Under review as a conference paper at ICLR 2024

D5SRL: DIVERSE DATASETS FOR DATA-DRIVEN DEEP
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning algorithms hold the promise of enabling data-driven
RL methods that do not require costly or dangerous real-world exploration and
benefit from large pre-collected datasets. This in turn can facilitate real-world
applications, as well as a more standardized approach to RL research. Furthermore,
offline RL methods can provide effective initializations for online finetuning to
overcome challenges with exploration. However, evaluating progress on offline RL
algorithms requires effective and challenging benchmarks that capture properties of
real-world tasks, provide a range of task difficulties, and cover a range of challenges
both in terms of the parameters of the domain (e.g., length of the horizon, sparsity
of rewards) and the parameters of the data (e.g., narrow demonstration data or
broad exploratory data). While considerable progress in offline RL in recent years
has been enabled by simpler benchmark tasks, the most widely used datasets
are increasingly saturating in performance and may fail to reflect properties of
realistic tasks. We propose a new benchmark for offline RL that focuses on realistic
simulations of robotic manipulation and locomotion environments, based on models
of real-world robotic systems, and comprising a variety of data sources, including
scripted data, play-style data collected by human teleoperators, and other data
sources. Our proposed benchmark covers state-based and image-based domains,
and supports both offline RL and online fine-tuning evaluation, with some of the
tasks specifically designed to require both pre-training and fine-tuning. We hope
that our proposed benchmark will facilitate further progress on both offline RL and
fine-tuning algorithms. Website with code, examples, tasks, and data is available at
https://sites.google.com/view/d5rl/

1 INTRODUCTION

Offline reinforcement learning algorithms hold the promise of enabling data-driven RL methods
that do not require costly or dangerous real-world exploration, and benefit from pre-collected
datasets (Levine et al., [2020; (Gulcehre et al.| [2020; |Agarwal et al.| [2020). The latter especially
is of significant relevance in the modern age of data-driven machine learning, where training on large
datasets has repeatedly been shown to be a critical ingredient for effective generalization (LeCun
et al.| 2015} Krizhevsky et al., 2017)) and even emergent capabilities (Wei et al., [2022). Furthermore,
offline RL methods can provide effective initializations for online finetuning, overcoming challenges
with exploration and providing an effective formula for fast online training suitable for the real
world. However, while supervised learning methods that operate on large pre-collected datasets can
effectively evaluate on test sets sampled from real-world data, offline RL algorithms that train on data
must still be validated through online interaction to measure their effectiveness, even if no online
interaction is required during training. Therefore, evaluating progress on offline RL methods requires
effective and challenging benchmarks that can provide for accessible evaluation in simulation, while
still providing a degree of realism in terms of reflecting the properties of real-world systems, and
covering a range of challenges both in terms of the parameters of the domain (e.g., length of the
horizon, sparsity of rewards) and the parameters of the data (e.g., narrow demonstration data or broad
exploratory data). Existing benchmarks have enabled significant advances in offline RL in recent
years. However, these are largely simple environments, which might fail to reflect properties of
realistic tasks, and might not cover some of the most significant use cases, such as online finetuning
from offline initialization (Fu et al.,|[2020; |Gulcehre et al., 2020). Moreover, new algorithms are

https://sites.google.com/view/d5rl/

Under review as a conference paper at ICLR 2024

increasingly saturating in performance, indicating that we might be approaching the limits of these
datasets.

In this paper, we propose a new benchmark for offline RL that focuses on realistic simulations of
robotic manipulation and locomotion environments, based on models of real-world robotic systems,
and comprising a variety of data sources, including scripted data, play-style data collected by human
teleoperators, and other data sources. Our proposed benchmark covers state-based and image-based
domains, and supports both offline RL evaluation and evaluation with online finetuning, with some of
the tasks specifically designed to require both pretraining and finetuning. We hope that our proposed
benchmark will facilitate further progress on both offline RL algorithms and algorithms designed for
online finetuning from offline initialization.

We present an overview of the environments in our benchmark, which include realistic simulated
models of real-world robotic platforms, such as the Al quadruped and the Franka robotic arm. Aside
from providing a more challenging and up-to-date range of tasks and datasets compared to prior
work (Fu et al.l 2020; |Gulcehre et al.,[2020), our tasks cover a range of factors that are either rarely
covered in prior benchmarks, or rarely appear in combination. The A1 tasks specifically evaluate
online finetuning: these tasks are designed such that offline initialization should provide for basic
but low-performance capability (e.g., not falling), while online finetuning is required for maximally
effective gaits. The visual Franka kitchen environments evaluate visual perception, environment
variability (accomplished via randomization), and ability to use “play-style” diverse data collected
by real humans via teleoperation. The visual WidowX pick-and-place environments evaluate the
ability to “stitch together” distinct phases of manipulation skills to accomplish multi-stage behaviors.
While prior datasets evaluate stitching (e.g., the AntMaze task in D4RL (Fu et al., |2020)), it is rarely
evaluated in combination with visual perception in widely accepted benchmarks.

We provide a comprehensive description of our proposed tasks and corresponding datasets, as well as
high-quality implementations of a number of widely used offline RL and online finetuning methods
that we evaluate on our benchmark. We hope that this will provide a solid foundation for future
progress on both offline reinforcement learning and online finetuning from offline initialization.

2 RELATED WORK

Benchmarking in reinforcement learning has been a persistent challenge, with effective benchmarks
needing to balance accessibility (i.e., tasks that are feasible to address with current methods and not
too onerous computationally) with the desire for broad coverage of task properties and a high degree
of realism and complexity (Duan et al.,|2016; Brockman et al., 2016; |Wu et al.,|2017; Wang et al.,
2019} Hubbs et al., 2020; Yu et al., 2020). Striking this balance is arguably a greater challenge in RL
than in other fields. First, RL algorithms can be applied to a wide range of tasks with very different
properties, including varying time horizons, levels of reward sparsity, dimensionality, and other
ingredients (Osband et al.;|2019). Second, RL algorithms can be computationally very demanding,
requiring long training runs that make it difficult to include large numbers of very complex tasks in
every evaluation (Henderson et al.,2018; |Agarwal et al.,|2021)). Third, the capabilities of RL methods
have advanced significantly over the past decade, and benchmarks can quickly become saturated,
necessitating more complex tasks to be added (Dulac-Arnold et al.,|2021). This makes designing a
good benchmark in RL a major challenge. Our work focuses specifically on benchmarking offline
RL methods, and aims to strike a balance between covering task complexity and a variety of task
ingredients with providing a convenient simulated evaluation protocol and a mixture of image-based
and state-based tasks.

In recent years, a number of benchmarks have been proposed for offline RL, though such benchmarks
typically have a number of shortcomings that have proven difficult to fully alleviate while balancing
the aforementioned challenges. Early work on deep offline RL focused either on customized evalua-
tions without proposing standard benchmarks (Vecerik et al., 2017} Hester et al.| [2018; [Kalashnikov
et al., 2018)), or else proposed simple benchmark tasks that utilized replay buffers from successful
RL runs (Fujimoto et al.l 2019; [Kumar et al., 2019; |/Agarwal et al.l 2020). The latter generally
does not evaluate the performance of offline RL methods effectively, as realistic data might be
highly suboptimal and might require “stitching” together parts of different suboptimal trajectories to
create ones that are more optimal — a property rarely captured by data collected by fully or partially
trained RL policies themselves (Fu et al.,[2020; |Levine et al.,|2020). Several more recent offline RL
benchmarks have sought to include more realistic data distributions, more complex tasks (including

Under review as a conference paper at ICLR 2024

vision-based tasks), and other ingredients that are intended to more accurately represent realistic
offline RL problems (Gulcehre et al., [2020; [Liu et al.,|2022} [Kurenkov and Kolesnikovl, 2022} |[Kuo
et al.| [2022;Qin et al.; 2022} |Lu et al., |2022). Some works have proposed protocols for benchmarking
offline pretraining with online finetuning (Kostrikov et al.,[2021}; Nair et al.l 2020; Song et al., 2022}
Nakamoto et al., 2023)), though this has not been rigorously systematized in prior work. Perhaps
the most widely used benchmark suite in offline RL today is D4RL (Fu et al.| [2020). However, the
D4RL tasks are increasingly saturated in performance, and many of the tasks do not effectively reflect
the challenges of realistic offline RL tasks: the MuJoCo locomotion tasks in D4RL are still largely
based on RL replay buffers, and the more complex “maze” tasks, which do feature suboptimal data
and require stitching or recombining parts of the suboptimal trajectories, are limited in difficulty
and variety. Our benchmark aims to address these limitations in several ways. We focus specifically
on robotics-themed tasks — although RL can address a far greater range of problems, we believe
that this focus is reasonable for providing a balance between specificity (i.e., not so much breadth
that no single method can address all tasks) and coverage (i.e., still capturing different challenges
in RL). Within this theme, our tasks all reflect realistic simulated models of robotic systems based
on actual robot URDF specifications, in contrast to D4RL, which uses simple “fictional” rigid body
systems. Our tasks include both state-based and image-based tasks, both sparse and dense rewards,
and multi-stage tasks. Additionally, we propose tasks suitable for offline pretraining with online
finetuning, something that has not been rigorously formalized in current widely used benchmarks.

Offline RL algorithms themselves have made significant progress in recent years as well (Fujimoto
et al.| 2019; Kumar et al 2019; 2020; |Agarwal et al., [2020; |[Kostrikov et al., 2021} [Nair et al.|
2020; Song et al., 2022} [Cheng et al., [2022; Nakamoto et al., [2023)). A full survey of all recent
research on offline RL is outside the scope of this paper, but we do make an attempt to benchmark
representative examples of some of the widely used algorithm classes, including pessimistic or
conservative algorithms (Kumar et al.| 2020} [Nakamoto et al., [2023)), algorithms based on implicit
backups (Kostrikov et al.l2021), algorithms based on behavioral cloning regularization (Fujimoto
and Gu, 2021)), algorithms that utilize diffusion models (Hansen-Estruch et al.,2023)), and methods
designed specifically for efficient online training by leveraging offline data (Ball et al.,[2023). We hope
that by proposing a new benchmark that addresses the limitations of prior datasets and environments
we will provide a more effective means for algorithms researchers to make further advances in the
future.

3 PRELIMINARIES AND BACKGROUND

Reinforcement learning is formalized through the concept of Markov Decision Process (MDP)
M= (S, A, P,R,p,v), where S is the state space, A is the action space, P(s’|s, a) is the transition
probability, R(s, a) is the reward function, p is the initial state distribution and + is a discount factor.
The goal of reinforcement learning is to find a policy 7(a|s) that maximizes the expected reward:

J(m) =E, pnx lz Y R(sy, at)] (1)
t=0

In the standard RL setting the policy is given access to the MDP and can sample trajectories to collect
additional data. On-policy algorithms iterate between data collection and policy updates, and discard
the collected data after each update, which makes them sample inefficient. Off-policy algorithms
collect data in a replay buffer, which is then repeatedly used to update the policy.

Offline reinforcement learning also reuses previously collected data, but unlike off-policy algorithms
it does not have access to the MDP during training and only utilizes a static dataset. These algorithms
need to be able to handle distribution shift between their training datasets and deployment. Moreover
they need to be able to utilize a variety of data sources and qualities, such as prior training runs,
deployments, data from different agents or human-generated data.

Additionally, prior offline data can be leveraged with online RL, either by pretraining offline and
finetuning online (Nair et al., |2020; Kostrikov et al.,[2021), or by training online but including the
prior data in a replay buffer (i.e., joint offline and online training) (Song et al., [2022; Ball et al.,
2023)). The challenge in this setting is for the policy to effectively utilize the offline data to reach high
performance in a sample-efficient way.

Under review as a conference paper at ICLR 2024

Our proposed tasks and datasets can be used for both problems, pure offline RL and offline-to-online
fine-tuning, and we evaluate both settings in our experiments.

4 CHALLENGES IN OFFLINE RL EVALUATION

Our benchmark environments and datasets aim to cover a range of challenges that are likely to be
encountered by offline RL algorithms aiming to learn effective policies for real-world tasks. Some of
these challenges, like temporal compositionality (“stitching”), have been addressed via simpler and
less realistic environments in prior benchmarks (Fu et al., 2020). Other challenges, like the use of
visual observations, are present in prior tasks (Gulcehre et al., 2020), but in combination with less
realistic data distributions, such as data from the replay buffer of online RL runs. We discuss some of
these challenges below, and in Section [5]discuss how our tasks instantiated some of these challenges.

Datasets: The performance of offline RL methods is strongly dependent on the data distribution.
Therefore, to provide a comprehensive benchmark for offline RL, we include a variety of different
challenging yet realistic distributions in our tasks. This includes narrow distributions from scripted
planners and human-generated demonstration data. While some prior benchmarks also include
scripted and human-generated data (Fu et al., 2020), many of the previously studied tasks consist
of replay buffers from online RL runs (Gulcehre et al., 2020), which may not be reflective of the
data distributions on which we might want to train real-world systems. In our WidowX-based
long-horizon tasks, we generate object manipulation data using (sub-optimal) scripted planners. In
the Franka domain, we collected 20 hours of new human teleoperation data, and also include tasks
based on human teleoperation datasets from prior work (Gupta et al., [2019a; |Fu et al., [2020), but
rendered out with visual observations rather than low-dimensional state. We include both expert-level
demonstrations from an experienced teleoperator, as well as play data from several teleoperators
with different levels of experience. We believe that these data distributions are realistic, in the sense
that they reflect data sources that might actually be used for real-world training, and challenging for
current methods.

Temporal compositionality and multi-stage tasks: One of the most appealing properties of offline
RL methods is the ability to combine parts of suboptimal behaviors and compose them into new
behaviors that complete more complex tasks more effectively (Levine et al.,[2020; |[Fu et al., [2020).
One of the ways that offline RL can do this is by exploiting temporal compositionality: if the
algorithm understands that it’s possible to reach C from B, and to reach B from A, then it should be
able to figure out how to reach C from A. This can enable solving multi-stage tasks (such as sorting
multiple objects) by composing shorter-horizon primitive behaviors. Our benchmarks are designed to
evaluate temporal compositionality both by composing task-agnostic or multi-task suboptimal data
(e.g., “play” data) into longer and more optimal tasks, and by composing single-step behaviors to
solve multi-stage tasks, such as sorting objects.

Online training from offline data: In many cases, we might want to use offline RL not to acquire a
policy that we deploy in the real world in zero shot, but rather to provide an initialization for online
training for a skill that would be difficult (or dangerous) to acquire entirely from scratch. This can be
done either via offline pretraining and finetuning Nair et al.|(2020); Kostrikov et al.|(2021); Nakamoto
et al.|(2023), or by using online RL algorithms that can incorporate offline data (Song et al.| 2022}
Ball et al., 2023)). Prior benchmarks rarely evaluate this setting, and prior works studying this setting
tend to use a non-standard combination of tasks adopted by the community.

Realistic observation spaces: Previous offline RL benchmarks, such as D4RL [Fu et al.| (2020),
mostly focus on low-dimensional state observations. However, scaleable RL algorithms should be
able to learn from high-dimensional observations, such as RGB images. We therefore include image
observations in many of our tasks, reflecting realistic observation spaces for each domain.

Diverse and realistic robot systems: Our benchmark environments are themed around a variety
of robotic learning domains. While such simulated continuous control tasks are common in prior
benchmarks (Brockman et al.,[2016} |Gulcehre et al.| 2020; [Fu et al., [2020), we directly use realistic
simulations of real-world robotic systems, including the A1 quadruped and WidowX and Franka
Emika robotic arms. All of the robots are based on their actual URDFs (definitions of robot
morphology), controlled in ways that are analogous to their real-world counterparts (e.g., position
control or end-effector control).

Under review as a conference paper at ICLR 2024

Generalization to initial conditions: One of the central challenges for real-world RL systems is to
handle generalization to task and domain variability. However, prior benchmarks in RL often do not
emphasize generalization to different initial conditions. To evaluate agent’s robustness and ability
to generalize, some of our tasks vary the objects the robot needs to manipulate and randomize their
arrangement. In addition, on the observation side we introduce a number of distractors by varying
textures, object colors, lighting conditions and camera angles.

5 DSRL: DIVERSE DATASETS FOR DATA-DRIVEN DEEP REINFORCEMENT
LEARNING

In this section, we describe the individual tasks in our benchmark, and relate them to the challenges
outlined in the preceding section. Each of our tasks reflects a realistic simulated model of a robotic
system, using the URDF of the corresponding robot and a simulated environment to enable plausible
interactions. Although our goal is primarily to enable rapid algorithms development rather than to
provide a framework for robotics research specifically, we believe that this added degree of realism
increases the chances that algorithmic developments made with our benchmark will translate into
good real-world performance, and that the challenges presented in our tasks also reflect other domains
beyond robotics. This includes narrow data distributions (common for systems where data is collected
from baseline hand-designed controllers or humans), high-dimensional observations, the need for
online finetuning, and temporal compositionality. Beyond the below descriptions, additional details
about the environments and datasets are provided in Appendix A.

5.1 LEGGED LOCOMOTION

The goal of the legged locomotion tasks is to study the efficacy of
offline RL methods in handling low-level control problems with
complex dynamics. We set up these tasks on a simulated Unitree Al
robot platform and require learning policies from low-dimensional
proprioceptive observations and do not require visual perception.

Tasks: Concretely, we construct three offline datasets, each of which Figure 1: Hiking task. The Al

aim to learn different types of locomotion skills as follows: robot at the start of the course in
front of a randomized terrain.

1. Interpolate Speed: The goal is to control the Al at a particular speed level, within the range of
speeds that were observed in the training data. For this, we first collect a dataset by training an Al
to track 3 speeds: 0.5, 0.8, and 1.0 m/s, containing experience from the agents’ initial exploration
to expert-level performance on those tasks, and the goal is to adapt to a speed value of 0.75 m/s,
that lies within the range of speeds observed in the dataset. To compute rewards for offline RL
training, we label each transition with how accurately it tracks the target speed of 0.75 m/s.

2. Extrapolate Speed: Using the same dataset as the Interpolate Speed task, this task instead tests
the ability of an algorithm to be able to acquire a policy that can run at a higher speed of 1.25
m/s. This task presents a challenge for offline RL methods as the optimal policy that runs at the
higher speed lies outside the support of the offline dataset, which means that this task presents a
significant room for improvement with online fine-tuning.

3. Hiking: Finally, we construct a task that aims to test the efficacy of offline RL at learning policies
when interacting with the complex dynamics induced by navigating on a hiking course (shown in
Fig.[5.1)). This task still utilizes a offline dataset that depicts navigation on a flat terrain, but is
distinct in that the policy is deployed on a hiking course, and not a flat terrain. Our hiking course
presents varied terrains consisting of randomly generated rolling bumps as well as inclines, and
the goal is to navigate the policy to the center of the course without falling.

5.2 FRANKA KITCHEN MANIPULATION ENVIRONMENT

The goal of this environment is to study offline RL and online fine-tuning from realistic but suboptimal
human-generated data, evaluate settings with variability in the appearance and placement of objects
to measure generalization, and handle multiple visual observations. Near-optimal and sub-optimal
human-collected data, which can run the gamut from demonstrations to unstructured “play”, represents
a realistic source of training data for offline RL, which has been studied in several prior works (Lynch
et al., [2020; |Gupta et al., [2019a; Mandlekar et al. 2021)). Additionally, generalization over object
placement and appearance is very important in real-world settings, but is rarely evaluated in RL
benchmarks (Cobbe et al., [2019; 2020). Therefore, we hope that this task will cover a range of

Under review as a conference paper at ICLR 2024

Figure 3: Observations from the Randomized Kitchen environment consist of two 128 x 128 RGB images from
side-cameras, 128 x 128 RGB image from a wrist camera, and robot proprioception. The environment includes
several different types of kettles and microwaves, which require different grasps. Moreover, their locations are
randomized across the scene. Textures, lighting conditions, and camera angles are also varied across episodes.

challenges that are underrepresented in prior work. This environment consists of a Franka Emika robot
in a simulated kitchen setting, and data is collected via VR-based tele-operation by real people. We
introduce several environments that pose different challenges for current data-centric RL algorithms.

5.2.1 STANDARD FRANKA KITCHEN ENVIRONMENT
For an easier starting point, we adapt the Franka Kitchen
environment which was introduced by Gupta et al.| (20194)
and was also part of the DARL (Fu et al., 2020) benchmark.
The objective in this environment is to manipulate a set
of 4 pre-specified objects. We modify the task to utilize
multiple image observations rather than ground truth ob-
ject locations, thus providing an observation space that

more realistically reflects robotic manipulation scenarios. Figure 2: Observations for the Standard
The agent receives a sparse reward of +1 for every object ~Franka Kitchen tasks consist of two 64 x 64

RGB images from an a top-down and a wrist

manipulated into the correct configuration. . .
camera, as well as robot proprioception.

Datasets: We use the same datasets as (Gupta et al.|
[20190b% [Fu et all,[2020), which consists of expert-level demonstrations for different combinations of

four objects, executed in a fixed order. In total there are 513 total trajectories of varying length split
across 22 task combinations. Our observation space consists of two 64 x 64 images from a side-view

and wrist cameras (2022) as shown in Fig. [2] as well as robot proprioception.
Tasks: We consider two settings, similar to (2020):

1. Mixed: In this environment the agent needs to rearrange the microwave, kettle, light switch
and slide door objects, and there are several expert demonstrations in the offline dataset for that
combination of objects.

2. Partial: In this setting the agent needs to manipulate the microwave, kettle, bottom burner knob
and light switch objects, which are never encountered together in any of the trajectories in the
offline dataset. This requires the agent to learn combinatorial generalization capabilities. We
note that this is different from the dynamic programing or "stitching" probalem, since there is no
sequence of states in the dataset that reach the optimal solution.

5.2.2 RANDOMIZED FRANKA KITCHEN ENVIRONMENT

We include a version of the Franka Kitchen environment with randomized scene configurations
to further test generalization. The environment was constructed by modifying the “Kitchenshift”
domain (2021). Both object types and their locations in the environment are randomized,
which requires the agent to learn robust and general grasping strategies. There are several types of
visual distractors, including randomized textures and lighting conditions. The observation space
consists of three 128 x 128 images: two side-view cameras and a wrist camera, as well as robot
proprioception. The exact camera positions are also continuously randomized. Observations from
different episodes are included in Fig. [3] This level of variability introduces a significant challenge
in terms of robustness and representation learning, reflecting challenges likely to be seen in the real
world.

Datasets: To provide offline training data in this domain, we manually collected close to 20 hours of
human teleoperation data:

Under review as a conference paper at ICLR 2024

a~
L 2

Figure 4: Observations from the Multi-Stage Manipulation environments consist of a single 128 x 128 RGB
image from a side camera and robot proprioception. The environment includes several different types of shoes
and toys, which require different grasps. Moreover, their locations are randomized across the scene. Textures,
lighting conditions, and camera angles are also varied across episodes.

1. Demonstrations: We collected 500 expert-level demonstrations from an experienced teleoperator
for the microwave, kettle, light switch and slide cabinet task (the same as the “Mixed" dataset
from Section [5.2.1). This dataset is suitable for testing capabilities of representation learning
approaches and benchmarking imitation learning algorithms.

2. Play: We collect a datasets of 1000 episodes, which are not task-oriented from multiple operators
with different levels of skills. The episodes consist of undirected environment interactions and
involve manipulating between 2 to 6 objects in random order and placement. These episodes were
collected by several tele-operators with different levels of experience, which introduces significant
multi-modality in the data both in terms of behaviours and quality of executed grasps.

3. Sub-optimal Expert: We also include a sub-optimal expert dataset consisting of 500 episodes,
collected by an inexperienced teleoperator, but we do not explicitly benchmark it in this work.

Tasks: On the Demonstrations dataset, the agent is evaluated on the task corresponding to that
demonstration. On the Play dataset, similar to Section[5.2.1] we consider two tasks:

1. Mixed: Similar to before in this task we need to manipulate the the microwave, kettle, light switch
and slide cabinet objects. However, in addition to the representation learning and robustness
challenges that the randomized kitchen poses, the agent needs to learn from diverse data of
varying quality. Another challenge is that while there are several episodes which manipulate all
four objects, they do so in a different order, which creates a challenging problem for dynamic
programming with multi-modal solutions.

2. Partial: Similar to before, the agent needs to manipulate the microwave, kettle, bottom burner
knob and light switch objects, which are never solved in the same episode in the offline data.

5.3 MULTI-STAGE MANIPULATION WITH SCRIPTED DATA

The goal of this task is to study composition of suboptimal trajectories to solve longer-horizon tasks,
incorporate visual observations, and handle data from weak scripted policies. These ingredients
reflect problems that are often encountered in offline robotic RL, where we might want to compose
longer-horizon behaviors out of datasets depicting individual primitive skills (Fang et al.l 2022}
[Rosete-Beas et al., 2023}, [Fang et al.| [2023)). To this end, we introduce a multi-stage bin sorting
task. The simulated robot is a 6-DOF WidowX arm placed in front of two identical white bins
with 2 objects to sort. These two objects are from two different categories: shoes and toys, and are
taken from the Google Scanned Objects Dataset (Downs et al.,[2022)), comprising 3D scans of real
household objects.

Task: The environment is shown in Figure[d The objective is to sort each object into its respective
bins. One bin corresponds to shoes and the other bin corresponds to toys. The reward function is the
number of objects correctly sorted into each bin, where a "+1" reward is given when any of the objects
are placed in their correct bins and a "+2" reward is given when both objects are sorted correctly.
The observations consist of the proprioceptive state of the robot (joint positions) and 128 x 128 x 3
image observations. The initial state is randomized in terms of the objects. At each environment
reset, one toy and one shoe are randomly selected from a pool of 5 objects and placed in the central
region of the scene. Various sample image observations can be seen in Figure 4]

Under review as a conference paper at ICLR 2024

Environment Task ‘ Method

[BC | 1QL | CQL | CalQL|Nakamowectal]2023] | TD3+BC | DDPM+BC | IDQL
Mixed | 0461+ 0.124 | 0457£0129 | 00£0.0 | 0.0+ 0.0 | 0.003 = 0.003 | 0.253 % 0.082 | 0.020 0.008
Standard Kitchen Partial | 0.474£0.063 | 0.427£0.116 | 0.0£0.0 | 0.0+0.0 | 0.053%0.075 | 0.163 % 0.054 | 0.087 +0.021
Demos ‘ 0.144 4 0.010 ‘ 0.174 +0.031 ‘ 0.023 £ 0.032 ‘ 0.023 £ 0.016 ‘ 0.052 + 0.033 ‘ 0.126 £ 0.016 ‘ 0.033 +0.011
Randomized Kitchen Mixed [0.057£0.019 | 0027£0.0 | 0.005%0.002 | 0.004 % 0.001 [0.057 + 0.026 | 0.105 % 0.016 | 0.009 = 0.004
Partial [0.072 £ 0.019 | 0.048 % 0.015 | 0.003 £ 0.005 | 0.001 £ 0.001 | 0.023 % 0.007 | 0.044 % 0.010 | 0.002 + 0.001
al-walk-v0 | 1,006 £ 0.015 | 0.962£0.007 | 0.068+0.112 | 0171 £0.033 (0519501078 | — [-
Locomotion al-run-v0 | 0.684 £ 0.026 | 0.932 +0.006 | —0.067 = 0.045 | ~0.206 % 0.086 [0.002£0.021 | - | -
al-hikingv0 | 0.956 = 0.004 | 0.935%0.003 | 0.0£0.004 | ~0.013 % 0.008 00030001 | - [-
wx-sorting-v0 [015240032 | 0021 £0016 | 00400 | 0.0+ 00 [0016£0022| 0041 | 0173
WidowX wx-sorting-pickplacedatav0 | 0.084 £0.048 | 0000 | 00+£00 | 0.0+ 0.0 | 00+£00 | 0081 | 025

Table 1: Offline evaluation of each task, dataset, and method. The numbers shown are the normalized returns
evaluated at the end of 500k gradient steps of offline training averaged over three random seeds. For the
Standard Kitchen and the Randomized Kitchen environments, the return corresponds to how many of the four
target objects are successfully manipulated over the course of an episode (ie: a score of 1.0 indicates that all
four objects were successfully manipulated). For the Locomotion and WidowX environments, the scores are
normalized between a random policy and an expert policy (ie: a score of O corresponds to obtaining the same
return as a fully random policy, and a score of 1 corresponds to obtaining the same return as the expert policy).
The expert policy is obtained by training an SAC agent online to convergence.

. | Method
Environment Task
| IQL | CQL | CalQL {Nakamotoetal]2023] | TD3+BC | RLPD (Ball etal]2023] | DDPM+BC | IDQL
Mixed | 0.123£0.102 | 00+00 | 0.0%0.0 | 0.067£0.066 | 0.139=0.075 | 0.200%0.029 | 0.020 0.008
Standard Kitchen Partial | 0.200£0.064 | 0.0£0.0 | 0.0£0.0 | 0.093 £ 0.059 | 0.221 +0.113 | 0177+ 0.022 | 0.087 £0.021
Demos | 02340017 | 0.0+00 | 0.023 + 0.016 [0.052+£0.033 | 0.001 +0.001 | 0.166 £ 0.029 | 0.033 +0.011
Randomized Kitchen ™ \cq™ | 025400 | 00£00 | 0.004 £ 0.001 [00570026 | 001120009 | 0.133=0.004 | 0.009 % 0.004
Partial | 0.0214+0.009 | 00400 | 0.001 £ 0.001 | 0.023 +0.007 | 0.0+ 0.0 | 0.0840.009 | 0.002 + 0.001
al-walk-v0 | 0.935+0.017 | 0.068£0.112 | 0.750 £ 0.027 | 0.030£0.003 | LOI6=0.005 | - | -
Locomotion P > - - Y -
al-un-v0 | 0.936 % 0.021 | —0.067 0.045 | 0.700 £ 0.066 | 0.110£0.091 | LOL1%0.007 | - | -
al-hiking-v0 | 0.927£0.014 | 0.0£0.004 | 0.368 £ 0.107 | 0.938£0.015 | L058=0.020 | — | —

Table 2: Offline-to-online evaluation of each task, dataset, and method. The numbers shown are the normalized
returns evaluated at the end of 500k additional gradient steps of online finetuning averaged over three random
seeds. See Table[T]for how normalized scores are computed.

Datasets: There are 2 tasks corresponding to the environments wx-sorting-v0 and wx-sorting-
pickplacedata-v0. Below, we provide a description of each.

1. Sorting: The first dataset comprises of data collected with a scripted policy that attempts sorting
both objects into their respective bins. The scripted policy with some likelihood places the object
in the correct bin if grasped and otherwise in the incorrect bin. In all, there are 2000 episodes
presented to the agent, which are mostly unsuccessful at solving the full task but consistently
solve the individual segments of the task in separate episodes.

2. Sorting with Pickplace Data: This dataset only comprises of transitions where the robot picks
any object and places it in its respective bin. The data is similar to the dataset above in that there
is a likelihood that the scripted agent places the object in the wrong bin. In all, there are 2000
episodes presented to the agent, solving the sorting task only partially.

6 BENCHMARK RESULTS

For each of the datasets in each of the domains, we evaluated a collection of recently proposed
offline RL algorithms, as well as methods designed for online RL training with offline data (either via
pretraining or joint training). We selected a range of algorithms that are meant to be representative
of various different types of approaches. Although our evaluation algorithms do not cover every
recent method (as there are many of them), we evaluated 8 separate algorithms, and we hope that in
collaboration with the community, we can include many more evaluation numbers as part of the DSRL
open-source repository. We chose CQL (Kumar et al.|[2020) as a standard representative example of a
pessimistic/conservative offline RL method, together with Cal-QL (Nakamoto et al., [2023)), a variant
of CQL adapted for online finetuning. To evaluate implicit TD backups, we include IQL (Kostrikov:
et al.l 2021)), as well as IDQL (Hansen-Estruch et al.,[2023)), a recent extension of IQL that utilizes
diffusion model policies. To evaluate BC-based regularization, we include TD3+BC (Fujimoto and
Gul 2021). We include RLPD (Ball et al., 2023) as a representative example of a joint training method

Under review as a conference paper at ICLR 2024

that runs online RL with prior data included in the buffer, and a behavioral cloning (BC) baseline as a
diagnostic of the average performance in the dataset.

The results for all of the offline RL methods are included in Table|[I] with results after online finetuning
included in Table[2] For completeness, we include RLPD in the offline results (using the same exact
algorithm but without online collection). The online results are obtained by finetuning the offline
value function and policy for each method, except for RLPD, where the online run is completely
separate from the offline one. Further details about the specific training setup, hyperparameters, and
number of update steps for each method are provided in Appendix B.

The results show that our proposed benchmark leaves considerable room for improvement for
current offline RL and online finetuning methods. A few particularly prominent challenges include
handling generalization and visual observations, and handling multi-stage tasks. When using image
observations for the Franka kitchen tasks, particularly the more complex randomized domain, we see
that many of the current RL methods struggle to exceed the performance of the simple behavioral
cloning policy, indicating significant difficulties in learning robust perception. When learning the
multi-stage WidowX tasks, we similarly see low performance, and in fact the naive BC policy
performs marginally better, again suggesting difficulties with scaling current RL methods into these
domains. We believe that these results indicate that our benchmark provides significant room for
improvement, and can drive development of more effective and scalable methods.

7 DISCUSSION

We introduced a new benchmark for offline RL and online training with offline data, which we call
D5RL. The aim of D5SRL is to provide coverage of a variety of offline RL and online finetuning
challenges, including different data compositions (scripted, human play-style data, and other sources),
different input modalities (images and state), and tasks that require varying degrees of stitching,
online finetuning, and generalization over initial state variability. Although the DSRL tasks are
designed primarily for iterating on RL algorithms, all of the DSRL tasks are also designed to be
reasonably reflective of real-world robotic tasks, with each environment containing a simulation of
a real-world robot (an Al quadruped, a Franka industrial arm, or a WidowX low-cost robotic arm)
based on the robot’s actual URDF, and tasks that reflect behaviors those robots might be expected to
carry out in the real world. We also conducted an investigation with a number of existing offline RL
and online finetuning methods to provide initial evaluation numbers with our benchmark, which we
hope the community will utilize to develop more effective algorithms.

While we believe our benchmark provides a significant improvement over existing offline RL bench-
mark tasks, many of which are either saturated due to recent algorithm developments or do not cover
as many of the problem dimensions as D5SRL, our benchmark does have several limitations. First,
we focus entirely on simulated robotics tasks. Such tasks are appealing because they cover complex
dynamics and visual perception, but many aspects that make RL difficult in other domains, such as a
high degree of stochasticity (e.g., in algorithmic trading) are absent in these domains. Benchmark
tasks that address such domains would be very valuable and complementary to ours. Second, while
our tasks reflect specific real-world systems, there is a limit to how realistic such simulated domains
can be. Of course real data would be a “gold standard” in realism, but evaluating policies trained
on real data would require either bridging the domain gap to simulation, or else using real physical
systems, both of which would require considerable engineering and slow down the iteration cycle for
algorithm developers. We therefore opted for a more conventional simulated evaluation to facilitate
fast algorithms development, but we also believe that a real-world counterpart to DSRL would be
valuable for the community. In conclusion, we hope that DSRL will serve as a new benchmark
task for development of offline RL and online finetuning methods, and that future work can address
some of the remaining blind spots of this benchmark to provide even comprehensive evaluations and
facilitate more broadly applicable algorithms.

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International Conference on Machine Learning, pages 104—114. PMLR,
2020.

Under review as a conference paper at ICLR 2024

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304-29320, 2021.

Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. International Conference on Machine Learning (ICML), 2023.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic
for offline reinforcement learning. In International Conference on Machine Learning, pages
3852-3878. PMLR, 2022.

Karl Cobbe, Oleg Klimov, Chris Hesse, Tachoon Kim, and John Schulman. Quantifying generalization
in reinforcement learning. In International Conference on Machine Learning, pages 1282—1289.
PMLR, 2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pages

2048-2056. PMLR, 2020.

MuJoCo Menagerie Contributors. MuJoCo Menagerie: A collection of high-quality simulation mod-
els for MuJoCo, 2022. URL http://github.com/deepmind/mujoco_menagerie.

Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann,
Thomas B McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset
of 3d scanned household items. In 2022 International Conference on Robotics and Automation
(ICRA), pages 2553-2560. IEEE, 2022.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International conference on machine learning,

pages 1329-1338. PMLR, 2016.

Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. Challenges of real-world reinforcement learning: definitions, benchmarks and
analysis. Machine Learning, 110(9):2419-2468, 2021.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Tain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures. arXiv
e-prints, art. arXiv:1802.01561, February 2018. doi: 10.48550/arXiv.1802.01561.

Kuan Fang, Patrick Yin, Ashvin Nair, and Sergey Levine. Planning to practice: Efficient online
fine-tuning by composing goals in latent space. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4076—4083. IEEE, 2022.

Kuan Fang, Patrick Yin, Ashvin Nair, Homer Rich Walke, Gengchen Yan, and Sergey Levine.
Generalization with lossy affordances: Leveraging broad offline data for learning visuomotor tasks.
In Conference on Robot Learning, pages 106-117. PMLR, 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132-20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pages 2052-2062. PMLR, 2019.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gémez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J] Mankowitz, Cosmin Paduraru, et al. Rl unplugged: A
suite of benchmarks for offline reinforcement learning. Advances in Neural Information Processing
Systems, 33:7248-7259, 2020.

10

http://github.com/deepmind/mujoco_menagerie

Under review as a conference paper at ICLR 2024

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019a.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long horizon tasks via imitation and reinforcement learning. Conference on
Robot Learning (CoRL), 2019b.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit g-learning as an actor-critic method with diffusion policies, 2023.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep g-learning from demonstrations. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Kyle Hsu, Moo Jin Kim, Rafael Rafailov, Jiajun Wu, and Chelsea Finn. Vision-based manipulators
need to also see from their hands. International Conference on Learning Representations (ICLR),
2022.

Christian D Hubbs, Hector D Perez, Owais Sarwar, Nikolaos V Sahinidis, Ignacio E Grossmann,
and John M Wassick. Or-gym: A reinforcement learning library for operations research problems.
arXiv preprint arXiv:2008.06319, 2020.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation. arXiv preprint arXiv:1806.10293,
2018.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. arXiv preprint arXiv:2110.06169, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60(6):84-90, 2017.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
g-learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32,2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179-1191, 2020.

Nicholas I-Hsien Kuo, Mark N Polizzotto, Simon Finfer, Federico Garcia, Anders Sonnerborg,
Maurizio Zazzi, Michael Bohm, Rolf Kaiser, Louisa Jorm, and Sebastiano Barbieri. The health
gym: synthetic health-related datasets for the development of reinforcement learning algorithms.
Scientific Data, 9(1):693, 2022.

Vladislav Kurenkov and Sergey Kolesnikov. Showing your offline reinforcement learning work:
Online evaluation budget matters. In International Conference on Machine Learning, pages
11729-11752. PMLR, 2022.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436-444,
2015.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

11

Under review as a conference paper at ICLR 2024

Xiao-Yang Liu, Ziyi Xia, Jingyang Rui, Jiechao Gao, Hongyang Yang, Ming Zhu, Christina Wang,
Zhaoran Wang, and Jian Guo. Finrl-meta: Market environments and benchmarks for data-driven
financial reinforcement learning. Advances in Neural Information Processing Systems, 35:1835—
1849, 2022.

Cong Lu, Philip J Ball, Tim GJ Rudner, Jack Parker-Holder, Michael A Osborne, and Yee Whye Teh.
Challenges and opportunities in offline reinforcement learning from visual observations. arXiv
preprint arXiv:2206.04779, 2022.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and Pierre
Sermanet. Learning latent plans from play. In Conference on robot learning, pages 1113-1132.
PMLR, 2020.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martin-Martin. What matters in learning from offline
human demonstrations for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discovering
and achieving goals via world models, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Yuexiang Zhai, Anika Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning.
ArXiv, abs/2303.05479, 2023.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pages 8162-8171. PMLR, 2021.

Tan Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for reinforce-
ment learning. arXiv preprint arXiv:1908.03568, 2019.

Rong-Jun Qin, Xingyuan Zhang, Songyi Gao, Xiong-Hui Chen, Zewen Li, Weinan Zhang, and Yang
Yu. Neorl: A near real-world benchmark for offline reinforcement learning. Advances in Neural
Information Processing Systems, 35:24753-24765, 2022.

Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, and Wolfram Burgard. Latent
plans for task-agnostic offline reinforcement learning. In Conference on Robot Learning, pages
1838-1849. PMLR, 2023.

Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and Sergey Levine. COG:
Connecting New Skills to Past Experience with Offline Reinforcement Learning. arXiv e-prints,
art. arXiv:2010.14500, October 2020. doi: 10.48550/arXiv.2010.14500.

Laura Smith, Ilya Kostrikov, and Sergey Levine. A walk in the park: Learning to walk in 20 minutes
with model-free reinforcement learning. ArXiv, abs/2208.07860, 2022.

Yuda Song, Yifei Zhou, Ayush Sekhari, J Andrew Bagnell, Akshay Krishnamurthy, and Wen Sun.
Hybrid rl: Using both offline and online data can make rl efficient. arXiv preprint arXiv:2210.06718,
2022.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026-5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

12

Under review as a conference paper at ICLR 2024

Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess,
Thomas Rothorl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations for deep
reinforcement learning on robotics problems with sparse rewards. arXiv preprint arXiv:1707.08817,
2017.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforcement
learning. arXiv preprint arXiv:1907.02057, 2019.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Cathy Wu, Aboudy Kreidieh, Kanaad Parvate, Eugene Vinitsky, and Alexandre M Bayen. Flow:

Architecture and benchmarking for reinforcement learning in traffic control. arXiv preprint
arXiv:1710.05465, 10, 2017.

Eliot Xing, Abhinav Gupta, Sam Powers*, and Victoria Dean*. Kitchenshift: Evaluating zero-
shot generalization of imitation-based policy learning under domain shifts. In NeurIPS 2021
Workshop on Distribution Shifts: Connecting Methods and Applications, 2021. URL https
//openreview.net/forum?id=DdglKo8hBg0.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pages 1094—1100. PMLR, 2020.

13

https://openreview.net/forum?id=DdglKo8hBq0
https://openreview.net/forum?id=DdglKo8hBq0

Under review as a conference paper at ICLR 2024

A ENVIRONMENTS

A.1 LEGGED LOCOMOTION

We construct the locomotion tasks using MuJoCo [Todorov et al.| (2012) and DeepMind’s
dm_control [Tunyasuvunakool et al.|(2020) suite, using the model of Unitree’s A1 quadruped from
MuJoCo Menagerie [Contributors| (2022). The robot only receives as input proprioceptive and goal
information. In particular, the robot’s observations consist of its root’s local forward linear velocity,
orientation (roll and pitch), angular velocity (roll, pitch, and yaw), and its (12) joint angles and veloc-
ities. We also append the previous action applied. For the hiking task, we include the displacement
vector between the robot to the next waypoint along the hiking path. The reward function is a simple
locomotion reward that encourages a particular velocity to be tracked, subject to penalties on the
body’s angular velocity. For exact details on the reward function, we refer to Section IV.B of |Smith
et al.| (2022). The robot’s actions are PD targets for the 12 joints.

A.2 STANDARD FRANKA KITCHEN MANIPULATION ENVIRONMENT

For the Standard Franka Kitchen Manipulation environment, we make some slight modifications
to the Franka Kitchen environment from |Gupta et al.| (2019a) (RPL). The RPL Franka Kitchen
environment requires controlling a simulated 9-DOF Franka Emika Robot to manipulate a set of four
pre-defined objects into a desired configuration. At each timestep, a reward of 1.0 is given for each
object that is in the correct configuration, with the maximum reward possible at each timestep being
4.0. The action space is joint-space control commands to the robot.

We modify the original camera angle of the RPL environment to be the camera angle used in the
LEXA benchmark (Mendonca et al.,|[2021). Additionally, we add a wrist camera. We render both
cameras at 128x128 resolutions. The observation space consists of two RGB images from the two
cameras concatenated together, plus robot proprioception.

We also utilize frame stacking in our experiments. This amounts to stacking the previous three images
along the channel dimension, allowing the agent to have a short history of observations from which it
can estimate movement and velocity, as done in (Mnih et al., [2013).

A.3 RANDOMIZED FRANKA KITCHEN MANIPULATION ENVIRONMENT

The Randomized Franka Kitchen Environment modifies the “Kitchenshift” domain Xing et al.|(2021)),
which is itself a heavily modified version of the RPL Kitchen environment. The Randomized Kitchen
environment includes a large degree of domain randomization and visual diversity. At the start of
each episode, the initial positions of the objects are randomized, as well as textures and lighting
conditions. The specific types of objects are randomized too (eg: one type of kettle can be switched
for a differently shaped type of kettle). The underlying tasks and rewards are the same as in the
Standard Kitchen Environment. The action space is the same as in the Standard Kitchen environment.

We use three RGB cameras (two side cameras and one wrist camera), each rendered at a resolution
of 128x128 pixels. Robot proprioception is also included in the observation space. Similar to the
Standard Kitchen environment, we use a frame-stacking wrapper around the Randomized Kitchen
environment to maintain a history of 3 images.

A.4 MULTI-STAGE MANIPULATION WITH SCRIPTED DATA

The multi-stage bin sorting task is an environment constructed using the DeepMind’s dm_control, a
software stack utilized for physics-based Simulation and RL environments. The WidowX 250 was
specified with an XML file which includes information about the robot’s joints with respect to their
sizes and weight. A position-based controller was used for the robot, where a specified action was
indicated as a change in robot position. This controller was a PID-based controller. The objects and
containers were sourced from Google’s Scanned Object Dataset (Downs et al., 2022), which contains
photo-realistic 3D object models. From here, we selected 2 identical bins as containers and a set of
objects that lie in two categories: toys and shoes. The objects were scaled to be graspable by the
robot and fit in the container and are placed in the scene in any orientation (random quaternion). The

14

Under review as a conference paper at ICLR 2024

background was a static tabletop where the robot, containers, and objects were all placed as seen in
Figure[4]

15

Under review as a conference paper at ICLR 2024

B DATASETS

We summarize the datasets, their construction and composition, for each of the tasks (organized by
environment).

B.1 LEGGED LOCOMOTION

We trained 3 Als with the goal of tracking 3 speeds: 0.5, 0.8, and 1.0 m/s using RL (with the same
inputs and reward function as described in[Appendix A). We then consolidated their replay buffers and
relabeled them as if their goal was to track speeds of 0.75m/s and 1.25m/s for the Interpolate Speed
and Extrapolate Speed tasks, respectively. For the Hiking task, we trained a direction-conditioned
policy using RL, again with the same observation and action space.

B.2 STANDARD FRANKA KITCHEN MANIPULATION ENVIRONMENT

For our experiments we re-render the original RPL datasets (Gupta et al.||2019a) with the two cameras
described in section[A.2] We add in proprioception to the observations, which consists of the 9 joint
angles of the robot arm. The dataset contains 563 trajectories, with 128, 569 total transitions. The
average undiscounted episode return is 261.12, and the average number of objects manipulated per
episode is 3.98.

B.3 RANDOMIZED FRANKA KITCHEN MANIPULATION ENVIRONMENT

We collected three distinct datasets for the Randomized Kitchen environment using tele-operation:
Demonstrations, Play, and Sub-Optimal Expert. The differences between these datasets are described
in Section [5.2.2] The Demonstrations dataset contains 500 total trajectories, with 250, 500 total
transitions. The average undiscounted episode return is 1148.78, and the average number of objects
manipulated per episode is 4.0. The Play dataset contains 1, 000 total trajectories, with 501, 000 total
transitions. The average undiscounted episode return is 870.50, and the average number of objects
manipulated per episode is 3.62. The Sub-Optimal Expert dataset contains 500 total trajectories,
with 250, 500 total transitions. The average undiscounted episode return is 911.70, and the average
number of objects manipulated per episode is 3.55.

B.4 MULTI-STAGE MANIPULATION WITH SCRIPTED DATA

For the Multi-Stage Bin Sorting Task, we used hand-engineered scripted policies. These scripted
policies used information such as the position of the object as well as containers to solve their
respective tasks of interest. These scripted policies were given a time horizon of 500 to solve this task.
For the pick and place task, the scripted policies were constructed to randomly select one of the two
objects in the scene to grasp. 70% of the time, the policy moved the object toward the correct bin.
Other times, the object was directed to the incorrect bin (mimicking a scenario that the object was
misclassified and sorted into the incorrect bin). For the sorting task, the scripted policy completed
both stages of the task by picking and placing each object in succession. Our scripted policies are
inspired by the procedure used in COG (Singh et al.| 2020).

16

Under review as a conference paper at ICLR 2024

C BASELINES

C.1 ARCHITECTURE DESIGN CHOICE

For tasks that require learning from visual observations, we utilize the Impala architecture for our
experiments. For the actor and critic, the network backbone we used the architecture is found in
Impala (Espeholt et al. [2018). For environments that relied on multiple camera viewpoints such
as the Franka Kitchen environments, image observations were frame-stacked and passed into the
network. The output of the neural network was flattened and passed through an MLP to construct
the actor and critic networks for each method. For environments with a proprioceptive state, this
observation was concatenated to the flattened output of the network, prior to being passed through
the MLP network.

C.2 METHODS + IMPLEMENTATION DETAILS

. . Hyperparameters IQL
Here we describe the prior methods we evaluate and de- . 05.07.09.095
scribe task-specific implementation details. actor architecture " Impala
s . critic (Q/V) architecture Impala
I_QL (Kostrikov et a!., 2021) For the 1mplementa— actor learning rate Lo
tion of IQL, we modify the open source implemen- critic (Q/V) learning rate 3e-4
tation of IQL found in https://github.com/ batch size 64

ikostrikov/jaxrl2. The hyperparameters utilized

for both methods can be found in TableE} During training, Table 3: Hyperparameters for IQL. We
we utilize the data augmentations of color jitter and random primarily utilize the default hyperparameters
crops as proposed in DrQ (Kostrikov et al., 2020) which as prescribed in the paper and sweep over
allows for better generalization. the expectile 7.

CQL (Kumar et al.,2020) and CalQL (Nakamoto et al.,

2023) For the implementation, we modify the open source

implementation of CQL found in https://github.com/ikostrikov/jaxrl2| for CQL
and CalQL. The hyperparameters utilized for both methods can be found in Table 4| During training,
we utilize the data augmentations of color jitter and random crops as proposed in DrQ (Kostrikov
et al.| [2020) which allows for better generalization. For CalQL, the lower bound was computed with
the Monte-Carlo returns calculated using the rewards of the collected demonstrations, following the
recipe in Nakamoto et al.[(2023).

TD3 + BC (Fujimoto et al.,|2019) TD3+BC is an offline
RL method that modifies an online RL method for the of-
fline regime by simply adding a BC term to encourage
the policy to resemble the behavior policy. For pixel-

Hyperparameters CQL and CalQL
« (online + offline) 0.1, 1,5, 10

X . actor architecture Impala
based experiments, we use the open-source implementa- critic architecture Impala
tion found in https://github.com/ikostrikov/ actor learning rate le-4
jaxrl12| For state-based experiments, we use the authors’ critic learning rate 3e-4
implementation at: https://github.com/sfujim/ baich size o4
TD3_RCl

Table 4: Hyperparameters for CQL and
RLPD (Ball et al., 2023) RLPD is a method for online CalQL. We primarily utilize the default hy-
RL with access to offline data that has demonstrated state- perparameters as prescribed in the paper and
of-the-art results on tasks designed to evaluate fine-tuning sweep over the constant c.
from offline RL pre-training; therefore, we include it as a
main baseline for the fine-tuning regime. For ‘fine-tuning’
evaluation, we evaluate RLPD as designed, i.e., without pre-training. For offline evaluation, we
adapt RLPD to only sample from the offline data. We use the implementation by the authors open-
sourced at: https://github.com/ikostrikov/rlpd| and use the default hyperparameters
as prescribed in the paper for all environments. For the Standard Kitchen and Randomized Kitchen
environments, we used an Impala network architecture for the policy and critic network encoders.

DDPM + BC For the implementation of DDPM+BC, we modify the implementation of the be-
havior cloning policy from IDQL (Hansen-Estruch et al.,[2023) from |https://github.com/
philippe-eecs/IDQL. This involves attaching the convolutional encoder used to the architec-

17

https://github.com/ikostrikov/jaxrl2
https://github.com/ikostrikov/jaxrl2
https://github.com/ikostrikov/jaxrl2
https://github.com/ikostrikov/jaxrl2
https://github.com/ikostrikov/jaxrl2
https://github.com/sfujim/TD3_BC
https://github.com/sfujim/TD3_BC
https://github.com/ikostrikov/rlpd
https://github.com/philippe-eecs/IDQL
https://github.com/philippe-eecs/IDQL

Under review as a conference paper at ICLR 2024

ture proposed in IDQL (layernorm + resnet). During training, we use data augmentations as proposed
in DrQ (Kostrikov et al.,|2020) which improve generalization.

Furthermore, instead of using the variance preserving schedule as used in IDQL, we use the cosine
schedule (Nichol and Dhariwall [2021)) and 7" = 20. All other hyperparameters for the diffusion
process and trunk architecture are the same as in IDQL. While we train for 2 gradient million steps,
we recommend training for longer as the diffusion objective takes longer to train.

IDQL (Hansen-Estruch et al., 2023) The IDQL implementation combines the IQL implementation
with the DDPM+BC implementation. After training the ()-function using Pixel IQL and the diffusion
behavior policy using DDPM+BC, we combine the two during inference and sample the diffusion
policy N times and select the action that receives the highest ()-value. We use N = 64 as from
IDQL, but we recommend tuning this hyperparameter as to avoid potential OOD samples.

18

	Introduction
	Related Work
	Preliminaries and Background
	Challenges in Offline RL Evaluation
	D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning
	Legged Locomotion
	Franka Kitchen Manipulation Environment
	Standard Franka Kitchen Environment
	Randomized Franka Kitchen Environment

	Multi-Stage Manipulation with Scripted Data

	Benchmark Results
	Discussion
	Environments
	Legged Locomotion
	Standard Franka Kitchen Manipulation Environment
	Randomized Franka Kitchen Manipulation Environment
	Multi-Stage Manipulation with Scripted Data

	Datasets
	Legged Locomotion
	Standard Franka Kitchen Manipulation Environment
	Randomized Franka Kitchen Manipulation Environment
	Multi-Stage Manipulation with Scripted Data

	Baselines
	Architecture Design Choice
	Methods + Implementation Details

