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Abstract—Ridge regression (RR) is an important machine learning technique which introduces a regularization hyperparameter a to

ordinary multiple linear regression for analyzing data suffering from multicollinearity. In this paper, we present a quantum algorithm for

RR, where the technique of parallel Hamiltonian simulation to simulate a number of Hermitian matrices in parallel is proposed and used

to develop a quantum version ofK-fold cross-validation approach, which can efficiently estimate the predictive performance of RR. Our

algorithm consists of two phases: (1) using quantumK-fold cross-validation to efficiently determine a good a with which RR can

achieve good predictive performance, and then (2) generating a quantum state encoding the optimal fitting parameters of RR with such

a, which can be further utilized to predict new data. Since indefinite dense Hamiltonian simulation has been adopted as a key

subroutine, our algorithm can efficiently handle non-sparse data matrices. It is shown that our algorithm can achieve exponential

speedup over the classical counterpart for (low-rank) data matrices with low condition numbers. But when the condition numbers of

data matrices are large to be amenable to full or approximately full ranks of data matrices, only polynomial speedup can be achieved.

Index Terms—Quantum algorithm, ridge regression, regularization hyperparameter, parallel Hamiltonian simulation, quantumK-fold cross

validation

Ç

1 INTRODUCTION

DATING from the 80’s of last century, quantum com-
puting has been shown to be more computationally

powerful in solving certain problems than classical com-
puting [1], [2], [3], [4]. In the past decade, it has been
brought into the field of machine learning, which is a sub-
field of computer science and studies how to learn from
data and make predictions on new data [5], giving birth
to a new disciplinary research field—quantum machine
learning. Since its inception, quantum machine learning
has become a booming research field attracting world-
wide attentions, and a number of efficient quantum algo-
rithms have been proposed for various machine learning
tasks [6], [7], [8], [9].

Linear regression (LR) is one of the most important
machine learning tasks with wide applications in many sci-
entific fields including biology, behavioristic, sociology,
finance, and so on [5]. Given N data points ðxi; yiÞNi¼1, where

xi ¼ ðxi1; . . . ; xiMÞT 2 RM is a vector of M independent
(exploratory, input) variables and yi 2 R is the scalar depen-
dent (response, output) variable, LR assumes that xi and yi
are linearly correlated and attempts to construct a linear
function fðxÞ ¼ wTx characterized by fitting parameters
w ¼ ðw1; . . . ; wMÞT that can best fit such relationship, i.e.,
making every fðxiÞ as close as possible to yi. It should be
emphasized that x can be generated by a nonlinear map on
some original data, such as polynomial function, which ena-
bles LR to fit nonlinear function.

The simplest LR model is ordinary linear regression (OLR),
where the optimal fitting parameters w ¼ ðXTXÞ�1XTy are
determined via least squares method of minimizing the
sum of squared residuals. Here y ¼ ðy1; . . . ; yNÞT , and X ¼
ðx1; . . . ; xNÞT is called design matrix. However, OLR in prac-
tice is often far from satisfaction [5], [10], [11] when suffer-
ing multicollinearity of independent variables of data
points (which makes XTX not invertible) or overfitting.
These two difficulties substantially restrict the effectiveness
of OLR when putting it into real-world applications. To cir-
cumvent them, Hoerl et al. [11] put forward a generalized
version of OLR—ridge regression (RR), in which some
regularization of w is introduced into optimization. This
leads to the optimal fitting parameters of RR being
w ¼ ðXTXþ aIÞ�1XTy, where a denotes regularization
hyperparameter and I is the identity matrix. However,
choosing an appropriate a with which RR can achieve the
best (or approximately best) predictive performance is of
great challenge.

As of now, a series of quantum algorithms for LR have
been proposed. By building on the well-known quantum
algorithm for solving linear systems of equations proposed
by Harrow, Hassidim, and Lloyd (HHL) [12], Wiebe et al.
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[13] first provided a quantum algorithm that can efficiently
determine the fitting quality of OLR over an exponentially
large data set with a sparse design matrix. Their results
were later improved and directly extended to tackle RR
[14]. Lately, different from the previous algorithms [12], [14]
which are efficient only for the data sets with sparse design
matrices, Schuld et al. provided a quantum algorithm for
prediction by OLR that can efficiently process low-rank
non-sparse design matrices [15]. More recently, Wang sug-
gested a quantum linear regression algorithm that works in
the standard oracle model and can efficiently output the
optimal fitting parameters in the classical form [16]. How-
ever, with the exception of prior work for quantum RR [14],
almost all of these quantum linear regression algorithms are
based on OLR rather than RR, thus cannot combat multicol-
linearity and overfitting mentioned above.

In this paper, to deeply explore how and towhat extent RR
can be done by quantum computing faster than by classical
computing, we design a more comprehensive quantum algo-
rithm for RR. Inspired by the technique of K-fold cross-vali-
dation [10] which has been widely used to evaluate the
predictive performance of manymachine learning algorithms
[5], [28], we propose its quantum version to efficiently evalu-
ate the predictive performance of RR. Our quantum algorithm
will use the quantum K-fold cross-validation to determine a
good a for RR, and then generate a quantum state encoding
the fitting parameters of RR with such a in the amplitudes. It
is shown that our algorithm is exponentially faster than the
classical counterpart, when processing (low-rank) design
matrices with relatively small elements and low condition
numbers, but when design matrices have large condition
numbers amenable to full or approximately full ranks of data
matrices, only polynomial speedup can be achieved. Our
algorithm improves the existing quantum algorithm for RR,
i.e., LZ’s algorithm [14], from two aspects. First, since our
algorithm uses indefinite dense Hamiltonian simulation [22]
as the key subroutine, our algorithm has no dependence on
the sparsity of design matrices, but has slightly worse depen-
dence on the error, whereas LZ’s uses sparse Hamiltonian
simulation as the subroutine and can only efficiently tackle
sparse design matrices. Second, our algorithm presents an
efficient procedure, i.e., quantum K-fold cross-validation, to
determine a good a for RR, while LZ’s algorithm does not
address this important task.

Just as other HHL-based quantum machine learning
algorithms with several caveats [17], our algorithm also
faces similar caveats. First, our algorithm assumes that effi-
cient quantum access to the entries of X and y is provided.
This can be achieved by quantum random access memory
(QRAM) [18], for which there is no general implementation
in quantum hardware to date. However, if the entries can
be efficiently computed by simple and explicit formula, the
quantum access can be efficiently implemented directly
without QRAM. Second, our algorithm does not output the
classical form of the optimal fitting parameters w, but a
quantum state wj i encoding w in its amplitudes. Neverthe-
less, the state can be further used to efficiently predict new
data via swap test [19], [20]. Finally, our algorithm is expo-
nentially fast when the condition number of the design
matrix X is relatively low. The condition number may be
reduced by preconditioning X.

2 REVIEW OF RIDGE REGRESSION

Given a set ofN data points ðxi; yiÞNi¼1 as described above, RR
aims at finding a linear function fðxÞ ¼ xTw ¼PM

j¼1 xjwj

characterized by the fitting parameters w ¼ ðw1; � � � ; wMÞT
that makes all fðxiÞ as close as possible to yi [5], [10], [11]. Dif-
ferent from OLR where the sum of squared residuals is mini-
mized, RR minimizes the sum of squared residuals plus a
fraction of regularization of w and has the optimal fitting
parameters

w ¼ argmin
w

XN
i¼1
jfðxiÞ � yij2 þ a wk k2

¼ ðXTXþ aIÞ�1XTy;

(1)

where vk k is the 2-norm of any vector v. Evidently, OLR is a
special case of RRwith a ¼ 0. WriteX in the reduced singular
value decomposition [21] form X ¼PR

j¼1 �jjujihvjj, where R
is the rank of X, �j are the nonzero singular values, and juji
(jvji) are the corresponding left (right) normalized singular
vectors. Adding another N �R normalized vectors
uRþ1j i; � � � ; uNj i thatmake u1j i; � � � ; uNj i become an orthonor-

mal basis spanning the whole spaceRN , y= yk k can be written

as a linear combination of fjujigN1 , y= yk k ¼PN
j¼1 bjjuji withPN

j¼1 b
2
j ¼ 1, and thusw can be rephrased as

w ¼
XR
j¼1

�j

�2
j þ a

bj yk kjvji; (2)

which depends on the choice of a. After attainingw, one can

predict the output ~y of any new input ~x via computing

~y ¼ wT~x. So the predictive squared error sum for all the

training data points is

Xw� yk k2

¼ yk k2
XR
j¼1

1� �2
j

�2
j þ a

 !2

b2
j þ

XN
j¼Rþ1

b2
j

0@ 1A
� yk k2 1� Lð2� LÞ

XR
j¼1

b2
j

 ! !
;

since
PN

j¼Rþ1 b
2
j ¼ 1� ðPR

j¼1 b
2
j Þ, where L ¼ maxj¼1;���;R

�2
j

�2
j
þa

and 0 < L < 1. If
PR

j¼1 b
2
j is small, the error sum would be

very large, meaning that the model is badly constructed;

otherwise, the error sum is small. As a result, when the RR

model is well constructed, the support of y= yk k in the space

spanned by f uj

�� �gRj¼1, i.e., PR
j¼1 b

2
j , should be large to be

close to 1.
Therefore, it is of great importance to choose a good a so

that RR with such a can achieve good predictive perfor-
mance, and then to obtain thew of RR with such a.

3 QUANTUM ALGORITHM

In the following, we design a quantum algorithm for RR. It
consists of two subroutines: a quantum algorithm for gener-
ating the quantum state encoding the optimal fitting param-
eters w (Eqs. (1) and (2)), and a quantum algorithm for
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finding a good a. Throughout the algorithm, we assume we
are provided the quantum oracles

OX : jjijkij0i 7! jjijkijxjki
and

Oy : jjij0i 7! jjijyji;

which can efficiently access the entries of X and y in time
OðpolylogðMNÞÞ and OðpolylogðNÞÞ, respectively. This
holds when the entries of X and y are efficiently computable
or are stored in QRAM [18]. In general, X is not too much
skewed, and Xk kmax and yk kmax are not too large, hence we
assumeM ¼ QðNÞ and Xk kmax; yk kmax¼ Qð1Þ hereafter.

3.1 Algorithm 1: Generating a Quantum State
Encoding the Optimal Fitting Parameters

We first give a quantum algorithm to generate a quantum
state wj i that approximates the normalized w within error
�. From Eq. (2), it is easy to see that, to obtain w, we need
perform singular value decomposition on X. To achieve
this, the recently invented technique of indefinite non-
sparse Hamiltonian simulation [22] is adopted. Given a
Hermitian matrix A 2 CN�N and efficient quantum access
to its entries, by embedding A into a larger one-sparse

Hermitian matrix, it is able to simulate the unitary matrix
e
�iAt
N for time t within error � in time O

�
polylogðNÞt2

kAk2max=�
�
, where Ak kmax:¼ maxijjAijj. However, in our

problem, since X is generally not Hermitian, we extend it to
a larger but Hermitian matrix

~X ¼ 0 X
XT 0

� �
2 RðNþMÞ�ðNþMÞ; (3)

which is of 2R nonzero eigenvalues f��jgRj¼1 and corre-
sponding normalized eigenvectors f uj;�vj

�� �
:¼ j0;uji �
�

j1; vjiÞ=
ffiffiffi
2
p 2 RNþMgRj¼1, where

j0;uji ¼ juji
0

� �
; j1; vji ¼ 0

jvji
� �

: (4)

Without loss of generality, we assume
�j

NþM 2 1=k; 1½ �, where k

is the condition number ofX. In addition, from Eq. (2), it is easy

to see that too small a will make RR reduced to OLR and too

large awillmake the optimal fitting parameters approach zero,

thuswe choose a satisfyingQ
� ðNþMÞ2

k2

� 	 a 	 Q
�ðN þMÞ2�.

The first algorithm proceeds as following steps and the
schematic is given in Fig. 1:

(1) Prepare the ðN þMÞ-dimensional quantum state

j0; yi ¼ jyiT ; 0
	 
T

¼PN
j¼1 bj 0;uj

�� �
bydirectly expand-

ing the state jyi :¼ y= yk k.
Here we assume jyi can be generated efficiently

in time OðpolylogðNÞÞ. As shown in Appendix A,

which can be found on the Computer Society Digi-

tal Library at http://doi.ieeecomputersociety.org/

10.1109/TKDE.2019.2937491, when y is balanced [16]

in the sense thatPN
j¼1 jyjj2

Nkyk2max

¼ Vð1Þ;

jyi can be efficiently generated in time O polylogNð Þ
via Oy. Alternatively, jyi can also be efficiently pre-

pared when for any i1; i2,
Pi2

i¼i1 yij j
2 are efficiently

computable [23].
(2) Add another register in the state j0 � � � 0i to the above

state 0; yj i, and perform phase estimation by simulat-

ing e
�i~Xt1
NþM [22] for some evolution time t1 to reveal the

eigenvalues and eigenvectors of
~X

NþM as

XR
j¼1

bjjuj;�vji ��j

N þM

���� � ffiffiffi
2
p

:
.

(5)

Here for convenience we assume jyi fully lies in

the subspace fjujigRj¼1, namely jyi ¼PR
j¼1 bjjuji withPR

j¼1 b
2
j ¼ 1 and thus j0; yi ¼PR

j¼1 bjj0;uji ¼PR
j¼1 bjjuj;�vji=

ffiffiffi
2
p

. If jyi, more generally, does not

fully lie in the subspace fjujigRj¼1, the state of Eq. (5)
would be

XR
j¼1

bjjuj;�vji ��j

N þM

���� �. ffiffiffi
2
p

þ
XN

j¼Rþ1
bj 0;uj

�� �
0 � � � 0j i:

(6)

Nonetheless, we can efficiently transform the state of
Eq. (6) to the state of Eq. (5): introduce another qubit
0j i and rotate it to 1j i when the eigenvalue stored in
the second register (eigenvalue register) is nonzero,
and thenmeasure the qubit to see the outcome 1j i. The
measurement probability is

PR
j¼1 b

2
j 
 1 as discussed

in Section 2, so the transformation is quite efficient.
After successful measurement, we obtain the state of

Eq. (5) by letting bj  bj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR

j¼1 b
2
j

q
for j ¼ 1; � � � ; R.

(3) Add one qubit and rotate it from j0i toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

1h
2ð��j;aÞ

p j0i þ C1hð��j;aÞj1i controlled on

j ��jNþMi, where hð�;aÞ :¼ ðNþMÞ�
�2þa and C1 ¼ O

�
max�j

hð�j;aÞÞ�1 ¼ Oð1=kÞ. As shown in Appendix B,

available in the online supplemental material, the
maximum of hð�j;aÞ as well as C1 depends on the
actual choice of a, but C1hð�j;aÞ ¼ Vð1=kÞ for all
possible a. Then we undo phase estimation and
obtain

Fig. 1. Quantum circuit for Algorithm 1. Here, the ‘=’ denotes a bundle of
wires, H denotes the Hadamard operation, FT represents the quantum
Fourier transformation and FT�1 is its inverse [1], and s is the number of

qubits for estimating the eigenvalues of
~X

NþM in step (2), controlled-R1

denotes controlled rotation in step (3).
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XR
j¼1

bjjuj;�vji
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C2
1h

2ð��j;aÞ
q

j0i

þ C1hð��j;aÞj1i


:

(7)

(4) Measure the last qubit to get j1i and project the first
register onto the vj part. The final state of the first
register approximates

jfwi :¼
PR

j¼1 C1bjh �j;a
� �jvjiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR

j¼1 C
2
1b

2
jh

2 �j;a
� �q / w; (8)

which is proportional to Eqs. (1) and (2) as
desired. The success probability of getting j1i isPR

j¼1 C
2
1b

2
jh

2 �j;a
� � ¼ Vð1=k2Þ, which implies that

Oðk2Þ repetitions are enough to yield the desirable

state with a large probability, and this can be

improved by amplitude amplification [24] with

OðkÞ repetitions.
Given the quantum form j~xi of a new input data ~x,

the state jfwi can be used to predict the output
~y ¼ wT~x up to some factor by evaluating the inner

product of j~xi and jfwi via swap test [19], [20].

3.2 Time Complexity of Algorithm 1

The time complexity of Algorithm 1 is dominated by phase
estimation and amplitude amplification. In step (2), the eigen-
values � �j

NþM 2 � 1=k; 1½ � are estimated within error Oð1=t1Þ
via phase estimation. Consequently, the relative error of esti-
mating hð��j;aÞ scales asOðk=t1Þ no matter how a is chosen,
but its actual scale depends on a as detailed in Appendix B,
available in the online supplemental material. Therefore,
t1 ¼ Oðk=�Þ is taken to ensure the final state approximates
jfwi within error �. Thus, according to [22], phase estimation
takes time Oð Xk k2maxpolylog ðN þMÞk2=�3Þ. Considering
amplitude amplification of OðkÞ repetitions in step (4), it
takes total time Oð Xk k2maxpolylogðN þMÞk3=�3Þ to generate

jfwi. Since TrðXTXÞ ¼PR
j¼1 �

2
j ¼

P
ij x

2
ij 	 NM Xk k2max and

�j 2 ½NþMk ; N þM�, we have R
k2
	 NM Xk k2max

ðNþMÞ2 , and thus the rank

R of X is upper bounded asR ¼ Oðk2Þ due toM ¼ QðNÞ and
Xk kmax¼ Qð1Þ.
The best known classical RR algorithm has time complexity

O NM þN2R log ðR� Þ=�2
� �

[25]. Under the assumptions that

M ¼ QðNÞ and Xk kmax¼ Qð1Þ, and letting 1=� ¼ OðpolylogNÞ,
ourAlgorithm1 takes timeOðpolylogðNÞk3Þ, while the classical
algorithm takes time ~OðpolylogðNÞN2RÞ, where ~O is used to
suppress the relatively small quantity of log ðR=�Þ. When k is

large with k ¼ Oð ffiffiffiffiffiNp Þ which is amenable to full or approxi-
mately full rank of X (i.e., R ¼ OðNÞ), Algorithm 1 achieves
(approximately) quadratic speedup over the classical algo-
rithm, because in this case Algorithm 1 has time complexity
OðpolylogðNÞN3=2Þ, whereas the classical algorithm has time

complexity ~OðpolylogðNÞN3Þ. However, when k is small with
k ¼ polylogðNÞwhich implies low rank of X (R ¼ polylogðNÞ),
Algorithm1has time complexityOðpolylogðNÞÞ, while the clas-
sical algorithm has time complexity ~OðpolylogðNÞN2Þ, so our
Algorithm1 in this case is exponentially faster than the classical
algorithm.

Compared with LZ’s quantum RR algorithm [14] whose
time complexity is O log ðN þMÞs2k3R=�2

� �
, where s is the

sparsity of design matrix and kR ¼ maxf1;
ffiffi
a
p

NþMg
minf1=k;

ffiffi
a
p

NþMg
¼ OðkÞ (Note

that the singular values of design matrix in our algorithm
are assumed to be in ½ðN þMÞ=k; N þM�, while those in
LZ’s algorithm are assumed to be in ½1=k; 1�), the time com-
plexity of our Algorithm 1 has the same dependence on k as
LZ’s result, whereas the dependence on � is worse by a fac-
tor ��1. However, our Algorithm 1 has no dependence on s,
which makes it capable to efficiently handle non-sparse
design matrices, and is exponentially faster than LZ’s algo-
rithm for non-sparse design matrices with s ¼ OðNÞ when
k; 1=� ¼ OðpolylogNÞ.

Just as LZ’s algorithm, our Algorithm 1 can also output
the scale parameter wk k2 which tells how w is rescaled to
wj i. From Eq. (2), we can see that

wk k2 ¼
XR
j¼1

�j

�2
j þ a

 !2

b2
j yk k2

¼
XR
j¼1

h2ð�j;aÞb2
j yk k2

ðN þMÞ2

¼ P yk k2
C2

1ðN þMÞ2 ;

(9)

where P ¼PR
j¼1 C

2
1b

2
jh

2 �j;a
� � ¼ Vð1=k2Þ represents the

measurement probability in step (4) of Algorithm 1. Just as

estimating yk k2 shown in Appendix A, available in the online

supplemental material, P (as well as wk k2) is estimated via

amplitude estimation [24] within relative error � with

O
� ffiffiffiffiffiffiffi

1�P
P

q
1
�

� ¼ O k
�

� �
repetitions of steps (1)-(3). Since the run-

time of each repetition is dominated by that of phase estima-

tion as discussed above, i.e., Oð Xk k2maxpolylogðN þMÞk2=�3Þ,
wk k2 can be estimated within relative error � in time

Oð Xk k2maxpolylogðN þMÞk3=�4Þ. Considering M ¼ QðNÞ and
Xk kmax¼ Qð1Þ, this procedure would be efficient when

k; 1=� ¼ polylogðNÞ.

3.3 Algorithm 2: Choosing a Good a

Choosing a good value of a which allows the prediction of
future data is a critical part of RR. A common and efficient
method for choosing a good a is to choose the best one out of
a number of candidate a’s, so that RR with such a has the
best predictive performance [11]. The most commonmethod
for evaluating the predictive performance of RR as well as
other linear regression tasks is K-fold cross-validation [11].
Let us outline how to combine these two methods to deter-
mine the best a. First, the set ofN data points is divided into
K (2 	 K 	 N) subsets and the lth (l ¼ 1; � � � ; K) subset con-
tains the data points ðxj; yjÞwith j 2 Sl, where

Sl :¼ fðl� 1ÞN=K þ 1; � � � ; lN=Kg (10)

is used to mark the numbers of data points assigned to the
lth subset. Then K turns of training-test procedures are run,
where in the lth turn the lth subset is taken as the test set
and the others are taken as the training set. After that, the
squared residual sum over all data points are calculated to

YU ET AL.: AN IMPROVED QUANTUM ALGORITHM FOR RIDGE REGRESSION 861

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 28,2026 at 09:35:21 UTC from IEEE Xplore.  Restrictions apply. 



evaluate the predictive performance of this model for a cer-
tain a. The a over all the candidates corresponding to the
best predictive performance is chosen as the final a. The
details are shown as follows.

Let Xl 2 RN=K�M be the matrix containing the rows Sl of X
which corresponds to the lth subset, and X�l 2 RN�M be the
matrix X but replacing the elements in the rows of Sl with
zeros. Evidently, the rank of X�l is equal or less than that of
X. X�l can be written in the singular value decomposition

X�l ¼
PRl

j¼1 �ljjuljihvljj, where �lj are its singular values, julji
(jvlji) are their corresponding left (right) singular vectors, Rl

is its rank and 	 R obviously. All �lj lie in NþM
k0 ; N þM

� �
,

and k0 ¼ OðkÞ by takingK ¼ V
NM Xk k2maxk

2

ðNþMÞ2
	 


, a good example

of choosing suchK being leave-one-out cross-validation; see
Appendix C, available in the online supplemental material,
for more details on the scale of �lj. Similarly, we define yl
and y�l.

In the lth turn, according to the Eq. (2), the optimal fitting
parameters are

wl ¼ ðXT
�lX�l þ aIÞ�1XT

�ly�l: (11)

Consequently, the squared residual sum of prediction of lth
turn is kyl � Xlwlk2 and the predictive performance of RR
with a certain a is quantified as the total sum overK turns,

EðaÞ ¼
XK
l¼1
kyl � Xlwlk2

¼
XK
l¼1
ð yl
�� ��2þ Xlwlk k2�2yTl XlwlÞ

(12)

¼ E1ðaÞ þ E2ðaÞ þ E3ðaÞ: (13)

Given a set of candidate a’s, fa1; � � � ;aLg, our objective is to
choose ba such that

ba ¼ argmin
a2fa1;���;aLg

EðaÞ: (14)

Normally, we uniformly take these L candidate values

of a in the prespecified range ½amin ¼ Q ðNþMÞ2
k2

	 

;amax ¼

Q ðN þMÞ2
	 


�, e.g., ðNþMÞ2
10k2

; ðNþMÞ
2

2

h i
. That is to say, aj ¼

amin þ ðj�1Þðamax�aminÞ
L�1 , for j ¼ 1; � � � ; L.

In the following, we present an efficient quantum algo-
rithm to choose ba. Taking full advantage of quantum paral-
lelism, our quantum algorithm can efficiently estimate EðaÞ
for a given candidate a. Since the algorithm is inspired by
above K-fold cross-validation, we name it quantum K-fold
cross-validation.

Given a certain a, the first term of EðaÞ (Eq. (12)),
E1ðaÞ ¼

PK
l¼1 yl
�� ��2¼ yk k2 can be estimated easily as shown

in Appendix A, available in the online supplemental mate-
rial. From Eq. (12), we can see that, to estimate the second
and third terms, i.e., E2ðaÞ and E3ðaÞ, wl for l ¼ 1; � � � ; K
need to be revealed. Moreover, every data point in the lth
subset is assigned to the same wl. Therefore, we intend to
generate the quantum state approximating

jcwi ¼
PK

l¼1
P

t2Sl jti
	 


�wlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
l¼1 N wlk k2=K

q (15)

which encodeswl in parallel, within error �.
The details of the second algorithm are described in the

following steps.

(1) Prepare the initial quantum state

jc0i ¼
PK

l¼1
P

t2Sl jti
	 


� y�l
�� ��j0; y�liffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

l¼1 N y�l
�� ��2=Kq ; (16)

which can be efficiently generated in timeOðpolylogNÞ
as shown in Appendix A, available in the online sup-
plementalmaterial.

(2) Perform phase estimation on the above state by sim-
ulating the unitary operation

XK
l¼1

X
t2Sl
jtihtj

 !
� e�

i~X�lt2
NþM (17)

for some evolution time t2 to reveal the eigenvalues

of
~X�l

NþM in parallel, where

~X�l ¼ 0 X�l
XT
�l 0

� �
2 RðNþMÞ�ðNþMÞ (18)

which has eigenvalues f��ljgRl
j¼1 and corresponding

eigenvectors fjulj;�vljigRl
j¼1. Similar to the state (5),

the resultant state becomes

PK
l¼1

P
t2Sl jti

	 
 P
j y�l
�� ��bljjulj;�vlji ��ljNþM

��� E	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

l¼1 2N y�l
�� ��2=Kq ;

(19)

where blj :¼ h0;uljj0; y�li.
(3) Similar to step (3) of Algorithm 1, an auxiliary qubit is

added and rotated from j0i to ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

2h
2ð��lj;aÞ

p j0iþ
C2hð��lj;aÞj1i. Here C2 ¼ O max�hð�;aÞð Þ�1¼ Oð1=k0Þ
with �

NþM 2 ½1k0 ; 1�.
(4) Undo phase estimation and measure the auxiliary

qubit to see the outcome j1iwith probability

Pw ¼
PK

l¼1
P

j C
2
2b

2
ljh

2 �lj;a
� �

y�l
�� ��2PK

l¼1 y�l
�� ��2

¼
PK

l¼1 C
2
2ðN þMÞ2 wlk k2
ðK � 1Þ yk k2 ; (20)

which scales as Vð1=k02k2Þ as shown in Appendix D,
available in the online supplemental material. To
reduce the complexity, amplitude amplification is
applied with Oðk0kÞ repetitions. Then we get the
desired state jcwi of (15).

(5) Append two additional registers 0 � � � 0j i 0j i to the
state jcwiwhich can be rewritten as
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jcwi ¼
PK

l¼1
P

t2Sl jti
	 


� ðPM
k¼1 wlkjkiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

l¼1 N wlk k2=K
q ; (21)

where wlk is the kth entry of wl. Then implement the
following procedures.

First, perform OX to implement

X
t2Sl

wlkjtijki 0 � � � 0j i 0j i 7!
X
t2Sl

wlkjtijkijxtki 0j i:

Second, perform a controlled rotation denoted by
controlled-RX to generate

X
t2Sl

wlkjtijkijxtki xtk

Xk kmax

j1i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

tk

Xk k2max

s
j0i

 !
:

Third, perform the inverse of OX and the state
becomes

X
t2Sl

wlkjtijki
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

tk

Xk k2max

s
j0i þ xtk

Xk kmax

j1i
 !

:

Finally, perform the projective measurement on
the last two registers to see if they are in the statePM

k¼1 jkiffiffiffiffi
M
p


 �
1j i, and if success we get the state (of the

first register)

jŷi ¼
PK

l¼1
P

t2Slð
PM

k¼1 wlkxtkÞjtiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
l¼1
P

t2Slð
PM

k¼1 wlkxtkÞ2
q

¼
PK

l¼1
P

t2Sl w
T
l xtjtiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

l¼1
P

t2SlðwT
l xtÞ2

q (22)

encoding the prediction of y. The success probability
is

P1 ¼
PK

l¼1
P

t2SlðwT
l xtÞ2

M Xk k2maxð
PK

l¼1 N wlk k2=KÞ ; (23)

which, as shown in Appendix F, available in the
online supplemental material, scales as Vð1=k02Þ
when RR achieves good predictive performance.
This implies that the second term of EðaÞ (Eq. (12))
can be estimated as

E2ðaÞ ¼
XK
l¼1

Xlwlk k2

¼
XK
l¼1

X
t2Sl
ðwT

l xtÞ2

¼ P1PwNMðK � 1Þ Xk k2max yk k2
C2

2ðN þMÞ2K :

(24)

Note that N;M;K, Xk kmax and C2 are known, and
yk k2 can be estimated as shown in Appendix A,
available in the online supplemental material.

(6) Perform a swap test [19], [20] on the states jyi and
jŷi, with the success probability of getting 0j i being

P2 ¼ 1

2
þ 1

2
jhyjŷij2

¼ 1

2
þ 1

2

ðPK
l¼1
P

t2Sl ytw
T
l xtÞ2

yk k2ðPK
l¼1
P

t2SlðwT
l xtÞ2Þ

:
(25)

So the third term of EðaÞ can be estimated as

E3ðaÞ ¼
XK
l¼1

yTl Xlwl ¼
XK
l¼1

X
t2Sl

ytx
T
t wl

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2P2 � 1ÞP1PwNMðK � 1Þ

K

r
yk k2 Xk kmax

C2ðN þMÞ ;

(26)

which is ambiguous in the sign. A more deliberate
method revealing the sign is to conditionally prepare
these two states to make them entangled with an

ancilla qubit, j0ijyiþj1ijŷiffiffi
2
p , and perform the swap test on

the ancilla qubit with j0i�j1iffiffi
2
p [15], [20]. The success

probability is 1� hyjŷi, which reveals the exact value

of hyjŷi. In fact, when the RR model is well con-

structed, the predictive outputs Xlwl should be close

to the actual outputs yl, for l ¼ 1; � � � ; K, thus in this

case the sum of their inner products,
PK

l¼1 y
T
l Xlwl,

will be positive. Now that all three terms of Eq. (12)

can be estimated, the sum of them, EðaÞ, can be
directly estimated as well.

(7) For every a 2 fa1; � � � ;aLg, execute steps (1)-(6), and
then pick out the best a with minimum EðaÞ as the
final regularization hyperparameter â for RR.

The schematic quantum circuit of steps (1)-(4) of
Algorithm 2 is given in Fig. 2 and that of steps (5)-(6) is shown
in Fig. 3

Fig. 2. Quantum circuit for steps (1)-(4) of Algorithm 2. Here, UX ¼PK
l¼1

P
t2Sl jtihtj

	 

� e

� i~X�l t2
ðNþMÞ2s .

Fig. 3. Quantum circuit for steps (5)-(6) of Algorithm 2. Here, SWAP
denotes the SWAP operation.
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In order to implement the unitary operation (17) for phase
estimation in step (2), we propose the technique of parallel
Hamiltonian simulation, which is to simulate a chain of N �N
Hermitian matrices A1; � � � ; AQ in quantum parallel, i.e., to

implement the unitary operation
PQ

q¼1 qihqj j � e�
iAqt
N , within

some error. This technique is detailed by the following theo-
rem whose proof is given in Appendix E, available in the
online supplementalmaterial.

Theorem 1 (Parallel Hamiltonian Simulation). Given Q
Hermitian N �N matrices (Hamiltonians) A1; � � � ;AQ and
efficient quantum oracles that can access the elements of these

matrices, the unitary operation
PQ

q¼1 jqihqj � e�i
Aq
N t can be

simulated for time t within spectral-norm error � in time
O M2

At
2polylog N2Qð Þ=�� �

, where the states jqi are the Q

computational basis states of a Q-dimensional quantum system
and MA is the maximum absolute value of all the elements of
these matrices.

It is worth noting that the method for implementing
parallel Hamiltonian simulation in Theorem 1 is much
more advantageous than the intuitive method: put A1; � � � ;
AQ into the diagonal of a larger matrix times Q, A ¼PQ

q¼1 qihqj j �QAq, which is of sizeNQ�NQ, and then simu-
late A via the indefinite non-sparse Hamiltonian simulation

[22], i.e., implement the desired unitary operation e
�iAt
NQ ¼PQ

q¼1 qihqj j � e�
iAqt
N within error �. However, since Ak kmax¼

QMA, the time complexity of this intuitive method is

O Q2M2
At

2polylog NQð Þ=�� �
, which is roughly Q2 times more

than that of the method presented in Theorem 1. Therefore,
our method in Theorem 1 is much more efficient than the
intuitivemethod, especially whenQ is large.

According to Theorem 1, by setting Q ¼ N , MA ¼ Xk kmax

and Aq ¼ ~X�l for any q 2 Sl, the unitary operation (17) can be
implemented within error � in time Oð Xk k2maxpolylogðNþ
MÞt2=�Þ.

3.4 Time Complexity of Algorithm 2

In steps (1)-(4), the time cost is mainly taken for phase estima-
tion and amplitude amplification for generating the state jcwi.
Similar to Algorithm 1, in step (2), t2 ¼ Oðk0=�Þ is required to
make the error of jcwi be within �, and thus phase estimation

takes time Oð Xk k2maxpolylogðN þMÞk02=�3Þ. Plus amplitude
amplification in step (4) with Oðk0kÞ repetitions, it takes total
timeOð Xk k2maxpolylogðN þMÞk03k=�3Þ to generate jcwi.

In step (5), the second term of EðaÞ, i.e., E2ðaÞ, can be esti-
mated by estimating Pw and P1 as shown in Eq. (24). Just as
estimating yk k2 by amplitude estimation described in Appen-
dix A, available in the online supplemental material, Pw can
be estimated within relative error �w by amplitude estimation

with O
ffiffiffiffiffiffiffiffiffiffi
1�Pw
Pw

q
1
�w

	 

¼ O 1ffiffiffiffiffi

Pw
p

�w

	 

repetitions of steps (1)-(3),

resulting in the runtime

O
Xk k2maxpolylogðN þMÞk02=�3ffiffiffiffiffiffiffi

Pw

p
�w

 !
: (27)

Similarly, P1 can be estimated within relative error �1 by

amplitude estimation with O
�

1ffiffiffiffi
P1
p

�1

�
repetitions of

generating cwj i and calling OX and O�1X as shown in step
(5), which results in the runtime

O
Xk k2maxpolylogðN þMÞk03k=�3ffiffiffiffiffi

P1

p
�1

 !
: (28)

It should be noted that it is hard to estimate the scale of P1

(and P2) because it depends on the closeness between the
prediction wT

l xt and the actual output yt for l ¼ 1; � � � ; K
and t 2 Sl. But when RR achieves good predictive perfor-
mance with wT

l xt 
 yt for most t, P1 ¼ Vð1=k02Þ (and
P2 
 1) as shown in Appendix F, available in the online sup-
plemental material. Moreover, the relative errors for esti-
mating Pw and P1, i.e., �w and �1, make the relative error for
estimating P1Pw, as well as that for estimating E2ðaÞ as
shown in Eq. (24), be within Oð�w þ �1Þ. So, in conclusion,
putting the runtime for estimating these three probability
together, E2ðaÞ can be estimated within relative error
Oð�w þ �1Þ in total time

O
Xk k2maxpolylogðN þMÞk02

�3
1ffiffiffiffiffiffiffi
Pw

p
�w
þ k0kffiffiffiffiffi

P1

p
�1


 �" #

¼ O
Xk k2maxpolylogðN þMÞk03k

�3
1

�w
þ k0

�1


 �" #
; (29)

since Pw ¼ Vð1=k02k2Þ and P1 ¼ Vð1=k02Þ.
In step (6), P2 can be estimated within relative error �2 by

amplitude estimation with O
�

1ffiffiffiffi
P2
p

�2

�
repetitions of generat-

ing yj i and ŷj i. The state yj i is generated in timeOðpolylogNÞ
as shown in Appendix A, available in the online supplemen-
tal material. With help of amplitude amplification, generat-

ing ŷj i in step (5) takes time O 1ffiffiffiffi
P1
p Xk k2maxpolylogðNþMÞk03k

�3


 �
. As

a result, P2 can be estimatedwithin relative error �2 with run-

time O
Xk k2maxpolylogðNþMÞk04k

�3�2

	 

since P1 ¼ Vð1=k02Þ and P2 
 1

as shown in Appendix F, available in the online supplemen-
tal material. The relative errors for estimating Pw, P1 and P2,
�w, �1 and �2, respectively, make the relative error for estimat-

ing
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2P2 � 1ÞP1Pw

p
, as well as that for estimating E3ðaÞ as

shown in Eq. (26), be within Oð2�2 þ �w þ �1Þ due to P2 
 1.
So, E3ðaÞ can be estimated within relative error Oð2�2þ �w þ
�1Þ in timeO

� Xk k2maxpolylogðNþMÞk04k
�3�2

�
.

Consider that E1ðaÞ ¼
PK

l¼1 yl
�� ��2¼ yk k2 can be estimated

within relative error �y taking runtime O polylogðNÞ=�y
� �

as
shown in Appendix A, available in the online supplemental
material. Letting �y ¼ �, �w; �1 ¼ �=3, and �2 ¼ �=6, each of
the three terms E1ðaÞ, E2ðaÞ and E3ðaÞ has relative error
Oð�Þ, and thus EðaÞ ¼ E1ðaÞ þE2ðaÞ þ E3ðaÞ has relative
error Oð�Þ, and the runtime for estimating it scales as

O
� Xk k2maxpolylogðNþMÞk04k

�4

�
. Furthermore, step (7) involves esti-

mating Eða1Þ; � � � ; EðaLÞ, so Algorithm 2 takes runtime

O
L Xk k2maxpolylogðN þMÞk04k

�4

 !
(30)

in total.
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The best classical counterpart of Algorithm 2 consists of
L iterations and each one evolves a K-fold cross validation.
In jth (j ¼ 1; 2; � � � ; L) iteration, two phases are involved:
(1) K turns of RR with aj are run and in lth turn wl

(Eq. (11)) is output in time O
� ðK�1ÞNM

K þ ðK�1Þ2N2Rllog ðRl=�Þ
K2�2

�
[25]; (2) EðajÞ is calculated according to Eq. (12), which is
easy to see the time complexity scales as OðNMÞ. So the total

time complexity scales as O
	
LNM þ LN2ð

PK

l¼1 Rllog ðRl=�ÞÞ
�2



due toK � 2.

Considering the assumptions of Xk kmax¼ Qð1Þ and N ¼
QðMÞ, and k0 ¼ OðkÞ by setting K ¼ VðNM Xk k2maxk

2

ðNþMÞ2 Þ ¼ Oðk2Þ,
our Algorithm 2 has runtimeOðLpolylogðNÞk5=�4Þ, while the

best classical counterpart has runtime ~O LN2
PK

l¼1 Rl

	 

=�2

h i
,

where ~O is used to suppress the relatively small quantities of
log ðRl=�Þ. When k ¼ Oð ffiffiffiffiffiNp Þ which is amenable to full or
approximately full rank of X and X�l, i.e., R;Rl ¼ OðNÞ, our
Algorithm 2 has runtime OðLpolylogðNÞN2:5=�4Þ, whereas
the classical counterpart takes timeOðLpolylogðNÞN4=�2Þ, so
polynomial speedup over the classical counterpart can be
achieved when L; 1=� ¼ OðpolylogNÞ. However, when
k ¼ OðpolylogðNÞÞ which implies low rank of X as well as
X�l, i.e., R;Rl ¼ polylogðNÞ, our Algorithm 2 has runtime
OðLpolylogðNÞ=�4Þ, while the classical counterpart has run-
time OðLpolylogðNÞN2=�2Þ, so in this case exponential
speedup can be achievedwhenL; 1=� ¼ OðpolylogNÞ.

3.5 The Whole Quantum Algorithm for RR

Our quantum algorithm for RR will start with Algorithm 2
to find a good a, and then plug such a into Algorithm 1 to
estimate the optimal fitting parameters in the quantum state
form. The quantum state can further be applied to efficiently
predict new data via swap test. It is easy to see the time
complexity of the whole algorithm is dominated by Algo-
rithm 2, and thus the speedup over the classical algorithm
also depends on the condition number of design matrix as
discussed in Algorithm 2 above.

4 CONCLUSIONS

In summary, we have described a quantum algorithm that
can efficiently implement RR over an exponentially large
data set. In particular, we propose the technique of parallel
Hamiltonian simulation and use it to develop the quantum
K-fold cross-validation that can efficiently evaluate the pre-
dictive performance of RR. The algorithm first uses quan-
tum K-fold cross-validation to efficiently determine a good
a with which RR can achieve good predictive performance,
and then generates a quantum state encoding the optimal
fitting parameters of RR with such a. The state can be fur-
ther used to efficiently predict new data. It is shown that
our algorithm can handle data sets with non-sparse design
matrices, and is able to be exponentially faster than the clas-
sical algorithm for (low-rank) design matrices with low con-
dition numbers, but be polynomially faster than the
classical algorithm for (full or approximately full) design
matrices with large condition numbers.

We hope our algorithm and especially the key techniques
used in our algorithm, parallel Hamiltonian simulation and

quantum K-fold cross-validation, can inspire more efficient
quantum machine learning algorithms. For example, since
cross-validation is an important technique being widely used
to estimate the predictive performance of various machine
learning algorithms [5], [28] other than RR, it is promising that
our quantum K-fold cross-validation can be applicable in
these fields.We explore these possibilities in the future.
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