-
4 [78] and InternVL series [7], then paired into compositional questions and manually filtered and
revised for both quality and difficulty. Notably, our benchmark differs fundamentally from existing
LVLM hallucination benchmarks, such as POPE [33] (Figure 1a), which primarily target isolated
visual recognition errors. In contrast, we focus on failures that emerge from composing questions
that are individually simple and reliably answered. It is also distinct from knowledge-centric VQA
benchmarks (e.g., OK-VQA [46]), where the bottleneck lies in the textual subproblems, corresponding
to limitations in external knowledge. More importantly, neither the data construction process nor
the evaluation in OK-VQA considers compositionality. Unlike recent reasoning benchmarks [44,
65, 69] that emphasize multi-step reasoning chains, we instead target single-step compositions that
unexpectedly induce hallucination.

Further, we validate that the SCHall phenomenon is widespread across a variety of LVLMs, rather than
being confined to isolated cases, as evidenced by evaluations on both our compositional benchmark
and general-purpose benchmarks. As shown in Figure 1(c), LVLMs such as the LLaVA series [37, 38],
InternVL [7], and GPT-4o [50] exhibit substantial performance drops—accuracy on compositional
questions decreases by nearly 20% compared to their near-perfect accuracy on the corresponding
standalone visual- and textual-centric questions. When evaluating general-purpose benchmarks (e.g.,
MMBench [41], MME [12], MMVet [71]), we decompose each question into visual- and textual-
centric sub-questions (detailed in Sec 3.1). While visual recognition is a major source of hallucination,
a notable pattern emerges: when the visual sub-question is answered correctly, hallucinations less
frequently result from errors in the textual sub-question, which is also more likely answered correctly.
Instead, they arise from the composition of sub-questions that are otherwise independently answerable
(Figure 2). Interestingly, this phenomenon is more pronounced in stronger models such as QwenVL[2]
and InternVL [7] compared to LLaVA-1.5 [37]. As their visual recognition improves, hallucinations
from visual errors decrease, while those caused by composition become more prominent—further
underscoring the importance of studying the SCHall phenomenon.

To probe the underlying causes of the SCHall phenomenon, we conduct a series of analyses and
identify two preliminary factors that may contribute to it. First, LVLMs struggle with composition-
ality, particularly in targeting relevant visual content, more notably, abstracting it into textual
understanding. We find that masking irrelevant visual regions—forcing the model to rely solely
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on relevant content—significantly improves performance, indicating that compositionality hinders
accurate targeting of critical visual information. Similarly, inserting textual cues into the question
that directly reference key visual regions also yields gains, suggesting that failures in abstracting
visual content into textual understanding can induce hallucinations even in simple compositional
settings (see Sec. 3.2 for details). Second, the mere presence of visual input—even a blank canvas
devoid of meaningful content—can degrade the model’s language processing performance. We
observe that on the ScienceQA dataset [43], attaching a blank image to purely textual questions—i.e.,
those answerable without visual input—leads to a noticeable drop in performance. Moreover, when
comparing compositional and textual-centric question pairs, the answer logits for compositional
questions are substantially lower (often by half), and correct answers tend to appear later in the output
sequence. All these findings (detailed in Sec. 3.3) suggest that language processing is disrupted in
compositional settings.

Based on the aforementioned definitions and findings, we propose a novel baseline, VLR-distillation,
as the first attempt to address SCHall. To promote effective visual information extraction and
representation, we introduce an innovative token type, referred to as the Vision Language Registers
(VLRs), which serves as a bridge between the visual and linguistic modalities. Designed to represent
the question-relevant image information while also engaging in textual understanding like text tokens,
the VLRs fulfills the roles of both visual localizers and abstract semantic encoders, thereby reducing
the model’s functional gap between recognition and compositional tasks. Furthermore, to counter
the degradation of language processing capabilities caused by visual integration, we introduce a
textually-enhanced VLR-distillation strategy. Leveraging the inherent strength of language models
in textual reasoning, we employ a text-represented visual branch as the teacher to guide the LVLM
student, enabling it to preserve its language processing while effectively incorporating visual context.

To validate our findings and the effectiveness of the VLR-distillation, extensive experiments across
various benchmarks demonstrate that the VLRs and distillation learning strategy not only yield signif-
icant improvements on our SCBench but also prove effective on different hallucination benchmarks
and general VQA benchmarks. This further supports the validity, necessity, and generalizability of
our proposed SCHall for LVLMs.

In summary, our contributions are as follows: (1) We identify a pervasive and fundamental SCHall
phenomenon and introduce SCBench to systematically assess it, revealing significant limitations
in LVLMs and paving the way for advancing hallucination research. (2) We conduct a thorough
analysis of the challenges associated with this phenomenon, i.e., attending to relevant visual content
while preserving accurate and fluent language processing. (3) We propose VLR-distillation to
mitigate hallucination, yielding substantial improvements not only on SCBench but also across
diverse hallucination benchmarks and general VQA benchmarks.

2 Simple-Composed Benchmark Construction

This section describes the data generation process of our SCBench benchmark. Following a bottom-up
strategy, we first construct atomic questions targeting visual recognition and textual understanding.
These are then composed into simple-composed questions. Finally, we perform cross-validation to
filter out those that are likely to induce SCHall. For further details of SCBench benchmark, please
refer to the Appendix.

Atomic Questions Generation. We collect images from established datasets, including MM-
Bench [41], MME [12] and SEEDBench [31], as well as from various online sources. In addition, we
manually synthesize images containing texts, numbers, and geometric shapes to increase diversity.
For each image, we generate captions using popular LVLMs including LLaVA series [37], Qwen-VL
series [2], MiniGPT-4 [78] and InternVL series [7], identifying common content “easily” recog-
nized by these models. Based on these captions, we use GPT-3.5 [51] to formulate corresponding
recognition questions, which are subsequently filtered and refined through manual verification.

To construct textual cognition questions, we prompt GPT-3.5 using the recognized content as contex-
tual input, encouraging it to generate questions from diverse linguistic perspectives. After manual
verification, we evaluate the same LVLMs on these questions and retain those with high accuracy as
“easy” instances.

Simple-Composed Question Generation. By replacing the text-represented visual content in
the textual cognition questions with corresponding image inputs, we construct candidate simple-
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Figure 2: Proportions of error attributed to visual recognition and textual understanding
failures across different benchmarks and models. When visual recognition is hallucination-free
(the first line in each square), hallucinations occur more frequently in questions that have correctly
answered text-centric sub-questions (top left corner) than in those with failed ones (top right corner).

composed questions, where both the visual recognition and textual components are individually
“easy” for LVLMs. From these candidates, we identify questions that remain challenging for
LVLMs—namely, those with relatively low accuracy across models—which are then manually
reviewed and refined to construct the final benchmark.

3 Probing Simple-Composed Hallucinations

In this section, we first present statistical evidence that SCHall occurs in general-purpose benchmarks
(see Sec. 3.1), supporting its broad prevalence, as also demonstrated by our benchmark introduced in
Sec. 1. Based on our benchmark, we then examine two primary factors contributing to SCHall under
compositional settings: (1) the model’s failure to effectively target and abstract question-relevant
visual content (see Sec. 3.2), and (2) the degradation of language processing pathways induced by the
integration of visual inputs (see Sec. 3.3).

3.1 Beyond Isolated Flaws: Simple-Composed Hallucinations

Motivation. Research on hallucinations in LVLMs primarily emphasizes recognition errors. However,
once these recognition tasks become “easy”, do unique hallucinations specific to LVLMs continue to
persist? In this context, we present empirical evidence (see Figure 1) supporting a negative conclusion.
To further establish the universality of this hallucination, we conduct a statistical analysis over a
diverse set of samples drawn from general-purpose benchmarks, evaluating multiple LVLM series.
We include experiments with different decoding strategies in Appendix.

Setting. We uniformly sample a variety of question types from multiple datasets, including MME [12],
MMBench [41], and MM-Vet [71]. Each question is annotated with its decomposed components,
including one or more recognition and language questions that together cover the visual and linguistic
capabilities required to answer the original question. Our experiments are conducted based on
LLaVA1.5-7b [37], Qwen-VL [2] and InternVL [7], involving a sampled set of 300 instances.

Result & Discussion. The results are presented in Figure 2. As noted by previous research,
recognition errors account for a substantial fraction of overall failures (41.2% & 26.5% on MMBench
on the bottom-left corner). However, a considerable portion of the remaining errors associates with
simple textual- and visual-centric questions. These errors are evident across both benchmarks and
models dimensions, highlighting the prevalence of this hallucination: Even when both the textual-
and visual-centric questions are individually hallucination-free for LVLMs, their compositions can
still pose unexpected challenges. We further observe that the proportion of this type of hallucination
increases from LLaVA (19.1%) to InternVL (27.5%), likely due to the latter’s stronger visual
recognition capability. This trend highlights the growing importance of addressing such hallucinations
as LVLMs continue to improve in perceptual accuracy.

3.2 Visual Abstraction Fails under Compositional Questioning

Motivation. In recognition tasks, the model identifies relevant elements based on an explicit query. In
contrast, compositional questions render the query implicit, as they often entail multiple intertwined
sub-goals, thereby introducing new challenges. We thus hypothesize that one potential cause of

4



LLaVA [37] InternVL [7]

Origin 41.3 64.1
Image masking 48.9 71.7
Text insertion 43.4 66.3

SQA-text [43] 67.4 92.9
+ rand image 61.7 84.3
+ black image 65.1 90.6

Table 1: Results of LLaVA
and InternVL with various
settings.

Multimodality Text

Figure 3: Analysis: Logit Lens analysis on our benchmark.
SCHall may lies in failures of visual abstraction triggered by implicit queries in compositional
settings.

Setting. To validate the hypothesis, we use two input modification strategies to provide recognition
cues: (a) Image masking, where the original image is masked to retain only the region corresponding
to the queried content; (b) Text insertion, where additional textual tokens are inserted to highlight the
relevant visual content. The inserted text is constructed solely based on existing visual information in
the question, ensuring no information leakage (see Appendix for details). We conduct experiments
using LLaVA-1.5-7B and InternVL on a subset of our benchmark.

Result & Discussion. As shown in Table 1, both manipulations reduce SCHall, supporting our
hypothesis: while the model attend effectively to relevant regions in isolated recognition tasks,
this selective ability becomes a bottleneck in compositional tasks. Besides, image masking proves
more effective than text insertion, as it directly eliminates misleading visual input, whereas text
insertion only provides additional contextual cues for visual abstraction. Notably, using manually
annotated masks resulted in modest improvement (8%), suggesting that other underexplored factors
may contribute to SCHall.

3.3 Visual Inputs Induce Degradation in Language Processing

Motivation. However, what happens when the visual input is simple and free of distractions? We
find that the model still exhibits the SCHall phenomenon. A typical failure mode involves the model
conduct directly matching when answering questions, while neglecting the other context, exhibiting
shortcut reasoning behavior. These observations lead us to hypothesize that the integration of visual
information disrupts the language processing capability, ultimately giving rise to SCHall.

Setting. We conduct both statistical and visualization analyses on LLaVA1.5-7B to verify this
hypothesis. (a) We first focus on 1,434 text-only questions from ScienceQA. To assess the influence
of visual input, we pair each sample with an unrelated or visually uninformative black image, and
examine the resulting changes in model performance. (b) To better understand the mechanism, we
employ a logit lens analysis across transformer layers and token positions and take averages based
on the benchmark. We focus on the final answer token, as well as intermediate result tokens that
correspond to sub-answers of decomposed recognition questions. This approach enable us to trace
how visual and linguistic signals are progressively integrated by the model during inference. Please
refer to appendix for more details.

Result & Discussion. (a) Table 1 shows a notable 5.78% performance drop when paired with
unrelated images, and a 2.1% degradation with black images, revealing that visual inputs can
negatively affect the model’s language processing capabilities—even when the visual input contains
no meaningful content. (b) As shown in Figure 3, the layer-wise visualizations at the final input
token (the first line) indicate that the answer logits in the purely textual condition are significantly
higher than those in the compositional condition—often nearly twice as large. While the second line
in Figure 3 reveal a positional distinction: multimodal inputs exhibit notably weaker activations at
earlier token positions compared to text-only inputs. This finding suggest a delay in model’s language
processing under compositional settings, validating our hypothesis.
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Figure 4: An overview of our VLR-distillation. Training Stage 1: Pretrain the VLRs with masked
self-attention to learn selective image querying. Training Stage2: Distillation learning via a teacher
branch augmented with additional captions, providing enhanced language-guided supervision. Infer-
ence: Use pretrained VLRs in the same manner as training to generate responses.

4 VLR-Distillation Method

An overview of our proposed method, VLR-Distillation, is depicted in Fig. 4. We begin with a
preliminary of LVLMs in Sec. 4.1. Next, we introduce Vision Language Registers (VLRs) (Sec. 4.2)
and employ a distillation learning strategy (Sec. 4.3) to alleviate the perturbations in language
processing that arise when visual inputs are integrated.

4.1 Preliminary

The Architecture of LVLMs. We consider LVLMs as consisting of a vision encoder, a vision-
language connector, and a language model. Given an input image I and an instruction T , the vision
encoder processes the image to extract features, which are then projected into a text-aligned feature
space. Simultaneously, the instruction T is tokenized into text tokens XT , with their embeddings
computed for subsequent processing. These projected visual features XI and text embeddings XT

serve as inputs to the language model. The reasoning process of the language model, leading to the
output Y , can be articulated as follows:

p(Y |XI ,XT ) =
∏
i∈L

pθ(yi|[XI ,XT ,Y <i]) (1)

where L denotes the set of output positions, and Y <i is predicted output before current token yi.

Causal Attention. Following LLMs, LVLMs employ causal attention to ensure that each position is
unable to access information from future positions:

M r,s =

{
True, r < s

False, otherwise
(2)

where M r,s indicates whether the token at position r has access to the token at position s.

4.2 Vision Language Registers: Absorbing Visual Content conditioned on Language

To promote effective visual information extraction and, we introduce additional VLRs that selectively
absorb relevant visual content aligned with the input textual query. Specifically, we randomly initialize
N tokens in the feature space of text tokens, denoted as the sequence XV LRs. This sequence is
then concatenated with both the image input and the instruction input, enabling the generation of the
answer Y to be expressed as follows:

p(Y |XI ,XT ) =
∏
i∈L

pθ(yi|[XI ,XT ,XV LRs,Y <i]). (3)

Pretraining. To ensure that the randomly initialized VLRs exhibits visual abstraction capability, we
first pretrain VLRs in which all other components of LVLMs remain fixed. We modify the attention
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mask to prevent output tokens from directly attending to image tokens, thereby compelling the VLRs
to serve as a bridge by effectively aggregating information from the image tokens, as follows:

M ′
r,s =

{
False, r ∈ L and s ∈ XI

M r,s, otherwise
(4)

4.3 Distillation Learning from Textual Enhanced Branch

To mitigate the degradation of language processing capabilities under compositional conditions, we
propose a Distillation Learning strategy. Specifically, we leverage the strength of language models
on text-only questions to guide the model in preserving its inherent linguistic competence during
multimodal inference. The text-only branch substitutes the image input in the form of image tokens
XI with image captions tokenized as text tokens Xc. The approach can be expressed as follows:

p(Y ′|Xc,XT ) =
∏
i∈L

pθ(y
′
i|[Xc,XT ,Y

′
<i]) (5)

We subsequently compute the Kullback-Leibler divergence between the introduced text-only branch
(5) and the original branch (3), denoted as:

LKL = EV,T [DKL(p(Y
′|Xc,XT )||p(Y |XI ,XT ))]. (6)

The final loss L is formulated as follows:

L = Lreg +L′
reg +LKL (7)

where Lreg and L′
reg indicates the language modeling loss of the original branch and the text-only

branch.

5 Experiments

5.1 Experimental Settings

Datasets and Baselines. To evaluate the effectiveness of our method across various architectures,
we experiment with LLaVA1.5 [37], Qwen-VL-Chat [2], and MiniGPT-4 [78] as primary baselines.
For training, we employ a subset of the training data from the instruction tuning (IT) phase of these
models. Given that MiniGPT-4 is trained exclusively on caption data, it exhibits limited capability in
addressing broader VQA tasks. Therefore, we finetune MiniGPT-4 using a subset of the IT training
data from LLaVA1.5 as the baseline, which also serves as the training data for our proposed method.
For inference, we first conduct experiments on our proposed SCBench, comparing our methods
with popular hallucination mitigating methods, to demonstrate the effectiveness of our proposed
VLR-distillation. Additionally, we report results on popular hallucination benchmarks including
POPE [33], MME-hall [12] and general-pupose VQA benchmarks encompassing ScienceQA [43],
MMBench [41], HallusionBench [14] and MM-Vet [71].

Implementation details. For training, we have two training phases: pretraining stage for VLRs
and distillation learning, both following the alignment learning and instruction tuning stages of the
baseline model. During pretraining, we use a batch size of 128, freezing all other parts of the model
and training only the VLRs. In the distillation learning phase, we employ a batch size of 64 with 2
accumulation steps, freezing the pretrained VLRs and training the LoRA [19] of the language model.
For each baseline, we set the number of VLRs N to 4. All experiments are conducted for a single
epoch, utilizing the Adam optimizer on 8 A100 GPUs. For inference, we follow VCD [29] using
nucleus sampling for experiments on POPE and MME, while applying greedy decoding for other
benchmarks.

5.2 Comparison on Simple-Composed Benchmark

Table 2 presents the results of standard baselines, representative hallucination mitigation methods,
and our proposed VLR-distillation approach on the SCBench benchmark. Despite the low complexity
of the questions in our SCBench benchmark, all three baselines perform poorly, achieving an average
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Model Score in Various Question Type
Perc. Sci. Comm. Fact Lang. Scene Math Overall

LLaVA1.5-7b 46.55 30.61 43.59 46.67 36.67 23.33 19.30 33.75
+ VCD[29] 48.28 36.73 41.03 46.67 36.67 26.67 21.05 35.60
+ PAI[40] 32.76 24.49 28.21 16.67 40.00 13.33 14.04 23.22
+ CODE[28] 46.55 32.65 46.15 50.00 40.00 25.00 21.05 35.60
+ REVERIE[72] 48.28 32.65 43.59 40.00 43.33 21.67 26.32 35.29
+ CCA[67] 44.83 38.78 35.90 30.00 36.67 28.33 22.81 33.75
+ ours 51.72 46.94 48.72 53.33 46.67 28.33 28.07 41.80

+5.17 +16.33 +5.13 +6.66 +10.00 +5.00 +8.77 +8.05
QwenVL-Chat 51.72 42.86 53.85 63.33 23.33 41.67 24.56 42.41
+ VCD[29] 51.72 42.86 53.85 66.67 23.33 38.33 28.07 42.72
+ PAI[40] 56.90 42.86 43.59 50.00 20.00 31.67 24.56 38.70
+ CODE[28] 50.00 46.94 53.85 60.00 23.33 38.33 22.81 41.49
+ ours 56.90 48.98 58.97 70.00 26.67 43.33 29.82 47.06

+5.19 +6.12 +5.12 +6.67 +3.34 +1.66 +5.26 +4.65
MiniGPT-4 22.41 12.24 17.95 6.67 23.33 16.67 5.26 14.86
+ VCD[29] 24.14 14.29 20.51 6.67 23.33 16.67 10.53 16.72
+ PAI[40] 18.97 24.49 15.38 23.33 36.67 18.33 1.75 18.27
+ CODE[28] 15.52 16.33 17.95 10.00 26.67 15.00 10.53 15.48
+ ours 32.76 34.69 25.64 30.00 30.00 18.33 21.05 26.93

+10.35 +22.45 +7.69 +23.33 +6.67 +1.66 +15.79 +12.07

Table 2: Results on Our SCBench Benchmark. Although their decomposed visual-centric and
texutal-centric questions are hallucination-free, LVLMs struggle with this “simple” dataset. Full
names of the categories in our benchmark: Perception, Science, Commonsense Reasoning, Factual
Knowledge, Language Capability, Scene Understanding and Math.

accuracy of approximately 30%. These results are consistent with our analysis in Sec. 3, which
suggests that LVLMs are prone to ScHall.

We also evaluate several popular hallucination mitigation strategies, including zero-shot methods, in-
cluding VCD [29], PAI [40] and CODE [28], as well as training approaches, including REVERIE [72]
and CCA [67]. The experimental results indicate that while these methods can suppress object hal-
lucinations, they do not perform well in mitigating the ScHall. Compared to existing methods that
focus solely on object hallucinations, our approach consistently achieves substantial improvements
on LLaVA1.5-7B, Qwen-VL, and MiniGPT-4 on our SCBench benchmark. In particular, it yields no-
table gains of 8.05% and 12.07% in overall accuracy on LLaVA1.5-7B and MiniGPT-4, respectively,
indicating its effectiveness in activating the models’ latent capabilities under composed scenarios.

Setting Model w/ ours Accuracy↑ Precision Recall F1 Score↑

Random

LLaVA1.5 ✗ 83.29(±0.35) 92.13(±0.54) 72.80(±0.57) 81.33(±0.41)

! 87.46(±0.42) 92.04(±0.49) 82.06(±0.77) 86.76(±0.49)

Qwen-VL ✗ 84.73(±0.36) 95.61(±0.45) 72.81(±0.38) 82.67(±0.41)

! 87.59(±0.44) 93.68(±0.69) 80.63(±0.47) 86.66(±0.47)

MiniGPT-4 ✗ 74.85(±0.27) 80.50(±0.82) 65.60(±0.52) 72.28(±0.19)

! 83.99(±0.35) 90.78(±0.62) 75.68(±0.80) 82.54(±0.44)

Popular

LLaVA1.5 ✗ 81.88(±0.48) 88.93(±0.60) 72.80(±0.57) 80.06(±0.05)

! 85.28(±0.17) 87.02(±0.39) 83.02(±0.52) 84.98(±0.19)

Qwen-VL ✗ 84.13(±0.18) 94.31(±0.43) 72.64(±0.45) 82.06(±0.23)

! 85.68(±0.22) 89.88(±0.23) 80.41(±0.32) 84.88(±0.25)

MiniGPT-4 ✗ 71.85(±0.64) 74.70(±0.69) 66.09(±0.90) 70.13(±0.74)

! 80.45(±0.23) 84.04(±0.68) 75.20(±0.77) 79.37(±0.27)

Adversarial

LLaVA1.5 ✗ 78.96(±0.52) 83.06(±0.58) 72.75(±0.59) 77.57(±0.57)

! 81.18(±0.41) 80.24(±0.67) 82.96(±0.32) 81.56(±0.41)

Qwen-VL ✗ 82.26(±0.30) 89.97(±0.33) 72.61(±0.50) 80.37(±0.37)

! 82.86(±0.27) 84.37(±0.33) 80.67(±0.30) 80.48(±0.28)

MiniGPT-4 ✗ 70.19(±0.43) 72.03(±0.59) 66.03(±0.59) 68.90(±0.44)

! 78.13(±0.10) 79.70(±0.30) 75.49(±0.44) 77.54(±0.14)

Table 3: Results on POPE MSCOCO. The best performances for baselines is highlighted in bolded.
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Model w/ ours Object-level Attribute-level Total Scores↑Existence↑ Count↑ Position↑ Color↑

LLaVA1.5 ✗ 181.00(±5.83) 96.67(±7.89) 105.00(±11.69) 127.67(±15.55) 510.33(±26.65)

! 191.00(±3.74) 135.67(±6.38) 116.33(±15.22) 142.67(±11.48) 585.67(±22.89)

Qwen-VL ✗ 180.83(±5.34) 120.83(±10.13) 115.28(±2.24) 168.61(±8.36) 585.56(±12.46)

! 186.67(±2.36) 134.44(±12.27) 123.89(±6.43) 173.33(±8.55) 618.33(±14.81)

MiniGPT-4 ✗ 142.33(±7.02) 69.00(±10.20) 63.33(±13.46) 97.33(±15.83) 371.67(±25.25)

! 168.67(±4.14) 88.33(±11.79) 71.67(±7.75) 111.67(±4.83) 440.33(±7.10)

Table 4: Results on MME-hall. Higher scores indicate better performance and fewer hallucinations.

5.3 Comparisons on Other Hallucination Benchmarks and General-purpose Benchmarks

POPE. The results on the POPE dataset are detailed in Table 3. Our method achieves substantial
improvements across the random, popular, and adversarial setups for LLaVA1.5, Qwen-VL, and
MiniGPT-4. Notably, we observe enhancements on accuracy of +9.14, +8.60, and +7.94 over the
MiniGPT-4 baseline in the three respective setups. Furthermore, our method shows a significant im-
provement in recall, with average values of +9.05, +8.97, and +9.12 in the three setups, highlighting
that our VLRs prioritize visual information that is often overlooked and susceptible to interference
from redundant data.

MME. As shwon in Table 4, our method performs favorably on the benchmark, showing consistent
improvements over baseline models across all splits. Notably, we achieve an improvement of 75 on
LLaVA baseline.

General-purpose Benchmarks. As shown in Table 5, we experiment on MMBench [41] for compre-
hensive evaluation, ScienceQA [43] for scientific questions, HallusionBench [14] for challenging
hallucination questions, and MM-Vet [71] for open-ended hallucination questions. Our method
consistently demonstrates an improvement of approximately 1.5 across these general benchmarks.
Notable advancements, +1.9 and +2.2, are demonstrated in the HallusionBench and MM-Vet, which
focus on hallucinations.

Model MMB [41] SQA [43] Hallusion
Bench [14] MM-Vet [71]

BLIP-2 [32] - 61.0 - 22.4
InstructBLIP [9] 39.8 63.1 45.26 25.6
MiniGPT-4 [78] 30.5 - 35.78 22.1
Qwen-VL [2] 38.2 67.1 39.15 -
Qwen-VL-Chat [2] 60.6 68.2 - -

LLaVAv1.5 [37] 64.3 66.8 47.6 31.1
+ ours 65.4 67.8 49.5 33.3

Table 5: Results on the general-purpose VQA benchmarks.

5.4 Ablation Study

VLRs DL Random Popular Adversarial
Acc F1 Acc F1 Acc F1

✗ ✗ 83.3 81.3 81.9 80.1 79.0 77.6
✓ ✗ 86.5 85.9 84.1 83.7 80.2 80.4
✗ ✓ 85.0 83.4 84.3 83.0 81.4 80.4

✓ ✓ 87.5 86.8 85.3 85.0 81.2 81.6

#VLRs Random Popular Adversarial
Acc F1 Acc F1 Acc F1

2 87.4 87.1 84.7 84.8 80.2 81.1
4 87.5 86.8 85.3 85.0 81.2 81.6
8 87.7 87.4 85.3 85.2 80.1 80.8
16 87.0 86.3 84.7 84.3 80.9 81.5

Table 6: Ablation study on POPE using LLaVA-v1.5 baseline.

To demonstrate the effectiveness of our proposed VLRs and distillation learning training strategies,
we conduct ablation studies on POPE based on LLaVA1.5 baseline, as shown in Table 6. (1) It
can be observed that each component—VLRs and the distillation learning strategy—individually
contributes to an improvement in the model’s performance on POPE. (2) It is noteworthy that the
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independently used VLRs result in a surprisingly significant improvement. This indicates that the
VLRs, as a supplementary visual component, aids the model in recognition. (3) Additionally, the
distillation learning strategy for the caption branch, which reduce the internal gap on language-side,
allows the model to learn to moderately prioritize image information and perform question-answering
based on the primary visual content.

6 Related Work

Hallucinations in LLMs. The generation of meaningless or unfaithful outputs—commonly referred
to as hallucinations [47, 54, 55]—in natural language generation has garnered considerable attention,
as it poses significant risks to real-world applications of language models, particularly large language
models (LLMs) [62, 8, 1]. In the context of LLMs, hallucinations are typically classified into two
primary types: factual hallucinations [47, 60, 21], where the generated output contradicts or cannot
be verified by real-world facts, and fidelity hallucinations [21], where the output deviates from the
input or fails to remain consistent with preceding output.

Hallucinations in LVLMs. Unlike hallucinations observed in LLMs, LVLMs introduce object
hallucinations, where generated content misaligns with the visual input [55, 33]. This issue is
commonly attributed to language priors [66, 36], statistical bias [66, 77], or modality gap [26].
Existing efforts mitigate object hallucinations by improving model architectures [61, 7, 67], curating
training datasets [36, 77, 70, 72], designing learning strategies [26], or leveraging the intrinsic
properties of pre-trained LVLMs [66, 22, 40, 28, 45].

Additionally, several studies discuss other types of hallucinations in LVLMs beyond object hallucina-
tions. LRV [36] observe instruction-following failures, while more recent studies emphasize the issue
of new types of visual hallucinations, including multi-object hallucinations [6], event hallucination
[25] and prompted visual hallucination [39], respectively. Some recent approaches focus on probing
the internal mechanisms [58] of LVLMs to attribute hallucinations, such as identifying the different
causal pathways that lead to hallucinations [53] or understanding why longer contexts are more prone
to causing them [75].

Benchmarks for Hallucination in LVLMs. To facilitate the study of hallucination in LVLMs, several
benchmarks have been proposed, most of which primarily focus on object hallucinations. Early
efforts, such as CHAIR, [55], concentrates on hallucinated objects in image captioning. Subsequent
benchmarks [33, 12, 14, 42] adopt more structured formats, including yes/no and multiple-choice
questions settings, to simplify evaluation. More recent efforts expand both the scope and evaluation
protocols. For generative tasks, GPT-based tools [36, 59, 71] offer flexible, context-aware evaluation,
while FaithScore [27] provides fine-grained faithfulness assessment. On the discriminative side,
recent benchmarks [20, 25, 39] go beyond objects to include attributes and relational inconsistencies.

7 Conclusion

This paper focuses on a phenomenon in LVLMs: despite accurately answer questions in isolated
textual- and visual-centric questions, it still struggles in the compositional one. We also establish a
benchmark and conduct analysis. We further propose VLR-distillation and achieve high performance
on our benchmarks and published ones. Limitation: It is important to acknowledge the potential
ethical implications arising from LVLMs. Since our method leverages large vision language models
like Llava and GPT-4o, it may also inherit biases and limitations present in these models.

Acknowledgment: This work is supported by the National Natural Science Foundation of China
under Grant No.62206174 and No.62576365.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main contributions and align
well with the theoretical and experimental results presented in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper explicitly discusses key limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not contain any theoretical results

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the experimental setup, data
preprocessing, model architecture, and training procedures, ensuring that the main results
can be reliably reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Code will be released after acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides detailed experimental settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The performance improvements are significant, and the paper provides detailed
analyses to support our conclusions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides resources details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all the original paper that produced the code package or dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix Overview

This appendix provides further details on the SCBench benchmark, experimental settings, and
additional results to support the main paper. The contents are organized as follows:

• Sec B - Details of SCBench Benchmark
– Sec B.1 - Data Distributions
– Sec B.2 - Data Sources
– Sec B.3 - Details and Prompts for Data Construction

• Sec C - Analysis Details and Supplementary Results
– Sec C.1 - Analysis on various decoding strategies
– Sec C.2 - Detailed settings for image masking and text insertion experiments
– Sec C.3 - Detailed settings for logit lens analysis

• Sec D - Additional Experimental Settings and Results
– Sec D.1 - Additional Implementation Details
– Sec D.2 - Additional Experiments on POPE
– Sec D.3 - Additional Experiments on MME Remaining Subset

• Sec E - Visualizations
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Figure 5: Data distribution of SCBench benchmark.

Image Sources Number Proportion

COCO [35] 20 6.2%
MMBench [41] 98 30.3%
MME [12] 36 11.1%
ScienceQA [43] 15 4.6%
Internet 124 38.4%
Constructed 30 9.3%

Problem Sources Number Proportion

ScienceQA [43] 15 4.6%
WinoGrande [56] 7 2.2%
MMLU [17] 10 3.1%
WSC [30] 6 1.9%
StoryCloze [49] 5 1.5%
MNLI [63] 7 2.2%
QQP [63] 5 1.5%
GPT-3.5 Generated 268 83.0%

Table 7: Data sources of SCBench
Benchmark.

B Details of SCBench Benchmark

This section presents a detailed overview of the SCBench benchmark, covering the dataset distribution,
the specific data sources utilized, and the prompt design strategy employed during dataset construction.
Visualizations of representative examples are provided in Appendix E.

B.1 Data Distributions

We construct the SCBench benchmark, comprising 951 questions in total—323 compositional and
628 decomposed—curated from diverse perspectives. The distribution of question types is visualized
in Figure 5.

The dataset primarily focuses on questions that involve both visual- and textual-centric decomposed
questions, accounting for 82% of the total. To address a distinct class of failures, we introduce
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GPT-3.5 Prompt

Given a fact about an image, transform this fact into a concise and relevant question, and provide a
corresponding answer. The question must explicitly include the word “image” and be appropriate to the
level of the fact (object, attribute, relation, or event).

Format your response strictly as follows:
Question: [Your generated question]
Answer: [Your generated answer]

Below are several examples:

Object-level example:
Input Fact: There is a dog in the image.
Question: What is the animal in the image?
Answer: Dog.

Attribute-level example:
Input Fact: There is a white dog in the image.
Question: What is the color of the animal in the image?
Answer: White.

Relation-level example:
Input Fact: The dog is lying on the bench.
Question: What is the relation between the dog and the bench?
Answer: The dog is lying on the bench.

Event-level example:
Input Fact: The dog is sleeping.
Question: What is the dog doing?
Answer: The dog is sleeping.

Now, apply this format to the following input:
Input Fact: {fact}.

Table 8: Prompts used for visual-centric atomic question generation in the SCBench construction
pipeline.

a Perception category. This category captures cases where the model correctly identifies relevant
content but still fails to answer accurately when the information is reformulated in MCQ format.
These failures represent a specific type of compositional challenge, in which additional textual choices
hinder accurate comprehension. By including these examples in the perception split, we aim to
improve the overall coverage of the benchmark. Additionally, we introduce a Language Capability
category, specifically designed to evaluate models’ abilities to handle complex linguistic phenomena.

B.2 Data Sources

We provide the sources of the images and questions included in our benchmark, as detailed in the
Table 7. Most questions are carefully constructed following the pipeline described in the main text.
Only language capability questions and a portion of science questions are adapted from existing NLP
datasets [56, 17, 30, 49, 63] and the ScienceQA [43] dataset, respectively.

B.3 Details and Prompts for Data Construction

Visual-centric atomic question construction. As introduced in the main text, we first prompt
popular LVLMs with diverse captioning instructions to identify commonly recognized content—such
as objects, attributes, relations, and events. Based on this content, we then construct visual-centric
questions using the prompt template shown in Table 8.

Textual-centric atomic question construction. Based on commonly recognized image content,
we prompt GPT-3.5 to generate questions and options. For each category, we first obtain a set of
diverse perspectives using GPT-3.5 (e.g., typical animal behavior in Science) and formulate questions
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GPT-3.5 Prompt

You are an imaginative and highly creative language model. Given the caption of an image and a question
related to this image, your task is to generate five correct answers and five incorrect answers for the given
question.

Your answers should be realistic, logically sound, and plausible. Correct answers must accurately address
the question, while incorrect answers should be clearly wrong or misleading, yet still sound superficially
plausible. The answers do not have to be grounded in the image caption, but may optionally relate to it.

Strictly follow the format below:

Example:
Image caption: The image shows a dog lying on a bench at sunset.
Question: Which of the following is not typically a behavior exhibited by the animal in this image?
Correct answers:
1. Lying on a bench
2. Being very lazy
3. Writing with a pen
4. Using a litter box
5. Climbing trees
Incorrect answers:
1. Barking at strangers
2. Wagging their tails
3. Digging holes
4. Sniffing around
5. Herding sheep

Now, apply this format to the following input:
Image caption: {image caption}
Question: {question}

Table 9: Prompts used to generate answer options for textual-centric atomic questions in the SCBench
construction pipeline. The input questions are also generated using GPT-3.5 with simple prompts
to provide diverse perspectives on the given visual content across different categories (e.g., typical
animal behavior in Science).

grounded in appropriate visual contexts (e.g., Which of the following is not typically a behavior
exhibited by the dog?). We then prompt GPT-3.5 to generate corresponding answer options, using the
template shown in Table 9.

Exception on specific splits. For the language capability split, we select questions from NLP datasets
whose answers can be visually represented. Then we use concatenated images as image input,
expressing answers through spatial references (e.g., “the image on the left/right” or “above/below”).
For the science split, we adapt ScienceQA questions that are originally solvable without images into
versions that require visual information for correct reasoning.

C Analysis Details and Supplementary Results

C.1 Analysis on various decoding strategies

As discussed in the main text, SCHall hallucinations are observed across a range of benchmarks and
models. Here, we present additional experiments across different decoding strategies. We conduct
experiments using the LLaVAv1.5-7b [37] model and the results are shown in Figure 6. The results
demonstrate that SCHall is observed consistently across all decoding strategies.

C.2 Detailed settings for image masking and text insertion experiments

Image masking. We use manually annotated images with masks. Specifically, we annotate bounding
boxes that enclose the content necessary to answer the question, and mask out all other regions. An
example is shown in the Figure 7 (a).
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Figure 6: Proportions of error attributed to recognition and textual understanding failures
across different decoding settings. When visual recognition is hallucination-free (the first line in each
square), hallucinations occur more frequently in questions that have correctly answered text-centric
sub-questions (top left corner) than in those with failed ones (top right corner). This phenomenon
occurs consistently across sampling, beam search, and greedy decoding strategies on all datasets.

Which type of energy is needed to
complete the action in the image?

C. heat

A. sound
B. mechanical
C. heat
D. light

B. mechanical

Which of the following is not typically a behavior
exhibited by the animal in this image?
A. Wagging their tails
B. Being very lazy
C. Barking
D. Sniffing around
C. Barking

B. Being very lazy

Which of the following is not typically a behavior exhibited by the
animal in this image?
...
Look at the type of animal in the image. Ignore any other image
information.

（a) Image Masking （b) Text Insertion

✘

✔

✘

✔
Figure 7: Examples for image masking and text insertion experiments with LLaVAv1.5.
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USER: What can the instrument in the picture measure?
A. The volume of a water cup
B. The mass of an apple
C. The temperature of the weather
D. The length of a desk

Answer the question with the option's letter.

ASSISTANT: D. The length of a desk

USER: What is the object in the
image?

ASSISTANT: Tape.

Mid Result
Token

Selected Position

Figure 8: An example of logit lens analysis. The red-highlighted "tape" indicates the intermediate
token we trace. Underlined tokens mark the positions of interest that we focus on and visualize.
Text insertion. We prepend a simple textual prompt, “Look at {image content}. Ignore any other
image information.”, to explicitly highlight the relevant visual content. The placeholder {image
content} is populated with text extracted from the question itself, as illustrated in Figure 7 (b).

C.3 Detailed settings for logit lens analysis

Target tokens. We visualize two types of tokens: the final answer token and the intermediate result
token. The final answer token corresponds to the ground-truth answer (e.g., if the answer is D,
we track the probability of token D in the logit lens). The intermediate result token refers to the
token associated with the answer to the decomposed visual-centric sub-question. For example, in
the question shown in Figure 8, the intermediate result token is the first token of “Tape”. This setup
allows us to examine the model’s reasoning trajectory, where the intermediate result token is expected
to appear earlier than the final answer token.

Layer dimension. To investigate how the probability of a target token evolves across layers, we
compute its average probability over all input positions following the question prompt. For instance,
in the example shown in Figure 8, the selected range spans from “Answer” to “ASSISTANT:” This
yields a layer-wise trajectory of the target token’s likelihood.

Position dimension. To analyze how the target token’s probability changes across positions, we
average its probability across all layers at each position. The visualized range also spans from
“Answer” to “ASSISTANT:” resulting in a position-wise trajectory of the token’s likelihood.

Settings LLaVAv1.5-7b Qwen-VL-Chat MiniGPT-4

a1, a2, a3 1, 1, 1e5
batch size 128
lr 2e-4 1e-5 3e-5
lr schedule Cosine Decay
lr warmup ratio 0.03 0.01 0.05
weight decay 0 0.05 0.05
epoch 1
optimizer AdamW
DeepSpeed stage 3 3 /

Table 10: Hyperparameters for our VLR-distillation methods. a1, a2 and a3 are the coefficients for
Lreg, L

′
reg and LKL, respectively.

D Detailed Experimental Settings and Results

D.1 Additional Implementation Details

In this section, we present the model-specific implementation details. For LLaVAv1.5-7b [37], we
utilize a subset of its instruction-tuning datasets, specifically VQAv2 [13], OK-VQA [46], GQA [23],
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Dataset Setting Model w/ ours Accuracy↑ Precision Recall F1 Score↑

A-OKVQA

Random

LLaVA1.5 ✗ 83.45(±0.48) 87.24(±0.68) 78.36(±0.54) 82.56(±0.50)

! 87.57(±0.37) 85.86(±0.44) 89.75(±0.50) 87.76(±0.37)

Qwen-VL ✗ 86.67(±0.48) 93.16(±0.55) 79.16(±0.59) 85.59(±0.53)

! 88.07(±0.32) 89.13(±0.44) 86.72(±0.55) 87.91(±0.34)

MiniGPT-4 ✗ 72.38(±0.77) 75.66(±0.91) 66.00(±1.40) 70.49(±0.95)

! 80.08(±0.68) 82.82(±0.83) 75.91(±0.64) 79.21(±0.69)

Popular

LLaVA1.5 ✗ 79.90(±0.33) 80.85(±0.31) 78.36(±0.54) 79.59(±0.37)

! 82.45(±0.30) 78.26(±0.38) 89.91(±0.31) 83.68(±0.27)

Qwen-VL ✗ 85.56(±0.35) 90.44(±0.56) 79.53(±0.84) 84.63(±0.42)

! 85.80(±0.26) 85.28(±0.42) 86.55(±0.40) 85.91(±0.25)

MiniGPT-4 ✗ 68.66(±0.38) 69.71(±0.46) 66.00(±0.71) 67.80(±0.44)

! 75.45(±0.63) 75.14(±0.72) 76.09(±0.70) 75.61(±0.60)

Adversarial

LLaVA1.5 ✗ 74.04(±0.34) 72.08(±0.53) 78.49(±0.38) 75.15(±0.23

! 75.06(±0.18) 69.24(±0.27) 90.20(±0.53) 78.34(±0.15)

Qwen-VL ✗ 79.57(±0.31) 79.77(±0.34) 79.23(±0.73) 79.50(±0.38)

! 78.38(±0.18) 74.49(±0.24) 86.33(±0.30) 79.97(±0.15)

MiniGPT-4 ✗ 63.51(±0.38) 63.16(±0.50) 64.85(±0.54) 63.99(±0.27)

! 70.97(±0.24) 68.80(±0.19) 76.72(±0.55) 72.55(±0.29)

GQA

Random

LLaVA1.5 ✗ 83.73(±0.27) 87.16(±0.39) 79.12(±0.35) 82.95(±0.28)

! 86.37(±0.07) 84.86(±0.24) 88.58(±0.41) 86.68(±0.12)

Qwen-VL ✗ 80.97(±0.32) 88.07(±0.34) 71.64(±0.57) 79.01(±0.40)

! 87.11(±0.38) 89.83(±0.43) 83.71(±0.57) 86.66(±0.41)

MiniGPT-4 ✗ 70.93(±0.55) 73.10(±0.57) 66.21(±0.66) 69.49(±0.61)

! 80.24(±0.19) 82.96(±0.35) 76.12(±0.90) 79.39(±0.34)

Popular

LLaVA1.5 ✗ 78.17(±0.17) 77.64(±0.26) 79.12(±0.35) 78.37(±0.18)

! 78.91(±0.48) 74.24(±0.27) 88.60(±0.86) 80.79(±0.52)

Qwen-VL ✗ 75.99(±0.33) 78.62(±0.41) 71.40(±0.38) 74.84(±0.34)

! 81.26(±0.38) 79.82(±0.38) 83.68(±0.39) 81.70(±0.36)

MiniGPT-4 ✗ 65.96(±0.45) 65.76(±0.46) 66.61(±1.06) 66.18(±0.59)

! 74.40(±0.39) 73.69(±0.58) 75.91(±0.27) 74.78(±0.28)

Adversarial

LLaVA1.5 ✗ 75.08(±0.33) 73.19(±0.49) 79.16(±0.35) 76.06(±0.24)

! 74.44(±0.36) 69.19(±0.23) 88.20(±0.67) 77.55(±0.36)

Qwen-VL ✗ 75.46(±0.63) 77.92(±0.73) 71.07(±0.97) 74.33(±0.71)

! 79.41(±0.41) 77.04(±0.61) 83.81(±0.73) 80.28(±0.38)

MiniGPT-4 ✗ 62.99(±0.64) 62.15(±0.58) 66.48(±0.88) 64.24(±0.68)

! 70.60(±0.23) 68.74(±0.26) 75.57(±0.26) 71.99(±0.20)

Table 11: Results on POPE. The best performances for baselines in each setup is highlighted in
bolded.

Model w/
ours Posters Celebrity Scene Landmark Artwork OCR Perception

Total

LLaVA1.5 ✗ 130.14±3.27 100.06±1.52 144.35±2.79 127.70±2.72 73.00±2.70 99.50±6.78 674.74±8.53

! 136.12±3.60 116.06±4.44 153.30±2.72 140.05±2.92 101.25±3.29 101.00±8.15 747.78±11.16

Qwen-VL ✗ 148.19±3.85 117.79±2.95 158.75±1.68 147.42±3.67 115.50±3.38 86.25±11.79 773.90±10.06

! 165.48±0.70 126.62±0.50 164.00±2.48 153.63±2.01 129.50±2.72 87.50±14.14 826.72±9.44

Table 12: Results on all MME perception-related tasks. The best performance of each setting is
bolded.

Model w/ ours Common Sense
Reasoning

Numerical
Calculation

Text
Translation

Code
Reasoning

Recognition
Total

LLaVA1.5 ✗ 52.86±6.28 50.00±8.51 17.50±12.35 44.00±11.02 164.36±20.16

! 97.71±7.32 57.50±11.07 74.00±9.30 68.00±10.30 297.21±9.61

Qwen-VL ✗ 122.74±4.92 49.58±10.94 121.25±7.47 73.75±13.90 367.32±23.43

! 126.79±7.57 58.75±14.56 139.17±16.62 76.67±14.48 401.37±30.64

Table 13: Results on all MME cognition-related tasks. The best performance of each setting is
bolded.

and OCRVQA [48], as the training data. Similarly, Qwen-VL-Chat [2] is trained using datasets that
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include VQAv2, GQA, and OCRVQA. For MiniGPT-4 [78], we adopt the same datasets used for
LLaVAv1.5-7b. The corresponding hyperparameters are summarized in Table 10.

D.2 Additional Experiments on POPE

We present a comprehensive performance evaluation of our VLR-distillation method applied to POPE,
across two additional datasets: A-OKVQA and GQA. As shown in Table 11, our approach outper-
forms the baselines across nearly all configurations, particularly when compared to the MiniGPT-4
baseline, with an average improvement of 7.3% in accuracy and 8.4% in F1 score. Furthermore, we
observe significant improvements for LLaVAv1.5 on A-OKVQA and for Qwen-VL on GQA, with
average gains on accuracy of 2.6% and 5.12%, respectively.

D.3 Additional Experiments on MME Remaining Subset

We evaluate the performance of our proposed method on the MME remaining set, with results
presented in Tables 12 and 13. Table 12 shows the performance of the perception-related tasks,
while Table 13 focuses on the cognition-related tasks. Our method consistently outperforms the
three baseline approaches across both perception and cognition tasks. Notably, it exhibits sig-
nificant improvements in cognitive performance, which we attribute to its effective handling of
SCHall—potentially a key factor influencing cognition-related tasks in the MME dataset.

E Visualizations

We provide visualizations of our SCBench benchmark in Figure 9 and a demonstration of the
effectiveness of our VLR-distillation in Figure 10.

Specifically, we present representative samples for each category in our SCBench benchmark, as
shown in Figure 9. It can be observed that the images and questions in our benchmark are not
particularly challenging for current powerful LVLMs. However, these models still struggle to answer
the questions. Besides, Figure 10 illustrates the effectiveness of our method on each category in our
SCBench, with each background color corresponding to a distinct category in the benchmark.
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Which object in the picture is blue?
A. Cake 
B. Flowerpot (✔)
C. Cup
D. Plate

Perception

Why do some people turn red after
drinking the drink in this image?
A. Acetic acid accumulates in the body
B. Ethanol accumulates in the body 
C. Ethylene accumulates in the body
D. Acetaldehyde accumulates in the
body (✔)

Science

In nature, the species shown in the picture
does not possess which of the following
attributes under realistic conditions?
A. Swimming on the water
B. Being as large as a boat (✔)
C. Having a furry surface
D. Being able to produce sound

Commonsense Reasoning

Which of the following events did not take
place in the city shown in this image?
A. The Great Fire of 1666.
B. The Battle of Waterloo in 1815. (✔)
C. The opening of the Victoria and Albert
Museum in 1852.
D. The opening of the Tower Bridge in the
late 19th century.

Factual Knowledge

Given two objects in the image, which object's
name does the pronoun "*it*" refer to?
I took the water bottle out of the backpack so
that it would be handy.
A. The left object.
B. The right object. (✔)
C. Cannot be deduced.
D. I don't know.

Linguistic Capability

Based on the image, what is the group of people in the top right of the picture most likely doing?
A. Eating in an open-air McDonald’s.
B. Watching a movie about pirates.
C. Having fun in a park. (✔)
D. Having a class about dolphin.

Scene Understanding

What is the answer to the
arithmetic problem in the image?
A. 5
B. 13
C. 21 (✔)
D. 29

Math

Figure 9: Visualizations of questions in SCBench Benchmark. Our benchmark considers both visual-
and textual-centric tasks which are likely to induce SCHall. The ground-truth answer for each
question is indicated with a ✓.
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Each story of a building is 14.3 feet tall. If the height of the building is 185.9 feet, how many floors does the
building have?
A. 10
B. 13(✔)
C. 17
D. 9

Which of the following is not a common point between the white object on the left and the red object in this image?
A. Both have the capacity to hold water.
B. Both are typically made of plastic. (✔)
C. Both are used for disposing of waste.
D. Both are typically found in bathrooms.

Commonsense Reasoning

B
ours llava

A✔ ✘

Which of the following is NOT associated with the drink whose logo appears in this image?
A. It was originally created as a medicinal tonic in the late 19th century.
B. The company that makes this drink is one of the world's largest beverage company, offering over 500 brands in more than 200
countries. 
C. It was introduced to the market in 1896 with its iconic contoured glass bottle. (✔)
D. It is primarily composed of carbonated water, sugar, caffeine, and natural flavorings, giving it its distinct taste.

Factual Knowledge

✔
ours

C ✘
llava

A

Math

✔B
ours

✘A
llava

Which object in the picture is the smallest in reality?
A. Lamp (✔)
B. Chair
C. Sofa
D. Window

Perception

✔
ours

B ✘
llava

D

Which of the following reasoning is the least appropriate about this image?
A. Because the rider's shadow in the sun can be seen in the picture, the weather is clear.
B. Because the person is riding a mountain bike on a rough road, the weather is good.(✔)
C. Because there are many stones on the road, riding a bike is challenging.
D. Because the person cares about his safety, he is wearing a helmet.

Scene Understanding

✔
ours

B ✘
llava

A

Will the substance in the image be solid, liquid, or gas when heated to 70 degrees Celsius?
A. Solid
B. Liquid (✔)
C. Gas
D. None of the above

Science

✔
ours

B ✘
llava

C

Given two objects in the image, which object's name does the pronoun "*it*" refer to?
I'm sure that my map will show this building; it is very famous.
A. The left object. (✔)
B. The right object. 
C. Cannot be deduced.
D. I don't know.

Linguistic Capability

✔
ours

A ✘
llava

B

Figure 10: Visualizations of the effectiveness of our VLR-distillation method in SCBench Benchmark.
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