858 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 3, MARCH 2021

An Improved Quantum Algorithm for
Ridge Regression
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Abstract—Ridge regression (RR) is an important machine learning technique which introduces a regularization hyperparameter « to
ordinary multiple linear regression for analyzing data suffering from multicollinearity. In this paper, we present a quantum algorithm for
RR, where the technique of parallel Hamiltonian simulation to simulate a number of Hermitian matrices in parallel is proposed and used
to develop a quantum version of K-fold cross-validation approach, which can efficiently estimate the predictive performance of RR. Our
algorithm consists of two phases: (1) using quantum K-fold cross-validation to efficiently determine a good « with which RR can
achieve good predictive performance, and then (2) generating a quantum state encoding the optimal fitting parameters of RR with such
«, which can be further utilized to predict new data. Since indefinite dense Hamiltonian simulation has been adopted as a key
subroutine, our algorithm can efficiently handle non-sparse data matrices. It is shown that our algorithm can achieve exponential
speedup over the classical counterpart for (low-rank) data matrices with low condition numbers. But when the condition numbers of
data matrices are large to be amenable to full or approximately full ranks of data matrices, only polynomial speedup can be achieved.

Index Terms—Quantum algorithm, ridge regression, regularization hyperparameter, parallel Hamiltonian simulation, quantum K-fold cross

validation

1 INTRODUCTION

DATING from the 80’s of last century, quantum com-
puting has been shown to be more computationally
powerful in solving certain problems than classical com-
puting [1], [2], [3], [4]. In the past decade, it has been
brought into the field of machine learning, which is a sub-
field of computer science and studies how to learn from
data and make predictions on new data [5], giving birth
to a new disciplinary research field—quantum machine
learning. Since its inception, quantum machine learning
has become a booming research field attracting world-
wide attentions, and a number of efficient quantum algo-
rithms have been proposed for various machine learning
tasks [6], [7], [8], [9].

Linear regression (LR) is one of the most important
machine learning tasks with wide applications in many sci-
entific fields including biology, behavioristic, sociology,
finance, and so on [5]. Given N data points (x;, ;). ,, where
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x; = (w1, .. ., .riM)T €RM is a vector of M independent
(exploratory, input) variables and y; € R is the scalar depen-
dent (response, output) variable, LR assumes that x; and y;
are linearly correlated and attempts to construct a linear
function f(x) =w’x characterized by fitting parameters
w = (wy,.. .,wﬂ,,[)T that can best fit such relationship, i.e.,
making every f(x;) as close as possible to y;. It should be
emphasized that x can be generated by a nonlinear map on
some original data, such as polynomial function, which ena-
bles LR to fit nonlinear function.

The simplest LR model is ordinary linear regression (OLR),
where the optimal fitting parameters w = X'X)"'X"y are
determined via least squares method of minimizing the
sum of squared residuals. Here y = (y1,. .. 7yN)T, and X =
(X1, .. ,xN)T is called design matrix. However, OLR in prac-
tice is often far from satisfaction [5], [10], [11] when suffer-
ing multicollinearity of independent variables of data
points (which makes XX not invertible) or overfitting.
These two difficulties substantially restrict the effectiveness
of OLR when putting it into real-world applications. To cir-
cumvent them, Hoerl et al. [11] put forward a generalized
version of OLR—ridge regression (RR), in which some
regularization of w is introduced into optimization. This
leads to the optimal fitting parameters of RR being
w=(X"X+al) 'X"y, where « denotes regularization
hyperparameter and I is the identity matrix. However,
choosing an appropriate o with which RR can achieve the
best (or approximately best) predictive performance is of
great challenge.

As of now, a series of quantum algorithms for LR have
been proposed. By building on the well-known quantum
algorithm for solving linear systems of equations proposed
by Harrow, Hassidim, and Lloyd (HHL) [12], Wiebe et al.
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[13] first provided a quantum algorithm that can efficiently
determine the fitting quality of OLR over an exponentially
large data set with a sparse design matrix. Their results
were later improved and directly extended to tackle RR
[14]. Lately, different from the previous algorithms [12], [14]
which are efficient only for the data sets with sparse design
matrices, Schuld et al. provided a quantum algorithm for
prediction by OLR that can efficiently process low-rank
non-sparse design matrices [15]. More recently, Wang sug-
gested a quantum linear regression algorithm that works in
the standard oracle model and can efficiently output the
optimal fitting parameters in the classical form [16]. How-
ever, with the exception of prior work for quantum RR [14],
almost all of these quantum linear regression algorithms are
based on OLR rather than RR, thus cannot combat multicol-
linearity and overfitting mentioned above.

In this paper, to deeply explore how and to what extent RR
can be done by quantum computing faster than by classical
computing, we design a more comprehensive quantum algo-
rithm for RR. Inspired by the technique of K-fold cross-vali-
dation [10] which has been widely used to evaluate the
predictive performance of many machine learning algorithms
[5], [28], we propose its quantum version to efficiently evalu-
ate the predictive performance of RR. Our quantum algorithm
will use the quantum K-fold cross-validation to determine a
good « for RR, and then generate a quantum state encoding
the fitting parameters of RR with such « in the amplitudes. It
is shown that our algorithm is exponentially faster than the
classical counterpart, when processing (low-rank) design
matrices with relatively small elements and low condition
numbers, but when design matrices have large condition
numbers amenable to full or approximately full ranks of data
matrices, only polynomial speedup can be achieved. Our
algorithm improves the existing quantum algorithm for RR,
ie., LZ’s algorithm [14], from two aspects. First, since our
algorithm uses indefinite dense Hamiltonian simulation [22]
as the key subroutine, our algorithm has no dependence on
the sparsity of design matrices, but has slightly worse depen-
dence on the error, whereas LZ’s uses sparse Hamiltonian
simulation as the subroutine and can only efficiently tackle
sparse design matrices. Second, our algorithm presents an
efficient procedure, i.e., quantum K-fold cross-validation, to
determine a good « for RR, while LZ’s algorithm does not
address this important task.

Just as other HHL-based quantum machine learning
algorithms with several caveats [17], our algorithm also
faces similar caveats. First, our algorithm assumes that effi-
cient quantum access to the entries of X and y is provided.
This can be achieved by quantum random access memory
(QRAM) [18], for which there is no general implementation
in quantum hardware to date. However, if the entries can
be efficiently computed by simple and explicit formula, the
quantum access can be efficiently implemented directly
without QRAM. Second, our algorithm does not output the
classical form of the optimal fitting parameters w, but a
quantum state [w) encoding w in its amplitudes. Neverthe-
less, the state can be further used to efficiently predict new
data via swap test [19], [20]. Finally, our algorithm is expo-
nentially fast when the condition number of the design
matrix X is relatively low. The condition number may be
reduced by preconditioning X.
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2 REVIEW OF RIDGE REGRESSION

Given a set of N data points (x;, y;) 7]\:1 as described above, RR
aims at finding a linear function f(x)=x"w = Zé\il Tjwj
characterized by the fitting parameters w = (wy,---,wy)"
that makes all f(x;) as close as possible to y; [5], [10], [11]. Dif-
ferent from OLR where the sum of squared residuals is mini-
mized, RR minimizes the sum of squared residuals plus a
fraction of regularization of w and has the optimal fitting
parameters

N
w = argmin > [(x;) — y:[” + e w]
L o)

— (X"X + D) !XTy,

where ||v|| is the 2-norm of any vector v. Evidently, OLR is a
special case of RR with & = 0. Write X in the reduced singular
value decomposition [21] form X = Zf’zl Ajlu;)(v,|, where R
is the rank of X, \; are the nonzero singular values, and |u;)
(|v;)) are the corresponding left (right) normalized singular
vectors. Adding another N — R normalized vectors
[upi1), -+, Juy) that make |uy), - - -, Jux) become an orthonor-
mal basis spanning the whole space RY, y/||y|| can be written
as a linear combination of {|u,>}{v, y/lyll = 2,11 B;lu;) with
Z/\Ll ﬂ? = 1,and thus w can be rephrased as

w =
J

R >\j

Billylllvs), 2
)\f +a' J

1

which depends on the choice of «. After attaining w, one can
predict the output y of any new input x via computing
7 =w!x. So the predictive squared error sum for all the
training data points is

IXw —yl*

= [yl (1— " )ﬂ-+ B;
)\]2_|_a J J

j=1 j=R+1

R
> ||y|2<1 ~AR2-A) (Zﬂ,?))
j=1
A2

. N 2 R 2
since } ;" gy B =1— (32,2, Bj), where A = max;_1 .. r Yo
J

and 0 < A < 1. If Zf;l ﬁ? is small, the error sum would be
very large, meaning that the model is badly constructed;
otherwise, the error sum is small. As a result, when the RR
model is well constructed, the support of y/||y|| in the space
spanned by {|uj>}jR:1, ie., Zil B2, should be large to be
close to 1.

Therefore, it is of great importance to choose a good « so
that RR with such « can achieve good predictive perfor-
mance, and then to obtain the w of RR with such a.

3 QUANTUM ALGORITHM

In the following, we design a quantum algorithm for RR. It
consists of two subroutines: a quantum algorithm for gener-
ating the quantum state encoding the optimal fitting param-
eters w (Egs. (1) and (2)), and a quantum algorithm for
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Fig. 1. Quantum circuit for Algorithm 1. Here, the ‘/’ denotes a bundle of
wires, H denotes the Hadamard operation, FT represents the quantum
Fourier transformation and FT'~! is its inverse [1], and s is the number of

qubits for estimating the eigenvalues of in step (2), controlled-R;
denotes controlled rotation in step (3).

V+ M

finding a good «. Throughout the algorithm, we assume we
are provided the quantum oracles

Ox = |7)1k)[0) = |3) k) ]jm)

and

Oy :17)|0) —

which can efficiently access the entries of X and y in time
O(polylog(MN)) and O(polylog(N)), respectively. This
holds when the entries of X and y are efficiently computable
or are stored in QRAM [18]. In general, X is not too much
skewed, and [|X]| .« and ||y|,,.. are not too large, hence we
assume M = O(N) and || X||,,... [[Y]] O(1) hereafter.

9)1y3)s

lIldX

3.1 Algorithm 1: Generating a Quantum State
Encoding the Optimal Fitting Parameters
We first give a quantum algorithm to generate a quantum
state |w) that approximates the normalized w within error
e. From Eq. (2), it is easy to see that, to obtain w, we need
perform singular value decomposition on X. To achieve
this, the recently invented technique of indefinite non-
sparse Hamiltonian simulation [22] is adopted. Given a
Hermitian matrix A € C"*" and efficient quantum access
to its entries, by embedding A into a larger one-sparse

Hermltlan matrix, it is able to simulate the unitary matrix
for time t within error e in time O(polylog( )2
||A\|ma\/e), where || Al],..:= max;;|4;;|. However, in our
problem, since X is generally not Hermitian, we extend it to
a larger but Hermitian matrix
< 0 X (N
X = |:XT O:| c R(Nﬁ»]l])x(]\ﬁ»l\[)? (3)
which is of 2R nonzero eigenvalues {£\; } j—1 and corre-

sponding normalized eigenvectors {|u;,£v;) := (|0,u;) &
I1,v)))/V2 € RN“‘[}] 1, where

o) = |15 v = | 0 | @

Without loss of generality, we assume % € [1/«, 1], where «
is the condition number of X. In addition, from Eq. (2), it is easy
to see that too small « will make RR reduced to OLR and too
large o will make the optimal fitting parameters approach zero,
thus we choose « satisfying ®((Vt+)z) <a < O((N+M)?).

The first algorithm proceeds as following steps and the
schematic is given in Fig. 1:

1)

)

3)

Prepare the (N + M)-dimensional quantum state

|0,y) = <|y)T,0 = Zjvzl B;]0,u;) by directly expand-
ing the state |y) :=y/||y||-

Here we assume |y) can be generated efficiently
in time O(polylog(N)). As shown in Appendix A,
which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2019.2937491, when vy is balanced [16]
in the sense that

N 2
Z] 1 |y7|

— (1),
Nyt W

max

ly) can be efficiently generated in time O(polylogV)
via Oy. Alternatively, |y) can also be efficiently pre-
pared when for any iy, iy, 322 71|y7| are efficiently
computable [23].

Add another register in the state |0- - - 0) to the above
state |0,y), and perform phase estimation by simulat-

ing eN+ [22] for some evolution time ¢; to reveal the
eigenvalues and eigenvectors of 24; as

f +A
Bilu,, £v;) ! > V2. &)
]; PTIN 4 M /

Here for convenience we assume |y) fully lies in
the subspace {\uj>}] 1, hamely |y) = Zf’:l B;lu;) with
Zj:] ,32 =1 and thus |[0,y)= Zf:] Bjl0,u;) =
Zf:l B;lu;, £v;)/v/2. If ly), more generally, does not
the state of Eq. (5)

fully lie in the subspace {|u])}
would be

J=1

u +\
j:zlﬁﬂumivﬁ N JM>/\/§

N
+ > Bjl0,upo---0)

j=R+1

(6)

Nonetheless, we can efficiently transform the state of
Eq. (6) to the state of Eq. (5): introduce another qubit
|0) and rotate it to |1) when the eigenvalue stored in
the second register (eigenvalue register) is nonzero,
and then measure the qubit to see the outcome |1). The
measurement probability is 37 -1 ,8 ~ 1 as discussed
in Section 2, so the transformation is quite efficient.
After successful measurement, we obtain the state of

Eq. (5) by letting B; — B,/ Zle piforj=1,--,R.
Add one qubit and rotate it from |0) to

V1= CiR? (£, a)[0) + Cih(£);,a)|1) controlled on

+Aj

| v47), where h(\,«) := (A;f,rM and C) = O(max,,
h(Aj, @)  =O(1/k). As shown in Appendix B,

available in the online supplemental material, the
maximum of h(\;,«) as well as C; depends on the
actual choice of «, but Cih(A;,a) = Q(1/k) for all
possible «. Then we undo phase estimation and
obtain
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R
> Blus, ;) (/1 = CEr2 (N ) 0)
= @)

n Clh(:t/\j,oz)|1>).

(4) Measure the last qubit to get |1) and project the first
register onto the v; part. The final state of the first
register approximates

S CiBh O a)lvi)
\/2le C%ﬂ]zh2 (/\j’ 0‘)

which is proportional to Eqs. (1) and (2) as
desired. The success probablhty of getting [1) is
Z]  C1BR? (A, @) = Q(1/k?), which implies that
O(x?) repetitions are enough to yield the desirable
state with a large probability, and this can be
improved by amplitude amplification [24] with
O(«) repetitions.

Given the quantum form |X) of a new input data X,
the state |¢,) can be used to predict the output
y = wlx up to some factor by evaluating the inner
product of [x) and |¢,,) via swap test [19], [20].

lpw) = w, ®)

3.2 Time Complexity of Algorithm 1

The time complexity of Algorithm 1 is dominated by phase
estimation and amplitude amplification. In step (2), the eigen-
values + +=4; € £[1/k, 1] are estimated within error O(1/t,)
via phase estimation. Consequently, the relative error of esti-
mating h(+\;, «) scales as O(«/t;) no matter how « is chosen,
but its actual scale depends on « as detailed in Appendix B,
available in the online supplemental material. Therefore,
t1 = O(x/e) is taken to ensure the final state approximates
|¢,,) within error e. Thus, according to [22], phase estimation
takes time O(||X||,.polylog (N 4 M)k?/¢*). Considering
amplitude amplification of O(k) repetitions in step (4), it
takes total time O(||X||?, polylog(N + M)ik?/€*) to generate
|py). Since Tr(X'X) =31 N2 =3 2% < NM|X|:
A € [N+M N + M], we have & 5 < %, and thus the rank
R of X is upper bounded as R = O(k?) due to M = O(N) and

[ X L= O(1).

The best known classical RR algorithm has time complexity
O(NM + N’R log (£)/€?) [25]. Under the assumptions that
M = O(N) and ||X]|,,..= ©(1), and letting 1 /¢ = O(polylogN),
our Algorithm 1 takes time O(polylog(N)«?), while the classical
algorithm takes time O(polylog(N)N?R), where O is used to
suppress the relatively small quantity of log (R/¢). When « is
large with x = O(v/N) which is amenable to full or approxi-
mately full rank of X (e, R = O(N)), Algorithm 1 achieves
(approximately) quadratic speedup over the classical algo-
rithm, because in this case Algorithm 1 has time complexity
O(polylog(N)N?3/2), whereas the classical algorithm has time
complexity O(polylog(N)N?). However, when « is small with
« = polylog(N') which implies low rank of X (R = polylog(V)),
Algorithm 1 has time complexity O(polylog(/N)), while the clas-
sical algorithm has time complexity O(polylog(N)N?), so our
Algorithm 1 in this case is exponentially faster than the classical
algorithm.

max

861

Compared with LZ’s quantum RR algorithm [14] whose
time complexity is O(log (N + M)s’k%/€?), where s is the

sparsity of design matrix and kp = % = O(k) (Note
min{1/k, 577

that the singular values of design matrix in our algorithm
are assumed to be in [(N + M)/k, N + M], while those in
LZ’s algorithm are assumed to be in [1/k, 1]), the time com-
plexity of our Algorithm 1 has the same dependence on « as
LZ’s result, whereas the dependence on ¢ is worse by a fac-
tor ¢ 1. However, our Algorithm 1 has no dependence on s,
which makes it capable to efficiently handle non-sparse
design matrices, and is exponentially faster than LZ’s algo-
rithm for non-sparse design matrices with s = O(N) when
k,1/e = O(polylogN).

Just as LZ’s algorithm, our Algorithm 1 can also output
the scale parameter ||w||> which tells how w is rescaled to
|w). From Eq. (2), we can see that

) Byl

2 N~
wl fZ Y
ZR:hQ X, @) fflly\l

~ (N+M)>

_ Plly|?
C%(N + M)*’

where P = Zf’zl CIBIR* (Aj, ) = Q(1/k?)
measurement probability in step (4) of Algorithm 1. Just as

9)

represents the

estimating |ly||* shown in Appendix A, available in the online
supplemental material, P (as well as ||w]||®) is estimated via
amplitude estimation [24] within relative error e with

O(\/g%) = O(¥) repetitions of steps (1)-(3). Since the run-
time of each repetition is dominated by that of phase estima-
tion as discussed above, i.e., O(|| X%, polylog(N + M)«?/e),
[w|* can be estimated within relative error ¢ in time

O(|IX|1? . polylog(N + M)«? /€'). Considering M = @(N) and
| X|l,0= ©(1), this procedure would be efficient when
Kk,1/e = polylog(N).

3.3 Algorithm 2: Choosing a Good «
Choosing a good value of o which allows the prediction of
future data is a critical part of RR. A common and efficient
method for choosing a good « is to choose the best one out of
a number of candidate «’s, so that RR with such « has the
best predictive performance [11]. The most common method
for evaluating the predictive performance of RR as well as
other linear regression tasks is K-fold cross-validation [11].
Let us outline how to combine these two methods to deter-
mine the best «. First, the set of [V data points is divided into
K (2 < K < N)subsets and the lth (I =1, - -, K) subset con-
tains the data points (x;, y;) with j € S;, where
Sp:={(l—=1)N/K+1,---,IN/K} (10)
is used to mark the numbers of data points assigned to the
lth subset. Then K turns of training-test procedures are run,
where in the Ith turn the Ilth subset is taken as the test set
and the others are taken as the training set. After that, the
squared residual sum over all data points are calculated to
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evaluate the predictive performance of this model for a cer-
tain «. The o over all the candidates corresponding to the
best predictive performance is chosen as the final «. The
details are shown as follows.

Let X; € RY/5X*M be the matrix containing the rows S; of X
which corresponds to the Ith subset, and X_; € RV*M be the
matrix X but replacing the elements in the rows of 5; with
zeros. Evidently, the rank of X_; is equal or less than that of
X. X_; can be written in the singular value decomposition
X = Zf;_ll Nijlwgj) (vi;|, where \;; are its singular values, |u;;)

([vy;)) are their corresponding left (right) singular vectors, R,
is its rank and < R obviously. All \;; lie in (%52 N + M),
and « = O(k) by taking K = Q(%@;}K?
of choosing such K being leave-one-out cross-validation; see
Appendix C, available in the online supplemental material,
for more details on the scale of )j;. Similarly, we define y,
andy_,.

In the Ith turn, according to the Eq. (2), the optimal fitting
parameters are

), a good example

wi = XX +al) Xy, (11)
Consequently, the squared residual sum of prediction of ith
turn is ||y, — X,w;||” and the predictive performance of RR

with a certain « is quantified as the total sum over K turns,

K
@) = 2 ly, = Xow ||
K
=>( [yl l1Xowa |2~ 2y7 Xiwy)

=1
= El(()l) + EQ(O[) + Eg((x)

(12)

(13)

Given a set of candidate «’s, {ay, - - -
choose @ such that

,ar}, our objective is to

o= argmin E(a). (14)

ac{oy,ar}

Normally, we uniformly take these L candidate values
T2
(N téu) )

y @max —

of o in the prespecified range [ty = @(
@((N+M)2>], e.g., [(ﬁg)z,(]\%]"nz}. That is to say, a; =
Qmin —}—w,fom’ =1,---, L.

In the following, we present an efficient quantum algo-
rithm to choose a. Taking full advantage of quantum paral-
lelism, our quantum algorithm can efficiently estimate F(c)
for a given candidate «. Since the algorithm is inspired by
above K-fold cross-validation, we name it quantum K-fold
cross-validation.

Given a Certam o, the first term of E(«x) (Eq. (12)),
Ei(a) =S~ 1||Yz” = |ly||* can be estimated easily as shown
in Appendix A, available in the online supplemental mate-
rial. From Eq. (12), we can see that, to estimate the second
and third terms, i.e., Eyx(«) and Es(«), w; for [=1,--- K
need to be revealed. Moreover, every data point in the /th
subset is assigned to the same w;. Therefore, we intend to
generate the quantum state approximatin

S (Lees 19) @ W

Vs Nllwi|*/ K

which encodes w; in parallel, within error e.
The details of the second algorithm are described in the
following steps.

[Vw) = (15)

(1)  Prepare the initial quantum state

Y I(ZIESI |T>) ® [ly_i[[10,y_p)

JEE Ny FE

which can be efficiently generated in time O(polylog/V)
as shown in Appendix A, available in the online sup-
plemental material.

(2) Perform phase estimation on the above state by sim-
ulating the unitary operation

Z(Z |r><r|> @ e Nl

=1 \r€S;

V) = (16)

17

for some evolution time ¢, to reveal the eigenvalues

ofX

SCEe in parallel, where

s | 0 Xy (N+M)x(N+M)
X ;= |:X3 0 :| eR (18)
which has eigenvalues {j:)\zj}f:’ , and corresponding

eigenvectors {|u;, £v;;) f:’ 1~ Similar to the state (5),
the resultant state becomes

Z[il(ZTES, )(Z ly- Hﬁ1j|“/j>ivlj>‘%>)

VK 2Ny | /K
(19)

where ;; := (0,u;0,y_,).

(3)  Similar to step (3) of Algorithm 1, an auxiliary qubit is
added and rotated from |0) to /1 — C3h?(£N;;, &) |0)+
C’zh(i)\l], a)[1). Here Cy = O(maxyh(\, ) '= O(1/«’)
with 257 € [+, 1].

(4)  Undo phase estimation and measure the auxiliary
qubit to see the outcome |1) with probability

Z C3B5h* (Nijy
Zl:lHY—lH

_ S CR(N + M) |jwi|®

- (K =1yl

which scales as Q(1/«”?«?) as shown in Appendix D,
available in the online supplemental material. To
reduce the complexity, amplitude amplification is
applied with O(«x'x) repetitions. Then we get the
desired state |y,,) of (15).

(5) Append two additional registers |0---
state |y, ) which can be rewritten as

P, — ”y z”

; (20

0)|0) to the
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S~

[0)®s

[w)

Fig. 2. Quantum circuit for steps (1)-(4) of Algorithm 2. Here, Uy =
. R
S (Sres 19)(xl) @ V07

S (s 7)) © (20 wielk)

K )
Vi Nlwil|*/ K

where wy;, is the kth entry of w;. Then implement the
following procedures.
First, perform Ox to implement

> waln)k)o

1.'65[

[Vw) = (21)

> w2 [k | 0).

‘EESI

Second, perform a controlled rotation denoted by
controlled-Rx to generate

2
1) + /1 - 10) |
(”X”mdx HXHIIle

Third, perform the inverse of Ox and the state

becomes
(/1 0) + |1>> :
( HXHIHdX ax

Finally, perform the projective measurement on
the last two registers to see if they are in the state

S8 1) and if N ‘h
i |1), and if success we get the state (of the

first register)

ZWIA| MEY T o)

‘EESl

Tk
X,

ZW}H |]€

t€Sl

S e (S wakza)|7)
VI S (T W)’

Y Yy wiilD)
VI D (Wixe)”

[y) =
(22)

encoding the prediction of y. The success probability
is

K 2
=1 ZTESI (WZTXT)

= ‘ : (23)
M| X[ (2051 Nwal*/ )

which, as shown in Appendix F, available in the
online supplemental material, scales as Q(1/«?)
when RR achieves good predictive performance.
This implies that the second term of E(x) (Eq. (12))
can be estimated as

863

[0)

ly)
) 07 ]
0e0) X 0Ox 10--0)
L]
10) ™

Fig. 3. Quantum circuit for steps (5)-(6) of Algorithm 2. Here, SWAP
denotes the SWAP operation.

K
= Zl\xzw1|\2

= ZZ wix,)? (24)
=1 1€8;
_ PPy NM(E = 1) X| Iy ]
C3(N + M)’K

Note that N, M, K, ||X||,,., and C5 are known, and
Hy||2 can be estimated as shown in Appendix A,
available in the online supplemental material.

(6) Perform a swap test [19], [20] on the states |y) and
|y), with the success probability of getting |0) being

P, = (yly)[?

( l 1 ZreSz yrwlTxr)z 25)

IyIP (2 ves, (Wi %))

DN | = [\3|>—l
N | = wl»—l

+

So the third term of E(«) can be estimated as

K K
= Z v Xow, = Z Z yox W

=1 I=1 1€85)

_ i\/(QPQ — PP NM(K — 1) [[7]* X
K Cy(N + M)’

(26)

which is ambiguous in the sign. A more deliberate
method revealing the sign is to conditionally prepare
these two states to make them entangled with an

ancilla qubit, M and perform the swap test on
L [15], [20]. The success

probability is 1 — (y|y), Wthh reveals the exact value
of (y|y). In fact, when the RR model is well con-
structed, the predictive outputs X;w; should be close
to the actual outputs y,, for [ = 1,---, K, thus in this
case the sum of their inner products, Zfi 1 leXZwl,
will be positive. Now that all three terms of Eq. (12)
can be estimated, the sum of them, F(«), can be
directly estimated as well.

(7)  For every « € {a1,---,ay}, execute steps (1)-(6), and
then pick out the best « with minimum E(«) as the
final regularization hyperparameter & for RR.

The schematic quantum circuit of steps (1)-(4) of
Algorithm 2 is given in Fig. 2 and that of steps (5)-(6) is shown
in Fig. 3

the ancilla qubit w1th ‘0
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In order to implement the unitary operation (17) for phase
estimation in step (2), we propose the technique of parallel
Hamiltonian simulation, which is to simulate a chain of N x N
Hermitian matrices A,---, Ap in quantum parallel, ie., to

iAgt
implement the unitary operation Zq:1|q> (gl ® e N, within

some error. This technique is detailed by the following theo-
rem whose proof is given in Appendix E, available in the
online supplemental material.

Theorem 1 (Parallel Hamiltonian Simulation). Given Q)
Hermitian N x N matrices (Hamiltonians) A,,---,Aq and
efficient quantum oracles that can access the elemerzts of these
matrices, the unitary operation Zqul lg)(q| ® e "R can be

simulated for time t within spectral-norm error € in time

O(Mj3t*polylog(N?Q)/€), where the states |q) are the Q

computational basis states of a QQ-dimensional quantum system

and My is the maximum absolute value of all the elements of
these matrices.

It is worth noting that the method for implementing
parallel Hamiltonian simulation in Theorem 1 is much
more advantageous than the intuitive method: put A, - -,
AQ into the diagonal of a larger matrix times @, A=

Z " |a){(q] ® QA,, which is of size NQ x NQ, and then simu-

late A via the indefinite non-sparse Hamiltonian simulation
_iAL
[22], i.e., implement the desired unitary operation e " =

iAgt
Z oy {gl®@e” & within error . However, since ||A|

max
QM,, the time complexity of this intuitive method is
O(Q*M3t*polylog(NQ)/€), which is roughly @? times more
than that of the method presented in Theorem 1. Therefore,
our method in Theorem 1 is much more efficient than the
intuitive method, especially when Q) is large.

According to Theorem 1, by setting Q = N, Ma = ||X|| ;...
and A, = X_; for any ¢ € S, the unitary operatlon (17) can be
1mplemented within error ¢ in time O(||X|?,, polylog(N+

M)t /).

3.4 Time Complexity of Algorithm 2

In steps (1)-(4), the time cost is mainly taken for phase estima-
tion and amplitude amplification for generating the state |1/, ).
Similar to Algorithm 1, in step (2), ¢t = O(«’/€) is required to
make the error of |,,) be within ¢, and thus phase estimation
takes time O(||X|?, polylog(N + M)« /e*). Plus amplitude
amplification in step (4) with O(«x) repetitions, it takes total
time O(||X||2 . polylog(N 4 M)k« /€®) to generate |1/, ).

In step (5), the second term of E(«), i.e., Es(«), can be esti-
mated by estlmatmg Py and P; as shown in Eq. (24). Just as
estimating ||y||* by amplitude estimation described in Appen-
dix A, available in the online supplemental material, P, can
be estimated within relative error €, by amplitude estimation
with O(y'5) = Oy

resulting in the runtime

) repetitions of steps (1)-(3),

27

0 X|[3aPOlylog(N + M) /e .
vV Pwew

Similarly, P, can be estimated within relative error ¢; by

amplitude estimation with O<5V(7
Authorized licensed use limited to: BEIJING UNIVERSH Y10

repetitions of

generating |y,,) and calling Ox and Ox' as shown in step
(5), which results in the runtime

(28)

||X||lnf1xp01ylog(N + M)K,3K/€3
P1€] '

It should be noted that it is hard to estimate the scale of P,
(and %) because it depends on the closeness between the
prediction w/x, and the actual output y, for [=1,---, K
and 7 € 5;. But when RR achieves good predictive perfor-
mance with wlTxT ~1y, for most 7, P, =Q(1/«?) (and
P; ~ 1) as shown in Appendix F, available in the online sup-
plemental material. Moreover, the relative errors for esti-
mating P,, and P, i.e., ¢, and ¢;, make the relative error for
estimating P, Py, as well as that for estimating E(«) as
shown in Eq. (24), be within O(ey + €). So, in conclusion,
putting the runtime for estimating these three probability
together, FEs(¢) can be estimated within relative error
O(ew + €1) in total time

o [X[axpolylog(N + M)e” (1 +—
3 VPyew P
HXHWpolyloi(N + M) (i ")} (29)
€ tw €

since Py = Q(1/«%*?) and P, = Q(1/«?).
In step (6), P> can be estimated within relative error e by

amplitude estimation with O(—2A—) repetitions of generat-
Pye

ing |y) and |y). The state |y) is generated in time O(polylogV)
as shown in Appendix A, available in the online supplemen-
tal material. With help of amplitude amplification, generat-
1 HXHumDohlog(NH\f

NG 3 )As

aresult, P can be estimated within relative error e; with run-

2 oo Va P& .
time O(”X”“’“Xpob sV M)e K) since P, = Q(1/«?) and P, ~ 1

ey

ing |y) in step (5) takes time O

as shown in Appendix F, available in the online supplemen-
tal material. The relative errors for estimating P, P and P,
ew, €1 and e, respectively, make the relative error for estimat-

ing \/(2P, — 1) P, Py, as well as that for estimating F3(«) as
shown in Eq. (26), be within O(2¢; + e + €1) due to P, ~ 1.
So, E3(a) can be estimated within relative error O(26,+ ey +

.. X||2 lylog(N+ M)«
€ ) in tlme O( H Hxnaxpo Yy ;g( ) )

ey

Consider that E1(a) = S |y,]|*= llyll* can be estimated
within relative error ¢y taking runtime O(polylog( )/ &) as
shown in Appendix A, available in the online supplemental
material. Letting ¢, = ¢, ew, €1 = €¢/3, and €; = €¢/6, each of
the three terms Fj(«), Fo(a) and Ej3(«) has relative error
O(e), and thus E(«) = Ey(a) + Es(a) + Es(«) has relative
error O(e), and the runtime for estimating it scales as
O( HXH?mix})olylo;ig(;\fir"\rl)l(/'/lk )

. Furthermore, step (7) involves esti-

mating E(a:), -+, E(ayr), so Algorithm 2 takes runtime

(30)

10) (Lllxllimxpolylog(N + M )K“‘K)

el

in total.
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The best classical counterpart of Algorithm 2 consists of
L iterations and each one evolves a K-fold cross validation.
In jth (=1,2,---,L) iteration, two phases are involved:
(1) K turns of RR with «; are run and in /th turn w;
(Eq. (11)) is output in time O( =My (K1) NZRﬂOg(R’/F))
[25]; (2) E(a;) is calculated accordmg to Eq. (12) which is
easy to see the time complexity scales as O(NM). So the total
INA S Rilog (Ri/e)) )

€

time complexity scales as O(LNM +
dueto K > 2.

Considering the assumptions of || X]|,,.«

=0(1 ) and N =
O(M), and k' = O(k) by setting K = Q(Nbi‘iu\“[“‘ ) = O(k?),

our Algorithm 2 has runtime O(Lpolylog(N)«®/e*), while the
best classical counterpart has runtime O [LN 2 (ZZK: . Rl> / 62} ,

where O is used to suppress the relatively small quantities of
log (R;/€). When k = O(v/N) which is amenable to full or
approximately full rank of X and X_;, i.e., R, R; = O(N), our
Algorithm 2 has runtime O(Lpolylog(N)N?%/¢'), whereas
the classical counterpart takes time O(Lpolylog(N)N*/e?), so
polynomial speedup over the classical counterpart can be
achieved when L,1/e = O(polylogN). However, when
= O(polylog(N)) which implies low rank of X as well as
X_y, i.e., R, R; = polylog(N), our Algorithm 2 has runtime
O(Lpolylog(N)/e*), while the classical counterpart has run-
time O(Lpolylog(N)N?/¢?), so in this case exponential
speedup can be achieved when L, 1 /¢ = O(polylogN).

3.5 The Whole Quantum Algorithm for RR

Our quantum algorithm for RR will start with Algorithm 2
to find a good «, and then plug such « into Algorithm 1 to
estimate the optimal fitting parameters in the quantum state
form. The quantum state can further be applied to efficiently
predict new data via swap test. It is easy to see the time
complexity of the whole algorithm is dominated by Algo-
rithm 2, and thus the speedup over the classical algorithm
also depends on the condition number of design matrix as
discussed in Algorithm 2 above.

4 CONCLUSIONS

In summary, we have described a quantum algorithm that
can efficiently implement RR over an exponentially large
data set. In particular, we propose the technique of parallel
Hamiltonian simulation and use it to develop the quantum
K-fold cross-validation that can efficiently evaluate the pre-
dictive performance of RR. The algorithm first uses quan-
tum K-fold cross-validation to efficiently determine a good
o with which RR can achieve good predictive performance,
and then generates a quantum state encoding the optimal
fitting parameters of RR with such «. The state can be fur-
ther used to efficiently predict new data. It is shown that
our algorithm can handle data sets with non-sparse design
matrices, and is able to be exponentially faster than the clas-
sical algorithm for (low-rank) design matrices with low con-
dition numbers, but be polynomially faster than the
classical algorithm for (full or approximately full) design
matrices with large condition numbers.

We hope our algorithm and especially the key techniques
used in our alﬁorlthm parallel Hamiltonian simulation and

865

quantum K-fold cross-validation, can inspire more efficient
quantum machine learning algorithms. For example, since
cross-validation is an important technique being widely used
to estimate the predictive performance of various machine
learning algorithms [5], [28] other than RR, it is promising that
our quantum K-fold cross-validation can be applicable in
these fields. We explore these possibilities in the future.
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