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Abstract

Recent works in relation extraction (RE) have001
achieved promising benchmark accuracy; how-002
ever, our adversarial attack experiments show003
that these works excessively rely on entities,004
making their generalization capability ques-005
tionable. To address this issue, we propose006
an adversarial training method specifically de-007
signed for RE. Our approach introduces both008
sequence- and token-level perturbations to the009
sample and uses a separate perturbation vocab-010
ulary to improve the search for entity and con-011
text perturbations. Furthermore, we introduce012
a probabilistic strategy for leaving clean tokens013
in the context during adversarial training. This014
strategy enables a larger attack budget for enti-015
ties and coaxes the model to leverage relational016
patterns embedded in the context. Extensive017
experiments show that compared to various ad-018
versarial training methods, our method signifi-019
cantly improves both the accuracy and robust-020
ness of the model. Additionally, experiments021
on different data availability settings highlight022
the effectiveness of our method in low-resource023
scenarios. We also perform in-depth analyses024
of our proposed method and provide further025
hints. We will open-source all codes in our026
work to facilitate future research.027

1 Introduction028

Relation extraction (RE) is an important subtask029

of information extraction and plays a crucial role030

in many other natural language processing (NLP)031

tasks like knowledge base construction (Luan et al.,032

2018) and question answering (Sun et al., 2021).033

The goal of RE is to determine the relationship034

between a head entity and a tail entity. For exam-035

ple, given the sentence “Miettinen hired for WPS036

champ Sky Blue.”, the RE models are supposed to037

predict the relation “Employee-Of ” between the038

head entity “Miettinen” and the tail entity “Sky039

Blue”. With the recent advances in pre-trained040

language model (Kenton and Toutanova, 2019; Liu041

Sentence Prediction

Org Miettinen hired for WPS champ
Sky Blue.

Employee-Of
!

Adv Miettinen hired for WPS champ
Jeez Blue.

No-Relation
%

Table 1: An example from SemEval. We use green
color to represent the head entity and orange color to
represent the tail entity. Underlining is used for word
substitution.

et al., 2019) and self-supervised learning (Qin et al., 042

2021; Hogan et al., 2022) techniques, RE mod- 043

els have achieved promising benchmark accuracy, 044

reaching levels comparable to human performance. 045

The recent success of RE models sparks a grow- 046

ing interest in conducting more detailed analy- 047

ses (Han et al., 2020c; Peng et al., 2020; Zhang 048

et al., 2023). A significant issue that arises in this 049

context is to explore whether the RE model learns 050

from context or entities for relation prediction. An- 051

alyzing this problem could reveal the underlying 052

nature of RE models and offer informative insights 053

for their improvement. To address this issue, var- 054

ious methods are proposed such as information 055

masking (Peng et al., 2020) and counterfactual anal- 056

ysis (Wang et al., 2022). One drawback of these 057

methods is they usually involve removing entities 058

or context in the sample and observing the model’s 059

performance with the remaining part. That enables 060

them to draw the conclusion about how much can 061

the model learn from entity/ context when giving 062

each of them individually. However, whether the 063

model would prefer to learn from context or entities 064

when both of them are given still remains unclear. 065

We name this problem learning preference in RE. 066

To address this issue, we propose a novel 067

approach READ, a.k.a. improving Relation 068

Extraction from an ADversarial perspective. We 069

begin by introducing the utilization of adversar- 070

ial attacks (Jin et al., 2020; Garg and Ramakrish- 071

nan, 2020) as a means to investigate the model’s 072

1



learning preference and robustness. Adversarial073

attacks in NLP are designed to deceive the model074

by making very few text substitutions. As the ex-075

ample shown in Table 1, by replacing the original076

word “Sky” with another word “Jeez”, the attack077

method successfully fools the model into assign-078

ing an incorrect label “No-Relation” to this sample.079

Adversarial attacks provide a highly insightful per-080

spective for determining the crucial parts of the081

sample from the model’s viewpoint. In this particu-082

lar example, we can conclude that the word “Sky”,083

as a part of the entity name, is crucial for the model084

to make accurate predictions.085

In our preliminary experiment applying ad-086

versarial attacks to RE, we discovered a clear087

over-dependency on entities within the current088

RE model. This is consistent with the previous089

works (Peng et al., 2020) that RE models tend to uti-090

lize shallow cues from entities to make predictions.091

Our analysis revealed that this over-dependency092

is the underlying cause of the models’ vulnera-093

bility to adversarial attacks and can also lead to094

poor generalization in clean samples. So the key095

to improving current RE models is to mitigate this096

over-dependency on entities.097

One straightforward approach to bolster models’098

robustness is text substitution. However, the con-099

siderable time cost to generate adversarial samples100

with the text substitution method constrains it in101

scaling in large RE datasets (Yoo and Qi, 2021).102

Also, in our preliminary experiments, we observed103

a performance drop in the clean test set with text104

substitution, which has also been reported by previ-105

ous works (Xu et al., 2022b)1. So we shift our fo-106

cus towards virtual adversarial training (Miyato107

et al., 2016; Madry et al., 2018), which applies con-108

tinuous perturbations at the embedding level during109

training, rendering it a more refined and efficient110

approach. Our method builds upon the advance-111

ments of the current adversarial training methods112

in NLP (Zhu et al., 2019; Li and Qiu, 2021) and113

introduces both sequence- and token-level pertur-114

bations to the RE sample. To facilitate perturbation115

searching, we devise a separate perturbation vocab-116

ulary that tracks the accumulated perturbation for117

entity and context respectively. Furthermore, we118

propose a novel probabilistic strategy to encour-119

age the model to leverage relation patterns from120

the unperturbed context. Through extensive exper-121

1We put the experiment result and analysis of text substitu-
tion in Appendix A

iments, we demonstrate the effectiveness of our 122

method on both adversarial and clean test samples. 123

We also observe significant improvements in low- 124

resource settings, indicating the great potential of 125

our method in scenarios with limited data. We con- 126

duct a series of in-depth analyses to give more hints 127

about READ. 128

The contribution of our work could be summa- 129

rized as follows: 130

• We propose READ, a novel adversarial method 131

to improve current RE models’ robustness. 132

• READ adopts adversarial attacks to analyze RE 133

models’ learning preferences and expose an ob- 134

vious over-dependency on entities. 135

• To enhance RE models’ generalization, READ 136

utilizes a virtual adversarial training explicit de- 137

sign for RE. Experiments on three mainstream 138

datasets demonstrate the effectiveness of READ. 139

2 Related Work 140

2.1 Relation Extraction 141

Early RE methods employ pattern-based al- 142

gorithms (Mooney, 1999) or statistical meth- 143

ods (Mintz et al., 2009; Riedel et al., 2010; Quirk 144

and Poon, 2017) to handle relation extraction. 145

Neural-based RE models (Zhang and Wang, 2015; 146

Peng et al., 2017; Miwa and Bansal, 2016) emerge 147

with the advancements in deep learning and nat- 148

ural language processing. Among them, the 149

transformer-based RE models (Shi and Lin, 2019) 150

achieve state-of-the-art performance. To further en- 151

hance performance, various self-supervised learn- 152

ing mechanism designs for RE have been pro- 153

posed (Soares et al., 2019; Qin et al., 2021; Hogan 154

et al., 2022). 155

There are some works that explore applying ad- 156

versarial training in RE. Qin et al. (2018) proposes 157

a generative adversarial training framework to ad- 158

dress the noisy labeling problem in distantly super- 159

vised relation extraction. Hao et al. (2021) adopt 160

adversarial training to address the false negatives 161

problem in relation extraction. Both Zhang et al. 162

(2020) and Li et al. (2023b) design new adversarial 163

training pipelines to generate augmented samples 164

for RE. In our work, we propose to analyze and im- 165

prove RE models from an adversarial perspective 166

to expose and reduce the excessive reliance of the 167

models on entities. 168
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2.2 Adversarial Attack & Training169

Text substitution is one of the most commonly used170

methods in NLP to attack models or generate adver-171

sarial samples (Iyyer et al., 2018; Ebrahimi et al.,172

2018). It replaces the original word with its syn-173

onym based on certain criteria like word embed-174

ding similarity (Zang et al., 2020; Ren et al., 2019;175

Jin et al., 2020) or model infilling (Garg and Ra-176

makrishnan, 2020; Li et al., 2020). There are also177

some works that propose character-level (Gao et al.,178

2018; Li et al., 2018) and phrase-level (Lei et al.,179

2022) substitutions to generate various adversarial180

samples. However, those substitution methods are181

often challenged by the massive space of combina-182

tions when searching for the target word to replace,183

making them time-costly to implement (Yoo and184

Qi, 2021).185

Virtual adversarial training (VAT) methods gen-186

erate adversarial samples by applying perturbations187

to the embedding space (Miyato et al., 2018). This188

helps VAT become more efficient than traditional189

text substitution methods. VAT makes the model190

more robust under adversarial attacks while also191

improving the model’s performance in clean test192

samples (Miyato et al., 2016; Cheng et al., 2019).193

To make VAT more effective, Zhu et al. (2019) ac-194

cumulate perturbation in multiple searching steps195

to craft adversarial examples. Li and Qiu (2021)196

devise a Token-Aware VAT (TA-VAT) method to197

allocate more attack budget to the important to-198

kens in the sequence. While there are some works199

that apply virtual adversarial training methods to200

RE for different purposes, we propose an Entity-201

Aware VAT method explicitly designed for RE to202

mitigate over-dependency and non-generalization203

on entities. We give a more detailed discussion204

about adversarial attacks and training in NLP in205

Appendix B.206

3 Adversarial Attack for RE207

In this section, we start by analyzing the state-208

of-the-art (SOTA) RE models’ performance under209

textual adversarial attacks. Then, through further210

analysis, we expose the over-dependency and non-211

generalization on entities in the current RE models.212

3.1 Attack Settings213

We apply adversarial attacks on ERICA (Qin et al.,214

2021) and FineCL (Hogan et al., 2022), the two215

SOTA models with RE-specific self-supervised216

training. We choose three RE datasets to conduct217

experiments: SemEval-2010 Task 8 (Hendrickx 218

et al., 2019), ReTACRED (Stoica et al., 2021) and 219

Wiki80 (Han et al., 2019). For each dataset, we 220

randomly choose 1,000 test samples to conduct 221

experiments on. We use different attack methods 222

including BAE (Garg and Ramakrishnan, 2020), 223

TextFooler (Jin et al., 2020), TextBugger (Li et al., 224

2018) and Projected Gradient Descent (PGD) At- 225

tack (Madry et al., 2018). Here, PGD Attack is a 226

white-box attack that utilizes the model’s gradient, 227

while the remaining three attacks are black-box at- 228

tacks. We use Textattack2 package and follow all 229

the hyper-parameter settings in the original papers. 230

To evaluate how RE models perform under ad- 231

versarial attacks, we follow the previous works (Li 232

et al., 2021; Xu et al., 2022a) and report clean ac- 233

curacy (the model accuracy on clean examples), 234

accuracy under attack (the model accuracy on ad- 235

versarial examples subjected to a specific attack), 236

and the number of queries (the average number of 237

queries the attacker required to perform success- 238

ful attacks). The experiment results are shown in 239

Table 2. 240

To access RE models’ learning preferences, we 241

analyze whether tokens in entities would be at- 242

tacked more than them in context. If so, that means 243

entities are more important than context in the 244

model’s perspective. For each dataset, We calcu- 245

late how frequently the adversarial attacks involve 246

the entity (Entity Freq) and the proportion of the 247

perturbed entity in all perturbed tokens (Entity Ra- 248

tios). We also report the average proportion of the 249

entity length in the sample for comparison (Entity 250

%). The experiment results are shown in Table 3. 251

3.2 Result Analysis 252

Here we analyze the attacking results of TextFooler 253

on FineCL and put the remaining results with other 254

attack methods and models into Section 5.3 and 255

Appendix C. As shown in Table 2, FineCL suffers 256

from a dramatic performance drop up to 91.2% in 257

the Wiki80 dataset. In the other two datasets, there 258

is also an obvious performance drop compared with 259

using the clean test set, offering evidence that cur- 260

rent RE models are not very robust under ad- 261

versarial attacks. 262

As for the model’s learning preference, from 263

Table 3 we find Entity Freq is quite high in the 264

three datasets, suggesting entities are frequently 265

targeted for attacks. Also, Entity Ratio is much 266

2https://github.com/QData/TextAttack
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(a). Overview Pipeline (b) Seperated Perturbation Vocabularies

(c) Clean Token Leaving Strategy

x ...  [E11]  wa ...  [E12]  ws ...  wt [E21]  wb ...  [E22]  ... 

...  [E11]  wadv
a ...  [E12]  ws ...  wt [E21]  wadv

b ...  [E22]  ... xadv

+

p

*

m

...  [p11]  pa ...  [p12]  ps ...  pt [p21]  pb ...  [p22]  ... 

x ...  [E11]  wa ...  [E12]  ws ...  wt [E21]  wb ...  [E22]  ... 

p ...  [p11]  pa ...  [p12]  ps ...  pt [p21]  pb ...  [p22]  ... 

δ ...  [δ11]  δa ...  [δ12]  δs ... δt [δ21] δb ...  [δ22]  ... 

η ...  [η11]  ηa ...  [η12]  ηs ... ηt [η21] ηb ...  [η22]  ... 

+

Adversarial ExampleMaskedUnmasked

Entity Perturbation Context Perturbation

Figure 1: (a) Overview pipeline of our method which adopts adversarial methods to analyze and improve RE
models. (b) Separated perturbation vocabularies (Section 4.2). (c) Clean token leaving strategy (Section 4.3). We
use “[E11]/[E12]” and “[E21]/[E22]” to mark the head and tail entity respectively.

Dataset Clean AUA Query
SemEval 92.7 18.1 (-80.5%) 73.83

ReTACRED 90.1 27.6 (-69.4%) 227.07
Wiki80 96.1 8.5 (-91.2%) 111.28

Table 2: TextFooler attack results on three RE datasets.

higher than Entity %, indicating that entities are267

more often considered important words according268

to the model’s perspective. Based on these two269

findings we deduce that Current RE models rely270

more on entities to make predictions.271

The aforementioned conclusion makes us won-272

der about the RE models’ robustness and general-273

ization toward entities. To evaluate it, we calculate274

the attack success (AS) rate of entity and context275

respectively. As Table 4 shows, we find the AS of276

entity is significantly higher than that of context,277

which means entities are more vulnerable to attacks.278

This provides evidence that over-dependency on279

entities has led to a non-generalization within280

the model.281

4 Adversarial Training for RE282

To improve the robustness and generalization of283

the RE models, READ employs an Entity-Aware284

Virtual Adversarial Learning method. In this sec-285

tion, we first give a brief illustration of the virtual286

adversarial training (VAT) process, then we will287

Entity Freq Entity Ratio Entity %
SemEval 77.1 38.0 12.0

ReTACRED 52.6 12.7 9.2
Wiki80 90.7 36.4 17.4

Table 3: Analysis of the model’s learning preference.
We report how frequently the entity is attacked (En-
tity Freq), the proportion of the perturbed entity in all
perturbed tokens (Entity Ratios), and the average pro-
portion of the entity length in the sample (Entity %).

Entity AS Context AS
SemEval 68.5 62.3

ReTACRED 44.2 33.9
Wiki80 84.2 75.5

Table 4: Attack success (AS) rate of entity and con-
text. The AS for entity and context is calculated by
dividing the total number of successfully attacked en-
tities/contexts by the total number of attacked enti-
ties/contexts.

introduce our Entity-Aware VAT method in detail. 288

4.1 Virtual Adversarial Training 289

In virtual adversarial learning, we first need to find 290

a small perturbation δ that maximizes the misclas- 291

sification risk of the model. Then, with the per- 292

turbation added to the original inputs X , the goal 293

of virtual adversarial learning is to optimize the 294

model parameter θ to minimize the loss of those 295
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adversarial samples. That Min-Max process can be296

summarized as follows:297

min
θ

E(X,y)

[
max
||δ||≤ϵ

L(fθ(X + δ), y)

]
(1)298

where X is the embedding of the input sequence299

and y is the ground truth label. ϵ is the norm ball300

used to restrict the magnitude of δ.301

Commonly, gradient ascent is used to do the302

perturbation search iteratively since the inner max-303

imize function is non-concave. At step t:304

δt+1 =
∏

||δt||F<ϵ

δt + αg(δt)

||g(δt)||F
(2)305

306
g(δt) = ∇δL(fθ(X + δt), y) (3)307

where
∏

means the process of projecting the per-308

turbation onto the norm ball. In the PGD algorithm,309

Frobenius norm F is used to constraint δ.310

4.2 Separate Perturbation Vocabularies311

Unlike images in the computer vision field where312

every pixel only carries limited information across313

instances, tokens in natural language processing314

are relatively independent semantic units and dif-315

ferent tokens can vary in their importance for the316

sequence. Previous work (Li and Qiu, 2021) pro-317

poses a Token-Aware VAT method based on this318

thought and designs a global perturbation vocabu-319

lary to record each token’s perturbation.320

In our work, we borrow this insight and improve321

it for RE by using separate perturbation vocabu-322

laries. Intuitively, entity and context play quite323

different roles in the relation extraction process for324

models (Peng et al., 2020). Entities are the main325

components for the model to focus on while con-326

text can provide auxiliary information. To address327

this in adversarial training of RE, we keep two328

perturbation vocabularies for entities and context329

separately.330

To be specific, we create the entity perturbation331

vocabulary Ve ∈ RN×D and context perturbation332

vocabulary Vc ∈ RN×D at the beginning of the333

adversarial training. Here N is the vocabulary size334

and D is the hidden size of the model’s embedding.335

In each mini-batch, the ith token in the sequence336

will be assigned an initialized perturbation from337

the corresponding vocabulary as the token-level338

perturbation ηi
0:339

ηi
0 =

{
Ve [wi], wi ∈ Entity,

Vc [wi], wi ∈ Context.
(4)340

Then we follow Li and Qiu (2021) exactly to update 341

the token-level perturbation. After the perturbation 342

optimization, the two vocabularies are updated re- 343

spectively with the token perturbation belonging to 344

their category. 345

4.3 Probabilistic Clean Token Leaving 346

To address the importance of entities in adversarial 347

training, we also adopt a probabilistic clean token 348

leaving strategy for context. In each mini-batch, 349

we randomly choose n% of tokens Wc in context 350

and mask both their token- and sentence-level per- 351

turbation in every perturbation optimization step 352

t: 353

Wc = RandomlySelect(Context, n) (5) 354

Xi
adv =

{
Xi, wi ∈Wc,

Xi + δt + ηi
t, Otherwise

(6) 355

There are two benefits of using our probabilistic 356

clean token leaving strategy. Firstly, the attack bud- 357

get ϵ is constant for each sentence, which means 358

reducing context perturbation is equivalent to in- 359

creasing the attack budget for the entity. So it 360

serves as an additional attack to further improve 361

the model’s robustness and generalization on enti- 362

ties. This is our main objective given the model’s 363

non-generalization and over-dependency on enti- 364

ties. Also, according to the previous works (Zhang 365

et al., 2021; Mekala et al., 2022), deep neural net- 366

works are more willing to learn from clean compo- 367

nents with less noise. So the strategy also gives the 368

model more chances to leverage relational patterns 369

present in the context (Peng et al., 2020) by learn- 370

ing from those clean tokens. We give a detailed 371

process of our Entity-Aware VAT method in Figure 372

1. 373

5 Experiment 374

In this section, we design experiments to test our 375

Entity-Aware VAT’s performance on both clean and 376

adversarial samples. 377

5.1 Setup 378

To evaluate our method’s performance, we report 379

performance on three RE datasets, SemEval-2010 380

Task 8 (Hendrickx et al., 2019), ReTACRED (Sto- 381

ica et al., 2021) and Wiki80 (Han et al., 2019). 382

We follow the previous work and use 1%, 10% 383
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Dataset Method Clean PGD TextBugger BEA TextFooler
AUA↑ Query↑ AUA↑ Query↑ AUA↑ Query↑ AUA↑ Query↑

SemEval

Normal-Train 92.7 42.2 6.55 39.2 39.03 30.5 75.27 15.9 73.83
FreeLB 93.3 45.4 6.80 41.5 39.41 31.6 75.79 15.6 73.35
TA-VAT 93.1 45.2 6.75 41.6 39.22 31.6 78.93 16.5 71.97

Ours 93.1 51.5 7.0 42.6 41.18 32.5 76.7 18.8 74.77

ReTACRED

Normal-Train 90.1 56.4 7.52 31.7 89.25 41.4 126.27 27.6 227.07
FreeLB 90.0 64.2 7.87 29.8 85.83 40.1 127.16 28.6 228.54
TA-VAT 91.3 68.6 8.11 28.9 83.38 41.8 128.10 30.0 230.88

Ours 91.3 76.2 8.43 34.0 89.30 49.6 140.98 38.9 252.63

Wiki80

Normal-Train 96.1 58.7 8.34 26.3 52.93 37.8 46.32 8.5 111.28
FreeLB 95.9 65.3 8.57 27.2 53.13 39.0 49.1 9.0 111.18
TA-VAT 96.5 74.0 8.82 29.2 54.56 39.3 49.55 8.3 107.21

Ours 96.7 76.3 8.99 28.8 53.40 40.0 48.64 10.7 112.08

Table 5: Experiment results on the three datasets under adversarial attacks. The best results in each dataset are in
bold. For each experiment, we run three times and the average scores are reported.

and 100% data in the training set to train the384

model respectively. For the baseline RE model,385

we choose BERT (Kenton and Toutanova, 2019),386

RoBERTa (Liu et al., 2019), ERICA (Qin et al.,387

2021) and FineCL (Hogan et al., 2022). We choose388

the two best baseline models, FineCL and ERICA,389

to apply the adversarial learning methods. Here we390

report FineCL’s result and put the results of ERICA391

in Appendix E. We compare our proposed method392

with FreeLB(Zhu et al., 2019) and TA-VAT(Li and393

Qiu, 2021). They are widely used virtual adversar-394

ial learning methods against textual attacks. For395

standard accuracy metrics, we follow the previous396

works and report the F1 score for SemEval and397

ReTACRED, and the accuracy score for Wiki80.398

We also test our method in the document-level RE399

scenario and put the result in Appeneix F.400

We also test our proposed method’s performance401

under adversarial attacks. All the adversarial at-402

tack methods and robustness metrics we use are403

mentioned in Section 3.1404

5.2 Implementation Details405

We build our method based on PyTorch-1.8.13406

deep learning framework and Transformers-2.5.04407

library. We follow the hyper-parameter settings408

in the original paper to reproduce each baseline’s409

result. To improve the experiments’ reliability, we410

report the average results of the top three adversar-411

ial hyper-parameter configurations based on their412

scores in the development set. Refer to Appendix G413

for more detailed settings of our experiments.414

3https://pytorch.org/
4https://huggingface.co/docs/transformers/index

5.3 Results on Adversarial Samples 415

We employed FineCL as the baseline and assessed 416

the performance of each adversarial method against 417

different attacks. To provide a baseline compari- 418

son, we designated the standard model without any 419

adversarial training as "Normal-Train", which is in- 420

cluded in the first row of Table 5. From the scores 421

reported, we can observe some readily apparent 422

trends: (1). Our method consistently outperforms 423

other adversarial training methods under various 424

attack methods on the three datasets. (2) For the 425

ReTACRED dataset, both FreeLB and TA-VAT ex- 426

hibit a decrease in performance under the TextBug- 427

ger attack. In contrast, our method demonstrates 428

robust improvements in both accuracy and query 429

number, showing the resilience of our proposed 430

approach. (3) TextFooler achieves the best attack 431

success rate (AS) result on all three datasets, in- 432

dicating that current RE models are particularly 433

sensitive to the synonym replacement attack em- 434

ployed by TextFooler. 435

5.4 Results on Clean Samples 436

Table 6 presents the results evaluated using the 437

clean samples of each dataset. It is evident that the 438

utilization of adversarial training methods yields 439

a significant improvement in the performance of 440

the best baseline model (FineCL). Among the three 441

employed adversarial training methods, our Entity- 442

Aware VAT method stands out by reaching the best 443

score across almost every dataset and availability 444

setting. That indicates our improved adversarial 445

training method also benefits the RE model in clean 446

test samples. 447

Moreover, we have observed that adversarial 448

learning exhibits a more pronounced impact in low- 449

resource settings. For example, the improvement 450
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Dataset SemEval ReTACRED Wiki80
Size 1% 10% 100% 1% 10% 100% 1% 10% 100%

BERT 40.8 78.7 86.4 52.4 73.3 83.2 57.1 81.0 90.7
Roberta 50.0 81.6 85.8 58.2 82.5 88.7 60.7 85.4 91.3
ERICA 50.2 82.0 88.5 64.1 83.4 87.8 71.3 86.8 91.6
FineCL 50.8 82.7 88.6 62.8 83.2 87.1 72.7 86.9 91.6

FineCL + FreeLB 52.0 83.2 88.8 63.1 84.0 88.4 72.6 87.1 91.8
FineCL + TA-VAT 52.5 83.1 89.0 64.1 84.3 88.5 73.0 87.5 91.8

FineCL + Ours 53.2+4.7% 83.3+0.7% 89.2+0.7% 64.4+2.5% 85.0+2.2% 88.7+1.8% 73.3+0.8% 87.3+0.5% 92.0+0.4%

Table 6: Experiment results on clean samples of each dataset. We follow the previous works (Hogan et al., 2022;
Qin et al., 2021) and report the F1 score for SemEval and ReTACRED, and the accuracy score for Wiki80. We also
add the quantitative comparison results between our method and the FineCL baseline. For each experiment, we run
three times and report the average score.

brought by our Entity-Aware VAT method on three451

datasets with 100% training data is 0.7%, 0.8% and452

0.4%. However, it achieves a remarkable 4.7% of453

performance improvement on SemEval with 1% of454

training data. This notable improvement highlights455

the immense potential of adversarial training meth-456

ods for RE in scenarios with limited resources.457

6 Further Analysis458

In this section, we conduct further experiments to459

give in-depth analyses of the mechanism of our460

proposed method.461

1% 10% 100%
Metrics F1 F1 F1 AUA Query
TA-VAT 52.5 83.1 89.0 16.5 71.97

Ours
w/o SPV 52.8 83.2 89.1 18.8 73.63

Ours
w/o CTL 53.1 83.0 89.2 16.3 72.51

Ours 53.2 83.3 89.2 18.8 74.77

Table 7: Ablation study on separate perturbation vo-
cabulary (SPV) and clean token leaving (CTL) strategy
using SemEval. The attacker used in 100% training data
availability is TextFooler. We include TA-VAT since it
is identical to our method when both SPV and CTL are
removed.

6.1 Ablation Study462

The separate perturbation vocabulary (SPV) and463

clean token leaving (CTL) strategy are the two464

main methods we propose for adversarial training465

in RE. In this section, we conduct an ablation study466

on them to figure out each method’s effectiveness467

in improving the robustness and accuracy of the468

model. We conduct experiments on SemEval with469

1%, 10% and 100% training data availability. We470

report F1 in all three availability settings and AUA471

and Query in 100% training data availability.472

Table 7 shows the result of our ablation study.473

We also report the model’s performance with TA- 474

VAT because our method degrades to be TA-VAT 475

without the two methods we propose. We find both 476

separate perturbation vocabulary and clean token 477

leaving are effective in improving the model’s ac- 478

curacy in clean samples. And clean token leaving 479

brings a significant improvement in robustness to 480

the model while the model with separate perturba- 481

tion vocabulary only does not. That indicates the 482

improvement in robustness of our method is mainly 483

from clean token leaving in the context. 484

Attack
Method Method Entity Freq Entity Ratio Entity AS

BAE

Normal-Train 89.0 51.1 38.2
FreeLB 91.0 53.2 36.1
TA-VAT 89.0 51.4 36.7

Ours 87.7 50.4 34.5

TextFooler

Normal-Train 90.7 36.4 84.2
FreeLB 89.0 36.7 85.2
TA-VAT 89.7 36.5 86.9

Ours 89.7 35.4 80.0

Table 8: Adversarial attack results of the entity on
Wiki80. BAE and TextFooler are used as attackers.

6.2 Improvement on Robustness of Entity 485

Our Entity-Aware VAT method is first introduced 486

to improve the robustness of entities against ad- 487

versarial attacks. To investigate its effectiveness 488

in improving entity robustness, we report Entity 489

Freq, Entity Ratio, and Entity AS as we defined in 490

Section 3. We choose to conduct experiments on 491

the Wiki80 dataset here since it suffers the most 492

from entity attacks, as indicated by the results of 493

our pilot experiments in Section 3. 494

According to the results presented in Table 8, our 495

method consistently reduces both the frequency of 496

entity attacks and the ratio of perturbed entities 497

compared to the normal-trained baseline and other 498

VAT methods. This indicates that our method suc- 499

cessfully reduces the model’s reliance on entities 500

for making predictions. Also, our method achieves 501

a better performance in terms of entity AS, high- 502
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(a) 1% and 10% training data (b) 100% training data

Figure 2: Different clean token leaving probability settings in SemEval. For 1% and 10% of the training data, we
report the F1 score. For the 100% training data, we report both the F1 score and AUA score

lighting its effectiveness in improving the model’s503

robustness toward entities.504

6.3 Impact of Clean Token Leaving505

Probability506

As we demonstrate in Section 6, the clean token507

leaving strategy is a very important design for im-508

proving model performance in both clean and ad-509

versarial samples. In this section, we train models510

with different clean token leaving probabilities to511

observe their influence on the model performance.512

We conduct the analysis on SemEval.513

As Figure 2 shows, we add the model without514

any adversarial training as “Baseline” to have a515

comparison. It is notable that models with differ-516

ent clean token leaving probabilities consistently517

outperform baselines. Additionally, we notice mod-518

els with different data availability usually achieve519

the best performance with a relatively small clean520

token leaving probability (0.05 – 0.15).521

Method SemEval ReTACRED Wiki80
Normal-Train 51.6 62.8 72.7

w/ DA 54.1 63.1 72.0
w/ Ours 53.9 64.3 73.3

w/ DA + Ours 55.0 64.0 73.5

Table 9: Experiment results with data augmentation on
1% training data of three datasets. For a fair compari-
son, we show the result of the optimal model from the
development set of our approach.

6.4 Comparison and Compatibility with Data522

Augmentation523

An important finding observed in Section 5.4 is524

adversarial training is especially effective in RE525

when the training data is limited. Data augmenta-526

tion (Teru, 2023; Hu et al., 2023) is another widely527

used technique in low-resource RE. In this section, 528

we conduct experiments using data augmentation 529

to have a comparison and explore our method’s 530

compatibility with data augmentation. Currently, 531

large language models (LLMs) show promising 532

performance in generating diverse and high-quality 533

content. To benchmark current LLMs’ ability in 534

augmenting RE samples, we prompt ChatGPT5 to 535

do data augmentation. We put details about the 536

data augmentation method in Appendix H. 537

Table 9 shows the experiment results with 1% 538

training data. While data augmentation brings 539

improvement to SemEval and ReTACRED, it 540

also leads to a non-trivial performance drop on 541

Wiki80. Compared with that, our method consis- 542

tently improves the model’s performance in the 543

three datasets. Also, combining data augmenta- 544

tion with our method achieves two best results over 545

three datasets, showing our method’s compatibility 546

with data augmentation methods. 547

7 Conclusion 548

In this work, we present READ, a novel method 549

that leverages an adversarial perspective for ana- 550

lyzing and enhancing RE models. Our adversarial 551

attacks experiment on current SOTA RE models 552

reveals their excessive reliance on entities for re- 553

lation prediction. Through our analysis, this over- 554

dependency is the underlying cause of the models’ 555

non-robustness to adversarial attacks and can limit 556

the model’s generalization. To tackle this issue, we 557

propose an Entity-Aware Virtual Adversarial Train- 558

ing method. Experiment results show our method’s 559

effectiveness in improving the performance in both 560

adversarial and clean samples. 561

5https://platform.openai.com/docs/mode
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8 Limitations562

This work introduces an Entity-Aware Virtual Ad-563

versarial Training method. Similar to other vir-564

tual adversarial training algorithms, our method in-565

corporates search perturbation in each mini-batch,566

leading to a relatively longer training time com-567

pared to other normal-trained models. Due to lim-568

itations in computing resources, we evaluate our569

method on four RE datasets, while disregarding sce-570

narios such as continual relation extraction (Han571

et al., 2020b) and few-shot relation extraction (Gao572

et al., 2019). In future research, we plan to inves-573

tigate the effectiveness of our method in border574

scenarios.575
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A Text Substitution Method 920

In this section, we conduct an experiment using the text substitution method. Specifically, we follow (Li 921

et al., 2020) and utilize a BERT model to replace the critical token which can mislead the model most to 922

produce the adversarial samples. We conduct evaluation using FineCL, on SemEval and ReTACRED with 923

1% and 10% training data. As Table 10 shows, while BERT-Attack improves the model’s performance on 924

SemEval, it also leads to a non-trivial performance drop on ReTACRED. This finding aligns with some 925

previous works that point out the traditional text substitution method could cause a performance drop in 926

the clean test set (Yoo and Qi, 2021; Xu et al., 2022b). 927

SemEval ReTACRED
1% 10% 1% 10%

FineCL 50.8 82.7 62.8 83.2
FineCL
+BERT-Attack 53.1 83.6 62.7 82.7

Table 10: Experiment result using BERT-Attack (Li et al., 2020) on FineCL.

B A Detailed Survey of Adversarial Attack & Training 928

In the computer vision field, adversarial attacks (Goodfellow et al., 2014; Carlini and Wagner, 2017) have 929

been widely explored since it is easy to implement over the continual space of images. Based on the 930

gradient-based adversarial attacks, various adversarial training (Goodfellow et al., 2014; Madry et al., 931

2018) are proposed. They add the adversarial sample for the training set to make the model more robust 932

under adversarial attacks. One major problem of directly applying this gradient-based adversarial training 933

method in NLP is the discrete text prevents the gradient from propagating. 934

To introduce adversarial training into NLP, some works adopt text substitution as an alternative method 935

to generate adversarial samples (Li et al., 2018; Jin et al., 2020; Garg and Ramakrishnan, 2020). This 936

method always involves replacing the original word with its synonym based on certain criteria like word 937

embedding similarity (Zang et al., 2020; Ren et al., 2019; Jin et al., 2020) or model infilling (Garg and 938

Ramakrishnan, 2020; Li et al., 2020). Another commonly used approach to produce adversarial samples 939

is to generate them with a sequence-to-sequence model (Kang et al., 2018; Han et al., 2020a; La Malfa 940

and Kwiatkowska, 2022). 941

In contrast, virtual adversarial training (VAT) methods generate adversarial samples by applying 942

perturbations to the embedding space (Miyato et al., 2018). That helps VAT become more efficient than 943

traditional text substitution methods. VAT makes the model more robust under adversarial attacks while 944

also improving the model’s performance in clean test samples (Miyato et al., 2016; Cheng et al., 2019). 945

To make VAT more effective, Zhu et al. (2019) accumulate perturbation in multiple searching steps to 946

craft adversarial examples. Li and Qiu (2021) devise a Token-Aware VAT (TA-VAT) method to allocate 947

more attack budget to the important tokens in the sequence. Following them, Xu et al. (2022a) combines 948

weight perturbation with embedding perturbation in training to make the model more robust against text 949

adversarial attacks. While there are some works that apply virtual adversarial training methods to RE for 950

different purpose (Wu et al., 2017; Chen et al., 2021), we propose an Entity-Aware VAT method explicitly 951

designed for RE to mitigate over-dependency and non-generalization on entities. 952

Beyond (virtual) adversarial training, there are also many other techniques proposed as defense mecha- 953

nisms to adversarial attacks. For example, some works focus on detecting the adversarial samples and 954

correcting them before inputting them into the language model (Wang et al., 2021; Yang et al., 2022; Li 955

et al., 2023a). However, our goal in this paper is to improve the RE models’ robustness during training. 956

Such plug-in methods outside the models are not within the scope of our consideration. 957

C Attack Result on ERICA 958

We also conduct adversarial attacks on ERICA and put the results in Table 11. ERICA exhibited a 959

significant decrease in performance across all attack methods, particularly with TextFooler. Our analysis 960

of learning preference and entity generalization in ERICA is presented in Table 12 and Table 13. The 961
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high frequency of successful attacks and their success rate on entities indicates that over-dependency and962

poor-generalization on entities are ubiquitous in RE models.963

Dataset Clean PGD TextBugger BAE TextFooler
AUA Query AUA Query AUA Query AUA Query

SemEval 93.3 46.1 7.44 38.1 40.47 25.3 99.74 9.1 83.19
Retacred 89.5 56.8 7.87 27.0 83.90 37.2 124.21 25.2 221.05
Wiki80 96.1 68.0 8.56 27.7 53.95 15.7 74.61 12.1 118.96

Table 11: Adversarial attack results with ERICA. The attack settings and metrics align with the ones used in 3.1.

Entity Freq Entity Ratio Entity %
SemEval 72.7 30.8 12.0

ReTACRED 55.7 13.8 9.2
Wiki80 85.3 31.6 17.4

Table 12: Analysis of ERICA’s learning preference with TextFooler.

Entity-AS Context-AS
SemEval 86.0 81.8

ReTACRED 56.0 45.5
Wiki80 79.5 71.6

Table 13: Attack success (AS) rate of entity and context on ERICA with TextFooler.

D Details of Entity-aware Virtual Adversarial Training964

We give a detailed algorithm for our Entity-aware Virtual Adversarial Training in Algorithm 1.965

E Our Method on ERICA966

The performance of our method with ERICA is presented in Table 14. It is evident that with our method,967

ERICA also demonstrates a non-trivial improvement in each data availability across three RE datasets.968

Dataset SemEval ReTACRED Wiki80
Size 1% 10% 100% 1% 10% 100% 1% 10% 100%

ERICA 50.2 82.0 88.5 64.1 83.4 87.8 71.3 86.8 91.6
ERICA
+Ours 51.8 82.6 89.1 64.6 84.8 88.8 71.6 87.0 91.8

Table 14: Experiment results of ERICA on clean samples of each dataset.

F Our method in Document-level RE969

To demonstrate the compatibility of our proposed entity-aware VAT method across various RE scenarios,970

we conduct an experiment in a document-level RE dataset, Re-DocRED (Tan et al., 2022) and report the971

results in Table 15.972

G Training Details973

In our method, we have set the clean token leaving probability to 10% for SemEval and 15% for974

ReTACRED and Wiki80 datasets. Following the approach of Hogan et al. (2022), the compared models975

employ the following settings: a batch size of 64, a maximum sequence length of 100, a learning rate of976

5e-5, an Adam epsilon of 1e-8, a weight decay of 1e-5, a maximum gradient norm of 1.0, 500 warm-up977

steps, and a hidden size of 768. To account for different data availability scenarios, we utilize dropout978

rates of 0.2/0.1/0.35 and set the maximum number of training epochs to 80/20/8 for training proportions979

of 0.01/0.1/1.0, respectively.980
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Algorithm 1 Detailed process of our Entity-Aware Virtual Adversarial Training. We use // to highlight
the important steps.

Require: Training Samples S = (X = [w0, ...wi, ...] , y), perturbation bound ϵ, initialize bound σ,
adversarial steps K, adversarial step size α, model parameter θ, clean token leaving probability n

1: Ve ∈ RN×D ← 1√
D
U(−σ, σ), Vc ∈ RN×D ← 1√

D
U(−σ, σ) // Separate Vocabulary Initialization

2: for epoch = 1, ..., do
3: for batch B ∈ S do

4: ηi
0 =

{
Ve [wi], wi ∈ Entity

Vc [wi], wi ∈ Context
// Separate Token-level Perturbation Initialization

5: δ0 ← 1√
D
U(−σ, σ), g0 ← 0

6: Wc = RandomlySelect(Context, n) // Clean Token Leaving in Context
7: for t = 1, ...,K do

8: Xi
adv =

{
Xi, wi ∈Wc,

Xi + δt + ηi
t, Otherwise

9: gt ← gt−1 +
1
KE(X,y)∈B [∇θL(fθ(Xadv), y)]

10: gi
η ← ∇ηiL(fθ(Xadv), y)

11: ηi
t ← ni ∗ (ηi

t−1 + α · gi
η)/||gi

η||F )
12: ηt ←

∏
||η||F<ϵ(ηt)

13: gδ ← ∇δL(fθ(Xadv), y)
14: δt ←

∏
||δ||F<ϵ(δt−1 + α · gδ)/||gδ||F )

15: end for
16: Ve [wi]← ηiK , wi ∈ Entity // Entity Vocabulary Update
17: Vc [wi]← ηiK , wi ∈ Context // Context Vocabulary Update
18: θ ← θ − gK
19: end for
20: end for

For all the adversarial training methods, we search adversarial learning rate in [2e-2, 5e-2, 1e-1], attack 981

budget in [2e-1, 4e-1, 6e-1], and perturbation searching steps in [1,2,3]. For each experiment, we employ 982

grid search6 to discover the above hyperparameters, and we report the average results of the top three 983

configurations based on their scores in the development set. 984

We train all models on a single A6000 GPU with CUDA version 11.1. The training time for a RE model 985

ranges from approximately 20 to 60 minutes, depending on the specific dataset and availability settings. 986

H Data Augmentation with ChatGPT 987

We use the model ‘GPT-3.5-turbo-0301’ to generate augmented data for 1% training data availability 988

of each dataset. For each sample, we randomly choose other two samples with the same relation labels 989

and input them into the model as demonstrations. After getting output from ChatGPT, we verify that 990

the sentence includes both entities mentioned. If not, we discard the generated output. We provide an 991

example of the prompt we use in Table 16. 992

6https://wandb.ai/

15



Ign-F1 F1
ATLOP* 76.94 77.73
DocuNet* 77.27 77.92
KD-DocRE* 77.63 78.35
DREEAM* 79.66 80.73
PEMSCL* 79.01 79.86
AA 80.39 81.34
AA + Ours 81.21 82.22

Table 15: Experimental results on Re-DocRED dataset. We apply our entity-aware VAT method on AA (Lu et al.,
2023) and * denote the results we take from Lu et al. (2023).

Prompt

Read the following examples of the relation ’Component-Whole(e2,e1)’ between the head and tail and write another
new example following the same format. Note that the sentence must contain both head and tail:
head: kangaroo, tail: legs, sentence: the kangaroo moves by hopping on its hind legs using its tail for steering
and balancing while hopping at speed up to 40mph/60kmh.
head: cottage, tail: kitchen, sentence: the cottage kitchen is on the first floor and is fully fitted with fridge,
dishwasher, microwave and all the standard self catering facilities.
head: armature, tail: coil, sentence: the armature has a coil of wire wrapped around an iron core.

Table 16: An example of the prompt we use to generate augmented samples.
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