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Abstract
This paper studies the performative prediction
problem where a learner aims to minimize the
expected loss with a decision-dependent data dis-
tribution. Such setting is motivated when out-
comes can be affected by the prediction model,
e.g., strategic classification. We consider a state-
dependent setting where the data distribution
evolves according to a controlled Markov chain.
We focus on stochastic derivative free optimiza-
tion (DFO) where the learner is given access to
a loss function evaluation oracle with the above
Markovian data. We propose a two-timescale
DFO(λ) algorithm that features (i) a sample accu-
mulation mechanism that utilizes every observed
sample to estimate the gradient of performative
risk, (ii) a two-timescale diminishing step size that
balances the rates of DFO updates and bias reduc-
tion. Under a non-convex optimization setting, we
show that DFO(λ) requires O(1/ε3) samples (up
to a log factor) to attain a near-stationary solution
with expected squared gradient norm less than ε.
Numerical experiments verify our analysis.

1. Introduction
Consider the following stochastic optimization problem
with decision-dependent data:

min
θ∈Rd

L(θ) = EZ∼Πθ

[
`(θ;Z)

]
. (1)

Notice that the decision variable θ appears in both the loss
function `(θ;Z) and the data distribution Πθ (denoted by
D(θ) in some prior literature) supported on Z. The overall
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loss function L(θ) is known as the performative risk which
captures the distributional shift due to changes in the de-
ployed model. This setting is motivated by the recent studies
on performative prediction (Perdomo et al., 2020), which
considers outcomes Z that are supported by the deployed
model θ. For example, it covers strategic classification
(Hardt et al., 2016; Dong et al., 2018) in economics and
financial practices such as with the training of loan classi-
fier for customers who may react to the deployed model θ
to maximize their gains; or in price promotion mechanism
(Zhang et al., 2018) where customers react to prices with
the aim of gaining a lower price; or in ride sharing busi-
ness (Narang et al., 2022) with customers who adjust their
demand according to prices set by the platform.

Due to the effects of θ on both the loss function and distribu-
tion, the objective function L(θ) is non-convex in general.
Numerous efforts have focused on characterizing and find-
ing the so-called performative stable solution which is a
fixed point to the repeated risk minimization (RRM) process
(Perdomo et al., 2020; Mendler-Dünner et al., 2020; Brown
et al., 2022; Li & Wai, 2022; Roy et al., 2022; Drusvyatskiy
& Xiao, 2022). While RRM might be a natural algorithm
for scenarios when the learner is agnostic to the performa-
tive effects in the dynamic data distribution, the obtained
solution maybe far from being optimal or stationary to (1).

On the other hand, recent works have studied how to ap-
proximate performative optimal solutions that minimizes
(1). This is challenging due to the non-convexity of L(θ)
and more importantly, the absence of knowledge of Πθ. In
fact, evaluating ∇L(θ) or its stochastic gradient estimate
would require learning the distribution Πθ a-priori (Izzo
et al., 2021). To design a tractable procedure, prior works
have assumed additional structures for (1) such as approx-
imating Πθ by Gaussian mixture (Izzo et al., 2021), Πθ
depends linearly on θ (Narang et al., 2022), etc., combined
with a two-phase algorithm that separately learns Πθ and op-
timizes θ. Other works have assumed a mixture dominance
structure (Miller et al., 2021) on the combined effect of Πθ
and `(·) on L(θ), which in turn implies that L(θ) is convex.
Based on this assumption, a derivative free optimization
(DFO) algorithm was analyzed in (Ray et al., 2022); also see
the variants of this condition when used in different settings
(Wood & Dall’Anese, 2023; Zhu et al., 2023). In addition,
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Literature Cvx-` Cvx-L Dec-dep State-dep Oracle Rate θ∞-Type

(Ghadimi & Lan, 2013) 7 7 7 7 0th O(T−
1
2 ) Stationary

(Miller et al., 2021) X X X 7 1st† O(T−1) Perf. Opt.
(Ray et al., 2022) X X X X(Geo) 0th O(T−

1
2 ) Perf. Opt.

(Mendler-Dünner et al., 2020) X 7 X 7 1st O(T−1) Perf. Stable
(Brown et al., 2022) X 7 X X(Geo) 1st O(T−1) Perf. Stable
(Li & Wai, 2022) X 7 X X(Mkv) 1st O(T−1) Perf. Stable
(Izzo et al., 2021) 7 7 X X(Geo) 1st† O(T−

1
5 ) Stationary

(Roy et al., 2022) 7 7 X X(Mkv) 1st‡ O(T−
2
5 ) Stationary

This Work 7 7 X X(Mkv) 0th O(T−
1
3 ) Stationary

Table 1. Comparison to Existing Literature. ‘θ∞-Type’ describes the convergent points – Perf. stable: Def. 2 of Mendler et al., Perf. opt.:
solves minθ L(θ), Stationary: ‖∇L(θ)‖ = 0. ‘Geo’/‘Mkv’: geometric decay/Markov. The rates sometimes omit the logarithmic terms.
†uses two-stages to estimate Πθ with linear distribution model. ‡needs asymp. unbiased estimate of ∇L(θ) [cf. (3)].

(Kim & Perdomo, 2023) considered reaching performative
optimal solution where performativity is only modeled at
the label, several works have initiated the analysis of perfor-
mative prediction with general non-convex loss (Dong et al.,
2023; Mofakhami et al., 2023).

This paper focuses on approximating the performative op-
timal solution without relying on additional condition on
the distribution Πθ and/or using a two-phase algorithm. We
concentrate on stochastic DFO algorithms (Ghadimi & Lan,
2013) which do not involve first order information (i.e., gra-
dient) about L(θ). An advantage of these algorithms is that
they avoid the need for estimating Πθ nor making structural
assumption on the latter. Instead, the learner only requires
access to the loss function evaluation oracle `(θ;Z) and
receive data samples from a controlled Markov chain. Note
that the latter models the stateful and strategic agent setting
considered in (Ray et al., 2022; Roy et al., 2022; Li & Wai,
2022; Brown et al., 2022). Such setting is motivated when
the actual data distribution adapts slowly to the decision
model, which is to be deployed/announced by the learner
during the stochastic optimization process.

The proposed DFO (λ) algorithm features (i) two-timescale
step sizes design to control the bias-variance tradeoff in the
derivative-free gradient estimates, and (ii) a sample accumu-
lation mechanism with forgetting factor λ that aggregates all
observed samples to control the amount of error in gradient
estimates. Our findings are summarized as:

• Under the Markovian data setting, we show in Theo-
rem 3.6 that the DFO (λ) algorithm finds a near-stationary
solution θ̄ with E[‖∇L(θ̄)‖2] ≤ ε using O(d

2

ε3 log 1/ε)
samples and iterations. Compared to prior works, our
analysis does not require structural assumption on the
distribution Πθ or convexity condition on the performa-
tive risk (Izzo et al., 2021; Miller et al., 2021; Ray et al.,
2022).

• Our analysis demonstrates the trade-off induced by the

forgetting factor λ. We identify the desiderata for the
optimal value(s) of λ. We show that increasing λ allows to
reduce the number of samples required by the algorithm
if the performative risk gradient has a small Lipschitz
constant.

For the rest of this paper, §2 describes the problem setup
and the DFO (λ) algorithm, §3 presents the main results, §4
outlines the proofs. Finally, we provide numerical results to
verify our findings in §5.

Finally, as displayed in Table 1, for stationary points con-
vergence of (1), our stochastic DFO under decision depen-
dent (and Markovian) samples has a convergence rate of
O(1/T

1
3 ) towards an ε-stationary point, while other known

gradient-based methods, e.g., (Izzo et al., 2021) has a con-
vergence rate of O(1/T

1
5 ), and (Roy et al., 2022) has a

convergence rate of O(1/T
2
5 ). We also include other rele-

vant results in the table.

We remark that our rate is worse than works on the decision
independent (i.e., non-performative) setting, e.g., O(1/

√
T )

in (Ghadimi & Lan, 2013). We believe the rate degradation
is due to a fundamental limit for DFO-type algorithms when
tackling problems with decision-dependent sample due to
the challenges in designing a low variance gradient estimator
(including 2-point estimators); see §4.1.

Related Works: The idea of DFO dates back to (Ne-
mirovskiı̆, 1983), and has been extensively studied there-
after (Flaxman et al., 2005; Agarwal et al., 2010; Nesterov &
Spokoiny, 2017; Ghadimi & Lan, 2013). Results on match-
ing lower bound were established in (Jamieson et al., 2012).
While a similar DFO framework is adopted in the current
paper for performative prediction, our algorithm is limited
to using a special design in the gradient estimator to avoid
introducing unwanted biases.

Only a few works have considered the Markovian data set-
ting in performative prediction. (Brown et al., 2022) is the
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first paper to study the dynamic settings, where the response
of agents to learner’s deployed classifier is modeled as a
function of classifier and the current distribution of the pop-
ulation; also see (Izzo et al., 2022). On the other hand, Li &
Wai (2022); Roy et al. (2022) model the unforgetful nature
and the reliance on past experiences of single/batch agent(s)
via controlled Markov Chain. Lastly, Ray et al. (2022)
investigated the state-dependent framework where agents’
response may be driven to best response at a geometric rate.
The current paper considers more relaxed conditions than
Ray et al. (2022). See Appendix A for a detailed discussion.

Notations: Let Rd be the d-dimensional Euclidean space
equipped with inner product 〈·, ·〉 and induced norm ‖x‖ =√
〈x, x〉. Let Z be a (measurable) sample space, Z be

the Borel σ-algebra generated by Z, and µ, ν are two
probability measures on Z . Then, we use δTV (µ, ν) :=
supA⊂Z µ(A)− ν(A) to denote the total variation distance
between µ and ν. Denote Tθ(·, ·) as the state-dependent
Markov kernel and its stationary distribution is Πθ(·). Let
Bd and Sd−1 be the unit ball and its boundary (i.e., a unit
sphere) centered around the origin in d-dimensional Eu-
clidean space, respectively, and correspondingly, the ball
and sphere of radius r > 0 are rBd and rSd−1.

2. Problem Setup, Algorithm Design
In this section, we develop the DFO (λ) algorithm for tack-
ling (1) and describe the problem setup. Assume that L(θ)
is differentiable, we focus on finding an ε-stationary solu-
tion, θ, which satisfies

‖∇L(θ)‖2 ≤ ε. (2)

With the goal of reaching (2), there are two key challenges in
our stochastic algorithm design: (i) to estimate the gradient
∇L(θ) without prior knowledge of Πθ, and (ii) to handle
the stateful setting where one cannot draw samples directly
from the distribution Πθ . We shall discuss how the proposed
DFO (λ) algorithm, which is summarized in Algorithm 1,
tackles the above issues through utilizing two ingredients:
(a) two-timescales step sizes, and (b) sample accumulation
with the forgetting factor λ ∈ [0, 1).

Estimating ∇L(θ) via Two-timescales DFO. First notice
that the gradient of L(·) can be derived as

∇L(θ) = EZ∼Πθ
[∇`(θ;Z) + `(θ;Z)∇θ log Πθ(Z)]. (3)

As a result, constructing stochastic estimates of ∇L(θ) typ-
ically requires knowledge of Πθ(·) which is not known
a-priori unless a separate estimation procedure is applied;
see e.g., (Izzo et al., 2021). To avoid the need for direct
evaluations of∇θ log Πθ(Z), we consider an alternative de-
sign via zero-th order optimization (Ghadimi & Lan, 2013).
The intuition comes from observing that with δ → 0+,

Algorithm 1 DFO (λ) Algorithm

1: Input: Constants δ0, η0, τ0, α, β, maximum epochs T ,
forgetting factor λ, loss function ` (·; ·).

2: Initialization: Set initial θ0 and sample Z0.
3: for k = 0 to T − 1 do
4: δk ← δ0/(1 + k)β , ηk ← η0/(1 + k)α,

τk ← max{1, τ0 log(1 + k)}
5: Let θ(1)

k ← θk, Z(0)
k ← Zk,

uk ∼ Unif(Sd−1)
6: for m = 1, 2, · · · , τk do
7: Deploy the model θ̌(m)

k = θ
(m)
k + δkuk

8: Draw Z
(m)
k ∼ T

θ̌
(m)
k

(Z
(m−1)
k , ·)

9: Update θ(m)
k as

g
(m)
k = d

δk
`
(
θ̌

(m)
k ;Z

(m)
k

)
uk,

θ
(m+1)
k = θ

(m)
k − ηkλτk−mg(m)

k .

10: end for
11: Zk+1 ← Z

(τk)
k , θk+1 ← θ

(τk+1)
k .

12: end for
13: Draw s ∼ Uniform ({0, 1, . . . , T})

Output: Average iterate θs,

(L(θ + δu)− L(θ)) /δ is an approximation of the direc-
tional derivative of L along u. This suggests that an es-
timate for ∇L(θ) can be constructed using the objective
function values of `(θ;Z) only.

Inspired by the above, we aim to construct a gradient esti-
mate by querying `(·) at randomly perturbed points. For-
mally, given the current iterate θ ∈ Rd and a query radius
δ > 0, we sample a vector u ∈ Rd uniformly from the
sphere Sd−1. The zero-th order gradient estimator for L(θ)
is then defined as

gδ(θ;u, Z) :=
d

δ
`(θ̌;Z)u, with θ̌ := θ + δu, (4)

and Z ∼ Πθ̌(·). In fact, as u is zero-mean, gδ(θ;u, Z) is
an unbiased estimator for∇Lδ(θ). Here, Lδ(θ) is a smooth
approximation of L(θ) (Flaxman et al., 2005; Nesterov &
Spokoiny, 2017) defined as

Lδ(θ) = Eu[L(θ̌)] = Eu[EZ∼Πθ̌
[`(θ̌;Z)]]. (5)

It is known that under mild condition [cf. Assumption 3.1 to
be discussed later], ‖∇Lδ(θ)−∇L(θ)‖ = O(δ) and thus
(4) is an O(δ)-biased estimate for∇L(θ).

We remark that the gradient estimator in (4) differs from the
one used in classical works on DFO such as (Ghadimi & Lan,
2013). The latter takes the form of dδ (`(θ̌;Z)− `(θ;Z))u.
Under the setting of standard stochastic optimization where
the sample Z is drawn independently of u and Lipschitz
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continuous `(·;Z), the said estimator in (Ghadimi & Lan,
2013) is shown to have constant variance while it remains
O(δ)-biased. Such properties cannot be transferred to (4)
since Z is drawn from a distribution dependent on u via
θ̌ = θ + δu. In this case, the two-point gradient estimator
would become biased; see §4.1.

However, we note that the variance of (4) scales as O(1/δ2)
when δ → 0, thus the parameter δ yields a bias-variance
trade off in the estimator design. To remedy for the in-
crease of variance, the DFO (λ) algorithm incorporates a
two-timescale step size design for generating gradient es-
timates (δk) and updating models (ηk), respectively. Our
design principle is such that the models are updated at a
slower timescale to adapt to the gradient estimator with
O(1/δ2) variance. Particularly, we will set ηk+1/δk+1 → 0
to handle the bias-variance trade off, e.g., by setting α > β
in line 4 of Algorithm 1.

Markovian Data and Sample Accumulation. We con-
sider a setting where the sample/data distribution observed
by the DFO (λ) algorithm evolves according to a controlled
Markov chain (MC). Notice that this describes a stateful
agent(s) scenario such that the deployed models (θ) would
require a certain amount of time to manifest their influence
on the samples obtained; see (Li & Wai, 2022; Roy et al.,
2022; Brown et al., 2022; Ray et al., 2022; Izzo et al., 2022).

To formally describe the setting, we denote Tθ : Z×Z →
R+ as a Markov kernel controlled by a deployed model θ.
For a given θ, the kernel has a unique stationary distribution
Πθ(·) which cannot be conveniently accessed. Under this
setting, suppose that the previous state/sample is Z, the
next sample follows the distribution Z ′ ∼ Tθ(Z, ·) which
is not necessarily the same as Πθ(·). As a consequence, the
gradient estimator (4) is a biased estimator of∇Lδ(θ).

A common strategy in settling the above issue is to allow a
burn-in phase in the algorithm as in (Ray et al., 2022); also
commonly found in MCMC methods (Robert et al., 1999).
Using the fact that Tθ admits the stationary distribution Πθ ,
if one can wait a sufficiently long time before applying the
current sample, i.e., consider initializing with the previous
sample Z(0) = Z, the procedure

Z(m) ∼ Tθ(Z(m−1), ·), m = 1, . . . , τ, (6)

would yield a sample Z+ = Z(τ) that admits a distribu-
tion close to Πθ provided that τ � 1 is sufficiently large
compared to the mixing time of Tθ.

Intuitively, the procedure (6) can be inefficient as a num-
ber of samples Z(1), Z(2), . . . , Z(τ−1) will be completely
ignored at the end of each iteration. As a remedy, the
DFO (λ) algorithm incorporates a sample accumulation
mechanism which gathers the gradient estimates generated
from possibly non-stationary samples via a forgetting factor

of λ ∈ [0, 1). Following (4), ∇L(θ) is estimated by

g = d
δ

∑τ
m=1 λ

τ−m`(θ(m) + δu;Z(m))u, (7)

with Z(m) ∼ Tθ(m)+δu(Z(m−1), ·) being generated in a
recursive manner according to the MC. At a high level, the
mechanism works by assigning large weights to samples
that are close to the end of an epoch (which are less biased).
Moreover, θ(m) is simultaneously updated within the epoch
to obtain an online algorithm that gradually improves the
objective value of (1). Note that with λ = 0, the DFO(0)
algorithm reduces into one that utilizes burn-in (6). We
remark that from the implementation perspective for per-
formative prediction, Algorithm 1 corresponds to a greedy
deployment scheme (Mendler-Dünner et al., 2020) as the
latest model θ(m)

k + δkuk is deployed at every sampling
step. Line 6–10 of Algorithm 1 details the above procedure.

Lastly, we note that recent works have analyzed stochastic
algorithms that rely on a single trajectory of samples taken
from a Markov Chain, e.g., (Sun et al., 2018; Karimi et al.,
2019; Doan, 2022), that are based on stochastic gradient.
(Sun & Li, 2019) considered a DFO algorithm for general
optimization problems but the MC studied is not controlled
by θ.

3. Main Results
This section studies the convergence of the DFO (λ) algo-
rithm and demonstrates that the latter finds an ε-stationary
solution [cf. (2)] to (1). We first state the assumptions re-
quired for our analysis:

Assumption 3.1. (Smoothness) L(θ) is differentiable, and
there exists a constant L > 0 such that

‖∇L(θ)−∇L(θ′)‖ ≤ L ‖θ − θ′‖ , ∀θ,θ′ ∈ Rd.

Assumption 3.2. (Bounded Loss) There exists a constant
G > 0 such that

|`(θ; z)| ≤ G, ∀ θ ∈ Rd, ∀ z ∈ Z.

Assumption 3.3. (Lipschitz Distribution Map) There ex-
ists a constant L1 > 0 such that

δTV (Πθ1 ,Πθ2) ≤ L1 ‖θ1 − θ2‖ ∀θ1,θ2 ∈ Rd.

Informally, the conditions above state that the gradient of
the performative risk is Lipschitz continuous and the state-
dependent distribution vary smoothly w.r.t. θ. Note that
Assumption 3.1 and Assumption 3.2 are both regularity con-
ditions that can also be found in (Izzo et al., 2021; Ray et al.,
2022). Assumption 3.3 is slightly strengthened from the
Wasserstein-1 distance bound in (Perdomo et al., 2020), and
it gives tighter control for distribution shift in our Marko-
vian data setting. Note that this particular condition can be
slightly relaxed, see Lemma F.7 in the appendix.
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Next, we consider the assumptions about the controlled
Markov chain induced by Tθ:
Assumption 3.4. (Geometric Mixing) Let {Zk}k≥0 de-
note a Markov Chain on the state space Z with transition
kernel Tθ and stationary measure Πθ . There exist constants
ρ ∈ [0, 1), M ≥ 0, such that for any k ≥ 0, z ∈ Z,

δTV (Pθ(Zk ∈ ·|Z0 = z),Πθ) ≤Mρk.

Assumption 3.5. (Smoothness of Markov Kernel) There
exists a constant L2 ≥ 0 such that

δTV (Tθ1
(z, ·),Tθ2

(z, ·)) ≤ L2 ‖θ1 − θ2‖ ,
holds for any θ1,θ2 ∈ Rd, z ∈ Z.

Assumption 3.4 is a standard condition on the mixing time of
the Markov chain induced by Tθ; Assumption 3.5 imposes
a smoothness condition on the Markov transition kernel Tθ
with respect to θ. The geometric dynamically environment
in (Ray et al., 2022) constitutes a special case which satisfies
the above conditions, yet Assumption 3.4 is strictly more
general, e.g., it covers cases when (Zk)k≥0 follows an auto-
regressive (AR) process.

Unlike (Ray et al., 2022; Izzo et al., 2021; Miller et al.,
2021), other than Assumption 3.3, we do not impose any ad-
ditional assumption on Πθ such as mixture dominance. As a
result, (1) remains an ‘unstructured’ non-convex stochastic
optimization problem with decision-dependent distribution.
Our main result on the convergence of the DFO (λ) algo-
rithm towards a near-stationary solution of (1) is summa-
rized below:
Theorem 3.6. Suppose Assumptions 3.1-3.5 hold, step size
sequence {ηk}k≥1, and query radius sequence {δk}k≥1

satisfy the following conditions,

ηk = d−2/3 · (1 + k)−2/3, δk = d1/3 · (1 + k)−1/6,

τk = max{1, 2

log 1/max{ρ, λ} log(1 + k)} ∀k ≥ 0.
(8)

Then, there exists constants t0, c5, c6, c7, such that for any
T ≥ t0, the iterates {θk}k≥0 generated by DFO (λ) satisfy
the following inequality,

1

1 + T

T∑
k=0

E ‖∇L(θk)‖2

≤ 12 max

{
c5(1− λ), c6,

c7
1− λ

}
d2/3

(T + 1)1/3
.

(9)

We have defined the following quantities and constants:
c5 = 2G,

c6 =
max{L2, G2(1− β)}

1− 2β
, c7 =

LG2

2β − α+ 1
, (10)

with α = 2
3 , β = 1

6 . Observe the following corollary on the
iteration complexity of DFO (λ) algorithm:

Corollary 3.7. (ε-stationarity) Suppose that the Assump-
tions of Theorem 3.6 hold. Fix any ε > 0, the condition

1
1+T

∑T
k=0 E ‖∇L(θk)‖2 ≤ ε holds whenever

T ≥
(

12 max

{
c5(1− λ), c6,

c7
1− λ

})3
d2

ε3
. (11)

In the corollary above, the lower bound on T is expressed
in terms of the number of epochs that Algorithm 1 needs to
achieve the target accuracy. Consequently, the total number
of samples required (i.e., the number of inner iterations
taken in Line 6–9 of Algorithm 1 across all epochs) is:

Sε =

T∑
k=1

τk = O
(
d2

ε3
log(1/ε)

)
. (12)

We remark that due to the decision-dependent properties
of the samples, the DFO (λ) algorithm exhibits a worse
sampling complexity (12) than prior works in stochastic
DFO algorithm, e.g., (Ghadimi & Lan, 2013) which shows
a rate ofO(d/ε2) on non-convex smooth objective functions.
In particular, the adopted one-point gradient estimator in
(4) admits a variance that can only be controlled by a time
varying δ; see the discussions in §4.1.

Achieving the desired convergence rate requires setting
ηk = Θ(k−2/3), δk = Θ(k−1/6), i.e., yielding a two-
timescale step sizes design with ηk/δk → 0. Notice that the
influence of forgetting factor λ are reflected in the constant
factor of (9). Particularly, if c5 > c7 and c5 ≥ c6, the opti-
mal choice is λ = 1−

√
c7
c5

, otherwise the optimal choice is

λ ∈ [0, 1− c7/c6]. Informally, this indicates that when the
performative risk is smoother (i.e. its gradient has a small
Lipschitz constant), a large λ can speed up the convergence
of the algorithm; otherwise a smaller λ is preferable.

4. Proof of Main Results
This section outlines the key steps in proving Theorem 3.6.
Notice that analyzing the DFO (λ) algorithm is challenging
due to the two-timescales step sizes and Markov chain sam-
ples with time varying kernel. Our analysis departs from
prior works such as (Ray et al., 2022; Izzo et al., 2021;
Brown et al., 2022; Li & Wai, 2022) to handle the above
technicalities.

Let Fk = σ(θ0, Z
(m)
s , us, 0 ≤ s ≤ k, 0 ≤ m ≤ τk) be the

filtration. Our first step is to exploit the smoothness of L(θ)
to bound the squared norms of gradient. Observe that:

Lemma 4.1. (Decomposition) Under Assumption 3.1, it
holds that

t∑
k=0

E ‖∇L(θk)‖2 ≤ I1(t) + I2(t) + I3(t) + I4(t), (13)
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for any t ≥ 1, where

I1(t) :=
∑t
k=1

1−λ
ηk

(E [L(θk)]− E [L(θk+1)])

I2(t) := −∑t
k=1 E

〈
∇L(θk)

∣∣(1− λ)
∑τk
m=1 λ

τk−m

·
(
g

(m)
k − EZ∼Πθ̌k

[gδk(θk;uk, Z)]
)〉

I3(t) := −∑t
k=1 E

〈
∇L(θk)

∣∣
(1− λ)

(
τk∑
m=1

λτk−m∇Lδk(θk)

)
−∇L(θk)

〉
I4(t) := L(1−λ)

2

∑t
k=1 ηkE

∥∥∥∑τk
m=1 λ

τk−mg(m)
k

∥∥∥2

The lemma is achieved through the standard descent lemma
implied by Assumption 3.1 and decomposing the upper
bound on ||∇L(θk)||2 into respectful terms; see the proof in
Appendix B. Among the terms on the right hand side of (13),
I1(t), I3(t) and I4(t) arises directly from Assumption 3.1,
while I2(t) comes from bounding the noise terms due to
Markovian data.

We bound the four components in Lemma 4.1
as follows. For simplicity, we denote A(t) :=

1
1+t

∑t
k=0 E ‖∇L(θk)‖2. Among the four terms, we

highlight that the main challenge lies on obtaining a tight
bound for I2(t). Observe that

I2(t)

1− λ ≤ E

[
t∑

k=0

‖∇L(θk)‖
∥∥∥∥ τk∑
m=1

λτk−m∆k,m

∥∥∥∥
]
,

∆k,m
def
= EFk−1[g

(m)
k −EZ∼Πθ̌k

gk(θk;uk, Z)].

(14)

There are two sources of bias in ∆k,m: one is the noise
induced by drifting of decision variable within each epoch,
the other is the bias that depends on the mixing time of
Markov kernel.

To control these biases, we introduce a reference Markov
chain Z̃(`)

k , ` = 0, ..., τk, whose decision variables remains
fixed for a period of length τk and is initialized with Z̃(0)

k =

Z
(0)
k :

Z̃
(0)
k

θ̌k−→ Z̃
(1)
k

θ̌k−→ Z̃
(2)
k

θ̌k−→ Z̃
(3)
k · · ·

θ̌k−→ Z̃
(τk)
k (15)

and we recall that the actual chain in the algorithm evolves
as

Z
(0)
k

θ̌
(0)
k+1−−−→ Z

(1)
k

θ̌
(1)
k+1−−−→ Z

(2)
k · · ·

θ̌
(τk−1)

k+1−−−−−→ Z
(τk)
k . (16)

Note the reference Markov chain idea is inspired by (Wu
et al., 2020, Theorem 4.7) which studied the convergence of
a strongly convex subproblem.

With the help of the reference chain, we decompose the
conditional expectation ∆k,m as:

∆k,m = EFk−1

[
d

δk

(
E[`(θ̌

(m)
k ;Z

(m)
k )|θ̌(m)

k , Z
(0)
k ]

− E
Z̃

(m)
k

[`(θ̌
(m)
k ; Z̃

(m)
k )|θ̌(m)

k , Z̃
(0)
k ]

)
uk

]
+ EFk−1

[
d

δk

(
E
Z̃

(m)
k

[`(θ̌
(m)
k ; Z̃

(m)
k )|θ̌(m)

k , Z̃
(0)
k ]

− EZ∼Πθ̌k
[`(θ̌

(m)
k ;Z)|θ̌(m)

k ]

)
uk

]
+ E
Fk−1

[ d
δk

E
Z∼Πθ̌k

[
`(θ̌

(m)
k ;Z)− `(θ̌k;Z)|θ̌(m)

k , θ̌k

]
uk

]
:= A1 +A2 +A3

We remark that A1 reflects the drift of (16) from initial sam-
ple Z(0)

k driven by varying θ̌(m)
k , A2 captures the statistical

discrepancy between above two Markov chains (16) and
(15) at same step m, and A3 captures the drifting gap be-
tween θ̌k and θ̌(m)

k . Applying Assumption 3.3, A1 and A2

can be upper bounded with the smoothness and geometric
mixing property of Markov kernel. In addition, A3 can be
upper bounded using Lipschitz condition on (stationary)
distribution map Πθ. Finally, the forgetting factor λ helps
to control ‖θ̌(·)

k − θ̌k‖ to be at the same order of a single
update. Therefore, ‖∆k,m‖ can be controlled by an upper
bound relying on λ, ρ, L.

The following lemma summarizes the above results as well
as the bounds on the other terms:

Lemma 4.2. Under Assumption 3.2, 3.3, 3.4 and 3.5, with
ηt+1 = η0(1 + t)−α, δt+1 = δ0(1 + t)−β and α ∈ (0, 1),
β ∈ (0, 1

2 ). Suppose 0 < 2α− 4β < 1 and

τk ≥
1

log 1/max{ρ, λ}

(
log(1 + k) + max{log

δ0
d
, 0}
)
.

Then, it holds that ∀ t ≥ max{t1, t2}

I1(t) ≤ c1(1− λ)(1 + t)α, (17)

I2(t) ≤ c2d
5/2

(1− λ)2
A(t)

1
2 (1 + t)1−(α−2β), (18)

I3(t) ≤ c3A(t)
1
2 (1 + t)1−β , (19)

I4(t) ≤ c4d
2

1− λ (1 + t)1−(α−2β), (20)

where t1, t2 are defined in (25), (26), and c1, c2, c3, c4 are
constants defined as follows:

c1 := 2G/η0, c2 :=
η0

δ2
0

6 · (L1G
2 + L2G

2 +
√
LG3/2)√

1− 2α+ 4β
,

c3 :=
2√

1− 2β
max{Lδ0, G

√
1− β},
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c4 :=
η0

δ2
0

· LG2

2β − α+ 1
.

See Appendix C for the proof.

We comment that the bound for I4(t) cannot be improved.
As a concrete example, consider the constant function
`(θ; z) = c 6= 0 for all z ∈ Z, it can be shown that
‖g(m)
k ‖2 = c2 and consequently I4(t) = Ω(ηk/δ

2
k) =

Ω(t1−(α−2β)), which matches (20).

Finally, plugging Lemma 4.2 into Lemma 4.1 gives:

A(t) ≤ c1(1− λ)

(1 + t)1−α +
c2d

5/2

(1− λ)2

A(t)
1
2

(1 + t)α−2β

+ c3
A(t)

1
2

(1 + t)β
+ c4

d2

1− λ
1

(1 + t)α−2β
.

Since A(t) ≥ 0, the above is a quadratic inequality that
implies the following bound:

Lemma 4.3. Under Assumption 3.1–3.5, with the
step sizes ηt+1 = η0(1 + t)−α, δt+1 = δ0(1 +
t)−β , τk ≥ 1

log 1/max{ρ,λ}
(
log(1 + k) + max{log δ0

d , 0}
)
,

η0 = d−2/3, δ0 = d1/3, α ∈ (0, 1), β ∈ (0, 1
2 ). If

2α − 4β < 1, then there exists a constant t0 such that
the iterates {θk}k≥0 satisfies the following inequality for
all T ≥ t0,

1

1 + T

T∑
k=0

E ‖∇L(θk)‖2 ≤

12 max

{
c5(1− λ), c6,

c7
1− λ

}
d2/3T−min{2β,1−α,α−2β}.

Optimizing the step size exponents α, β in the above con-
cludes the proof of Theorem 3.6.

4.1. Discussions

We conclude by discussing two alternative zero-th order
gradient estimators to (4), and argue that they do not im-
prove over the sample complexity in the proposed DFO (λ)
algorithm. We study:

g2pt−I :=
d

δ
[` (θ + δu;Z)− `(θ;Z)]u,

g2pt−II :=
d

δ
[` (θ + δu;Z1)− `(θ;Z2)]u,

where u ∼ Unif(Sd−1). For ease of illustration, we assume
that the samples Z,Z1, Z2 are drawn directly from the sta-
tionary distributions Z ∼ Πθ+δu, Z1 ∼ Πθ+δu, Z2 ∼ Πθ.

We recall from §2 that the estimator g2pt−I is a finite differ-
ence approximation of the directional derivative of objective

function along the randomized direction u1, as proposed
in (Nesterov & Spokoiny, 2017; Ghadimi & Lan, 2013).
For non-convex stochastic optimization with decision in-
dependent sample distribution, i.e., Πθ ≡ Π̄ for all θ, the
DFO algorithm based on g2pt−I is known to admit an opti-
mal sample complexity of O(1/ε2) (Jamieson et al., 2012).
Note that Eu∼Unif(Sd−1),Z∼Π̄[`(θ;Z)u] = 0.

However, in the case of decision-dependent sample distribu-
tion as in (1), g2pt−I would become a biased estimator since
the sample Z is drawn from Πθ+δu which depends on u.
The DFO algorithm based on g2pt−I may not converge to a
stationary solution of (1).

A remedy to handle the above issues is to consider the
estimator g2pt−II which utilizes two samples Z1, Z2, each
independently drawn at a different decision variable, to
form the gradient estimate. In fact, it can be shown that
E[g2pt−II] = ∇Lδ(θ) yields an unbiased gradient estimator.
However, due to the decoupled random samples Z1, Z2, we
have

E ‖g2pt−II‖2

=
d2

δ2
E (` (θ + δu;Z1)− `(θ;Z1) + `(θ;Z1)− `(θ;Z2))

2

(a)

≥ d2

δ2
E
[

3

4
(`(θ;Z1)− `(θ;Z2))

2

− 3 (` (θ + δu;Z1)− `(θ;Z1))
2

]
=

3d2

δ2

(
Var[`(θ;Z)]

2
− E

[
(` (θ + δu;Z1)− `(θ;Z1))

2
])

(b)

≥ 3

2

σ2d2

δ2
− 3µ2d2 = Ω(d2/δ2).

where in (a) we use the fact that (x + y)2 ≥ 3
4x

2 − 3y2,
in (b) we assume Var[`(θ;Z)] := E (`(θ;Z)− L(θ))

2 ≥
σ2 > 0 and `(θ; z) is µ-Lipschitz in θ. As such, this two-
point gradient estimator does not significantly reduce the
variance when compared with (4). We remark that a two-
sample estimator also incurs additional sampling overhead
with Markovian data.

5. Numerical Experiments
We examine the efficacy of the DFO (λ) algorithm on a few
examples by comparing DFO (λ) to several benchmarks.
Unless otherwise specified, we use the step size choices
in (8) for DFO (λ). All experiments are conducted on a
server with an Intel Xeon 6318 CPU using Python 3.7. The
expected performance are estimated using at least 10 trials.

1-Dimensional Case: Quartic Loss. The first example

1In (Nesterov & Spokoiny, 2017; Ghadimi & Lan, 2013), u is
drawn from the Gaussian distribution.
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Figure 1. (left) One Dimension Quartic Minimization problem with samples generated by AR distribution model where regressive
parameter γ = 0.5. (middle) Markovian Pricing Problem with d = 5 dimension. (right) Linear Regression problem based on AR
distribution model (γ = 0.5).

considers a scalar polynomial loss function ` : R× R→ R
defined by `(θ; z) = 1

12zθ(3θ2−8θ−48). To simulate the
controlled Markov chain scenario, the samples are generated
dynamically according to an auto-regressive (AR) process
Zt+1 = (1 − γ)Zt + γZ̄t+1 with Z̄t+1 ∼ N (θ, (2−γ)

γ σ2)

with parameter γ ∈ (0, 1). Note that the stationary distri-
bution of the AR process is Πθ = N (θ, σ2). As such,
the performative risk function in this case is L(θ) =

EZ∼Πθ
[`(θ;Z)] = θ2

12 (θ2 − 8θ − 48), which is quartic
in θ. Note that L(θ) is not convex in θ and the set of sta-
tionary solutions is {θ : ∇L(θ) = 0} = {−2, 0, 4}, among
which the optimal solution is θPO = arg minθ L(θ) = 4.

In our experiments below, all the algorithms are initialized
by θ0 = 6. In Figure 1 (left), we compare the norms of
the gradient for performative risk with DFO-GD (no burn-in
phase), the DFO(λ) algorithm, stochastic gradient descent
with greedy deployment scheme (SGD-GD), and two 2-
point estimators, g2pt−I, g2pt−II (with a burn-in phase) as
described in Section 4.1 against the number of samples ob-
served by the algorithms. We first observe from Figure 1
(left) that DFO-GD and SGD-GD methods do not converge
to a stationary point to L(θ) even after more samples are
observed. On the other hand, DFO (λ) converges to a station-
ary point of L(θ) at the rate of ‖∇L(θ)‖2 = O(1/S0.312),
matching Theorem 3.6 that predicts a rate of O(1/S

1
3 ) (up

to a logarithmic factor), where S is the total number of
samples observed.

Besides, with λ = 0.5, DFO (λ) converges at a faster rate
at the beginning (i.e., transient phase), but the fluctuation
increases at the steady phase, as compared to a smaller λ
(e.g., λ = 0.25). The estimator g2pt−I is indeed biased, and
converges to a non-stationary point to L(θ). On the other
hand, g2pt−II converges to a stationary point, but uses twice
as many samples as our one-point estimator for each update.

Higher Dimension Case: Markovian Pricing. The sec-
ond example examines a multi-dimensional (d = 5) pricing
problem similar to (Izzo et al., 2021, Sec. 5.2). The decision

variable θ ∈ R5 denotes the prices of d = 5 goods and κ is
a drifting parameter for the prices.

Our goal is to maximize the Expected Revenue, which
is the opposite of performative risk EZ∼Πθ

[`(θ;Z)] with
`(θ; z) = −〈θ | z〉, where Πθ ≡ N (µ0 − κθ, σ2I) is the
unique stationary distribution of the Markov process

Zt+1 = (1−γ)Zt+γZ̄t+1 Z̄t+1 ∼ N (µ0−κθ, 2−γ
γ σ2I).

Note that in this case, the performative optimal solution is
θPO = arg minθ L(θ) = µ0/(2κ). We set γ = 0.1, σ =
1, drifting parameter κ = 0.5, initial mean of non-shifted
distribution µ0 = [5,−5,−5, 5,−5]

>. All the algorithms
are initialized by θ0 = [12,−12, 12,−12, 12]

>.

The performance of different algorithms in terms of ex-
pected revenue (−EΠθ

[`(θ;Z)]) are contrasted in Figure 1
(middle), where OPT denotes the optimal objective value.
Observe that DFO (λ) algorithms converge to the high-
est expected reward, while the benchmarks SGD-GD and
DFO-GD fail to find a solution with comparable perfor-
mance. This is expected as the latter algorithms are at best
guaranteed to converge to a performative stable solution.

Markovian Performative Regression. The last example
considers linear regression problem in (Nagaraj et al., 2020)
which is a prototype problem for studying stochastic opti-
mization with Markovian data. Such problems are rarely
studied under both performativity and Markovianity.

Unlike the previous examples, this problem involves a pair
of correlated r.v.s that follows a decision-dependent joint
distribution. We adopt a setting similar to the regression
example in (Izzo et al., 2021), where (X,Y ) ∼ Πθ with
X ∼ N (0, σ2

1I), Y |X ∼ N
(
β(θ, X), σ2

2

)
, β(θ, x) =

〈x+ κθ |θ0〉. The loss function is the usual quadratic loss
`(θ;x, y) = (〈x |θ〉−y)2. In this case, we define the Mean
Squared Prediction Error as the following performative risk:

L(θ) = EΠθ
[`(θ;X,Y )] = (σ2

1 + κ2 ‖θ0‖2) ‖θ‖2

− 2σ2
1 〈θ |θ0〉+ σ2

1 ‖θ0‖2 + σ2
2 ,
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In this experiment, we consider Markovian samples
(X̃t, Ỹt)

T
t=1 drawn from the following AR process:

(X̃t, Ỹt) = (1− γ)(X̃t−1, Ỹt−1) + γ(Xt, Yt),

Xt ∼ N (0, 2−γ
γ σ2

1I ), Yt|Xt ∼ N (β(θt−1, Xt),
2−γ
γ σ2

2),

for any t ≥ 1. We set d = 5, θ0 = [5,−5, 5,−5, 5]>,
κ = 1/ ‖θ0‖ , σ2

1 = σ2
2 = 1, mixing parameter γ = 0.25.

Figure 1 (right) shows the result of the simulation. Similar
to the previous examples, we observe that DFO-GD and SGD
fail to find a stationary solution to L(θ).

Moreover, as a benchmark, we included the two-phase algo-
rithm from (Miller et al., 2021), which is slightly modified as
we change the minimization in the second phase to an SGD
update. From the figure, we observe that it does not find the
desired optimal objective value with n = 104 (Markovian)
samples gathered in the first phase. In contrast, DFO (λ) con-
verges to a near-optimal solution after a reasonable number
of samples are observed.

6. Conclusions
We have studied a derivative-free optimization approach for
finding a stationary point of the performative risk function.
In particular, we consider a non-i.i.d. data setting with sam-
ples generated from a controlled Markov chain and propose
a two-timescale step sizes approach in constructing the gra-
dient estimator. The proposed DFO (λ) algorithm is shown
to converge to a stationary point of the performative risk
function at the rate of O(1/T 1/3).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Supplementary Materials:
Two-timescale Derivative Free Optimization for Performative

Prediction with Markovian Data

A. Comparison to Related Works
This section provides a detailed comparison to related works on performative prediction under the stateful agent setting.
This setting is relevant as the influences of the updated θ on the agent may not be manifested immediately due to the
unforgetful nature of the agent. The recent works can be grouped into two categories in terms of the sought solution to (1):
(i) finding the performative stable solution satisfying θPS = arg minθ∈Rd EZ∼ΠθPS

[`(θ;Z)], (ii) finding or approximating
the performative optimal solution that tackles (1) directly.

For seeking the performative stable solution, (Brown et al., 2022) is the first to study population-based algorithms where
the stateful agent updates the state-dependent distribution iteratively towards Πθ. The authors proved that under a special
case when k groups that form the mixture distribution for Πθ respond slowly, then classical retraining algorithms converge
to the performative stable solution. The follow-up works (Li & Wai, 2022; Roy et al., 2022) focus on more sophisticated
stateful agents and the reliance on past experiences of agents via controlled Markov Chain. In (Li & Wai, 2022), the authors
developed gradient-type state-dependent stochastic approximation algorithm to achieve performative stable solution. In
(Roy et al., 2022), the authors proposed a stochastic conditional gradient-type algorithm with state-dependent Markovian
data to tackle constrained nonconvex performative prediction problem.

The search for (approximate) performative optimal solution is challenging due to the non-convexity of (1). Izzo et al. (2022)
assumes that the transient distribution is parameterized by a low-dimensional vector and the distribution converges to Πθ
geometrically. Under these settings, the authors proposed to learn the distribution as a linear model to form an unbiased
estimate of∇L(θ). The resultant algorithm follows a two-phases update approach: it first estimate the gradient correction
term [cf. second term in (3)], followed by stochastic gradient update steps. Such approach has two main drawbacks: (i)
estimating the gradient correction term requires strong prior assumptions on the distribution map (see e.g. Assumption 2 and
3 in (Izzo et al., 2022)), which limits its applicability, (ii) the estimation phase gathers a substantial amount of potentially
sensitive information from data reaction patterns, which may incur privacy concern. Furthermore, it is noted that such
procedure has a convergence rate of O(T−1/5) to stationary solution of L(θ), which is outperformed by the approximation
scheme proposed in the current paper.

As mentioned in the main paper, adopting the DFO setting avoids the need to estimate the gradient correction term, which
may necessitate additional assumptions on Πθ as seen in (Izzo et al., 2022). To this end, one of the first works to address
performative optimal points with DFO method is (Ray et al., 2022) in the stateful agent setting. Notably, the analysis in
(Ray et al., 2022) relies on (i) a mixture dominance assumption on Πθ , and (ii) a geometric decay environment assumption
on the stateful agent. In addition to relaxing the mixture dominance assumption, we remark that Assumption 3.4 is relaxed
from the geometric decay environment condition in (Ray et al., 2022). For example, our setting also covers general MDP
models and the controlled AR(1) model, see (Li & Wai, 2022, Appendix A.1).

B. Proof of Lemma 4.1
Proof. Throughout this section, we let θ̌k := θk + δkuk, gk(θ;u, z) := gδk(θ;u, z) and Lk(θ) := Lδk(θ) for simplicity.
We begin our analysis from Assumption 3.1 and the observation that θk+1 − θk = −ηk

∑τk
m=1 λ

τk−mg(m)
k . Recall that

g
(m)
k = d

δk
`
(
θ̌

(m)
k ; z

(m)
k

)
uk and θ̌(m)

k = θ
(m)
k + δkuk, we have

L(θk+1)− L(θk) + ηk

〈
∇L(θk) |

τk∑
m=1

λτk−mg(m)
k

〉
≤ L

2
η2
k

∥∥∥∥∥
τk∑
m=1

λτk−mg(m)
k

∥∥∥∥∥
2

,

11
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Rearranging terms and adding ηk
1−λ ‖∇L(θk)‖2 on the both sides lead to

ηk
1− λ ‖∇L(θk)‖2 ≤ L(θk)− L(θk+1)− ηk

1− λ

〈
∇L(θk) | (1− λ)

τk∑
m=1

λτk−mg(m)
k −∇L(θk)

〉

+
L

2
η2
k

∥∥∥∥∥
τk∑
m=1

λτk−mg(m)
k

∥∥∥∥∥
2

Let Fk = σ(θ0, Z
(m)
s , us, 0 ≤ s ≤ k, 0 ≤ m ≤ τk) be the filtration of random variables. Taking expectation conditioned

on Fk−1 gives

ηk
1− λ ‖∇L(θk)‖2 ≤EFk−1 [L(θk)− L(θk+1)]

− ηk
1− λ

〈
∇L(θk) | (1− λ)

τk∑
m=1

λτk−mEFk−1

[
g

(m)
k

]
−∇L(θk)

〉

+
L

2
η2
kEFk−1

∥∥∥∥∥
τk∑
m=1

λτk−mg(m)
k

∥∥∥∥∥
2

,

By adding and subtracting, we obtain

ηk
1− λ ‖∇L(θk)‖2 ≤ EFk−1 [L(θk)− L(θk+1)]

− ηk
1− λ

〈
∇L(θk) | (1− λ)

τk∑
m=1

λτk−m
(
EFk−1

[
g

(m)
k

]
− EZ∼Πθ̌k

,Fk−1 [gk(θk;uk, Z)]
)〉

− ηk
1− λ

〈
∇L(θk) | (1− λ)

τk∑
m=1

λτk−mEZ∼Πθ̌k
,Fk−1 [gk(θk;uk, Z)]−∇L(θk)

〉

+
L

2
η2
kEFk−1

∥∥∥∥∥
τk∑
m=1

λτk−mg(m)
k

∥∥∥∥∥
2

By Lemma F.2, the conditional expectation evaluates to EZ∼Πθ̌k
[gk(θk;uk, Z)] = ∇Lk(θk). Dividing ηk

1−λ derive that

‖∇L(θk)‖2 ≤1− λ
ηk

EFk−1 (L(θk)− L(θk+1))

−
〈
∇L(θk) | (1− λ)

τk∑
m=1

λτk−m
(
EFk−1

[
g

(m)
k

]
− EFk−1EZ∼Πθ̌k

[gk(θk;uk, Z)|uk]
)〉

−
〈
∇L(θk) | (1− λ)

(
τk∑
m=1

λτk−m∇Lk(θk)

)
−∇L(θk)

〉

+
L(1− λ)

2
ηkEFk−1

∥∥∥∥∥
τk∑
m=1

λτk−mg(m)
k

∥∥∥∥∥
2

Summing over k from 0 to t, indeed we obtain

t∑
k=0

E ‖∇L(θk)‖2

≤
t∑

k=0

1− λ
ηk

E [L(θk)− L(θk+1)]

12
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−
t∑

k=0

E

〈
∇L(θk) | (1− λ)

τk∑
m=1

λτk−m
(
EFk−1

[
g

(m)
k

]
− EFk−1EZ∼Πθ̌k

[gk(θk;uk, Z)|uk]
)〉

−
t∑

k=0

E

〈
∇L(θk) | (1− λ)

(
τk∑
m=1

λτk−m∇Lk(θk)

)
−∇L(θk)

〉

+
L(1− λ)

2

t∑
k=0

ηkE

∥∥∥∥∥
τk∑
m=1

λτk−mg(m)
k

∥∥∥∥∥
2

:= I1(t) + I2(t) + I3(t) + I4(t)

C. Proof of Lemma 4.2
Lemma C.1. Under Assumption 3.2 and step size ηt = η0(1 + t)−α, it holds that

I1(t) ≤ c1(1− λ)(1 + t)α (21)

where constant c1 = 2G
η0

.

Proof. We observe the following chain

I1(t) =

t∑
k=0

1− λ
ηk

(E [L(θk)]− E [L(θk+1)])

= (1− λ)

t∑
k=0

E[L(θk)]/ηk − E[L(θk+1)]/ηk+1 + E[L(θk+1)]/ηk+1 − E[L(θk+1)]/ηk

(a)
= (1− λ)

[
E[L(θ0)/η0]− E[L(θt+1)/ηt+1] +

t∑
k=0

(
1

ηk+1
− 1

ηk
)E[L(θk+1)]

]

≤ (1− λ) max
k
|E[L(θk)]|

(
1

η0
+

1

ηt+1
+

1

ηt+1
− 1

η0

)
where equality (a) is obtained using the fact that step size ηk > 0 is a decreasing sequence. Applying assumption 3.2 to the
last inequality leads to

I1(t) ≤ (1− λ)G
2

ηt+1
≤ c1(1− λ)(1 + t)α

where the constant c1 = 2G
η0

.

Lemma C.2. Under Assumption 3.1, 3.2, 3.3, 3.4, 3.5, and constraint 0 < 2α − 4β < 1, and for all k ≥ 0, τk ≥
1

log 1/max{ρ,λ} log(1 + k), then there exists universal constants t1, t2 > 0 such that

I2(t) ≤ c2
d2

(1− λ)2
A(t)

1/2
(1 + t)1−(α−2β) ∀t ≥ max{t1, t2} (22)

where A(t) := 1
1+t

∑t
k=0 E ‖∇L(θk)‖2 and c2 := η0

δ2
0

6·(L1G
2+L2G

2+
√
LG3/2)√

1−2α+4β
is a constant.

Proof. Fix k > 0, and recall θ̌k := θk + δkuk, θ̌
(`)
k := θ

(`)
k + δkuk, then consider the following pair of Markov chains:

Zk = Z
(0)
k

θ̌
(1)
k−−→ Z

(1)
k

θ̌
(2)
k−−→ Z

(2)
k

θ̌
(3)
k−−→ Z

(3)
k · · ·

θ̌
(τk)

k−−−→ Z
(τk)
k = Zk+1 (23)

Zk = Z̃
(0)
k

θ̌k−→ Z̃
(1)
k

θ̌k−→ Z̃
(2)
k

θ̌k−→ Z̃
(3)
k · · ·

θ̌k−→ Z̃
(τk)
k (24)

13
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where the arrow associated with θ represents the transition kernel Tθ(·, ·).

Note that Chain 23 is the trajectory of DFO(λ) algorithm at iteration k, while Chain 24 describes the trajectory of the same
length generated by a reference Markov chain with fixed transition kernel Tθ̌k(·, ·). Since Zk = Z

(0)
k = Z̃

(0)
k , we shall use

them interchangeably.

Define ∆k,m := EFk−1

[
g

(m)
k − EZ∼Πθ̌k

[gk(θk;uk, Z)]
]
, then I2(t) can be reformed as

I2(t) = −(1− λ)E
t∑

k=0

〈
∇L(θk) |

τk∑
m=1

λτk−m∆k,m

〉

≤ (1− λ)E
t∑

k=0

‖∇L(θk)‖ ·
∥∥∥∥∥
τk∑
m=1

λτk−m∆k,m

∥∥∥∥∥
Next, observe that each ∆k,m can be decomposed into 3 bias terms as follows

∆k,m = EFk−1

[
d

δk

(
E[`(θ̌

(m)
k ;Z

(m)
k )|θ̌(m)

k , Z
(0)
k ]− EZ∼Πθ̌k

[`(θ̌k;Z)|θ̌k]
)
uk

]
= EFk−1

[
d

δk

(
E[`(θ̌

(m)
k ;Z

(m)
k )|θ̌(m)

k , Z
(0)
k ]− E

Z̃
(m)
k

[`(θ̌
(m)
k ; Z̃

(m)
k )|θ̌(m)

k , Z̃
(0)
k ]
)
uk

]
+ EFk−1

[
d

δk

(
E
Z̃

(m)
k

[`(θ̌
(m)
k ; Z̃

(m)
k )|θ̌(m)

k , Z̃
(0)
k ]− EZ∼Πθ̌k

[`(θ̌
(m)
k ;Z)|θ̌(m)

k ]
)
uk

]
+ EFk−1

d

δk
EZ∼Πθ̌k

[
`(θ̌

(m)
k ;Z)− `(θ̌k;Z)|θ̌(m)

k , θ̌k

]
︸ ︷︷ ︸

≤c8
∥∥∥θ̌(m)
k −θ̌k

∥∥∥+L
2

∥∥∥θ̌(m)
k −θ̌k

∥∥∥2

uk

where we use Lemma F.4 in the last inequality and c8 := 2
(√

LG+GL1

)
.

Here we bound these three parts separately. For the first term, it holds that∣∣∣E[`(θ̌
(m)
k ;Z

(m)
k )|θ̌(m)

k , Z
(0)
k ]− E

Z̃
(m)
k

[`(θ̌
(m)
k ; Z̃

(m)
k )|θ̌(m)

k , Z̃
(0)
k ]
∣∣∣

=

∣∣∣∣∫
Z

`(θ̌
(m)
k ; z)P(Z

(m)
k = z|Z(0)

k )− `(θ̌(m)
k ; z)P(Z̃

(m)
k = z|Z̃(0)

k )dz

∣∣∣∣
≤G

∫
Z

∣∣∣P(Z
(m)
k = z|Z(0)

k )− P(Z̃
(m)
k = z|Z̃(0)

k )
∣∣∣ dz

=2GδTV

(
P(z

(m)
k ∈ ·|Z(0)

k ),P(Z̃
(m)
k ∈ ·|Z(0)

k )
)

≤2GL2

m−1∑
`=1

∥∥∥θ̌(`)
k − θ̌k

∥∥∥ = 2GL2

m−1∑
`=1

∥∥∥θ(`)
k − θk

∥∥∥
where the first inequality is due to Assumption 3.2, the second inequality is due to Lemma F.5.

For the second term, we have ∣∣∣EZ̃(m)
k

[`(θ̌
(m)
k ;Z

(m)
k )]− EZ∼Πθ̌k

[`(θ̌k;Z)]
∣∣∣

=

∣∣∣∣∫
Z

`(θ̌
(m)
k ; z)P(Z̃

(m)
k = z|Z̃(0)

k )− `(θ̌(m)
k ; z)Πθ̌k(z)dz

∣∣∣∣
(a)

≤G
∫
Z

|P(Z̃
(m)
k = z|Z̃(0)

k )−Πθ̌k(z))|dz

=2GδTV

(
P(Z̃

(m)
k ∈ ·|Z̃(0)

k ),Πθ̌k

)
(b)

≤2GMρm
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where we use Assumption 3.2 in inequality (a) and Assumptions 3.4 in inequality (b). Combining three upper bounds, we
obtain that

‖∆k,m‖ ≤ EFk−1

d

δk

(
2GL2

m−1∑
`=1

[∥∥∥θ(`)
k − θk

∥∥∥]+ 2GMρm + c8

∥∥∥θ̌(m)
k − θ̌k

∥∥∥+
L

2

∥∥∥θ̌(m)
k − θ̌k

∥∥∥2
)

≤ d

δk

2L2G

m−1∑
`=1

`−1∑
j=1

ηkλ
τk−j dG

δk
+ 2GMρm + c8

m−1∑
j=1

ηkλ
τk−j dG

δk


+

d

δk

L

2

m−1∑
j=1

ηkλ
τk−j dG

δk

2

<
d

(1− λ)2

(
2L2G

2d+ c8Gd
)
λτk−m+1 ηk

δ2
k

+
LG2d3

2(1− λ)2
λ2(τk−m+1) η

2
k

δ3
k

+ 2GMd
ρm

δk

Then it holds that ∥∥∥∥∥
τk∑
m=1

λτk−m∆k,m

∥∥∥∥∥ ≤
τk∑
m=1

λτk−m ‖∆k,m‖

≤ d

(1− λ)2

(
2L2G

2d+ c8dG
) ηk
δ2
k

τk∑
m=1

λ2(τk−m)λ

+
LG2

2(1− λ)2
d3 η

2
k

δ3
k

τk∑
m=1

λ3(τk−m)λ2

+ 2GMdδ−1
k

τk∑
m=1

λτk−mρm

≤ (2L2G
2d+ c8Gd)

dλ

(1− λ)3

ηk
δ2
k

+
LG2

2

d3λ2

1− λ
η2
k

δ3
k

+ 2GMdδ−1
k τk max{ρ, λ}τk

Finally, provided τk ≥ logmax{ρ,λ}(1 + k)−1 and 0 < 2α− 4β < 1, we can bound I2(t) as follows:

I2(t) ≤ (1− λ)E
t∑

k=0

‖∇L(θk)‖ ·
∥∥∥∥∥
τk∑
m=1

λτk−m∆k,m

∥∥∥∥∥
≤ (1− λ)E

t∑
k=0

‖∇L(θk)‖
[
(2L2G

2d+ c8Gd)
dλ

(1− λ)3

ηk
δ2
k

+
LG2

2

d3λ2

1− λ
η2
k

δ3
k

+ 2GMd
τk

δk(1 + k)

]

≤ dλ

(1− λ)2
(2L2G

2d+ c8Gd)

(
t∑

k=0

E ‖∇L(θk)‖2
)1/2( t∑

k=0

η2
k

δ4
k

)1/2

+ d3λ2LG
2

2

(
t∑

k=0

E ‖∇L(θk)‖2
)1/2( t∑

k=0

η4
k

δ6
k

)1/2

+
d

1− λGM
(

t∑
k=0

E ‖∇L(θk)‖2
)1/2( t∑

k=0

τ2
k

δ2
k(1 + k)2

)1/2

(b)

≤ d2λ

(1− λ)2
6(L2G

2 +
√
LG3/2 + L1G

2)

(
t∑

k=0

E ‖∇L(θk)‖2
)1/2( t∑

k=0

η2
k

δ4
k

)1/2

≤ c2
d2

(1− λ)2

(
1

1 + t

t∑
k=0

E ‖∇L(θk)‖2
)1/2

· (1 + t)1−(α−2β) ∀t ≥ max{t1, t2}
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where c2 := η0

δ2
0

6·(L1G
2+L2G

2+
√
LG3/2)√

1−2α+4β
. The inequality (b) holds since τk = Θ(log k), 4α − 6β > 2α − 4β and

2− 2β > 2α− 4β, so there exist constants

t1 := inf
t

{
t ≥ 0 | d

6λ4L2G4

4

t∑
k=0

η4
k

δ6
k

≤ d2λ2(2L2G
2d+ c8Gd)2

(1− λ)4

t∑
k=0

η2
k

δ4
k

}
(25)

t2 := inf
t

{
t ≥ 0 | d2G2M2

t∑
k=0

τ2
k

δ2
k(1 + k)2

≤ d2λ2(2L2G
2d+ c8Gd)2

(1− λ)4

t∑
k=0

η2
k

δ4
k

}
(26)

In brief, we have

I2(t) ≤ c2
d2

(1− λ)2

(
1

1 + t

t∑
k=0

E ‖∇L(θk)‖2
)1/2

· (1 + t)1−(α−2β) ∀t ≥ max{t1, t2}

Lemma C.3. Under Assumption 3.1, 3.2 and 0 < β < 1/2, with τk ≥ 1
log 1/max{ρ,λ}

(
log(1 + k) + log d

δ0

)
, it holds that

I3(t) ≤ c3A(t)
1
2 (1 + t)1−β (27)

where A(t) := 1
1+t

∑t
k=0 E ‖∇L(θk)‖2 and constant c3 = 1√

1−2β
max{21−βLδ0, 2βG

√
1− β}.

Proof. Recall that gk(θ;u, z) := gδk(θ;u, z) and Lk(θ) := Lδk(θ).

I3(t) = −
t∑

k=0

E

〈
∇L(θk) | (1− λ)

(
τk∑
m=1

λτk−m∇Lk(θk)

)
−∇L(θk)

〉

= −
t∑

k=0

E

〈
∇L(θk) |

(
(1− λ)

τk∑
m=1

λτk−m
)
∇Lk(θk)−∇L(θk)

〉

= −
t∑

k=0

E 〈∇L(θk) | ∇Lk(θk)−∇L(θk)〉 − λτkE
〈
∇L(θk) |EZ∼Πθ̌k

[gk(θk;uk, Z)]
〉

where we apply Lemma F.1 at the last equality.

By triangle inequality, Cauchy-Schwarz inequality and Assumption 3.2, we obtain

I3(t) ≤
t∑

k=0

E ‖∇L(θk)‖ · ‖∇Lk(θk)−∇L(θk)‖+

t∑
k=0

λτkE ‖∇L(θk)‖ dG
δk

Provided τk ≥
log(1+k)+log d

δ0

log 1/max{ρ,λ} ≥
log δ0/d(1+k)−1

log max{ρ,λ} = logmax{ρ,λ}
δ0
d (1 + k)−1 ≥ logλ

δ0
d (1 + k)−1, with Lemma F.2 as a

consequence of Assumption 3.1, we have

I3(t) ≤
t∑

k=0

E ‖∇L(θk)‖ · Lδk +

t∑
k=0

E ‖∇L(θk)‖ δ0
d

dG

δ0
(1 + k)β−1

=

t∑
k=0

E ‖∇L(θk)‖ · Lδk +G

t∑
k=0

E ‖∇L(θk)‖ (1 + k)β−1

≤ L
(

t∑
k=0

E ‖∇L(θk)‖2
)1/2( t∑

k=0

δ2
k

)1/2

+G

(
t∑

k=0

E ‖∇L(θk)‖2
)1/2( t∑

k=0

(1 + k)2(β−1)

)1/2
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Since β < 1/2, it holds that

t∑
k=0

δ2
k =

t∑
k=0

δ2
0

(1 + k)2β
≤ δ2

0

1− 2β

[
1− 2β + (1 + t)1−2β − 1

]
≤ δ2

0

1− 2β
(1 + t)1−2β

t∑
k=0

(1 + k)2(β−1) ≤ 1 +

∫ t

0

(x+ 1)2(β−1)dx < 1 +
1

1− 2β

Then we can conclude

I3(t) ≤ c3
(

1

1 + t

t∑
k=0

E ‖∇L(θk)‖2
)1/2

· (1 + t)1−β

where c3 := 2√
1−2β

max{Lδ0, G
√

1− β}.

Lemma C.4. Under assumption 3.2 and constraint 0 < α < 1, it holds that

I4(t) ≤ c4
d2

1− λ (1 + t)1−(α−2β) (28)

where constant c4 = η0LG
2

δ2
0(2β−α+1)

.

Proof.

I4(t) =
(1− λ)L

2

t∑
k=0

ηkE

∥∥∥∥∥
τk∑
m=1

λτk−mg(m)
k

∥∥∥∥∥
2

≤ (1− λ)L

2

t∑
k=0

ηkE

(
τk∑
m=1

λτk−m
∥∥∥g(m)
k

∥∥∥)2

≤ (1− λ)L

2

t∑
k=0

ηk

(
τk∑
m=1

λτk−m
)2

(dG)2

δ2
k

≤ (1− λ)Ld2G2

2

t∑
k=0

(
1− λτk
1− λ

)2
ηk
δ2
k

<
d2LG2

2(1− λ)

t∑
k=0

ηk
δ2
k

Recall that ηk = η0

(k+1)α , δk = δ0
(1+k)β

and α < 1, β ≥ 0, it is clear that α− 2β < 1, so it holds that

t∑
k=0

ηk
δ2
k

=
η0

δ2
0

t∑
k=0

(1 + k)2β−α ≤ η0

δ2
0

(
1 +

∫ t

0

(1 + x)2β−αdx

)
≤ η0

δ2
0(2β − α+ 1)

[
(1 + t)2β−α+1 − α+ 2β

]
≤ 2η0

δ2
0(2β − α+ 1)

(1 + t)2β−α+1

In conclusion, we obtain that

I4(t) ≤ d2 LG
2

1− λ
η0

δ2
0(2β − α+ 1)

· (1 + t)2β−α+1 = c4
d2

1− λ (1 + t)1−(α−2β)

where c4 := η0

δ2
0
· LG2

2β−α+1 .
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D. Proof of Lemma 4.3
Proof. Combining Lemmas 4.1 and 4.2, subject to the constraints 0 < α < 1, 0 < β ≤ 1/2, 0 < 2α− 4β ≤ 1, it holds that
for any t ≥ max{t1, t2},

t∑
k=0

E ‖∇L(θk)‖2

≤ I1(t) + I2(t) + I3(t) + I4(t)

≤ c1(1− λ)(1 + t)α + c2
d5/2

(1− λ)2
(1 + t)1−(α−2β)A(t)1/2

+ c3(1 + t)1−βA(t)1/2 + c4
d2

1− λ (1 + t)1−(α−2β)

Recall A(t) := 1
1+t

∑t
k=0 E ‖∇L(θk)‖2, above inequality can be rewritten as

A(t) ≤ 1

1 + t

[
c2

d5/2

(1− λ)2
(1 + t)1−(α−2β)A(t)1/2

+ c3(1 + t)1−βA(t)1/2 + c1(1− λ)(1 + t)α + c4
d2

1− λ (1 + t)1−(α−2β)

]
=

(
c2

d5/2

(1− λ)2
(1 + t)−(α−2β) + c3(1 + t)−β

)
A(t)1/2 + c1(1− λ)(1 + t)−(1−α)

+ c4
d2

1− λ (1 + t)−(α−2β)

which is a quadratic inequality in A(t)1/2.

Let x = A(t)1/2, a = c2
d5/2

(1−λ)2 (1 + t)−(α−2β) + c3t
−β , b = c1(1 − λ)(1 + t)−(1−α) + c4

d2

1−λ (1 + t)−(α−2β), we have
x2−ax−b ≤ 0. Since a, b > 0, the quadratic has two real roots, denoted as x1, x2 respectively, and x1 < 0 < x2. Moreover,
we must have x ≤ x2, which implies x ≤ a+

√
a2+4b
2 ≤ a+a+2

√
b

2 = a+
√
b. Therefore,A(t) = x2 ≤ (a+

√
b)2 ≤ 2(a2+b).

Substituting a, b back leads to

A(t) ≤ 2

(
c2

d5/2

(1− λ)2
(1 + t)−(α−2β) + c3(1 + t)−β

)2

+ 2c1(1− λ)(1 + t)−(1−α)

+ 2c4
d2

1− λ (1 + t)−(α−2β)

(a)

≤ 4c22
d5

(1− λ)4
(1 + t)−2(α−2β) + 4c23(1 + t)−2β + 2c1(1− λ)(1 + t)−(1−α)

+ 2c4
d2

1− λ (1 + t)−(α−2β)

≤ 4c23(1 + t)−2β + 2c1(1− λ)(1 + t)−(1−α) + 4c4
d2

1− λ (1 + t)−(α−2β),

where inequality (a) is due to the fact (x + y)2 ≤ 2(x2 + y2), the last inequality holds because there exists sufficiently
large constant t3 such that, 4c22

d5

(1−λ)4 (1 + t)−2(α−2β) ≤ 2c4
d2

1−λ (1 + t)−(α−2β)∀t ≥ t3 given α > 2β. Therefore, set
t0 := max{t1, t2, t3}, then for all t ≥ t0, we have

A(t) ≤ 4 max{c1(1− λ), c23, c4
d2

1− λ} ·
(

(1 + t)−2β + (1 + t)−(1−α) + (1 + t)−(α−2β)
)

≤ 12 max{c1(1− λ), c23, c4
d2

1− λ}(1 + t)−min{2β,1−α,α−2β}

18
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Recall that constant c1 contains 1/η0, c3 contains δ0, c4 contains η0/δ
2
0 , , thus we can set δ0 = d1/3, η0 = d−2/3, which

yields

A(t) ≤ 12 max{c5(1− λ), c6,
c7

1− λ}d
2/3(1 + t)−min{2β,1−α,α−2β}

where constants

c5 = 2G, c6 =
4 max{L2, G2(1− β)}

1− 2β
, c7 =

LG2

2β − α+ 1

do not contain η0 and δ0. Moreover, note that maxα,β min{2β, 1− α, α− 2β} = 1
3 , thus it holds

1

1 + T

T∑
k=0

E ‖∇L(θ)k‖2 ≤ 12 max{c5(1− λ), c6,
c7

1− λ}d
2/3(1 + T )−1/3

where the rate O(1/T 1/3) can be attained by choosing α = 2
3 , β = 1

6 . This immediately leads to Theorem 3.6.

E. Non-smooth Analysis
In this section, we aim to apply our algorithm to non-smooth performative risk optimization problem and analyze its
convergence rate. Before presenting the theorem, we need the following Lipschitz loss assumption E.1.

Assumption E.1. (Lipschitz Loss) There exists constant L0 > 0 such that

|`(θ1; z)− `(θ2; z)| ≤ L0 ‖θ1 − θ2‖ , ∀ θ1,θ2 ∈ Rd, ∀ z ∈ Z

Under Assumption E.1 and some other regularity conditions, one can show that the performative risk is also Lipschitz
continuous. Formally, this can be stated as follows.

Lemma E.2. Under Assumption E.1, 3.2, 3.3, the performative risk L(θ) is (L0 + 2L1G)-Lipschitz continuous.

Under non-smooth settings, the convergence behavior can be characterized in both squared gradient norm and proximity
gap. Now, we are ready to show the following theorem:

Theorem E.3. (DFO (λ) for Non-smooth Optimization) Under Assumption E.1, 3.2, 3.3, 3.4, 3.5, with two time-scale
step sizes ηk = η0(1 + k)−α, δk = d(1 + k)−β , τk ≥ log(1+k)

log 1/max{ρ,λ} , where α, β satisfies 0 < 3β < α < 1, there exists a
constant t4 such that, the iterates {θk}k≥1 satisfies for all T ≥ t4

1

1 + T

T∑
k=0

E ‖∇Lδk(θk)‖2 = O(T−min{1−α,α−3β})

and the following error estimate holds for all T > 0 and θ ∈ Rd

1

1 + T

T∑
k=0

E|Lδk(θ)− L(θ)| = O(T−β)

Corollary E.4. (ε-stationarity, µ-proximity) Suppose Assumptions of Theorem E.3 hold. Fix any ε, µ > 0, for T =
max{O(1/ε4),O(1/µ6)}, the following estimates hold simultaneously

1

1 + T

T∑
k=0

E ‖∇Lδk(θk)‖2 ≤ ε

1

1 + T

T∑
k=0

E |Lδk(θk)− L(θk)| ≤ µ

Next, we present the proof of Theorem E.3.
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Proof. This proof resembles the proof of Lemma 4.2, where we reinterpret
∑t
k=0 E ‖∇L(θk)‖2 as

∑t
k=0 E ‖∇Lδk(θk)‖2,

and L(θk) as Lδk(θk), with additional bias terms that, as we shall prove, are not dominant.

Due to Lemma E.2, L(θ) is (L0 + 2L1G)-Lipschitz. Then by Lemma F.1, Lδ(θ) is d
δ (L0 + 2L1G)-smooth for all δ > 0.

Similar to Lemma 4.1, we have

Lδk(θk+1)− Lδk(θk) +
ηk

1− λ

〈
∇Lδk(θk) | (1− λ)

τk∑
m=1

λτk−mg(m)
k

〉

≤ d(L0 + 2L1G)

2δk
η2
k

∥∥∥∥∥
τk∑
m=1

λτk−mg(m)
k

∥∥∥∥∥
2

By adding, subtracting and rearranging terms, after taking conditional expectation on Fk−1, it holds that

ηk
1− λ ‖∇Lδk(θk)‖2 ≤ EFk−1

[
Lδk(θk)− Lδk+1

(θk+1) + Lδk+1
(θk+1)− Lδk(θk+1)

]
+

ηk
1− λEFk−1

〈
∇Lδk(θk) | ∇Lδk(θk)− (1− λ)

τk∑
m=1

λτk−mg(m)
k

〉

+
d

2δk
(L0 + 2L1G)η2

kEFk−1

∥∥∥∥∥
τk∑
m=1

λτk−mg(m)
k

∥∥∥∥∥
2

By Lemma F.1, we have EZ∼Πθ̌k
,uk [gδk(θk;uk, Z)] = ∇Lδk(θk), then by dividing and summing over k, it holds that

(1− λ)

t∑
k=0

E ‖∇Lδk(θk)‖2

≤
t∑

k=0

1− λ
ηk

E
[
Lδk(θk)− Lδk+1

(θk+1) + Lδk+1
(θk+1)− Lδk(θk+1)

]
+ (1− λ)

t∑
k=0

E

〈
∇Lδk(θk) |

τk∑
m=1

λτk−m
(
EZ∼Πθ̌k

[gδk(θk;uk, Z)]− g(m)
k

)〉

+

t∑
k=0

λτkE ‖∇Lδk(θk)‖2

+
d(L0 + 2L1G)(1− λ)

2

t∑
k=0

ηk
δk

E

∥∥∥∥∥
τk∑
m=1

λτk−mg(m)
k

∥∥∥∥∥
2

:= I5(t) + I6(t) + I7(t) + I8(t)

After splitting RHS into I5(t), I6(t), I7(t), I8(t), we can bound them separately.

Under Assumption 3.2 and the estimate δk − δk+1 = Θ(k−β−1), it holds that

I5(t) = (1− λ)

t∑
k=0

1

ηk
E
[
Lδk(θk)− Lδk+1

(θk+1)
]

+ (1− λ)

t∑
k=0

1

ηk
E
[
Lδk+1

(θk+1)− Lδk(θk+1)
]

(a)

≤ (1− λ)G
2

ηt+1
+ (1− λ)

t∑
k=0

E
Lδk+1

(θk)− Lδk(θk)

ηk

(b)

≤ (1− λ)G
2

ηt+1
+ (1− λ)(L0 + 2L1G)

t∑
k=0

δk − δk+1

ηk

= O
(
(1 + t)α + (1 + t)α−β

)
= O ((1 + t)α)
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where we apply the summation by part in inequality (a) as in Lemma C.1, and use the fact |Lδ1(θ)− Lδ2(θ)| ≤ Ew|L(θ +
δ1w)− L(θ + δ2w)| ≤ (L0 + 2L1G)|δ1 − δ2| in inequality (e), as a consequence of Lipschitz continuity.

As for I6(t), if we let B(t) := 1
1+t

∑t
k=0 E ‖∇Lδk(θk)‖2, by definition of g(m)

k , we can split the term as follows

EFk−1

d

δk

(
EZ∼Πθ̌k

[`(θ̌k;Z)|θ̌k]− E[`(θ̌
(m)
k ;Z

(m)
k )|θ̌(m)

k , Z
(0)
k ]
)

= EFk−1

d

δk
EZ∼Πθ̌k

[
`(θ̌k;Z)− `(θ̌(m)

k ;Z)|θ̌(m)
k , θ̌k

]
+ EFk−1

d

δk

(
EZ∼Πθ̌k

[`(θ̌
(m)
k ;Z)|θ̌(m)

k ]− E
Z̃

(m)
k

[`(θ̌
(m)
k ; Z̃

(m)
k )|θ̌(m)

k , Z̃
(0)
k ]
)

+ EFk−1

d

δk

(
E
Z̃

(m)
k

[`(θ̌
(m)
k ; Z̃

(m)
k )|θ̌(m)

k , Z̃
(0)
k ]− E[`(θ̌

(m)
k ;Z

(m)
k )|θ̌(m)

k , Z
(0)
k ]
)

By applying Jensen’s inequality and triangle inequality according to the above splitting, it holds that∥∥∥EFk−1EZ∼Πθ̌k
[gδk(θk;uk, Z)]− g(m)

k

∥∥∥
=

∣∣∣∣ dδk |EFk−1EZ∼Πθ̌k
[`(θ̌k;Z)|θ̌k]− E[`(θ̌

(m)
k ;Z

(m)
k )|θ̌(m)

k , Z
(0)
k ]

∣∣∣∣
≤EFk−1

d

δk

∣∣∣EZ∼Πθ̌k
[`(θ̌k;Z)|θ̌k]− E[`(θ̌

(m)
k ;Z

(m)
k )|θ̌(m)

k , Z
(0)
k ]
∣∣∣

≤EFk−1

d

δk

∣∣∣EZ∼Πθ̌k

[
`(θ̌k;Z)− `(θ̌(m)

k ;Z)|θ̌(m)
k , θ̌k

]∣∣∣
+EFk−1

d

δk

∣∣∣EZ∼Πθ̌k
[`(θ̌

(m)
k ;Z)|θ̌(m)

k ]− E
Z̃

(m)
k

[`(θ̌
(m)
k ; Z̃

(m)
k )|θ̌(m)

k , Z̃
(0)
k ]
∣∣∣

+EFk−1

d

δk

∣∣∣EZ̃(m)
k

[`(θ̌
(m)
k ; Z̃

(m)
k )|θ̌(m)

k , Z̃
(0)
k ]− E[`(θ̌

(m)
k ;Z

(m)
k )|θ̌(m)

k , Z
(0)
k ]
∣∣∣

(c)

≤ d

δk
EFk−1L0

∥∥∥θ̌(m)
k − θ̌k

∥∥∥
+

2dG

δk
EFk−1δTV

(
Πθk ,P(Ẑ

(m)
k ∈ ·|θ̌(0)

k , Ẑ
(0)
k )
)

+
2dG

δk
EFk−1δTV

(
P(Ẑ

(m)
k ∈ ·|θ̌(0)

k , Ẑ
(0)
k ),P(Z

(m)
k ∈ ·|θ̌(0)

k , Z
(0)
k )
)

(d)

≤ dL0

δk
EFk−1

∥∥∥θ̌(m)
k − θ̌k

∥∥∥+
2dG

δk
Mρm +

2dL2G

δk
EFk−1

m−1∑
`=1

∥∥∥θ̌(`)
k − θ̌k

∥∥∥
≤dL0

δk
dG

m−1∑
j=1

λτk−j
ηk
δk

+
2dGM

δk
ρm +

2dL2G

δk
dG

m−1∑
`=1

`−1∑
j=1

λτk−j
ηk
δk

<d2L0G
ηk
δ2
k

λτk−m+1

1− λ +
2dGM

δk
ρm + 2d2L2G

2 ηk
δ2
k

λτk−m+2

(1− λ)2

where inequality (c) is due to Lipschitzness of decoupled risk, inequality (d) is due to Assumption 3.4 and Lemma F.5 (a
consequence of Assumption 3.5). Given τk ≥ log(1+k)

log 1/max{ρ,λ} , then the following deterministic bound holds for all k > 0,

EFk−1

τk∑
m=1

λτk−m
∥∥∥EZ∼Πθ̌k

[gδk(θk;uk, Z)]− g(m)
k

∥∥∥
≤d2L0G

ηk
δ2
k

λ

1− λ

τk∑
m=1

λτk−m + 2d2L2G
2 ηk
δ2
k

λ2

1− λ

τk∑
m=1

λτk−m

+2dGM/δk

τk∑
m=1

ρmλτk−m
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<d2 λ

(1− λ)2
L0G

ηk
δ2
k

+ 2d2 λ2

(1− λ)2
L2G

2 ηk
δ2
k

+ 2dGM/δk

τk∑
m=1

max{ρ, λ}τk

≤d2 λ

(1− λ)2
L0G

ηk
δ2
k

+ 2d2 λ2

(1− λ)2
L2G

2 ηk
δ2
k

+ 2dGM
τk

(1 + k)δk

So for sufficiently large t, it holds that

I6(t) ≤ (1− λ)

t∑
k=0

E ‖∇L(θk)‖EFk−1

∥∥∥∥∥
τk∑
m=1

λτk−mEZ∼Πθ̌k
[gδk(θk;uk, Z)]− g(m)

k

∥∥∥∥∥
≤ (1− λ)

t∑
k=0

E ‖∇L(θk)‖
τk∑
m=1

λτk−mEFk−1

∥∥∥EZ∼Πθ̌k
[gδk(θk;uk, Z)]− g(m)

k

∥∥∥
≤

t∑
k=0

E ‖∇L(θk)‖ d2 λ

1− λ ((L0 + 2L1G)G+ 2L1G+ 2λL2G
2)
ηk
δ2
k

+

t∑
k=0

E ‖∇L(θk)‖ 2dGM
τk

(1 + k)δk

≤
t∑

k=0

E ‖∇L(θk)‖ d2 2λ

(1− λ)2
(L0G+ 2L1G+ 2λL2G

2)
ηk
δ2
k

= d2 2λ

(1− λ)2
(L0G+ 2L1G+ 2λL2G

2)

t∑
k=0

E ‖∇L(θk)‖ ηk
δ2
k

≤ d2 2λ

(1− λ)2
(L0G+ 2L1G+ 2λL2G

2)
( t∑
k=0

E ‖∇L(θk)‖2
)1/2( t∑

k=0

η2
k

δ4
k

)1/2

≤ c9d2B(t)1/2(1 + t)
1
2 + 1

2−(α−2β)

Therefore, there exists a constant c9 > 0 such that

I6(t) ≤ c9d2B(t)
1/2

(1 + t)1−(α−2β)

where there is an extra β/2 in exponent because the L in c2 is now a variable d(L0 + 2L1G)/δk.

For (L0 + 2L1G)-Lipschitz continuous L(θ), for all δ > 0 it holds that ‖∇Lδ(θ)‖ ≤ (L0 + 2L1G). Given τk ≥
log(1+k)

log 1/max{ρ,λ} , it holds that λτkE ‖∇Lδk(θk)‖2 ≤ dL2

δ0(1+k) , then I7(t) can be bounded as follows

I7(t) ≤ dL2

δ0

t∑
k=0

(1 + k)−1 = O(log(1 + t))

I8(t) is similar to I4(t). For all 0 ≤ k ≤ t, 1 ≤ m ≤ τk, it holds that
∥∥∥g(m)
k

∥∥∥ ≤ dG
δk

, which implies

I8(t) ≤ (1− λ)
d(L0 + 2L1G)

2

t∑
k=0

ηk
δk

E

∥∥∥∥∥
τk∑
m=1

λτk−mg(m)
k

∥∥∥∥∥
2

≤ (1− λ)
d(L0 + 2L1G)

2

t∑
k=0

ηk
δk

E
( τk∑
m=1

λτk−m
∥∥∥g(m)
k

∥∥∥)2

≤ (1− λ)
d(L0 + 2L1G)

2

t∑
k=0

ηk
δk

( τk∑
m=1

λτk−m
dG

δk

)2

= (1− λ)
d3(L0 + 2L1G)G2

2

t∑
k=0

ηk
δ3
k

( τk∑
m=1

λτk−m
)2
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≤ d3(L0 + 2L1G)G2

2(1− λ)

t∑
k=0

ηk
δ3
k

≤ c10(1 + t)1−(α−3β)

where c10 > 0 is a constant hiding the factor η0

δ3
0

.

Applying quadratic technique in Lemma 4.3, and for all α, β satisfying 0 < 3β < α < 1, it is clear that only I5(t) and I8(t)
contribute to the asymptotic rate, so for all t ≥ t4 (for some constant t4 > 0), we have

1

1 + T

T∑
k=0

E ‖∇Lδk(θk)‖2 = O(T−min{1−α,α−3β})

The error estimate directly follows from Lemma E.2.

Remark E.5. Note that Corrollary E.4 follows directly from Theorem E.3 by setting α = 3/4 and β = 1/6.

F. Auxiliary Lemmas
Lemma F.1. (Smoothing) For continuous L(θ) : Rd → R, its smoothed approximation Lδ(θ) := Ew∼Unif(Bd)[L(θ+ δw)]
is differentiable, and it holds that

Eu∼Unif(Sd−1),
Z∼Πθ+δu

[gδ(θ;u, Z)] = ∇Lδ(θ)

Moreover, if L(θ) is L̄-Lipschitz continuous, then Lδ(θ) is d
δ L̄-smooth.

Proof. The first fact follows from (generalized) Stoke’s theorem. Given continuous L(θ), it holds that

∇
∫
δBd
L(θ + v)dv =

∫
δSd−1

L(θ + r)
r

‖r‖dr (29)

Observe that the RHS of Equation (29) is continuous in θ, which implies Lδ(θ) = 1
vol(δBd)

∫
δBd L(θ+ v)dv is differentiable.

Note that the volume to surface area ratio of δBd is δ/d, so it follows from Equation (29) that

∇Lδ(θ) =
vol(δSd−1)

vol(δBd)

∫
δSd−1

L(θ + r)
r

vol(δSd−1) ‖r‖dr =
d

δ
Eu∼Unif(Sd−1)[L(θ + δu)u]

= Eu∼Unif(Sd−1)EZ∼πθ+δu
[
d

δ
`(θ + δu;Z)u] = Eu∼Unif(Sd−1),

Z∼Πθ+δu

[gδ(θ;u, Z)]

where we use the definition of gδ(θ;u, z) in the last equality.

If further assuming L(θ) is L̄-Lipschitz continuous, then we obtain

‖∇Lδ(θ1)−∇Lδ(θ2)‖ =
d

δ
·
∥∥∥∥ 1

vol(Sd−1)

∫
Sd−1

[L(θ1 + δu)− L(θ2 + δu)]udu

∥∥∥∥
≤ d

δ
· L̄ ‖θ1 − θ2‖ .

Lemma F.2. (O(δ)-Biased Gradient Estimation)

Under Assumptions 3.1, fix a proximity parameter δ > 0, it holds that∥∥∥∥∥Eu∼Unif(Sd−1),
Z∼Πθ+δu

[gδ(θ;u, Z)]−∇L(θ)

∥∥∥∥∥ = ‖∇Lδ(θ)−∇L(θ)‖ ≤ δL
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Proof. By Lemma F.1, we have
Eu∼Unif(Sd−1),

Z∼Πθ+δu

[g(θ;u, Z)] = ∇Lδ(θ)

Note that when L(θ) is differentiable, we have

∇Lδ(θ) = ∇
[
Ew∼Unif(Bd)L(θ + δw)

]
= Ew∼Unif(Bd)∇L(θ + δw)

Then under Assumption 3.1, by linearity of expectation and Jensen’s inequality, it holds that

‖∇Lδ(θ)−∇L(θ)‖ =
∥∥Ew∼Unif(Bd)[∇L(θ + δw)−∇L(θ)]

∥∥ ≤ δL.
Corollary F.3. Under Assumption 3.1 and 3.2, for all θ ∈ Rd, it holds that

‖∇L(θ)‖ ≤ 2
√
LG

Proof. Omitted.

Lemma F.4. (Lipschitz Continuity of Decoupled Risk) Under Assumption 3.1, 3.2 and 3.3, it holds that

∣∣EZ∼Πθ2
[`(θ1;Z)− `(θ2;Z)]

∣∣ ≤ 2(GL1 +
√
LG) ‖θ1 − θ2‖+

L

2
‖θ1 − θ2‖2

Proof. Let L(θ1,θ2) := EZ∼Πθ2
`(θ1;Z) denote the decoupled performative risk, then we have

LHS = |L(θ1,θ2)− L(θ2,θ2)|
≤ |L(θ1)− L(θ2)|+ |L(θ1,θ2)− L(θ1,θ1)|
≤ |L(θ1)− L(θ2)− 〈∇L(θ2) |θ1 − θ2〉|+ |〈∇L(θ2) |θ1 − θ2〉|+ |L(θ1,θ1)− L(θ1,θ2)|
(a)

≤ L

2
‖θ1 − θ2‖2 + |〈∇L(θ2) |θ1 − θ2〉|+ |L(θ1,θ1)− L(θ1,θ2)|

(b)

≤ L

2
‖θ1 − θ2‖2 + 2

√
LG ‖θ1 − θ2‖+ |L(θ1,θ1)− L(θ1,θ2)|

=
L

2
‖θ1 − θ2‖2 + 2

√
LG ‖θ1 − θ2‖+

∣∣∣∣∫ `(θ1; z) (Πθ1
(z)−Πθ2

(z)) dz

∣∣∣∣
(c)

≤ L

2
‖θ1 − θ2‖2 + 2

√
LG ‖θ1 − θ2‖+ 2GδTV (Πθ1

,Πθ2
)

≤ L

2
‖θ1 − θ2‖2 + 2

√
LG ‖θ1 − θ2‖+ 2GL1 ‖θ1 − θ2‖

= 2
(√

LG+GL1

)
‖θ1 − θ2‖+

L

2
‖θ1 − θ2‖2

where we use Assumption 3.1 in inequality (a), Corollary F.3 in inequality (b), Assumption 3.2 in inequality (c), and
Assumption 3.3 in the last inequality.

Lemma F.5. Under Assumption 3.5, it holds that for all 0 ≤ ` ≤ m, m ≥ 1

δTV

(
P(Z

(`+1)
k ∈ ·|Z(0)

k ),P(Z̃
(`+1)
k ∈ ·|Z(0)

k )
)
≤ L2

∥∥∥θ̌(`)
k − θ̌k

∥∥∥+ δTV

(
P(Z

(`)
k ∈ ·|Z

(0)
k ),P(Z̃

(`)
k ∈ ·|Z

(0)
k )
)

Unfold above recursion leads to the following inequality,

δTV

(
P(Z

(m)
k ∈ ·|Z(0)

k ),P(Z̃
(m)
k ∈ ·|Z(0)

k )
)
≤ L2

m−1∑
`=1

∥∥∥θ̌(`)
k − θ̌k

∥∥∥ , ∀m ≥ 1.
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Proof. Recall the notation θ̌(`)
k = θ̌

(`)
k + δkuk, θ̌k = θ̌k + δkuk, and the fact that Zk = Z

(0)
k = Z̃

(0)
k , we have

2 · LHS =

∫
Z

∣∣∣P(Z
(`+1)
k = z|Z(0)

k )− P(Z̃
(`+1)
k = z|Z(0)

k )
∣∣∣ dz

=

∫
Z

∣∣∣∣∫
Z

P(Z
(`)
k = z′, Z(`+1)

k = z|Z(0)
k )− P(Z̃

(`)
k = z′, Z̃(`+1)

k = z|Z(0)
k )dz′

∣∣∣∣ dz
≤
∫
Z

∫
Z

∣∣∣Tθ̌(`)
k

(z′, z)P(Z
(`)
k = z′|Z(0)

k )− Tθ̌k(z′, z)P(Z̃
(`)
k = z′|Z(0)

k )
∣∣∣ dz′dz

≤
∫
Z

∫
Z

∣∣∣Tθ̌(l`
k

(z′, z)P(Z
(`)
k = z′|Z(0)

k )− Tθ̌k(z′, z)P(Z
(`)
k = z′|Z(0)

k )
∣∣∣ dz′dz

+

∫
Z

∫
Z

∣∣∣Tθ̌k(z′, z)P(Z
(`)
k = z′|Z(0)

k )− Tθ̌k(z′, z)P(Z̃
(`)
k = z′|Z(0)

k )
∣∣∣ dz′dz

(a)
=

∫
Z

P(Z`k = z′|Z(0)
k )

∫
Z

∣∣∣Tθ̌k(z′, z)− T
θ̌

(`)
k

(z′, z)
∣∣∣ dzdz′

+

∫
Z

[∫
Z

Tθ̌k(z′, z)dz

] ∣∣∣P(Z
(`)
k = z′|Z(0)

k )− P(Z̃
(`)
k = z′|Z(0)

k )
∣∣∣ dz′

≤
∫
Z

P(Zk = z′|Z(0)
k ) · 2δTV

(
Tθ̌k(z′, ·),Tθ̌k(z′, ·)

)
dz′ + 2δTV

(
P(Z

(`)
k ∈ ·|Z

(0)
k ),P(Z̃

(`)
k ∈ ·|Z

(0)
k )
)

≤ 2

∫
Z

P(Z
(`)
k = z′|Z(0)

k )dz′ · L2

∥∥∥θ̌(`)
k − θ̌k

∥∥∥+ 2δTV

(
P(Z

(`)
k ∈ ·|Z

(0)
k ),P(Z̃

(`)
k ∈ ·|Z

(0)
k )
)

= 2
[
L2

∥∥∥θ̌(`)
k − θ̌k

∥∥∥+ δTV

(
P(Z

(`)
k ∈ ·|Z

(0)
k ),P(Z̃

(`)
k ∈ ·|Z

(0)
k )
)]

= 2 · RHS

where inequality (a) holds due to the (absolutely) integrable condition (which automatically holds for probability density
functions and kernels), and Assumption 3.5 is used in the last inequality.

Assumption F.6. Assume that there exists constants L0, L1 such that:

(i) |`(θ; z)− `(θ; z′)| ≤ L0 ‖z − z′‖ for any θ ∈ Rd, z, z′ ∈ Z,

(ii) W1(Πθ,Πθ′) ≤ L1 ‖θ − θ′‖ for any θ,θ′ ∈ Rd, where W1(Π,Π′) denotes the Wasserstein-1 distance between the
distributions Π,Π′.

We observe that a similar result to Lemma F.4 can be proven by replacing Assumption 3.3 with Assumption F.6:

Lemma F.7. (Lipschitz Continuity of Decoupled Risk, Alternative Condition based on Wasserstein-1 distance.) Un-
der Assumption 3.1, 3.2, F.6. Then, for any θ1,θ2 ∈ Rd, it holds that∣∣EZ∼Πθ2

[`(θ1;Z)− `(θ2;Z)]
∣∣ ≤ (L0L1 + 2

√
LG) ‖θ1 − θ2‖+

L

2
‖θ1 − θ2‖2 .

Proof. Observe that

LHS = |L(θ1,θ2)− L(θ2,θ2)|
≤ |L(θ1)− L(θ2)|+ |L(θ1,θ2)− L(θ1,θ1)|
≤ |L(θ1)− L(θ2)− 〈∇L(θ2) |θ1 − θ2〉|+ |〈∇L(θ2) |θ1 − θ2〉|+ |L(θ1,θ1)− L(θ1,θ2)|

≤ L

2
‖θ1 − θ2‖2 + |〈∇L(θ2) |θ1 − θ2〉|+ |L(θ1,θ1)− L(θ1,θ2)|

≤ L

2
‖θ1 − θ2‖2 + 2

√
LG ‖θ1 − θ2‖+ |L(θ1,θ1)− L(θ1,θ2)|

=
L

2
‖θ1 − θ2‖2 + 2

√
LG ‖θ1 − θ2‖+

∣∣EZ∼Πθ1
,Z′∼Πθ2

[`(θ1;Z)− `(θ1;Z ′)]
∣∣

(a)

≤ L

2
‖θ1 − θ2‖2 + 2

√
LG ‖θ1 − θ2‖+ L0W1(Πθ1

,Πθ2
)
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(b)

≤ L

2
‖θ1 − θ2‖2 + 2

√
LG ‖θ1 − θ2‖+ L0L1 ‖θ1 − θ2‖

=
(
L0L1 + 2

√
LG
)
‖θ1 − θ2‖+

L

2
‖θ1 − θ2‖2

where the inequality (a) is due to [Lemma D.4, (Perdomo et al., 2020)] and the alternative assumption (i), the inequality (b)
is due to the alternative assumption (ii) (i.e., Lipschitz condition on distribution map Πθ in Wasserstein-1 metric).

Consequently, the conclusions in Theorem 3.6 hold (with slightly different constants) when Assumption 3.3 is replaced by
Assumption F.6. We observe that the former assumption is only used in ensuring the bound in Lemma F.4; cf. the proof of
Lemma C.2.
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