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ABSTRACT

A computationally expensive and memory intensive neural network lies behind
the recent success of language representation learning. Knowledge distillation, a
major technique for deploying such a vast language model in resource-scarce en-
vironments, transfers the knowledge on individual word representations learned
without restrictions. In this paper, inspired by the recent observations that lan-
guage representations are relatively positioned and have more semantic knowl-
edge as a whole, we present a new knowledge distillation strategy for language
representation learning that transfers the contextual knowledge via two types of
relationships across representations: Word Relation and Layer Transforming Re-
lation. We validate the effectiveness of our method on challenging benchmarks of
language understanding tasks. The code will be released.

1 INTRODUCTION

Since the Transformer, a simple architecture based on attention mechanism, succeeded in machine
translation tasks, Transformer-based models have become a new state of the arts that takes over
more complex structures based on recurrent or convolution networks on various language tasks, e.g.,
language understanding and question answering, etc. (Devlin et al., 2018; Lan et al., 2019; Liu et al.,
2019a; Raffel et al., 2019; Yang et al., 2019) However, in exchange for high performance, these
models suffer from a major drawback: tremendous computational and memory costs. In particular,
it is not possible to deploy such large models on platforms with limited resources such as mobile
and wearable devices, and it is an urgent research topic with impact to keep up with the performance
of the latest models from a small-size network.

As the main method for this purpose, Knowledge Distillation (KD) transfers knowledge from the
large and well-performing network (teacher) to a smaller network (student). Very recently, there
have been some efforts that distill Transformer-based models into compact networks (Sanh et al.,
2019; Turc et al., 2019; Sun et al., 2019; 2020; Jiao et al., 2019). However, they all build on the idea
that each word representation is independent, ignoring relationships between words that could be
more informative than individual representations.

In this paper, we pay attention to the fact that word representations from language models are very
structured and capture certain types of semantic and syntactic relationships. - Word2Vec (Mikolov
et al., 2013) and Glove (Pennington et al., 2014) demonstrate that trained embedding of words
contains the linguistic patterns as linear relationships between word vectors. Recently, Reif et al.
(2019) found out that the distance between words contains the information of the dependency parse
tree. Many other studies also suggested the evidence that contextual word representations (Belinkov
et al., 2017; Tenney et al., 2019a;b) and attention matrices (Vig, 2019; Clark et al., 2019) contain
important relations between words. Intuitively, although each word representation has respective
knowledge, the set of representations of words as a whole is more semantically meaningful, since
words in the embedding space are positioned relatively by learning.

Inspired by these observations, we propose a novel distillation objective, termed Contextual Knowl-
edge Distillation (CKD), for language tasks that utilizes the statistics of relationships between word
representations. In this paper, we define two types of contextual knowledge: Word Relation (WR)
and Layer Transforming Relation (LTR). Specifically, WR is proposed to capture the knowledge of
relationships between word representations and LTR defines how each word representation changes
as it passes through the network layers. Moreover, unlike some previous approaches with constraints
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for distillation, the proposed objective is more robust to architecture changes as it does not add any
structural constraints for teacher or student.

There are two distillation techniques to compress a large pre-trained language model into a compact
network. Several previous works (Sanh et al., 2019; Jiao et al., 2019; Sun et al., 2020) compress
a large pre-trained language model into a small language model on the pre-training stage which
requires high computation costs and times. On the other hand, some works (Turc et al., 2019; Sun
et al., 2019) present the task-specific distillation that transfers the knowledge to a well initialized
small network to improve the performance of each task. In this paper, we focus on the task-specific
distillation that has the advantage of being directly applied on top of pre-trained small BERT mod-
els (Turc et al., 2019) without conducting a time-consuming pre-training process.

We validate our method on the Stanford Question Answer Dataset (SQuAD) and General Language
Understanding Evaluation (GLUE) benchmark. We first demonstrate the effectiveness of our method
outperforming the current state-of-the-art distillation methods. We also show that our CKD performs
effectively on a variety of network architectures including recently proposed MobileBERT (Sun
et al., 2020), a new type of thin architecture of BERT, trained with task-agnostic distillation.

Our contribution is threefold:

• Inspired by the recent observations that word representations from neural networks are
structured, we propose a novel knowledge distillation strategy, Contextual Knowledge Dis-
tillation (CKD), that transfers the relationships across word representations.

• We present two types of complementary contextual knowledge: horizontal Word Relation
across representations in a single layer and vertical Layer Transforming Relation across
representations for a single word.

• We validate CKD on the standard language understanding benchmark datasets and show
that CKD consistently outperforms the state-of-the-art distillation methods for BERT on
various model sizes.

2 RELATED WORK

Knowledge distillation Since recently popular deep neural networks are computation- and
memory-heavy by design, there has been a long line of research on transferring knowledge for
the purpose of compression. Hinton et al. (2015) first proposed a teacher-student framework with an
objective that minimizes the KL divergence between teacher and student class probabilities. In this
framework, several follow-up works proposed various objectives to distill the well-designed knowl-
edge such as attention map of image (Zagoruyko & Komodakis, 2016), similarity (Tung & Mori,
2019) or the relation (Park et al., 2019; Liu et al., 2019b) between the image features.

In the field of natural language processing (NLP), knowledge distillation has been actively studied
(Kim & Rush, 2016; Hu et al., 2018; Yang et al., 2020) . In particular, after the emergence of large
language models based on pre-training such as BERT (Devlin et al., 2018; Liu et al., 2019a; Yang
et al., 2019; Raffel et al., 2019), many studies have recently emerged that attempt various knowledge
distillation in the pre-training process and/or fine-tuning for downstream tasks in order to reduce the
burden of handling large models. Specifically, Tang et al. (2019); Chia et al. (2019) proposed to
distill the BERT to train the simple recurrent and convolution networks. Sanh et al. (2019); Turc
et al. (2019) proposed to use the teacher’s predictive distribution to train the smaller BERT, and
Wang et al. (2020) propose the structure-level distillation that transfer the predictive distribution of
sequence-level for the multi-lingual sequence labeling tasks. Sun et al. (2019) proposed a method
to transfer individual representation of words in the BERT. In addition to matching the hidden state,
Jiao et al. (2019) and Sun et al. (2020) also utilize the attention matrices derived from the Trans-
former. Several works (Goyal et al., 2020; Liu et al., 2020; Hou et al., 2020) improve the performance
of other compression methods such as sparsification and quantization by integrating the knowledge
distillation objectives. Different from previous knowledge distillation methods that transfer respec-
tive knowledge of word representations, we design the objective to distill the contextual knowledge
of them, which can be combined with existing distillation methods.

Contextual knowledge of word representations Understanding and utilizing the relationships
across words is one of the key ingredients in language modeling. Word embedding (Mikolov et al.,
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2013; Pennington et al., 2014) that captures the context of a word in a document, has been tradition-
ally used. Unlike the traditional methods of giving fixed embedding for each word, the contextual
embedding methods (Devlin et al., 2018; Peters et al., 2018) that assign different embeddings ac-
cording to the context with surrounding words have become a new standard in recent years showing
high performance. Xia & Zong (2010) improved the performance of the sentiment classification task
by using word relation, and Hewitt & Manning (2019); Reif et al. (2019) found that the distance be-
tween contextual representations contains syntactic information of sentences. Our research focuses
on knowledge distillation using context information between words and between layers, and to our
best knowledge, we are the first to apply this context information to knowledge distillation.

3 SETUP AND BACKGROUND

Most of the recent state-of-the-art language models are stacking Transformer layers which consist
of repeated Multi-Head Attentions and Position-wise Feed-Forward Networks.

Transformer based networks Given an input sentence with n tokens, X = [x1, x2, . . . , xn] ∈
Rdi×n, most networks (Devlin et al., 2018; Lan et al., 2019; Liu et al., 2019a) utilize the em-
bedding layer to map an input sequence of symbol representations X to a sequence of continu-
ous representations E = [e1, . . . , en] ∈ Rde×n. Then, each l-th Transformer layer of the iden-
tical structure takes the previous representations Rl−1 and produces the updated representations
Rl = [rl,1, rl,2, . . . , rl,n] ∈ Rdr×n through two sub-layers: Multi-head Attention (MHA) and
point-wise Feed Forward Network (FFN). The input at the first layer (l = 1) is simply E. In MHA
operation where h separate attention heads are operating independently, each input token rl−1,i
for each head is projected into a query qi ∈ Rdq , key ki ∈ Rdq , and value vi ∈ Rdv , typically
dk = dq = dv = dr/h. Here, the key vectors and value vectors are packed into the matrix forms
K = [k1, · · · , kn] and V = [v1, · · · , vn], respectively, and the attention value ai and output of each
head oh,i are calculated as followed:

ai = Softmax

(
KT · qi√

dq

)
and oh,i = V · ai. (1)

The outputs of all heads are then concatenated and fed through the FFN, producing the single word
representation rl,i. For clarity, we pack attention values of all words into a matrix form Al,h =
[a1, a2, .., an] ∈ Rn×n for attention head h.

Knowledge distillation for Transformer In the general framework of knowledge distillation,
teacher network (T ) with large capacity is trained in advance, and then student network (S) with pre-
defined architecture but relatively smaller than teacher network is trained with the help of teacher’s
knowledge. Specifically, given the teacher parameterized by θt, training the student parameterized
by θs aims to minimize two objectives: i) the cross-entropy loss LCE between the output of the stu-
dent network S and the true label y and ii) the difference of some statistics LD between predictions
by teacher and student models. Overall, our goal is to minimize the following objective function:

L(θs) = E(X,y)

[
LCE

(
S(X; θs), y

)
+ λLD

(
Kt(X; θt),K

s(X; θs)
)]

(2)

where λ controls the relative importance between two objectives. Here, K characterizes the knowl-
edge being transferred and can vary depending on the distillation methods, and LD is a matching
loss function such as l1, l2 or Huber loss. Recent studies on knowledge distillation for Transformer-
based BERT can also be understood in this general framework. In particular, DistilBERT (Sanh
et al., 2019) matches class predictive probabilities of S and T via Kullback–Leibler divergence:
LD

logit = KL(pt

T ,
ps

T ). Patient KD (Sun et al., 2019) matches the individual word representations
between S and T in diverse intermediate layers. Recently, in addition to matching word representa-
tions, TinyBERT (Jiao et al., 2019) and MobileBERT (Sun et al., 2020) utilize the attention matrix
A to transfer the knowledge from T to S. More details of these methods are summarized in Ap-
pendix A.
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Figure 1: Overview of our contextual knowledge distillation. (a) In the teacher-student framework, we
define the two contextual knowledge, word relation and layer transforming relation which are the statistics of
relation across the words from the same layer (orange) and across the layers for the same word (turquoise),
respectively. (b) Given the pair-wise and triple-wise relationships of WR and LTR from teacher and student, we
define the objective as matching loss between them.

4 CONTEXTUAL KNOWLEDGE DISTILLATION

We now present our distillation method that transfers the structural or contextual knowledge of word
representations from teacher to student. Unlike previous methods distilling each word separately, our
method transfers structural and contextual information contained in relationships between words or
between layers, and provides a more flexible way of constructing embedding space than directly
matching representations. The overall structure of our method is illustrated in Figure 1(a). Specifi-
cally, we design two key concepts of contextual knowledge from language models: Word Relation-
based and Layer Transforming Relation-based contextual knowledge, as shown in Figure 1(b).

4.1 WORD RELATION (WR)-BASED CONTEXTUAL KNOWLEDGE DISTILLATION

Inspired by several previous studies suggesting that neural networks can successfully capture con-
textual relationships across words (Reif et al., 2019; Mikolov et al., 2013; Pennington et al., 2014),
WR-based CKD aims to distill the contextual knowledge contained in the relationships across words
at certain layer. The “relationship” across a set of words can be defined in a variety of different ways.
Considering the computation burden, our work only focuses on defining it as the sum of pair-wise
and triple-wise relationships. Specifically, for each input X with n words, let Rl = [rl,1, · · · rl,n]
be the word representations at layer l from the language model (it could be teacher or student), as
described in Section 3. Then, the objective of WR-based contextual KD is to minimize the following
loss:

LCKD−WR =
∑

(i,j)∈{1,...,n}2
wij LD

(
φ(rsi , r

s
j ), φ(r

t
i , r

t
j)
)

+λWR

∑
(i,j,k)∈{1,...,n}3

wijk LD
(
ψ(rsi , r

s
j , r

s
k), ψ(r

t
i , r

t
j , r

t
k)
)

(3)

where φ and ψ are the functions that define the pair-wise and triple-wise relationships, respectively
and λWR adjust the scales of two losses. Here, we suppress the layer index l for clarity, but the
distillation loss for the entire network is simply summed for all layers. Since not all terms in Eq. (3)
are equally important in defining contextual knowledge, we introduce the hyperparameters wij and
wijk to control the weight of how important each pair-wise and triple-wise term is. Determining the
values of these hyperparameters is open as an implementation issue, but it can be determined by the
locality of words (i.e. wij = 1 if |i − j| ≤ δ and 0, otherwise), or by attention information A to
focus only on relationship between related words.
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While functions φ and ψ defining pair-wise and triple-wise relationship also have various possibil-
ities, the simplest choices are to use the distance between two words for pair-wise φ and the angle
by three words for triple-wise ψ, respectively.

Pair-wise φ via distance Given a pair of word representations (ri, rj) from the same layer,
φ(ri, rj) is defined as follows: φ(ri, rj) = ‖ri − rj‖2.

Triple-wise ψ via angle Triple-wise relation captures higher-order structure and provides more
flexibility in constructing contextual knowledge. However, as an expense of using higher-order in-
formation, additional constraints such as computation or memory costs should be considered. One
of the simplest forms for ψ is the angle, which is calculated as

ψ(ri, rj , rk) = cos∠(ri, rj , ri) =

〈
ri − rj∥∥ri − rj∥∥2 , rk − rj∥∥rk − rj∥∥2

〉
(4)

where 〈·, ·〉 denotes the dot product between two vectors.

Despite its simple form, efficiently computing the angles in Eq. (4) for all possible triples out of
n words requires storing all relative representations (ri − rj) in a (n, n, dr) tensor1. This incurs
an additional memory cost of O(n2dr). In this case, using locality for wijk in Eq. (3) mentioned
above can be helpful; by considering only the triples within a distance of δ from rj , the additional
memory space required for efficient computation is O(δndr), which is beneficial for δ � n. In the
experimental section, we show that measuring angles in local window does not hurt the performance
to some extent.

4.2 LAYER TRANSFORMING RELATION (LTR)-BASED CONTEXTUAL KNOWLEDGE
DISTILLATION

The second structural knowledge that we propose to capture is on “how each word is transformed
as it passes through the layers”. Transformer-based language models are composed of a stack of
identical layers and thus generate a set of representations for each word, one for each layer, with
more abstract concept in the higher hierarchy. Hence, LTR-based contextual KD aims to distill the
knowledge of how each word develops into more abstract concept within the hierarchy. Toward
this, given a set of representations for a single word in L layers, [rs1,w, · · · , rsL,w] for student and
[rt1,w, · · · , rtL,w] for teacher (Here we abuse the notation and {1, . . . , L} is not necessarily the entire
layers or student of teacher. It is the index set of layers for which we want to distill the knowledge;
this time, we will suppress the word index below), the objective of LTR-based contextual KD is to
minimize the following loss:

LCKD−LTR =
∑

(l,m)∈{1,...,L}2
wlm LD

(
φ(rsl , r

s
m), φ(rtl , r

t
m)
)

+λLTR

∑
(l,m,o)∈{1,...,L}3

wlmo LD
(
ψ(rsl , r

s
m, r

s
o), ψ(r

t
l , r

t
m, r

t
o)
)
. (5)

where λLTR again adjust the scales of two losses. Here, the composition of Eq. (5) is the same as
Eq. (3), but only the objects for which the relationships are captured have been changed from word
representations in one layer to representations for a single word in layers. That is, the relationships
among representations for a word in different layers can be defined from distance or angle as in
Eq. (4): φ(rl, rm) = ‖rl − rm‖2 and ψ(rl, rm, ro) = 〈 rl−rm

‖rl−rm‖2 ,
ro−rm
‖ro−rm‖2 〉.

Alignment strategy When the numbers of layers of teacher and student are different, it is im-
portant to determine which layer of the student learns information from which layer of the teacher.
Previous works (Sun et al., 2019; Jiao et al., 2019) resolved this alignment issue via the uniform
(i.e. skip) strategy and demonstrated its effectiveness experimentally. For Lt-layered teacher and
Ls-layered student, the layer matching function f is defined as

f(steps × t) = stept × t, for t = 0, . . . , g

where g is the greatest common divisor of Lt and Ls, stept = Lt/g and steps = Ls/g.
1From the equation ‖ri − rj‖22 = ‖ri‖22 + ‖rj‖22 − 2〈ri, rj〉, computing the pair-wise distance with the

right hand side of equation requires no additional memory cost.
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Table 1: Comparisons against state-of-the-art distillation methods. For a fair comparison, all students are 6/768
BERT models, distilled by BERTBASE (12/768) teachers. Other results are as reported by their authors. Results
of development set are averaged over 5 runs and the best one of them are used for test server evaluation. “-”
means the result is not reported.

Model CoLA MNLI-(m/-mm) SST-2 QNLI MRPC QQP RTE STS-B Score(Mcc) (Acc) (Acc) (Acc) (F1) (Acc) (Acc) (Spear)

de
v

BERTBASE (Teacher) 60.4 84.8/84.6 94.0 91.8 90.3 91.4 70.4 89.5 84.1
DistilBERT 42.5 81.6/81.1 92.7 85.5 88.3 90.6 60.0 85.0 78.6
PD - 82.5/83.4 91.1 89.4 89.4 90.7 66.7 - -
TinyBERT (w/ DA) 54.0 84.5/84.5 93.0 91.1 90.6 91.1 73.4 89.6 83.5
CKD 52.8 83.9/84.4 93.3 90.5 89.6 90.9 67.3 89.0 82.4
CKD (w/ DA) 57.9 84.8/85.0 93.8 91.7 90.8 91.6 70.1 89.6 83.9

te
st

BERTBASE (Teacher) 53.8 84.7/83.8 93.8 90.9 88.4 89.2 67.6 85.2 81.9
PKD - 81.5/81.0 92.0 89.0 85.0 88.9 65.5 - -
PD - 82.8/82.2 91.8 88.9 86.8 88.9 65.3 - -
TinyBERT (w/ DA) 51.1 84.6/83.2 93.1 90.4 87.3 89.1 70.0 83.7 81.4
CKD 50.5 84.1/82.8 93.1 90.0 87.3 89.1 65.1 82.4 80.5
CKD (w/ DA) 52.8 84.6/84.0 93.5 90.7 88.0 89.7 66.2 83.8 81.5

Final objective The distillation objective aims to supervise the student network with the teacher‘s
knowledge. Multiple distillation loss functions can be used during training, either alone or together.
The proposed CKD can also be combined simply with the vanilla distillation loss such as class prob-
ability matching (Hinton et al., 2015) as an additional term. In that case, our distillation objective is
as follows:

L = (1− α)LCE + αLD
logit + λCKD

(
LCKD−LTR + LCKD−WR

)
(6)

where α and λCKD is a tunable parameter to balance the loss terms.

5 EXPERIMENTS

We validate our CKD using the Stanford Question Answer Dataset (SQuAD) and General Language
Understanding Evaluation (GLUE) benchmark (Wang et al., 2018) which consists of 9 natural lan-
guage understanding tasks such as Natural Language Inference, Sentiment Classification, and Para-
phrase Similarity Matching. Following the Devlin et al. (2018), all datasets except the WNLI dataset
are used for experiments. We first compare our method with the state-of-the-art distillation objec-
tives in training 6-layer BERT student network. We then report on the performance gains achieved
by our method for BERT architectures of various sizes, including the recent MobileBERT (Sun et al.,
2020). Finally, we analyze the effect of each component of our CKD and the impact of leveraging
locality δ for wijk in Eq. (3).

Setup In all our experiments, to avoid time-consuming BERT pre-training process, we apply our
CKD on top of pre-trained BERT models of various sizes, released by Turc et al. (2019). Also,
in order to reduce the hyperparameter search cost of our method, we do not allow full degrees of
freedom for λWR and λLTR, and search only within the range where they have the same value.
Hence, we only have two hyperparameters to tune (λWR and λCKD) in CKD. For the importance
weight of each pair-wise and triple-wise terms, we leverage the locality of words, in that wij = 1
if |i − j| ≤ δ and 0, otherwise. For this, we select the δ in (10-15). More details are provided in
Appendix D

5.1 COMPARISONS AGAINST STATE-OF-THE-ART DISTILLATION METHODS

To verify the effectiveness of our CKD objective, we compare the performance with the current
state-of-the-art distillation methods for BERT compression. We have four baselines objectives: Dis-
tilBERT (Sanh et al., 2019), PKD (Sun et al., 2019), PD (Turc et al., 2019) and TinyBERT (Jiao et al.,
2019). Following the standard setup in baselines, we use the BERTBASE (12/768)2 as the teacher and
6-layer BERT (6/768) as the student network. Therefore, the student models used in all baselines
and ours have the same number of parameters (67.5M) and FLOPs (10878M).

2In notation (a/b), a means the number of layers and b denotes a hidden size in intermediate layers.

6



Under review as a conference paper at ICLR 2021

Table 2: Comparisons against state-of-the-art distillation methods on the SQuAD 1.1v dataset (EM/F1 on dev
set). For a fair comparison, all students are 6/768 BERT models, distilled by BERTBASE (12/768) teachers. The
results of PKD and TinyBERT are as reported by Jiao et al. (2019) and the result of DistilBERT is as reported
by the author (Sanh et al., 2019).

Model #Params #FLOPs (Speed up) SQuAD 1.1v
EM F1

BERTBASE (Teacher) 110M 21754M (1.00x) 81.3 88.6
PKD 67.5M 10878M (2.00x) 77.1 85.3
DisitlBERT 67.5M 10878M (2.00x) 79.1 86.9
TinyBERT 67.5M 10878M (2.00x) 79.7 87.5
CKD 67.5M 10878M (2.00x) 81.8 88.7

Table 3: Experimental results with the recently proposed MobileBERT. Following the author, a base-
line is trained without distillation for downstream tasks. Results are averaged over 5 runs on the
development set.

Model CoLA MNLI-(m/-mm) SST-2 QNLI MRPC QQP RTE STS-B Score(Mcc) (Acc) (Acc) (Acc) (F1) (Acc) (Acc) (Spear)
MobileBERT (Sun et al., 2020) 54.0 83.4/83.8 92.1 91.2 90.8 90.5 64.7 88.1 82.1
MobileBERT (w/ CKD) 54.8 84.1/84.3 92.3 91.4 90.6 90.6 67.1 88.2 82.6

Table 1 summarizes results both for the development set and test set of GLUE datasets and il-
lustrates how much better our CKD performs than the recent distillation methods. We present two
cases depending on whether data augmentation (following Jiao et al. (2019)) is used for training
or not. Without the data augmentation, CKD surpasses the DistilBERT, PD, and PKD by a large
margin for all datasets in GLUE. For the case with data augmentation, CKD outdoes TinyBERT in
all scores except for the RTE development and test set, and in terms of the average score of all
development datasets, CKD has a 0.4 %p improvement over TinyBERT that transfers both individ-
ual word representations and attention matrices. Moreover, for some datasets including MNLI and
QQP, student network trained with CKD even surpass the performance of teacher with the help of
data augmentation. This supports the claim that CKD is a more flexible way of constructing embed-
ding space than directly matching representations. In Table 2, CKD exhibits the best performance
on the SQuAD 1.1v dataset with the same student architecture. Our CKD has a 2.1%p improvement
over TinyBERT, which is the current state-of-the-art knowledge distillation method.

5.2 BOOSTING THE STATE-OF-THE-ART THIN BERT ARCHITECTURE

Recently, MobileBERT (Sun et al., 2020) is proposed as a new type of thin architecture of BERT,
trained with task-agnostic distillation. MobileBERT also employs the distillation policy and transfers
individual word representations and attention matrices to further improve its performance. However,
it applies the distillation loss only to the pre-training process and modifies the original architectures
of teacher and student BERT models, thus making direct comparisons difficult. Instead, given the
same pre-trained MobileBERT3, we evaluate the performance of fine-tuning on GLUE datasets using
our CKD compared to the method originally in Sun et al. (2020). For this experiment, following Sun
et al. (2020), we search the additional hyperparameters in a search space including different batch
sizes (16/32/48), learning rates ((1 − 10) × e−5) and the number of epochs (2-10). The results
are summarized in Table 3. Fine-tuning with CKD distillation boosts the MobileBERT’s original
performance on all datasets except MRPC, which is a relatively small dataset.

5.3 EFFECT OF MODEL SIZE FOR CKD

For the knowledge distillation with the purpose of network compression, it is essential to work well
in more resource-scarce environments. To this end, we further evaluate our method in two settings.

First, we select small BERTs of a certain size and compare naive fine-tuning and our CKD with
them on the 8 GLUE dataset. In this experiment, we use the BERTBASE as the teacher and consider
the following student models: BERTMINI (6/256), BERTSHALLOW (12/256 )and BERTSMALL (4/512).

3We use the pre-trained MobileBERT released in the official repository
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Table 4: Experiment results on the effect of model sizes for CKD and TinyBERT results are as re-
ported in their papers. The results are evaluated on the test set of GLUE official benchmark. Detailed
component of model sizes are provided in the appendix C. † marks our runs with the official code.

Model Objective #Params #FLOPs CoLA MNLI (-m/-mm) SST-2 QNLI MRPC QQP RTE STS-B Score
(Speed up) (Mcc) (Acc) (Acc) (Acc) (F1) (Acc) (Acc) (Spear)

BERTBASE (Reported) - 110.1M 21754M 52.1 84.6/83.4 93.5 90.5 88.9 - 66.4 85.8 -
BERTBASE (Teacher) - (1.00x) 53.8 84.7/83.8 93.8 90.9 88.4 89.2 67.6 85.2 81.9

BERTSMALL
Naive 29.1M 3324M 38.0 75.1/74.8 89.3 84.5 85.2 84.7 64.2 77.3 74.8
CKD (6.54x) 48.3 82.4/81.8 92.9 88.3 87.0 89.1 64.6 82.6 79.7

BERTSHALLOW
Naive 17.6M 2419M 39.3 76.5/76.7 88.5 84.2 85.4 85.4 63.5 77.5 75.2
CKD (8.99x) 51.9 82.6/81.9 93.1 88.1 87.5 89.0 65.5 83.0 80.3

TinyBERT (Reported) - 14.5M 1167M 43.3 82.5/81.8 92.6 87.7 86.4 87.7† 62.9 79.9 78.3(18.64x)

BERTMINI
Naive 12.5M 1210M 29.7 74.7/74.2 86.7 83.0 82.7 83.6 62.7 73.3 72.3
CKD (17.98x) 45.7 81.7/80.8 92.9 87.3 86.9 88.3 63.9 81.7 78.8

We also present the number of parameters and floating-point operations (FLOPs) to measure the
computational complexity of student models regardless of the operating environments. Speed up in
Table 4 is also calculated based on the FLOPs. To observe just how much distillation alone improves
performance, we use data augmentation both for the baseline and our method.

The results are summarized in Table 4. The results illustrate that our CKD consistently ex-
hibits significant improvements in the performance compared to naive fine-tuning on all datasets.

2 / 1
2 8

4 / 1
2 8

6 / 1
2 8

8 / 1
2 8

1 0
/ 1 2

8
2 / 2

5 6
4 / 2

5 6
6 / 2

5 6
8 / 2

5 6
1 0

/ 2 5
6

2 / 5
1 2

4 / 5
1 2

6 / 5
1 2

8 / 5
1 2

1 0
/ 5 1

2
2 / 7

6 8
4 / 7

6 8
6 / 7

6 8
8 / 7

6 8
1 0

/ 7 6
8

8 2

8 4

8 6

8 8

9 0

9 2

Ac
cu

rac
y (

%)

D e p t h / W i d t h

 C K D
 L o g i t  K D
 N a i v e

Figure 2: In L/H, L denotes the number
of hidden layers and H does the embed-
ding size. Listing of x-axis is width-first.

For all downsized student models, the average score also
improved by more than 4.9% point. Moreover, comparing
BERTMINI and TinyBERT, we observe that the BERTMINI
trained with the CKD achieves the higher average score
while it has few model parameters with comparable but
slightly higher FLOPs.

Second, we perform extensive analyses of the effect of
model sizes. We experiment on the SST-2 dataset with var-
ious model sizes (2∼10 layers and 128∼768 intermediate
dimensions) and compare the CKD and the two baselines:
Naive fine-tuning and class probability matching (Logit
KD). As above, we use the BERTBASE as the teacher and the
BERTSMALL as the student. The results are averaged over 5
runs on the development set. As illustrated in Figure 2, our
CKD consistently performs better than the two baselines in
most model sizes. In addition, we observe that as the layer
deepens or the embedding size increases, the gap in the per-
formance between CKD and baselines increases.

5.4 ABLATION STUDIES

We provide additional ablation studies to analyze the impact of each component of the CKD: Word
relation, Layer transforming relation, Pair-wise and Triple-wise relationship and the introduced lo-
cality (wi,j = δ) in Eq. (3) as the weight of how important each pair-wise and triple-wise term is.
For these studies, we fix the student network with BERTSMALL and report the results as an average
over 5 runs on the development set.

Impact of each component of CKD The proposed CKD transfers the word relation based and
layer transforming relation based contextual knowledge. To isolate the impact of them, we exper-
iment successively removing each piece of our objective. Table 5 summarizes the results, and we
observe that WR and LTR brings a considerable performance gain, verifying their individual effec-
tiveness. As shown in Table 5, both pair-wise and angle-wise relationship help improve performance,
respectively, and the best performance is achieved when all components are applied together.

Locality as the importance of relation terms We introduced the additional weights (wij , wijk)
in Eq. (3) for CKD-WR (and similar ones for CKD-LTR) to control the importance of each pair-wise
and triple-wise term and suggested to use the locality for them as one possible way. Here, we verify
the effect of locality by increasing the local window size (δ) on the SST-2 and QNLI datasets. In par-
ticular, the triple-wise relation in Eq. (3) requires a large amount of additional memory as discussed
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Table 5: Ablation study using the subset of GLUE about the impact
of each component of CKD.

CKD−WR CKD− LTR SST-2 MRPC QNLI
Pair-wise Triple-wise Pair-wise Triple-wise (Acc) (F1) (Acc)

- - - - 89.3 86.2 85.9
X X - - 90.1 86.9 87.2
- - X X 89.6 88.4 86.8
X - X - 90.6 88.1 87.1
- X - X 90.2 88.3 86.6
X X X X 90.6 89.2 87.4
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Figure 3: Ablation study about the ef-
fect of locality.

in Section 4.1, so using this locality for their weights is a practical solution. Hence, we investigate
how reducing memory usage using this locality for them affects overall performance. The result is il-
lustrated in Figure 3. We observe that as the local window size increases, the performance improves,
but after some point, the performance is almost saturated. This result exhibits that computing angles
in local window does not hurt the performance to some extent.

6 CONCLUSION

We proposed a novel distillation strategy, contextual knowledge distillation (CKD), that leverages
contextual information efficiently based on word relation and layer transforming relation. On the
standard GLUE benchmark, it performs better than existing state-of-the-art methods and even sur-
passes the teacher’s performance on several datasets with the help of data augmentation. We also
showed that our method boosts the performance of MobileBERT, and that it performs consistently
well for student models of various sizes. Through the ablation studies, it is confirmed that all com-
ponents of the proposed CKD method are helpful in performance. As future work, we plan to define
the weight between each relation (i.e., w) continuously using attention matrices, not identically or
discretely using locality.

REFERENCES

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James Glass. What do neural
machine translation models learn about morphology? arXiv preprint arXiv:1704.03471, 2017.

Yew Ken Chia, Sam Witteveen, and Martin Andrews. Transformer to cnn: Label-scarce distillation
for efficient text classification. arXiv preprint arXiv:1909.03508, 2019.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look
at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Saurabh Goyal, Anamitra Roy Choudhary, Venkatesan Chakaravarthy, Saurabh ManishRaje, Yogish
Sabharwal, and Ashish Verma. Power-bert: Accelerating bert inference for classification tasks.
arXiv preprint arXiv:2001.08950, 2020.

John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pp. 4129–4138, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic bert
with adaptive width and depth. Advances in Neural Information Processing Systems, 33, 2020.

9



Under review as a conference paper at ICLR 2021

Minghao Hu, Yuxing Peng, Furu Wei, Zhen Huang, Dongsheng Li, Nan Yang, and Ming Zhou.
Attention-guided answer distillation for machine reading comprehension. arXiv preprint
arXiv:1808.07644, 2018.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351,
2019.

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. arXiv preprint
arXiv:1606.07947, 2016.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng, and Qi Ju. Fastbert: a self-distilling
bert with adaptive inference time. arXiv preprint arXiv:2004.02178, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019a.

Yufan Liu, Jiajiong Cao, Bing Li, Chunfeng Yuan, Weiming Hu, Yangxi Li, and Yunqiang Duan.
Knowledge distillation via instance relationship graph. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 7096–7104, 2019b.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representa-
tions of words and phrases and their compositionality. In Advances in neural information pro-
cessing systems, pp. 3111–3119, 2013.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3967–3976,
2019.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint arXiv:1802.05365,
2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B Viegas, Andy Coenen, Adam Pearce, and
Been Kim. Visualizing and measuring the geometry of bert. In Advances in Neural Information
Processing Systems, pp. 8594–8603, 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
compression. arXiv preprint arXiv:1908.09355, 2019.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert: a
compact task-agnostic bert for resource-limited devices. arXiv preprint arXiv:2004.02984, 2020.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. Distilling task-
specific knowledge from bert into simple neural networks. arXiv preprint arXiv:1903.12136,
2019.

10



Under review as a conference paper at ICLR 2021

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950, 2019a.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas McCoy, Najoung
Kim, Benjamin Van Durme, Samuel R Bowman, Dipanjan Das, et al. What do you learn from
context? probing for sentence structure in contextualized word representations. arXiv preprint
arXiv:1905.06316, 2019b.

Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In Proceedings of the
IEEE International Conference on Computer Vision, pp. 1365–1374, 2019.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962, 2019.

Jesse Vig. Visualizing attention in transformer-based language representation models. arXiv preprint
arXiv:1904.02679, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang, Fei Huang, and Kewei Tu. Structure-level
knowledge distillation for multilingual sequence labeling. arXiv preprint arXiv:2004.03846,
2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-
of-the-art natural language processing. ArXiv, abs/1910.03771, 2019.

Rui Xia and Chengqing Zong. Exploring the use of word relation features for sentiment classifica-
tion. In Coling 2010: Posters, pp. 1336–1344, 2010.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural
information processing systems, pp. 5753–5763, 2019.

Ziqing Yang, Yiming Cui, Zhipeng Chen, Wanxiang Che, Ting Liu, Shijin Wang, and Guoping Hu.
Textbrewer: An open-source knowledge distillation toolkit for natural language processing. arXiv
preprint arXiv:2002.12620, 2020.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the perfor-
mance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928,
2016.

11



Under review as a conference paper at ICLR 2021

Table 6: Overview of distillation objectives used for language model compression and their con-
straint on architecture. Although TinyBERT acquires flexibility on the embedding size, using an
additional parameter, for attention matrices matching, the number of attention heads of the teacher
and student must be the same. Although Sun et al. (2020) experiment with various sizes of models,
they train the modified teacher architecture to distill the word representation and attention matrix.

Knowledge Distillation Objectives Constraint

DistilBERT (Sanh et al., 2019)
n∑

i=1

cos(rtl,i, r
s
l,i), LD

Logit Embedding size

PKD (Sun et al., 2019)
n∑

i=1

[
MSE(

rtl,i

‖rtl,i‖2
−

rsl,i

‖rsl,i‖2
)
]
, LD

Logit Embedding size

PD (Turc et al., 2019) LD
Logit -

TinyBERT (Jiao et al., 2019)
n∑

i=1

[
MSE(rtl,i −Wrr

s
l,i)
]
,

H∑
h=1

[
MSE(At

l,h −As
l,h)
]
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Logit Attention head

Mobile-BERT (Sun et al., 2020)
n∑

i=1

[
MSE(rtl,i − rsl,i)

]
,

H∑
h=1

[
KL
(
At

l,h,A
s
l,h

)]
, LD

Logit
Embedding size
Attention head

A EXPLANATION OF PREVIOUS METHOD: LEVERAGING INDIVIDUAL WORD
REPRESENTATION

Table 6 summarizes the knowledge distillation objectives of previous methods and their constraints.
DistilBERT (Sanh et al., 2019) uses logit distillation loss (Logit KD), masked language modeling
loss, and cosine loss between the teacher and student word representations in the learning process.
The cosine loss serves to align the directions of the hidden state vectors of the teacher and student.
Since the cosine of the two hidden state vectors is calculated in this process, they have the constraint
that the embedding size of the teacher and the student model must be the same.

PKD (Sun et al., 2019) transfers teacher knowledge to the student with Logit KD and patient loss.
The patient loss is the mean-square loss between the normalized hidden states of the teacher and
student. To calculate the mean square error between the hidden states, they have a constraint that the
dimensions of hidden states must be the same between teacher and student.

PD (Turc et al., 2019) raised the importance of the pre-training process. By pre-training without
distillation and employing only logit kd in the fine-tuning process, they achieved results comparable
to other methods. Since only the logit KD is employed, there is no restriction on architecture.

TinyBERT (Jiao et al., 2019) uses additional loss that matches word representations and attention
matrices between the teacher and student. Although they acquire flexibility on the embedding size,
using an additional parameter, since the attention matrices of the teacher and student are matched
through mean square error loss, the number of attention heads of the teacher and student must be the
same.

MobileBERT (Sun et al., 2020) utilizes a similar objective with TinyBERT (Jiao et al., 2019) for
task-agnostic distillation. However, since they match the hidden states with l2 distance, and attention
matrices with KL divergence between teacher and student, they have restrictions on the size of
hidden states and the number of attention heads.

The methods introduced in Table 6 have constraints by their respective knowledge distillation objec-
tives. However, our CKD method which utilizes the relation statistics between the word representa-
tions (hidden states) has the advantage of not having any constraints on student architecture.
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B EXPLANATION OF DATA AUGMENTATION

Algorithm 1 Data Augmentation

Input: sentence x, hyperparameters N , M . pt
Output: augmented data Y (list of sentence)

for i = 1 to len(x) do
if x[i] is a single-piece word then
xmasked ← x
Replace xmasked[i] with ’[MASK]’ token
candidates[i]←M most-likely words predicted for ’[MASK]’ by BERT (xmasked)

else
candidates[i]←M similar words of x[i] from GloVe

end if
end for
Append x to Y
n← 0
while n < N do
xcandidate ← x
for i = 1 to len(x) do

Sample p ∼ U(0, 1)
if p ≤ pt then

Replace xcandidate[i] with a randomly picked word from candidate[i]
end if

end for
Append xcandidate to Y
n← n+ 1

end while

In this paper, for a fair comparison with TinyBERT (Jiao et al., 2019), data augmentation is used. We
describe the data augmentation method performed on the GLUE benchmark datasets in this section.
The overall process is summarized in algorithm 1. Data augmentation consists of the processes
selecting replaceable candidates for each word in a sentence and generating new sentences using the
candidates.

First, replaceable candidate words (the number of candidate words is M ) are selected for each word
in the sentence. In this process, the method of selecting candidates is divided according to whether
the word is a single-piece word or not. If the word is a single-piece word, M candidate words are
selected in a way that predicts the ’[MASK]’ token replaced in same position through the language
model. We use the BERTLarge for the language model. If the word is not a single-piece word, the M
candidate words are selected using GloVe pre-trained embedding through cosine similarity with the
target word. After selecting candidate words in the sentence, a total of N augmented sentences are
generated. For each word in the sentence, it is randomly selected and changed among M candidate
words with a probability of pt. If this process is repeated N times, a total of N + 1 augmented
sentences including the original sentence are created.

In the case of datasets consisting of a pair of sentences such as QQP or MNLI in GLUE benchmark
datasets, each sentence is augmented with N sentences. In other words, since the paired sentence is
attached to N +1 augmented sentences as originally, a total of 2(N +1) sentences are generated. In
this study, we use M = 15, pt = 0.4, and N = 20 for all datasets except the QQP and MNLI which
are the original large datasets. For the QQP and MNLI, we use N = 2.
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C EXPLANATION OF VARIOUS MODEL SIZE

Table 7: Details of architecture used for our experiments

Model Layers Hidden Feed-forward Attention Model
Size Size Heads Size

BERTBASE 12 768 3072 12 110.1M
BERTSMALL 4 512 2048 8 29.1M
MobileBERT (Sun et al., 2020) 24 512 512 4 25.3M
BERTSHALLOW 12 256 1024 4 17.6M
TinyBERT (Jiao et al., 2019) 4 312 1200 12 14.5M
BERTMINI 6 256 1024 4 12.5M

In this section, we describe the various models used in our experiments. Since pre-training each
model of various sizes costs a lot, pre-trained models of various sizes provided by PD (Turc et al.,
2019) are used for our experiments. In addition, MobileBERT introduce the Inverted-Bottleneck
BERT. Excluding BERTBASE, a total of 3 student models are used, and each model name can be
different from Turc et al. (2019). Table 7 summarizes the number of layers, hidden size, feed-forward
size, attention heads, and model size of each model.

D EXPERIMENT SETTING

This section introduces the experimental setting in details. Our contextual knowledge distillation
proceeds in the following order. First, from pre-trained large BERT, task-specific fine-tuning is con-
ducted to serve as teacher. Then, prepare the pre-trained small-size architecture which serve as stu-
dent. In this case, pre-trained models of various model sizes provided by Turc et al. (2019) are
employed. Finally, task-specific distillation with our CKD is performed.

We implemented with PyTorch framework and huggingface’s transformers package (Wolf et al.,
2019). To reduce the hyperparameters search cost, λWR in Eq. (3) and λLTR in Eq. (5) are used with
same value. For the important weights of pair-wise and triple-wise terms, the locality is applied only
to the importance weight w of the word relation (WR)-based CKD loss. The importance weight w
of the layer transforming relation (LTR)-based CKD loss is set to 1. In this paper, we report the best
result among the following values to find the optimal hyperparameters of each dataset:

• Batch size : 32
• Learning rate : (3, 4, 5) 3e-5, 4e-5, 5e-5
• Number of epochs : 4, 8
• Alpha (α) : 0.7, 0.9
• Temperature (T ) : 1, 2, 3, 4, 5
• λWR, λLTR : 0.1, 1, 10, 100, 1000
• λCKD : 1, 10, 100, 1000
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