Neuro-Spectral Architectures
for Causal Physics-Informed Networks

Arthur Bizzi'*, Leonardo Moreira®, Marcio Marques?, Leonardo MendoncaZ?,

Christian Oliveira2, Vitor Balestro?, Lucas Fernandez*, Daniel Yukimura?,

Pavel Petrov?, Jodo M. Pereira®, Tiago Novello?, Lucas Nissenbaum?

Ecole Polytechnique Fédérale de Lausanne (EPFL), 2Instituto de Matemética Pura e Aplicada (IMPA),
3Universidade do Estado do Rio de Janeiro (UERJ), “Laboratério Nacional de Computacdo Cientifica (LNCC),
SUniversity of Georgia (UGA)

Abstract

Physics-Informed Neural Networks (PINNs) have emerged as a powerful frame-
work for solving partial differential equations (PDEs). However, standard MLP-
based PINNSs often fail to converge when dealing with complex initial value
problems, leading to solutions that violate causality and suffer from a spectral
bias towards low-frequency components. To address these issues, we introduce
NeuSA (Neuro-Spectral Architectures), a novel class of PINNS inspired by classi-
cal spectral methods, designed to solve linear and nonlinear PDEs with variable
coefficients. NeuSA learns a projection of the underlying PDE onto a spectral
basis, leading to a finite-dimensional representation of the dynamics which is then
integrated with an adapted Neural ODE (NODE). This allows us to overcome
spectral bias, by leveraging the high-frequency components enabled by the spectral
representation; to enforce causality, by inheriting the causal structure of NODEs,
and to start training near the target solution, by means of an initialization scheme
based on classical methods. We validate NeuSA on canonical benchmarks for lin-
ear and nonlinear wave equations, demonstrating strong performance as compared
to other architectures, with faster convergence, improved temporal consistency
and superior predictive accuracy. Code and pretrained models are available in
https://github.com/arthur-bizzi/neusal

1 Introduction

The introduction of Physics-Informed Neural Networks (PINNs) [[1]] has sparked interest in using
neural networks to solve partial differential equations (PDEs) [2} 13 4]]. PINNs enable data-efficient
modeling of complex systems by embedding physical laws directly into the loss landscape. This
approach has opened new possibilities in scientific computing, with applications spanning a wide
range of subjects, including fluid dynamics and climate modeling [5, [6], biomedical simulations
[7, 18], material science [9} [10} [11], and others [12| 13} [14} [15 [16]. We consider the following
initial-boundary value problem for ¢ € [0,7] and x € Q C R%:

d

au(ux) =F (t,x,u,Vu,VVu), u(0,x)=ug(x) €))
where u : [0,7] x Q — R™ denotes the (vector-valued) solution, Vu and VVu denote its first-
and second-order spatial derivatives, and F is a smooth function. ug(x) is the initial condition
(Cauchy data), and we assume some boundary conditions are imposed on J€2. PINNs consist of

*Corresponding author: arthur.coutinhobizzi @epfl.ch

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/arthur-bizzi/neusa

Relative L2 Error

GT PINNs Qres FLS PINNsFormer ~ NeuSA (ours)

1.00 e PINNS
Qres
— FLS
. 0.00 —— PINNsFormer
102 —— NeuSA (ours)

1014

L2 Error

rMSE 0.5468 0.1978 0.3885 1.4231 0.1296 10714

(IJ 2.":0 S(I)O 750 10‘00 12‘50 15‘00
Training time (s)
Figure 1: We present NeuSA, a theoretically grounded Physics-informed neural architecture. On
the left, we compare various models on a wave propagation problem. The dashed lines represent
the discontinuities of a stratified heterogeneous medium. NeuSA achieves the lowest relative error
(rMSE) and most accurately preserves sharp wavefronts and reflections. On the right, we show the
evolution of the relative L2 error during training. NeuSA converges more rapidly and consistently.

0-parametrized coordinate networks uy : [0, 7] x € — R™, trained to approximate the solution u by
minimizing a composite physics-informed loss function £(6). This loss typically includes terms for
the PDE as well as for the initial/boundary data, e.g.,

d 2
Lppe(0) = Hdtue(t, x)—F (t,x,u9, Vug, VVwy)|| , Lic(0)=Aic ||ue(0,x)—u0(x)\|§ , (2

2
where || - ||2 denotes the regular norm in L?([0,T'] x ©), and Aic is the weight for the associated

residue term (a term Lpc representing boundary conditions could be also included). PINNs thus
provide a flexible, data-driven, and meshless framework for approximating PDE solutions using
neural networks.

Data-Driven. As neural networks, PINNs are particularly suited for handling heterogeneous, noisy,
or incomplete measurement data, which can be efficiently combined with physical priors via physics-
informed losses [14} 15,17, (18, [19]].

Mesh-Independence. As coordinate networks, PINNs represent continuous interpolations of the
underlying solutions and may be evaluated at arbitrary spatial or temporal coordinates. In higher-
dimensional problems, this property can be combined with random sampling strategies to substantially
reduce the number of samples needed to approximate the solution [20, 3].

However, standard PINNs often struggle to enforce fundamental structural aspects of the underlying
solutions. In most cases, they rely on general-purpose feed-forward architectures, such as the standard
Multi-Layer Perceptron (MLP) [21]], or on specialized MLP-based variants that enhance expressivity
through activation-function modifications, including QRes [22], FLS [23]]. This generic structure
design often leads to issues related to spectral bias, causality and limited generalization capacity:

Spectral Bias. Regular coordinate networks based on sigmoid or rectifier activations often struggle to
represent high-frequency components, leading to issues with representing detailed and/or multi-scale
solutions [24}25]. This effect is often mitigated with Fourier-Feature (FF) layers, sinusoidal encoder
layers designed to inject high-frequency representations into a network’s architecture [26]]. Still, FF
layers require fine-tuning to avoid overfitting and noise.

Causality. PINNs are notorious for violating causality and temporal consistency due to their
simultaneous training over the entire time domain [17]. These issues may manifest in the form of
incorrect initial conditions or non-physical convergence to trivial solutions. Attempts have also been
made to minimize these effects with modified losses [[17,[19].

Generalization Capacity. MLP-based PINNs may struggle with extrapolation beyond their training
domain [27, [28]], which has been tackled with alternative training strategies [29]].

Due to these issues, PINNs often fail to converge to the true solution when solving complex time-
dependent problems. Instead, they may overfit and converge to trivial equilibrium solutions. Such
shortcomings are common when solving problems with strong time dependence, as evidenced by
their relative lack of success when applied to linear and nonlinear wave equations [12} 30} 31]. This
stands in stark contrast to PINNs’ capacity for solving parabolic and elliptic equations [32].

We propose NeuSA a new family of Neuro-Spectral Architectures designed for solving space-
inhomogeneous and/or nonlinear time-dependent PDEs. NeuSA uses the spectral decomposition to
obtain a method-of-lines [33}34] discretization of a PDE into a large system of ODEs, which is then
modeled using a Neural ODE (NODE) [35] (see|Figure 2)). [Figure 1|showcases NeuSA’s results on a
2D wave propagation task, demonstrating significant improvements over prior methods in accuracy,
speed, and temporal consistency. Our contributions may be summarized as follows.

* Causality. NeuSA is a spectral-method-based architecture for neural PDEs, such as [36].
Consequently, it inherits the causal structure of classical methods, including exact initial
conditions and uniqueness, while retaining a data-friendly, mesh-less representation.

* Spectral fidelity. The choice of global spectral bases allows NeuSA to overcome the spectral
bias commonly attributed to MLP-PINNSs, offering a theoretically-motivated alternative to
Fourier-Feature Networks.

* Analytical initialization. The interpretable structure of NeuSA as a neural extension of
spectral methods enables specialized initialization schemes in which networks are initialized
as the solution of closely related linear homogeneous problems, at no training cost.

o Time-extrapolation. Due to its causal formulation, NeuSA displays strong time-extrapolating
performance, enabling simulation beyond training intervals.

b(x)
Figure 2: Neuro-Spectral Architecture. Above: The spectral coefficients for the initial conditions
1(0), flowing according to a NODE. Below: The spatial input x being encoded into the spectral basis
functions b(x). Coefficients and bases are then combined to yield the final result.

1.1 Related work

Several works have explored designs for physics-informed neural machine learning, including a
large body of literature on operator learning [37, 28]. Multiple recent works on Physics-Informed
Networks propose alternative architectures for representing solutions, enhancing their expressiveness,
spectral representation, or temporal coherence.

Quadratic Residual networks (QRes) [22]] introduce a class of parameter-efficient neural networks
by incorporating a quadratic term into the weighted sum of inputs before applying the activation
functions at each layer of the network. This modification enables QRes to approximate polynomials
using shallower networks, resulting in compact yet expressive models.

First-Layer Sine (FLS) [23]], also referred to as sf-PINN, introduces sinusoidal encoding layers within
the PINN framework. FLS nets utilize sinusoidal encoding layers, in an approach closely analogous
to that of Fourier-feature networks, to mitigate spectral bias and enhance input gradient distribution.

PINNsFormer [4] adapts the transformer architecture to the PINN setting, leveraging attention
mechanisms to model temporal dependencies among state tokens, with the goal of achieving enhanced
temporal consistency.

Neural Ordinary Differential Equations (NODEs) [35]] are a class of ‘continuous-depth’ residual
networks that model inference as the integration of a continuous-time process, effectively solving
an ODE whose dynamics are parameterized by a neural network. NODEs have proven powerful
for modeling continuous-time dynamics and have been applied to physics-informed learning, gen-
erative modeling, time-series forecasting, and morphing [38}, 139} 140} |41} |42| |43]]. However, their
highly sequential numerical structure makes them equivalent to ultra-deep residual networks, which
can significantly slow down training. As a result, their application to PDEs remains relatively
underexplored [44]].

2 Neuro-spectral architectures

Neuro-Spectral architectures are defined as models that employ spectral decomposition to reduce a
PDE defined over an infinite-dimensional space to an ODE system in finite dimensions, subsequently
training a NODE to approximate the latter using a physics-informed loss. This formulation interprets
(T) as an abstract Cauchy problem over the Hilbert space L%((2)", treating the solution u(t, -) as
a time-parametrized family u : R — L2(Q2)". The spectral decomposition [45, 46, 47] consists
of approximating u(x, t) by its projection onto the subspace spanned by a finite subset b(x) of an
orthonormal basis of L2(£2)™. Given a truncated spectral representation with harmonics c1, ¢z, . . . , ¢4,
the solution u can be expressed in terms of an expansion over elements of the basis tensor b(x) :
) — Cerxxed whose coefficients form a tensor u(t) : [0, 7] — Co > *¢*" eading to

0= Db, () = | uttxbuxx @

Where k denotes a d-dimensional multi-index, @ (¢) : [0,7] — R™ and by (x) : 2 — R represent
the £—th indexed element in G and b, respectively. Substituting (3) into (1) leads to a method-of-lines
[33,134] discretization, resulting in an ordinary differential equation for the coefficients:
d .
=F

=T,)

where F' : CorXrxcaxn _ CexxXeaxm ygually does not admit a simple closed-form expression

for a general basis b. Instead of deriving it explicitly, we learn Fasa parameterlzed network Fg
Inference in a Neuro-Spectral model then proceeds as follows (see and [48])):

1. Project the initial conditions onto an orthonormal basis. Sample the initial conditions u(0, x)
densely and extract their spectral representation 1 in terms of the basis b: u(0,x) = 3, 1z (0)bs(x)

2. Integrate coefficients in time according to a NODE. Use the coefficients tensor i as input to a
NODE with vector field Fy and integrate it with a high-order method: Gy (¢) =0(0)+ fot Fo(a(r))dr.

3. Reconstruct the solution and perform training. Multiply the obtained coefficients Gg (t) by
their corresponding basis functions by, (x) to obtain u(¢, x). This representation can be differentiated
analytically to compute physics-informed losses: ug(t,x) = >, g 1 (t)b(x).

2.1 Spectral decomposition and initialization

The choice of the basis b can enforce specific properties of the solution, as well as ensure the
fulfillment of the given boundary conditions. In this work, we initialize b as the Fourier basis
and its odd and even extensions in terms of the sine and cosine functions. This choice enables the
representation of homogeneous periodic, Dirichlet, and Neumann boundary conditions for rectangular
domains. The spectral projection i can then be computed in several ways, depending on how the
spatial domain is sampled (see[Appendix B). We adopt the Fourier basis for two main reasons: first,
to overcome spectral bias, inspired by the success of Fourier-Feature layers; and second, to allow
for the simple and accurate representation of linear translation-invariant (LTT) differential operators
as scalar multipliers [49]. We use the latter to implement an improved initialization scheme for the
NODE, described as follows.

Figure 3: Inference in a Neuro-Spectral model. The initial conditions are decomposed into their
spectral coefficients, which are propagated in time via a NODE. The time-iterated coefficients are
then reconstructed into the solution at later times.

1. Linearize the PDE. Extract a linear translation-invariant approximation for F:

d d d?
—u & Fjpear (1, Vu, VVu, ...) := gou + zl: a”chiu + ; agijmu +el (5

dt

2. Fourier multiplier. Derive the associated Fourier multiplier M € Cc1*¢2*xc¢ax" defined as an
element-wise polynomial on the k-th Fourier frequency corresponding to the k-th harmonic:

d d . N
%u%Flinear - %UQMQU, (6)

where © stands for the Hadamard (element-wise) product.

3. Initialize the vector field F'y. Initialize NODE near this approximate linear solution by augmenting
the learned vector field with the analytical multiplier:

Fo() = (M © 1) + eFy(), @
where Fy () is a neural network initialized with mean zero and unit variance, and ¢ is a small
parameter. In this way, the network starts close to the solution of the associated LTI problem, serving
as a strong prior for training. During optimization, Fy learns a compact representation for the
non-linear and/or non-translation-invariant dynamics, effectively leading to a neural generalization of
the classical spectral method. See Section [3]for explicit examples, and Appendix [B.2]for the detailed
architecture of F6.

2.2 Neural ODE, time integration and causality

As discussed, neuro-spectral models rely on a NODE to propagate the spectral coefficients forward in
time. The vector field to be integrated over as part of inference is composed of the near-analytical
initialization discussed above along with a multilayer perceptron Fy:

d. - . N .
7 =Fp(d) = M © 0+ eFg(d). ®)
The NODE receives as input a tensor of size 1 X ¢; X ¢2 X -+ X ¢4 X n, corresponding to the first
time-slice of the solution, and outputs #smpies slices in the form of a tensor of shape tgmples X €1 X
cg X -+ X c¢g X n. This special treatment of the time dimension, characterized by the sequential
nature of integration, is what equips NeuSA with causal structure. In fact, it is possible to prove

NeuSAs are flows [50, 51]], as summarized in the following theorem:

Theorem 1. For band-limited initial conditions uy and globally Lipschitz neural vector fields Fo,
the orbits created by NeuSA satisfy the initial conditions and uniqueness:

1. fulfillment of initial conditions: ug(0,x) = u(0,x);
2. uniqueness: up(0,-) #u3(0,") = uj(t,-) #u3(t,-) Vtel[0,T].

A more detailed exposition of this theorem as well as its proof may be found in[Appendix A] It is, in
essence, a result of the properties of flow operators for ODEs combined with the uniqueness of the
spectral decomposition for band-limited functions. This holds by construction, regardless of training.

2.3 Losses and training

Training NeuSA is similar to training a common MLP-PINN. The main difference is that we can no
longer differentiate directly with respect to time, as it is no longer an input coordinate; it is instead
implicitly encoded as the time-steps for the NODE iteration. Nevertheless, time and space derivatives
may be calculated in a straightforward manner:

d d
fug (t,x) ZFH g (£)bg(x), aug(t,x):Zﬁ@,k(t)ab,{(x),)
3 k 3

where by construction Fg (1) (t) = 4 {19 1. (t). Note that the cost of calculating derivatives does not
increase meaningfully for higher-order spatial derivatives, as opposed to the exponential increase in
computational cost incurred by naively stacking derivatives with autograd [52]]. We may then sample
the domain €2 and evaluate the associated Physics-Informed residue with

Lppg (0 Z Z

t;€[0,T] x; €Q

2

g (ts, x;) — Pt %, ug, Vg, VV3)|| (10)
2

where ¢; denotes the i-th integration time step for the NODE and x; denotes the coordinates at
the j-th spatial sample point. Note that NeuSA automatically complies with initial and boundary
conditions and therefore does not require loss terms for them.

Note that neither time nor space samples need to be uniformly distributed; nevertheless, space samples
must remain constant across all times for each pass, as opposed to conventional PINNs. This comes
at the advantage that a single forward pass is necessary to evaluate the loss over all samples, as
opposed to the multiple passes needed for common PINNs. This will allow NeuSA architectures to
achieve training speeds comparable to those of purely neural approaches, despite their reliance on
computationally intensive NODE integration.

3 Experiments

We evaluate NeuSA on boundary and initial value problems for three PDEs: the 2D wave equation,
the 2D Burgers’ equation, and the 1D nonlinear sine-Gordon equation. In all cases, we address
the forward (direct) problem, where the models are trained to learn approximate solutions given
known conditions. We compare the performance and accuracy of NeuSA against several established
MLP-based PINN architectures: the original PINN [l1]], QRes [22], FLS [23]], and PINNsFormer [4].

Training setup. NeuSA and all baseline models are implemented in PyTorch [S3]]. The baseline
configurations follow the setups described in PINNsFormer [4]] and RoPINN [3]]. PINN, QRes, and
FLS are initialized using Xavier initialization [54]], with the hyperbolic tangent as the activation
function (except for the first FLS layer, which acts as a Fourier feature mapping [55) 26]). All
remaining hyperparameters were tuned to achieve the best performance for each model (e.g. weights
for the initial and boundary condition losses). For the NODEs used in NeuSA, we adopt the
implementation given by the TorchDyn library [56]. The vector fields Fy are modeled as MLPs with
dimensionwise layers (see Appendix with two hidden layers, ReL.U activations, and Glorot
initialization, and are integrated using a fourth-order Runge—Kutta solver. Gradients are computed
via standard backpropagation through the ODE solver.

Training is performed using the Adam optimizer [S7]. NeuSA’s strong architectural priors enable the
use of larger learning rates compared to the baseline models, which are trained with the recommended
rate of 1072 (see §6.1 of [58])). All baseline models exhibited reduced performance when trained with
learning rate 10~2, due to instability. Each experiment was run several times, and the mean of each
evaluation metric was reported. To evaluate model accuracy, we consider the standard rMSE (relative
mean squared error, also called the relative Lo error) and tMAE (relative mean absolute error, also
called the relative Ly error) metrics. The ground-truth solution for each problem is obtained with
high accuracy numerical solvers (see[Appendix C). Experiments were executed on an Nvidia RTX
4090 GPU (24 GB VRAM). Results are summarized in[Table 1]

Additional details and extended results for each experiment are provided in[Appendix C| and additional
experiments exploring NeuSA’s training and inference time may be found in Appendix D.

3.1 Wave equation: 2D Layers, 3D Layers and Marmousi

As our first benchmark, we consider an initial-value problem for the linear wave equation in an
infinite heterogeneous medium, a canonical problem in acoustics, seismics, and electromagnetism,

[59.160. (611

2 x|2
%u = %(x)Au, u(x,0) = exp (H) ; ﬁu(x, 0)=0, (11)
where A denotes the Laplacian in the spatial dimensions, ¢ = 0.1, and ¢ denotes the material-
dependent wave speed. This material heterogeneity leads to wave reflection and refraction at the
interfaces between layers. We evaluate NeuSA in three scenarios of increasing complexity: the 2D
wave equation for an environment with three horizontal layers (hereafter referred to as 2D Layers),
the 3D wave equation in a medium with two horizontal layers (here referred to as 3D Layers), and
the 2D Marmousi model. In all cases, the spatial domain is truncated to [—2,2]% for d = 2, 3. This is
a valid approximation to the infinite domain scenario as long as the propagating waves do not reach
the domain boundaries.

For the 2D Layers and 3D Layers cases, the propagation medium consists of three and two horizontal
layers, respectively. Such simplified test problems are frequently found in seismic datasets [62]. The
Marmousi reservoir model [63] is a canonical benchmark with highly complex stratified medium in
two dimensions, containing folds of rocks and an overlying water layer [64]. Images depicting both

2D media may be found in

For NeuSA, we initialize the neural vector field near the solution of the homogeneous wave equation
and constrain Fy to take a low-rank form, as detailed in[Appendix B] The model is trained for 2,000
steps, using 2019 basis elements and integrated over 201 time steps. The baseline models are trained
for 20,000 steps, using 10,000 random collocation points for the PDE and 1,000 points for the initial

conditions. See for an image depicting the results obtained for the 2D Layers and [Figure 4]
for the Marmousi reservoir. The results obtained for the 3D Layers case are presented in[Appendix C

Ground-Truth PINN FLS QRes NeuSA

(]

@ @®@ ® o0 o |

1

- 0.10
0.05

al 0N T\ \ /3 g

— \ L / \ () ‘ / 0.00 %_

! —— :

—-0.05

— — -
v -0.10
2 - + 4
1 N G I h AN . ‘ -0.15
= ‘\ — ’ \\ ‘-‘/
rMSE 0.6310 0.7186 0.4451 0.1355

Figure 4: Results for the wave equation over the Marmousi benchmark. NeuSA is able to achieve a
solution that is much closer than reference methods to the ground truth.

3.2 Sine-Gordon equation

In this example, we consider the 1D sine-Gordon (s-G) equation, a generalized nonlinear wave
equation that has applications in soliton collisions and inverse scattering [65]. Consider the problem

9’u 9%*u) 1 |x|2 0
9 10sin(u), wu(0,x) = o exp (—0> , au(x,O) =0, (12)

with (x,t) € [—4,4] x [0, 3], zero-Dirichlet boundary conditions at x = +4, and o = 0.1.

For the numerical experiments, NeuSA is trained with 201 frequencies and 201 time steps, using
1,000 steps with a learning rate of 0.01. The PINN, QRes, and FLS models are trained on a regular
grid of dimension 201 x 201, while a 101 x 101 grid is considered for the PINNsFormer model.
All models other than NeuSA were trained for 10, 000 Adam steps. The computational results are

visualized in

—— Ground-truth
PINNsFormer

—— FLS

—— PINN

— QRes

== NeuSA (ours)

0.5

0.0

-0.5

-1.0

0.02

0.01 0.00
0.00 A 0.05

—-0.05

Error

—0.01 A 0.00

-0.024

-=0.1
010 -0.05
-0.034
~0.04 -0.15 -0.10
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Figure 5: Results from the sine-Gordon equation. Above: the solution versus the ground truth. Below:
the residues between them. NeuSA is both faster and more accurate than the baselines.

3.3 2D Burgers’ equation

We address a 2D generalization of Burgers’ equation, commonly used as a benchmark in computa-
tional fluid dynamics [66] to model the development of two-dimensional shocks [[67]]. We consider
the initial-boundary value problem

—u=-u-Vu+vAu, u(x,0)= (sin(rz;)sin(rzs),cos(rz1)cos(rzs)). (13)

ot

where u = (u(x,t),v(x,t)), (x,t) € [0,4]*x [0, 1], and v = 0.01, and periodic boundary conditions
in x are assumed.

NeuSA is trained for 200 steps using 201 x 201 components over 201 time steps, with a vector field
initialized near the solution of the corresponding heat equation. The baseline models are trained for
20,000 steps, using 10,000 collocation points for the PDE, 1,000 for the initial condition, and 500 for
the boundary condition.

We conducted an additional experiment on Burgers’ equation to assess our method’s ability to
extrapolate the approximated solution in time beyond its training interval. All models were trained
on the interval [0, 1] and then evaluated on the extended interval [0, 2]. We analyzed performance in
successive time instants, quantifying how prediction accuracy degrades as the time gets further from
the training region. Because our method integrates a learned vector field over time, we expected it to
extrapolate smoothly into future time, rather than exhibit the localized overfitting often observed in
standard MLP-based architectures. The results shown in[Figure 6]confirm our expectations.

Ground Truth V: t=2.00 QRes V: t=2.00 Relative L2 Error over Time
4 0.2 4 0.50

.0
3 4 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [s]

h— eu
3 . 3 0.25
e — 0.1 —— PINN
>2 0.0 >2 0.00 121 — QRes
— — 0.1 =
T 2 1 -0.25 N FLS
o I— 8 0.2 @ —os0 £t
o 1 2 3 4 0o 1 2 3 4 ’ o Training region Extrapolation region
X X 20.8
g
NeuSA V: t=2.00 PINN V: t=2.00 Z06
R p—— — 0.2 A T — 0.4 ko)
— ———— - o
3 I . (01 31 - A [ro.2 0.4
2" — Moo =2 | I 0.0
e —— — — 0.2 —
. = o ; - =1 ¥ /C
o= — WE-02 o - -0.4 0
2
X

Figure 6: Extrapolation results for the Burgers’ equation. Left: solutions from PINN and QRes
degenerate strongly when extrapolating; in contrast, NeuSA’s solution retains qualitative behavior
observed in the Ground Truth. Right: NeuSA outperforms all the baselines when extrapolating,
maintaining comparable performance. Other well performing models, such as QRes, quickly diverge.

Table 1: Average experiment metrics for each model. TT refers to the training time in seconds. Despite
being generally trained for less time, NeuSA consistently matches or outperforms the baselines.

2D Layers | Marmousi | 3D Layers | 2D Burgers | Sine Gordon

Model

rMSE TT \ rMSE TT \ rMSE TT \ rMSE TT \ rMSE TT
PINN 0.545 566 | 0.698 635 | 0.073 5990 | 0.221 871 0.139 976
QRes 0.115 750 | 0.412 718 | 0.021 8775 | 0.073 1,135 | 0.020 1,315
FLS 0.590 577 | 0.684 648 | 0.070 6179 | 0.202 885 0.135 1,015
PINNsFormer 1.072 1484 — — — — 1.053 2,294 | 0.681 3,333
NeuSA 0.075 530 | 0.171 573 | 0.008 702 | 0.051 112 0.001 215

4 Results and analysis

The results for the wave equation show that NeuSA can accurately propagate waves in complex
media, leading to an error between one and two orders of magnitude smaller than the baselines.
This is despite NeuSA being trained for 10 times fewer training steps. It is worth noting that a key
challenge in seismic and acoustic simulations with heterogeneous media is to capture the complex
wave patterns generated by reflections at material discontinuities. NeuSA is the only approach that
accurately recovers second-order reflections, as shown in[Figure 1] at ¢ = 2s.

The results for the sine-Gordon equation in [Figure 5|indicate that NeuSA very quickly learns the
dynamics for the system with outstanding precision, obtaining error metrics an order of magnitude
smaller than QRes, the next best result, with a substantially smaller training time. NeuSA’s causal
structure allows it to propagate the solution from initial conditions, staying in close agreement with
the ground-truth. In contrast, PINN, FLS and PINNsformer fail to do so, despite being trained for 10
times more epochs.

The results for the Burgers’ equation show that NeuSA successfully captures the qualitative behavior
of the solution, including the formation of detailed two-dimensional shocks. Quantitative results in
show that NeuSA exhibits strong performance, while requiring substantially less training
time, leading to gains over PINNs, FLS, PINNsFormer and QRes.

These results are underscored by the very strong performance in the extrapolation task shown in
which demonstrates that NeuSA has learned a robust internal representation for the system’s
autonomous dynamics. As a result, NeuSA can estimate and extrapolate solutions over large times
intervals beyond the training domain, leading to substantially superior performance as compared to
the baselines. We attribute this capability to NeuSA’s causal structure.

Although built on the inherently slower NODE framework, NeuSA trains significantly faster than
MLP-based PINNs. This efficiency is likely due to the physical and causal priors built into the
architecture, allowing for convergence in considerably fewer steps. Moreover, neuro-spectral models

compute the solution across the entire domain in a single forward pass, in contrast to the thousands
of passes needed for a PINN, reducing the relative computational overhead. has a
longer discussion on this effect. Additionally, NeuSA produces remarkably accurate solutions, which
we attribute to its spectral representation capabilities and its automatic compliance with initial and
boundary conditions. NeuSA does not need to train on boundary data, allowing us to perform
optimization only on the physics-informed loss. This helps avoid the conflicting gradients of data and
equation losses, which often lead to unstable training, as shown in the rMSE-versus-time plots of the

tested classical architectures in

Nevertheless, the method does have limitations, which we discuss in greater detail in
First, all experiments take place on simple spatial domains, which allows using the framework of
the Fourier bases; more complex geometries would require the implementation of more generic
bases, which could hinder the initialization process. Second, NeuSA integrates the vector-valued
solution G(x, t) using Runge-Kutta methods which, despite their efficiency, may become unstable
when applied to stiff problems. Finally, NeuSA’s performance seems to be strongly influenced by its
analytical initialization procedure; while this approach enables exceptionally fast training when a
suitable linear approximation is available, its effectiveness significantly diminishes when initialized
with no prior dynamical information.

5 Conclusion

We have introduced NeuSA (Neuro-Spectral Architectures), a novel class of PINNs grounded in
numerical spectral methods and designed to solve time-dependent nonlinear PDEs in inhomogeneous
media. These architectures overcome the spectral bias and causality issues associated with MLP-
PINNs by construction. Furthermore, we have shown that the architecture inherently satisfies
boundary and initial conditions, as well as ensures solution uniqueness, without incurring any
additional training cost.

Based on the numerical experiments for the 2D wave equation in heterogeneous media, 2D Burgers’
equation, and 1D nonlinear sine-Gordon equation, we observed that NeuSA can solve complex
problems, often achieving smaller error with significantly shorter training time than reference physics-
informed architectures. Such capabilities are likely due to the improved initialization procedure and
causal structure of NeuSA, which results in more physically relevant solutions.

The development of NeuSA paves the way for future research and applications. In particular, the
architectures can be adapted to solve other challenging PDEs, such as the widely studied Navier-
Stokes equations [68], or even pseudodifferential equations arising in wave propagation [69, [70].
Although initializing with a Fourier basis has proven highly effective for the applications considered
in this work, other bases could also be explored to enhance performance and, thus, make NeuSA
less dependent on the mesh. Finally, other numerical methods could be used to replace the fourth-
order Runge-Kutta and improve the overall performance of NeuSA, especially when applied to stiff
problems.

Acknowledgments

This work was supported by Petrobras. Jodo Pereira is thankful for a start-up grant from the University
of Georgia. We also acknowledge financial support from Google. We would also like to thank Deborah
Oliveira and Lucas Schwengber for fruitful discussions.

References

[1] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686-707, 2019.

[2] Gregory Kang Ruey Lau, Apivich Hemachandra, See-Kiong Ng, and Bryan Kian Hsiang Low.
PINNACLE: PINN adaptive collocation and experimental points selection. In The Twelfth
International Conference on Learning Representations, 2024.

[3] Haixu Wu, Huakun Luo, Yuezhou Ma, Jianmin Wang, and Mingsheng Long. RoPINN: Re-
gion optimized physics-informed neural networks. In A. Globerson, L. Mackey, D. Bel-

10

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural
Information Processing Systems, volume 37, pages 110494-110532. Curran Associates,
Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
c745bfabbb0544882938£f4f89ff26ac-Paper-Conference.pdf.

Zhiyuan Zhao, Xueying Ding, and B Aditya Prakash. PINNsFormer: A transformer-based
framework for physics-informed neural networks. arXiv preprint arXiv:2307.11833, 2023.

James Donnelly, Alireza Daneshkhah, and Soroush Abolfathi. Physics-informed neural networks
as surrogate models of hydrodynamic simulators. Science of The Total Environment, 912:168814,
2024. doi: https://doi.org/10.1016/j.scitotenv.2023.168814.

Constanza A. Molina Catricheo, Fabrice Lambert, Julien Salomon, and Elwin van ’t Wout. Mod-
eling global surface dust deposition using physics-informed neural networks. Communications
Earth & Environment, 5(1):778, 2024. doi: 10.1038/s43247-024-01942-2.

Stefano Buoso, Thomas Joyce, and Sebastian Kozerke. Personalising left-ventricular biophysical
models of the heart using parametric physics-informed neural networks. Medical Image Analysis,
71:102066, 2021. doi: 10.1016/j.media.2021.102066.

Clara Herrero Martin, Alon Oved, Rasheda A. Chowdhury, Elisabeth Ullmann, Nicholas S. Pe-
ters, Anil A. Bharath, and Marta Varela. EP-PINNs: Cardiac electrophysiology characterisation
using physics-informed neural networks. Frontiers in Cardiovascular Medicine, Volume 8 -
2021, 2022. doi: 10.3389/fcvm.2021.768419.

Shahed Rezaei, Ahmad Moeineddin, and Ali Harandi. Learning solutions of thermodynamics-
based nonlinear constitutive material models using physics-informed neural networks. Compu-
tational Mechanics, 74(2):333-366, 2024.

Enrui Zhang, Ming Dao, George Em Karniadakis, and Subra Suresh. Analyses of internal
structures and defects in materials using physics-informed neural networks. Science Advances,
8(7):eabk0644, 2022. doi: 10.1126/sciadv.abk0644.

Bin Zheng, Tongchun Li, Huijun Qi, Lingang Gao, Xiaoqing Liu, and Li Yuan. Physics-
informed machine learning model for computational fracture of quasi-brittle materials without
labelled data. International Journal of Mechanical Sciences, 223:107282, 2022. doi: 10.1016/].
ijmecsci.2022.107282.

Tim De Ryck, Siddhartha Mishra, and Roberto Molinaro. Weak physics informed neural
networks for approximating entropy solutions of hyperbolic conservation laws. In Seminar fiir
Angewandte Mathematik, Eidgendssische Technische Hochschule, Ziirich, Switzerland, Rep,
volume 35, page 2022, 2022.

Ali Hasan, Jodo M. Pereira, Robert Ravier, Sina Farsiu, and Vahid Tarokh. Learning partial
differential equations from data using neural networks. In 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 3962-3966, 2020. doi: 10.1109/
ICASSP40776.2020.9053750.

Zhiping Mao, Ameya D Jagtap, and George Em Karniadakis. Physics-informed neural networks
for high-speed flows. Computer Methods in Applied Mechanics and Engineering, 360:112789,
2020.

Ravi G Patel, Indu Manickam, Mitchell A. Trask, Nathaniel A.and Wood, Myoungkyu Lee,
Ignacio Tomas, and Eric C Cyr. Thermodynamically consistent physics-informed neural
networks for hyperbolic systems. Journal of Computational Physics, 449:110754, 2022.

Chengping Rao, Hao Sun, and Yang Liu. Physics-informed deep learning for computational
elastodynamics without labeled data. Journal of Engineering Mechanics, 147(8):04021043,
2021.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality for training physics-
informed neural networks. Computer Methods in Applied Mechanics and Engineering, 421:
116813, 2024.

Liu Yang, Xuhui Meng, and George Em Karniadakis. B-PINNs: Bayesian physics-informed
neural networks for forward and inverse pde problems with noisy data. Journal of Computational
Physics, 425:109913, 2021.

11

https://proceedings.neurips.cc/paper_files/paper/2024/file/c745bfa5b50544882938ff4f89ff26ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/c745bfa5b50544882938ff4f89ff26ac-Paper-Conference.pdf

[19] Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-
informed neural networks for forward and inverse pde problems. Computer Methods in Applied
Mechanics and Engineering, 393:114823, 2022.

[20] Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, 2023.

[21] Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar
Raissi, and Francesco Piccialli. Scientific machine learning through physics—informed neural
networks: Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

[22] Jie Bu and Anuj Karpatne. Quadratic Residual Networks: A New Class of Neural Networks
for Solving Forward and Inverse Problems in Physics Involving PDEs, pages 675-683. doi:
10.1137/1.9781611976700.76.

[23] Jian Cheng Wong, Chin Chun Ooi, Abhishek Gupta, and Yew-Soon Ong. Learning in sinusoidal
spaces with physics-informed neural networks. IEEE Transactions on Artificial Intelligence, 5
(3):985-1000, 2024. doi: 10.1109/TA1.2022.3192362.

[24] Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural
tangent kernel perspective. Journal of Computational Physics, 449:110768, 2022.

[25] Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.

[26] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains. Advances in neural
information processing systems, 33:7537-7547, 2020.

[27] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. How neural networks extrapolate: from feedforward to graph neural networks. In
International Conference on Learning Representations (ICLR), 2021.

[28] Min Zhu, Handi Zhang, Anran Jiao, George Em Karniadakis, and Lu Lu. Reliable extrapolation
of deep neural operators informed by physics or sparse observations. Computer Methods
in Applied Mechanics and Engineering, 412:116064, 2023. ISSN 0045-7825. doi: https:
//doi.org/10.1016/j.cma.2023.116064. URL https://www.sciencedirect.com/science/
article/pii/S0045782523001883.

[29] Jungeun Kim, Kookjin Lee, Dongeun Lee, Sheo Yon Jhin, and Noseong Park. Dpm: A novel
training method for physics-informed neural networks in extrapolation. Proceedings of the
AAAI Conference on Artificial Intelligence, 35(9):8146-8154, May 2021. doi: 10.1609/aaai.
v35i9.16992. URL https://ojs.aaai.org/index.php/AAAI/article/view/16992.

[30] Yi Ding, Su Chen, Hiroe Miyake, and Xiaojun Li. Physics-informed neural networks with
Fourier features for seismic wavefield simulation in time-domain nonsmooth complex media.
arXiv preprint arXiv:2409.03536, 2024.

[31] Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Solving the wave equation with
physics-informed deep learning. arXiv preprint arXiv:2006.11894, 2020.

[32] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pfliiger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596-1611, 2022.

[33] Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations:
Steady-State and Time-Dependent Problems. Society for Industrial and Applied Mathematics,
2007. doi: 10.1137/1.9780898717839.

[34] William E Schiesser. The numerical method of lines: integration of partial differential equations.
Elsevier, 2012.

[35] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. In Proceedings of the 32nd International Conference on Neural Infor-
mation Processing Systems, NIPS’18, page 6572-6583, Red Hook, NY, USA, 2018. Curran
Associates Inc.

12

https://www.sciencedirect.com/science/article/pii/S0045782523001883
https://www.sciencedirect.com/science/article/pii/S0045782523001883
https://ojs.aaai.org/index.php/AAAI/article/view/16992

[36] Yiheng Du, Nithin Chalapathi, and Aditi Krishnapriyan. Neural spectral methods: Self-
supervised learning in the spectral domain. The Twelfth International Conference on Learning
Representations, 2024.

[37] Junho Choi, Tachyun Yun, Namjung Kim, and Youngjoon Hong. Spectral operator learning
for parametric pdes without data reliance. Computer Methods in Applied Mechanics and
Engineering, 420:116678, 2024.

[38] Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G. Willcocks. Deep generative modelling:
A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):7327-7347, 2022.
doi: 10.1109/TPAMI.2021.3116668.

[39] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, October 2022. doi:
10.48550/arXiv.2210.02747.

[40] Shitong Luo and Wei Hu. Diffusion probabilistic models for 3D point cloud generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2837-2845, June 2021.

[41] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1-64, 2021.

[42] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, volume 34, pages 11287—-11302. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/bdcadc6b9e244d24a30b4c45601d9720-Paper . pdf.

[43] Arthur Bizzi, Matias Grynberg, Vitor Matias, Daniel Perazzo, Jodo Paulo Lima, Luiz Velho,
Nuno Gongalves, Jodo Pereira, Guilherme Schardong, and Tiago Novello. Flowing: Implicit
neural flows for structure-preserving morphing. arXiv preprint arXiv:2510.09537, 2025.

[44] Yogesh Verma, Markus Heinonen, and Vikas Garg. Climode: Climate and weather forecasting
with physics-informed neural odes. arXiv preprint arXiv:2404.10024, 2024.

[45] John P Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

[46] Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A. Zang. Spectral Methods:
Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, 2007. doi:
10.1007/978-3-540-30726-6.

[47] Lloyd N. Trefethen. Spectral Methods in MATLAB. Society for Industrial and Applied Mathe-
matics, 2000. doi: 10.1137/1.9780898719598.

[48] Arthur Augusto Coutinho Bizzi. Flow-Structured Networks for Physics-Informed Machine
Learning. PhD thesis, Instituto de Matemadtica Pura e Aplicada, Rio de Janeiro, Brazil,
February 2025. URL https://impa.br/wp-content/uploads/2025/09/dout_tese_
Arthur-Augusto-Coutinho-Bizzi.pdf.

[49] Lawrence C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathe-
matics. American Mathematical Society, 2 edition, 2010.

[50] Arthur Bizzi, Lucas Nissenbaum, and Jodo M Pereira. Neural conjugate flows: A physics-
informed architecture with flow structure. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pages 15576-15586, 2025.

[51] Marcelo Viana and José M Espinar. Differential equations: a dynamical systems approach to
theory and practice, volume 212. American Mathematical Society, 2021.

[52] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. 2017. URL https://api.semanticscholar.org/CorpusID:40027675.

[53] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,

13

https://proceedings.neurips.cc/paper_files/paper/2021/file/5dca4c6b9e244d24a30b4c45601d9720-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/5dca4c6b9e244d24a30b4c45601d9720-Paper.pdf
https://impa.br/wp-content/uploads/2025/09/dout_tese_Arthur-Augusto-Coutinho-Bizzi.pdf
https://impa.br/wp-content/uploads/2025/09/dout_tese_Arthur-Augusto-Coutinho-Bizzi.pdf
https://api.semanticscholar.org/CorpusID:40027675

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdfl

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pages 249-256, Chia Laguna Resort, Sardinia, Italy, 13—15 May
2010. PMLR. URL https://proceedings.mlr.press/v9/glorot10a.html,

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In J. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Sys-
tems, volume 20. Curran Associates, Inc., 2007. URL https://proceedings.neurips.cc/
paper_files/paper/2007/file/013a006£03dbc5392effeb8f18fda755-Paper. pdf.

Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, Jinkyoo Park, and Stefano
Ermon. TorchDyn: implicit models and neural numerical methods in PyTorch. In Neural
Information Processing Systems, Workshop on Physical Reasoning and Inductive Biases for the
Real World, volume 2, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. URL https://arxiv.org/abs/1412.6980.

Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An expert’s guide to
training physics-informed neural networks. arXiv preprint arXiv:2308.08468, 2023.

Xinquan Huang and Tariq Alkhalifah. Pinnup: Robust neural network wavefield solutions using
frequency upscaling and neuron splitting. Journal of Geophysical Research: Solid Earth, 127
(6):€2021JB023703, 2022. doi: https://doi.org/10.1029/2021JB023703.

Shutong Qi and Costas D. Sarris. Hybrid physics-informed neural network for the wave equation
with unconditionally stable time-stepping. IEEE Antennas and Wireless Propagation Letters,
23(4):1356-1360, 2024. doi: 10.1109/LAWP.2024.3355896.

Majid Rasht-Behesht, Christian Huber, Khemraj Shukla, and George Em Karniadakis. Physics-
informed neural networks (PINNs) for wave propagation and full waveform inversions. Journal
of Geophysical Research: Solid Earth, 127(5):¢2021JB023120, 2022. doi: https://doi.org/10.
1029/2021JB023120.

Apostolos Parasyris, Lina Stankovic, and Vladimir Stankovic. Synthetic data generation for
deep learning-based inversion for velocity model building. Remote Sensing, 15(11):2901, 2023.

Aline Brougois, Marielle Bourget, Patriek Lailly, Michel Poulet, Patrice Ricarte, and Roelof
Versteeg. Marmousi, model and data. In EAEG workshop-practical aspects of seismic data
inversion, pages cp—108. European Association of Geoscientists & Engineers, 1990.

Chengyuan Deng, Shihang Feng, Hanchen Wang, Xitong Zhang, Peng Jin, Yinan Feng, Qili
Zeng, Yinpeng Chen, and Youzuo Lin. OpenFWI: Large-scale multi-structural benchmark
datasets for seismic full waveform inversion, 2023. URL https://arxiv.org/abs/2111,
02926.

Jestis Cuevas-Maraver, Panayotis G. Kevrekidis, and Floyd Williams. The sine-Gordon model
and its applications. Springer, 2014. doi: 10.1007/978-3-319-06722-3.

Mahboub Baccouch. Numerical methods for the viscid and inviscid Burgers equations. In
Computational Fluid Dynamics, chapter 1. IntechOpen, Rijeka, 2024. doi: 10.5772/intechopen.
1007351.

Majid Khan. A novel solution technique for two dimensional Burger’s equation. Alexandria
Engineering Journal, 53(2):485-490, 2014. ISSN 1110-0168. doi: 10.1016/j.aej.2014.01.004.

G. K Batchelor. An introduction to fluid dynamics. Cambridge mathematical library. Cambridge
University Press, reprint edition, 2005.

Sebastian Acosta, Jesse Chan, Raven Johnson, and Benjamin Palacios. Pseudodifferential
models for ultrasound waves with fractional attenuation. SIAM Journal on Applied Mathematics,
84(4):1609-1630, 2024. doi: 10.1137/24M1634011.

14

https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2111.02926
https://arxiv.org/abs/2111.02926

[70] Christiaan C. Stolk. A pseudodifferential equation with damping for one-way wave propagation
in inhomogeneous acoustic media. Wave Motion, 40(2):111-121, 2004. doi: 10.1016/j.wavemoti.
2003.12.016.

[71] David E. Stewart. Numerical Analysis: A Graduate Course. CMS/CAIMS Books in Mathemat-
ics, 4. Springer, 2022.

[72] Nischay Rai and Sabyasachi Mondal. Spectral methods to solve nonlinear problems: A review.
Partial Differential Equations in Applied Mathematics, 4:100043, 2021.

[73] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro.
Towards understanding the role of over-parametrization in generalization of neural networks.
arXiv preprint arXiv:1805.12076, 2018.

[74] Fabio Luporini, Mathias Louboutin, Michael Lange, Navjot Kukreja, Philipp Witte, Jan Hiick-
elheim, Charles Yount, Paul H. J. Kelly, Felix J. Herrmann, and Gerard J. Gorman. Ar-
chitecture and performance of devito, a system for automated stencil computation. ACM
Trans. Math. Softw., 46(1), apr 2020. ISSN 0098-3500. doi: 10.1145/3374916. URL
https://doi.org/10.1145/3374916,

[75] Felipe Linares and Gustavo Ponce. Introduction to nonlinear dispersive equations. Springer
New York, 2015. doi: 978-1-4939-2181-2.

A Causality of NeuSA

NeuSA is a “causal" architecture in the sense that it produces solutions which are evolutionary
by nature, implying uniqueness and continuous dependence on initial conditions. It is generally
impossible to prove the convergence of a numerical method to the solution of a general PDE without
imposing strong restrictions upon the spectrum of initial conditions and the function F. We may
nevertheless prove that the solutions generated by our method have the properties associated with
solutions to evolution problems. For the finite-dimensional system in eq. (4), these properties
are encapsulated in the properties of the associated flow operator ® : [0,T] x Cer* >caxn
Cerxxeaxn defined as:

t
Py = 1 +/ F(u(r))dr. (14)
0
These operators have the following semigroup properties:

1. There exists an identity element: ®%1y = 1 .

2. The flow is an additive group action: ®*2®!1 {1y = dt2+tiq .
Most importantly, these two properties translate immediately to the causal properties that we aim
to prove: Property 1 implies that initial conditions are enforced, while Property 2 is equivalent to

uniqueness [S1]. Theorem 1 then follows as a consequence of the fact that NeuSA solutions define a
flow.

Let Sy, C L?(2) be the finite-dimensional subspace spanned by our basis elements b. Consider
now the decomposition operator P : Sy, — C1 XXX apn jsomorphism mapping each element
of Sp, into the tensor of coefficients of its expansion over the elements of b. We also define the
reconstruction operator PT : Ce1X"xcaxn _y G ‘mapping the coefficient tensor onto the respective
linear combination of the vectors by. Inference for NeuSA consists of the following steps:

1. obtaining expansion coefficients 19 = Pug of the initial data in the basis b (possibly,
projecting ugy onto Sp);

2. acting on ug by the flow of the vector field Fy using NODE;

3. reconstructing the continuous solution via u(t) = PTa(t).

These steps can be summarized as

t
wy(t) = PT®LPuy, where @by =ty + / Fy(a(r))dr . (15)
0
Now we can formulate and prove the following

15

https://doi.org/10.1145/3374916

Theorem 2. For band-limited initial conditions ug € Sy and globally-Lipschitz neural vector fields
Fy, the orbits created by NeuSA satisfy the initial conditions and are unique:

1. fulfillment of initial conditions: ug(0,x) = u(0,x);

2. uniqueness: uj(0,-) #u2(0,-) = uj(t,-) #ui(t,") Vte[0,T].

Proof. For band-limited functions u € Sy, the decomposition P and reconstruction Pt are bijections,
and P' is the inverse of P:

PTPu=u. (16)
This fact immediately follows from uniqueness of expansion coefficients of any function u € Sy,
for the given basis b. Likewise, for a globally Lipschitz neural network Fy, there exists a flow ®
associated with the NODE di1/dt = Fy (1) (i.e., the flow determined by the vector field Fy(i1)).
Moreover, its orbits are unique. This follows from the classical existence and uniqueness of solutions
for ordinary differential equations in Banach spaces [[71} 51]].

Property 1 then follows from the uniqueness of the spectral decomposition combined with the flow
properties of ®g:

uy(0) = PT®)Pug = PTPug =g . (17)
Likewise, to prove property 2 we use the uniqueness of the spectral decomposition as well as the fact
that NeuSA encodes the flow ®¢ (under which the orbits do not intersect), represented as follows:

PT® Puy(ty) = PTO PPT®) Pug = PO Pug = up(ta + t1) . (18)
O

As mentioned above, in practice decomposition over the spectral basis b is preceded by the projection
of the initial data onto Sp. The basis b can always be chosen to be large enough to approximate
any smooth function with the required accuracy. Likewise, it is generally reasonable to assume
that common (finite-sized) feedforward networks are globally Lipschitz-continuous, since they are
essentially compositions of Lipschitz maps and Lipschitz nonlinear activations.

B Implementation details

In this section, we provide further details concerning our code implementation. The construction
of the Fourier basis together with the extraction of its coefficients is explained in Subsection [B.1]
Lastly, Subsection discusses the numerical scheme adopted to enhance dimension-wise layers
for multiple space dimensions, since they enable efficient modeling of complex interactions across
spatial dimensions while avoiding the prohibitive costs of fully dense layers.

B.1 Spectral decomposition

To operate in the spectral domain, we represent the target functions using a spectral decomposition.
The following subsections describe how the Fourier basis is constructed and how the corresponding
coefficients are extracted.

B.1.1 Constructing the basis

We assume for this section that the domain 2 can be decomposed as a direct product (e.g., into a
direct product of 1D intervals), leading to the following product representation for the basis:

d
bi(x) = [[br. (x:) (19)
1=1

For example, the standard Fourier basis functions may be expressed as the products of the following
form (up to a normalization constant):

d

by (x) o< [[expliwg,x:) (20)
i=1

16

or, likewise, in terms of the respective sine/cosine functions, depending on the boundary conditions
that have to be imposed.

In addition to enabling our initialization procedure, initializing b as the Fourier basis tends to result
in dense representations for nonlinear and/or non translation-invariant dynamlcsl [72]. While in the
context of numerical solution of PDEs this is often undesirable, in the context of neural networks
this will become an advantage, as denser connections between coefficients should lead to (positive)
overparametrization [73]].

Nevertheless, the Fourier basis has limitations. Foremost among them is its strictly non-local nature,
which often results in difficulties when reproducing highly localized PDE solutions.

B.1.2 Extracting the coefficients i and evaluating derivatives

In order to perform the spectral decomposition u — 1, we sample the function over /N collocation
points {x1 N 1 and represent it in terms of NV basis terms. This may be expressed as:

D= (t)bi(x), i€l,...,N, 1)
k

where k is a d-dimensional multi-index with N elements. This is a linear system that can be solved
in a straightforward manner; for example, given a grid structure, the Discrete Fourier Transform and
its variations may be used. As it is usually done in the literature on spectral methods, we can simplify
the basis representation by reshaping the domain via a transformation Y, leading to:

x') =Y ar(t)br(x(x")). (22)
k

Differentiation then takes place as described in Section 2:
d . d .
—u(t,x") = ar(t)—D>b ¢ 23
oy 20) = 2 (0 b)) 23)

where the chain rule is used to calculate the right-most term. For a concrete example, a 2D problem
expressed in the Fourier basis over a square domain) = [—L, L] x [—L, L] may be mapped into the
canonical domain [—m, 7] X [—m, 7] with the transformation y(x) = 7x/L, leading to the following
form for the derivatives:

d ,
ot x) = W’“ HeXp W Xi) (24)
J k
d? ; MW,
@u(ux)=— Z () Hexp (iwg,X;) - (25)
J k

In general, linear translation-invariant differential operators may be obtained as a polynomial on the
frequencies w, leading to the following representation for the Fourier multiplier M used as part of the
initialization:

d2
Flinear(n, Vu, VVu,...) := aqpu + Z alz u+ Z agij——— dxdx; u+---, (26)

iTw T2 Wi, Wi,
thedr() =M O, with M, = ap + Za“ (ki) ZGQU (LQJ> +-, @27

i.e. the k-indexed element of the multiplier M is given as a polynom1a1 over the frequencies w. This
multiplier may then be used for the initialization procedure described previously. For example, the
Laplacian operator in 2 space dimensions may be represented as:

’7'1'2(A)]2f 71'2(,0,%
My = — + 2). (28)

L? L2

Analogous schemes are also used for the sine and Fourier basis.

2This can be easily seen from the Fourier convolution theorem as it appears when expressing nonlinear or
non-translation-invariant equations in the Fourier basis: pointwise products become convolutions involving
coefficients that are possibly far apart, resulting in dense connectivity matrices.

17

B.2 Dimension-wise layers for multiple space dimensions

Spectral methods inherently induce dense interactions between coefficients, even across distant modes.
However, in multi-dimensional settings, employing fully dense layers becomes computationally
prohibitive. In particular, we can discuss the case of the 2D wave propagation problem presented
in the experiments section: note that discretizing each dimension with just 100 spectral coefficients
yields a total of 10* basis elements. A single dense linear layer operating on this space would then
require O(108) parameters. As a result, when such layers are applied repeatedly (as would be done
by a Neural ODE using it for a vector field), the computational cost becomes excessive.

Similar challenges in computer vision have led to the development of convolutional neural networks
(CNNs), which employ finite-support kernels to create localized linear connections among neigh-
boring nodes. However, this approach is ill-suited to our setting. First, CNNs are built to embed the
translation invariance inherent to image recognition tasks, which is a property that does not generally
apply to our problems. Moreover, their local receptive fields restrict long-range interactions, which
are essential in spectral representations.

Instead, it is necessary to construct a layer that performs the dense and global-reaching connections
associated with spectral methods while remaining parameter-light. We have opted for low-rank,

dimension-wise linear layers, as shown in[Figure §|

These networks consist essentially of a Hadamard (element-wise) product followed by alternating
dense linear transformations applied row-wise and column-wise. This structure can be efficiently
implemented by combining tensor transpositions with batched matrix multiplication operations
available in PyTorch and similar deep-learning frameworks (see Algorithm|[T). For instance, given 2D
coefficient matrices 0i(t) € R™*™ and layer parameters A € R™*", B € R"*" and C € R™*™,
this yields:

1. Element-wise scaling (Hadamard product):
a—ae0A

where each element 0;; is multiplied by the corresponding A;;.

2. Row-wise linear transformation:

1 TlB

) ’I“QB
— .

Tm TmB

where each row vector r; is multiplied by the matrix B.

3. Column-wise linear transformation:
[c1 ca -+ cpl—=[Car Cea -+ Cep)

where each column vector c; is multiplied by the matrix C'.

The matrix u can be visualized as

up 1 uj 2 e Ui n T1

R uz1 uz 2 e uzn T2

a=| . . .= = ¢ Cn)
Um,1 Wm2 e um,n Tm

Each of these layers applied to a 2D spatial domain of dimensions m, n requires O(mn) parameters
and operations, in contrast to the O(m?n?) complexity of a naive fully dense layer. This approach
allows us to leverage the “densification” inherent to spectral methods, enhancing deep learning
performance, while reducing computational and memory demands. In practice, we have found
these layers to be effective drop-in replacements for dense linear layers when handling large, multi-
dimensional inputs.

18

Algorithm 1 Implementation of dimension-wise layers for a two dimensional input

Q< input () >u e RM™Mx"
a+ueA > Hadamard (pointwise) product, A € R™*"
U < linear(q, B) > Batched matrix multiplication, B € R™*"
i+ a’ > Transpose
U < linear(a,C) > Batched matrix multiplication, C' € R™*™
i+ a’ > Transpose
U« act(t) > Nonlinear Activation

As illustrated by comparing Figures[7]and[8] these layers stand in contrast to convolutional layers,
yet serve a complementary purpose. While convolutional layers impose sparsity through local
connectivity and translation invariance, dimension-wise linear layers aim to preserve sparsity while
retaining long-ranging connections. They can also be interpreted as low-rank tensor applications or
Kronecker products.

Hadamard Row — wise Column — wise

Figure 8: Schematic for dimension-wise linear transformations.

C Experimental details

In this section, we provide further information concerning hardwares and licensing. We also discuss
additional details on the numerical experiments presented in Section 3 of the paper.

Hardware and resources. All experiments were executed on identical machines, containing an
Nvidia RTX 4090 GPU with 24GB VRAM, an Intel i9-13900K processor, and 128GB RAM.

Licenses. The code is implemented in Python using the libraries PyTorch (version 2.1.0) and
torchdyn (version 1.0.6), distributed under the BSD 3-Clause and Apache licenses, respectively.

General setup for numerical experiments. All experiments are evaluated against a ground-truth
solution obtained using a state-of-the-art numerical method. For each model and experiment, we
report the error metrics IMAE (relative L; error) and rMSE (relative Lo error) between the predicted
solution upyeq and the ground-truth solution ugr, computed over N evaluation pairs (¢;,x;), as
follows:

SV tprea(tis X)) — g (ts, %))

MAE = -
2=t luar (ti xi)]

. (29)

SNV (uprea(ti, xi) — uar(ti, x:))?

S (uar(ti, xi))?

rMSE =

(30)

19

In the particular case of the Burgers’ equation, where the output is a 2D vector (u, v), the rMAE and
rMSE are computed separately for each component, and their average is reported as the final error
metric.

Due to memory constraints, it is not feasible to feed the entire spatial grid to the MLP-based
architectures for 2D equations. Instead, we adopted random uniform sampling at every step. For
PINN, QRes, and FLS models, we sample 10, 000 points for the PDE residual, 1000 points for the
initial condition and 500 points for the boundary condition. In contrast, PINNsFormer generates a
temporal sequence of five collocation points for each sample, which are then processed through its
encoder-decoder architecture. To ensure comparable memory usage and training time with the other
baseline methods, we train PINNsFormer on the Burgers’ and wave equations using 2, 000 points for
the PDE loss, 200 for the initial condition, and 100 for the boundary condition. This corresponds to
one-fifth of the amount sampled for other baseline methods.

C.1 Wave equation

. . . ou)
For the wave equation (T1), by introducing v = e we can rewrite the problem as a system of
first-order equations (with respect to time) given by
0
—Uu
ot
0

—) = 2
prad c“(x)Au.

The vector field to be learned by NeuSA is defined as:

Fy (i) = (M oht eFo(il)) ; (32)

where Gt = (4, 0), the weight ¢ = 1 and the entries of the matrix M as defined in (28). Using a
simplified version of Fy that takes only ¢ as input accelerates learning, as © does not influence the
equation, and also enables a more compact model. The velocity fields may be visualized below, in

-2.0 1.5 2.0
=15 15
1.4
-1.0 10
- 0.5
0.5 1.3
> 0.0 0.0
0.5 1.2 —0.5
1.0 -1.0
1.1
15 -15
2.0+ d 1.0 -2.0
2 -1 0 1 2
X

:1}7

3D

l—Z‘O -15 -1.0 -05 00 05 10 1.5 2.0

(a) (b)

Figure 9: The 2D three-layer and Marmousi mediums.

To train the NeuSA model, we simulate an infinite domain by extending the original spatial region
from [—2,2]? to [—4, 4]%. The extensions of the original domain are designed to ensure that, within
the simulation’s temporal window, any reflected waves do not re-enter the original region of interest.
This effectively prevents boundary artifacts from interfering with the solution. We use 201¢ basis
elements and integrate over 201 time steps, creating a grid with a spatial step of Ax = Ay = 0.04
and a temporal step of At = 0.01. For the spectral decomposition, we adopt a cosine basis.

20

Figure 10: Solutions for the 3D wave experiment.

For the baseline models, we set the initial condition weight to 10 (on both Dirichlet boundary
condition and first-order initial condition, see Eq. (11) in the main text). This weighting led to
consistently improved accuracy across experiments.

The ground-truth solution is calculated using a standard finite central difference scheme for the
second derivatives with order 8 in the space and order 2 in time [74]], with a spatial step of 0.01 and a
time step of 0.001. The domain was also extended to simulate an infinite domain.

C.2 1D sine-Gordon equation

. Ou o
Let us define again v = ¢ n the sine-Gordon equation (T2)), which allows us to rewrite it as an

evolutionary system of the form

9=
L=
(33)
gv = Au — 10sin(u)
ot '
From this and Eq. (12), the vector field to be learned from NeuSA can be defined as:
Bo(i) = o (34)
O =\ M @0+ eFp(a)

where the weight € is set to 0.1, and the entries of the matrix M are taken as defined in (28).

Owing to its architectural design, NeuSA automatically satisfies the initial condition, while the
use of a sine basis ensures compliance with the boundary condition. For the baseline models, we
adopted a weight of 102 to the initial condition, as this choice yielded the most accurate results in our
preliminary experiments.

In contrast to the experiments involving 2D equations, training the baselines for the sine-Gordon
equation can be performed using the full spatial grid at each step. Since PINNsFormer produces 5
training points per grid location, it is trained on a coarser regular grid of size 101 x 101, whereas all
other models are trained on a finer 201 x 201 grid. This choice of grid size presented a reasonable
balance of training time, accuracy, and memory usage.

The ground-truth solution was computed through a pseudo-spectral method combined with a 4th-order
Runge-Kutta integrator. We used a time step of At = 0.001 and a spatial resolution of Az = 0.04.

21

C.3 2D Burgers’ equation

Two-dimensional Burgers’ equation for the vector function (u(t, x,y), v(¢,2,y)) can be written in
the form of a system

A Ju ou
Zu=v =2 =
T U= Uo ’Uay ,
5 5 (35)
a—vzyAv—ua—Z—va—;
From this and (13), the vector field for NeuSA can be directly defined by
£ (VM O U+ eFH (T, 0)
Fo(a) = (VM O 0+ eFg(a, o)) (36)

where M is given in (28), and the weight e is set to 0.1. Also, Fj (@, v) and F§ (@, 0) are the neural
networks whose parameters we optimize during training, so the loss function is composed by the
residues of each of them. The equal subscript 6 on both is a slight abuse of the notation, since the
parameters of these networks are not the same.

NeuSA inherently satisfies the initial conditions by construction (Theorem 1), and the use of a Fourier
basis for the Burgers’ equation ensures that periodic boundary conditions are also met automatically.
For the baseline models, we set the initial and boundary conditions weights to A;¢ = 102 and
Apc = 1, as these values produce the best performance in preliminary experiments.

The results presented in Table 1 for the Burgers’ equation correspond to model training and evaluation
over the time interval [0, 1]. We compare them and the extrapolation experiment with a ground-truth
obtained through a pseudo-spectral method integrated with a 4th-order Runge-Kutta for the time
interval [0, 2]. The temporal and spatial discretizations are set to At = 0.001 and Az = Ay = 0.02,
respectively.

C.4 Quantitative results

The 2D experiments (Burgers’ and wave equations) were run with 7 different seeds each, while the
1D sine-Gordon experiment was run with 3 different seeds. The relative L; and Lo metrics and
training times (in seconds) presented in the paper are an average over all random seeds. In Tables
21 BL AL Bl and[6] we list the mean and standard deviation of these values for the main experiments
reported in the paper.

Table 2: 2D Layers: mean and standard deviation of rMAE, rtMSE and runtime (TT).

Model rMAE rMSE TT
mean std mean std mean std
PINN 7.66x 1071 127 x 107! 545x 107! 831 x1072 566 7.2
QRes 1.54 x 107! 345 x1072 1.15x 107! 3.10x1072 750 24
FLS 887 x 107" 1.63x10"' 590x10"' 9.96x10"2 577 55
PINNsFormer 1.56 2.78 x 1071 1.07 1.41 x 107t 1,484 34
NeuSA (ours) 1.02x 107! 342x 1072 7.49x1072 224x1072 530 1.4

Table 3: Marmousi: mean and standard deviation of rMAE, rMSE and runtime (TT).

Model rMAE rMSE TT
mean std mean std mean std
PINN 1.03 1.48 x 107! 698 x 107! 948 x 1072 635 29.7
QRes 557 x 1071 6.03x1072 4.12x10"' 3.06 x1072 718 158
FLS 9.99 x 1071 1.50 x 107! 6.84 x 107! 9.02x 1072 648 23.9
NeuSA (ours) 2.20 x 107! 443 x 1072 1.71x107' 3.45x1072 573 2.28

22

Table 4: 3D Layers: mean and standard deviation of rMAE, rMSE and runtime (TT).

Model rMAE rMSE TT
mean std mean std mean std
PINN 1.86 x 10! 6.07x 1072 7.32x1072 1.75x 1072 5990 37.3
QRes 423x1072 740x1073 212x1072 260x 1073 8775 30.2
FLS 1.70 x 1071 446 x 1072 6.95x 1072 1.32x 1072 6179 41.0
NeuSA (ours) 1.18 x 1072 250 x 1073 840 x 10~ 1.80x10~% 702 7.3

Table 5: 1D Sine—Gordon: mean and standard deviation of rIMAE, rMSE and runtime (TT).

Model rMAE rMSE TT
mean std mean std mean std
PINN 1.70 x 1071 331 x 1072 1.39x 107! 470x107% 976 414
QRes 258 x 1072 450 x 1072 1.99x 1072 2.80x 1072 1,315 49.0
FLS 143 x107% 720x 1073 1.35x 107! 2.01x10"2 1,015 68.3
PINNsFormer 7.85 x 107! 4.95 x 107! 6.81 x 107! 3.31 x 10! 3,333 186.6
NeuSA (ours) 1.23x 1073 1.49x107° 9.16 x10™* 5.98x 1076 215 1.3

Table 6: 2D Burgers: mean and standard deviation of rMAE, rMSE and runtime (TT).

Model rMAE rMSE TT
mean std mean std mean std
PINN 1.65 x 107t 891 x 1072 221x107' 930x10"2 871 2.9
QRes 232x1072 1.90x1073% 7.27x1072 1.60x10~% 1,135 2.3
FLS 147 x 1071 768 x 1072 2.02x10"! 8.08x 1072 885 0.3
PINNsFormer 1.06 1.91 x 107! 1.05 1.71 x 101 2,294 108.1
NeuSA (ours) 7.66 x 1072 1.96 x 1072 1.15x10~' 1.71x1072 62 0.2

D Additional experiments

D.1 Number of frequencies and Training time

Due to its built-in integration process, NeuSA’s convergence depends on guaranteeing the numerical
stability of the Neural ODE. In particular, the more basis elements are used, generally the smaller the
time-steps for the integration should be. This introduces a trade-off between spatial resolution and
speed. We exemplify this behavior through the following additional experiment: We consider the 1D
Burgers Equation, with initial conditions similar to those in the main paper, and evaluate how long it
takes to train NeuSA with a varying number of frequencies. The results can be seen

Table 7: Number of frequencies vs rMSE and training time. More elements are more accurate, but
slower.

Number of frequencies rMSE Training time (s)

61 7.6e-2 109
81 5.6e-2 146
101 4.3e-2 183
121 3.3e-2 223
141 2.6e-2 264

23

D.2 Inference time

As discussed, NeuSA’s inference time is dominated by the process of integrating the Neural ODE.
In essence, inference and training of Neural-Spectral Architectures is relatively costly, due to the
extreme effective depth of NODESs; on the other hand, one pass generates the solution at all space and
time points. Nevertheless, the much faster convergence rate in terms of number of epochs generally
offsets this effect.

We compare the inference time for a subset of our experiments in where we evaluate all
models over a uniform space-time grid. As can be seen from the table, NeuSA’s inference time
remains more or less constant across the experiments. In contrast, the baseline architectures process
every point in the spatio-temporal grid simultaneously, resulting in substantially slower inference
when iterating over large amounts of points, likely as a result of memory swapping. Throughout our
experiments, we attempt to mitigate this effect for the reference architectures by randomly sampling
the domain in the experiments with the 2D Wave/2D Burgers equations.

Table 8: Time in seconds required by each architecture to compute the solution at the grid-like
collocation points used in the experiments.

Architecture Wave 2D (101 x101x201) Burgers 2D (201 x201x101) Sine-Gordon (201x201)

MLP 0.04 0.28 0.0005
QRes 0.11 0.34 0.002
FLS 0.04 0.28 0.0006
PINNsFormer 1.29 2.57 0.02
NeuSA 0.12 0.11 0.10

E Limitations

As mentioned in Section 2.1, NeuSA requires the initialization of the linear model, which may not be
obvious. For Burgers’ equation, for example, we have obtained the best results initializing NeuSA
near a solution to the associated heat equation. As it is well known, however, some linear PDEs may
turn out to be stiff when expressed in the spectral domain. This stiffness may introduce instability
into the integration of the Neural ODE. For example, when we apply spectral decompositions to
the Korteweg—de Vries (KdV) equation [75] the resulting system of ordinary differential equations
becomes essentially stiff, especially when a wide range of frequencies is considered. This will lead to
excessively large eigenvalues of the matrix used in the implementation of the associated solver, and
may result in a numerically unstable solution.

This numerical issue, however, does not affect a large number of equations important for various
practical applications. Consider, for instance, the canonical example of the wave equation:

Transforming it into the first-order hyperbolic system as shown above and applying Fourier transform
we arrive at the following ODE system

d |4 { 0 I .
o [g} =A [ﬂ , where A = [D 0} and D = —diag(1,..., N?). (38)

The block matrix A has eigenvalues A = +ik, for k = 1, ..., N. According to the standard stability
criterion for the Runge-Kutta methods (based on the stability polynomials and eigenvalues of the
equation matrix), a time step of h = O (%) is required for the latter system, which is significantly
larger than the time step required for the ODE system associated with the KdV equation .

This indicates that the Runge-Kutta method allows for a larger time step when applied to the wave
equation compared to the KdV equation, thereby improving the practicality and efficiency of our
method for a broad class of problems, including those involving wave phenomena.

24

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper proposes a new set of architectures, called Neuro-Spectral Archi-
tectures (NeuSA), which are clearly described and delineated in Section 2. The properties
claimed about this architecture are explained in the same section. Section 3 presents the
experimental setup through which we verify these claims, while the results are finally
concluded in Section 4, and are consistent with our abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of the work performed are mentioned in Section 4. Details
about our limitations as well as some experimental results showing these can be found in
Appendix D.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

25

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: The proof of our theoretical result may be found in Appendix A.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The method is clearly described in section 2, while Section 3 discusses the
experimental setup. Further implementation details can be found in Appendices B and C.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

26

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Code will be provided via GitHub for the camera-ready version of the paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The hyperparameters and optimizers have been clearly indicated. All in-
formation for running the experiments can be found in Section 3 and Appendices B and
C.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiments were reported with an average over multiple seeds, with
standard deviations reported in Appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The computer resources used for the experiments have been clearly written.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research does not in any way conflict with NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As pointed out in the introduction and the experiments, NeuSA is well suited
for many physical applications in areas such as biology, cosmology and physics. This may
lead to positive impact in any many applications related to physical modeling.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

28

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: The paper poses no risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All creators are properly credited and license information will be presented in
Appendix C.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

29

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

30

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

31

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work

	Neuro-spectral architectures
	Spectral decomposition and initialization
	Neural ODE, time integration and causality
	Losses and training

	Experiments
	Wave equation: 2D Layers, 3D Layers and Marmousi
	Sine-Gordon equation
	2D Burgers' equation

	Results and analysis
	Conclusion
	Causality of NeuSA
	Implementation details
	Spectral decomposition
	Constructing the basis
	Extracting the coefficients and evaluating derivatives

	Dimension-wise layers for multiple space dimensions

	Experimental details
	Wave equation
	1D sine-Gordon equation
	2D Burgers' equation
	Quantitative results

	Additional experiments
	Number of frequencies and Training time
	Inference time

	Limitations

