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ABSTRACT

In open-ended tasks — such as designing word problems or discovering novel
proofs — the goal is not only correctness but also diversity and originality. Often,
this requires a far-sighted, creative leap of thought. We argue that this requirement
is misaligned with the objective of next-token prediction (NTP). To formulate our
intuition, we design a suite of minimal algorithmic tasks loosely based on real-
world creative endeavors. Concretely, our tasks require an open-ended stochastic
planning step that (a) discovers new connections in a knowledge graph (loosely
inspired by word-play, humor or drawing analogies) or (b) constructs new patterns
(loosely inspired by constructing word problems, puzzles or mysteries). We then
conceptually and empirically argue how NTP leads to myopic shortcut-learning and
excessive memorization, limiting its ability to generate novel solutions. In contrast,
we find that multi-token approaches, namely teacherless training and diffusion
models, can overcome these limitations and comparatively excel on our algorithmic
test-bed. Orthogonally, we find that creativity in our tasks is greatly improved by
training with a random hash prefix (which we dub as “hash-conditioning”). Thus
our work offers a principled, minimal test-bed for studying open-ended forms of
intelligence and also a new angle to take a more serious interest in the paradigm of
multi-token prediction.

1 INTRODUCTION

Not all forms of intelligence are solely about being correct or wrong. In open-ended tasks, what
also matters is the ability to find creative ways to satisfy a request, making surprising and fresh
connections never seen before. For instance, consider highly under-specified prompts like: “Generate
a challenging high-school word problem involving the Pythagoras Theorem.” or “Provide a vivid,
compelling analogy to explain the difference between quantum and classical mechanics.” or “What
happens when a physicist and a computer scientist walk into a bar?”. Even the very task of generating
the above illustrative prompts is an open-ended one. Being able to generate diverse and original
responses becomes crucial as we explore LLMs as tools for scientific discovery and idea generation
(Si et al., 2024) and as we enter into an era of generating training data with LLMs (Yu et al., 2024;
Yang et al., 2024c; Wang et al., 2023).

Some open-ended tasks are conceptually straightforward, like generating names (Zhang et al., 2024b)
or simple subject-verb-object sentences (Hopkins et al., 2023). But many others — like the open-
ended prompts above — require a more sophisticated form of ideation. This sophistication is said
to come from a purely random flash of creative insight, dubbed variously in literature as a leap of
thought (Wang et al., 2024a; Talmor et al., 2020; Zhong et al., 2024) or a “eureka” moment (Bubeck
et al., 2023) or a mental leap (Holyoak & Thagard, 1995; Callaway, 2013; Hofstadter, 1995) or an
incubation step (Varshney et al., 2019).

Such leaps, we argue, appear misaligned with the next-token objective. First, a leap must implicitly
search, plan and orchestrate various choices — i.e., choices that are random yet coherent — to
yield diverse yet interesting outputs. Next, even if the training data contained outputs of many
human-generated leaps, the leaps themselves are latent. In fact, it seems impossible to spell out the
computation within leaps as a short, natural chain of thought. (What is the full chain of thought that
goes behind each possible completion of “A horse walks into a bar...” joke?) These realizations about
the nature of a leap lead us to the core question of our paper: given the outputs of some leaps in an
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open-ended task, can next-token learning infer the underlying leap-producing process and generate
novel and diverse outputs?

To attempt to answer this question, we crystallize open-ended settings that on the one hand are
minimal, easy-to-quantify and controllable and on the other capture the crucial computational aspects
of real-world open-ended tasks . This would complement a growing line of work addressing the
lofty goal of directly studying creative natural language tasks (Zhang et al., 2024a; Si et al., 2024;
Franceschelli & Musolesi, 2023; Lu et al., 2024; Chakrabarty et al., 2024). Most related to our goal
are works that have studied diversity of next-token models in tasks such as graph path-finding (Khona
et al., 2024) and challenging CFGs (Allen-Zhu & Li, 2023b). Broadly, we term these tasks as open-
ended algorithmic tasks. In this context, our aim can be viewed as a more principled investigation
of minimal instances of such tasks. This allows us to pinpoint fundamental issues with next-token
prediction and systematically propose alternative learning approaches.

As a first step, we use algorithmic tasks to isolate two fundamental types of leaps, loosely inspired
by two modes of creativity in cognitive science literature (Boden, 2003) (also see Franceschelli &
Musolesi (2023)) termed combinational and exploratory creativity. For the vastly simpler scope of this
paper, this distinction corresponds to computational tasks that require discovering novel connections
in knowledge (e.g., wordplay and analogies, see Fig 1a, 1b), and tasks that require constructing
patterns that are resolvable in novel ways (e.g., stories and word problems, see Fig 1c, 1d).
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Figure 1: Tasks inspired by combinational creativity (Fig 1a, 1b): Skills like research, humor and
analogies often require identifying novel multi-hop connections from known relationships: creating
the wordplay “What kind of shoes do spies wear? Sneakers.” requires selecting a pair
of words shoes and spies that lead to a pre-planned punchline, sneakers — which is a mutual
semantic neighbor. Loosely inspired by this, we consider the minimal tasks of discovering siblings
and triangles from an in-memory knowledge graph. Tasks inspired by exploratory creativity
(Fig 1c, 1d): Skills like designing problem sets or writing plots, require devising patterns that can
be resolved in novel ways under some logical constraints. Loosely inspired by this, we consider the
minimal tasks of constructing randomized adjacency lists that resolve into a circle or a line graph.

In these tasks, we then show a separation in the creativity of next-token and multi-token approaches
(namely, teacherless training (Bachmann & Nagarajan, 2024; Monea et al., 2023; Tschannen et al.,
2023) and discrete diffusion models (Hoogeboom et al., 2021; Austin et al., 2021; Lou et al., 2023)).
Intuitively, in all our tasks, optimally inferring the latent creative leap requires observing global
patterns; but we argue how the next-token models learns local shortcut patterns (called Clever Hans
cheats (B&N’24)). As a result, next-token learning under-utilizes the data, and results in significantly
sub-optimal creativity and high memorization (See Fig 2); multi-token approaches show higher
creativity and far lower memorization. As an orthogonal finding, we also discover that training either
of these objectives via hash-conditioning — prefixing the input with random strings — significantly
boosts to creativity in these open-ended tasks.

Overall, we hope our study advances the field in two directions. First, we provide a new angle to
advocate for multi-token approaches, orthogonal to the “path-star” example in B&N’24. Whereas,
the path-star example portrays a gap in correctness of reasoning, ours shows a gap in diversity of
open-ended thinking. Next, the gap we show appears even in 2-token-lookahead tasks as against the
multi-hop path-star task. Perhaps most conceptually important is the fact that, while the path-star
task is amendable to next-token prediction upon reversing the tokens, we identify tasks where no
re-ordering is friendly towards next-token prediction — the optimal thing to do is to globally learn
the whole string. This presents a challenge to recent proposals that permute the next-token objective
as a way of fixing it (Pannatier et al., 2024; Kitouni et al., 2024; Nolte et al., 2024).
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Figure 2: Multi-token teacherless finetuning improves creativity (top) while reducing memo-
rization (bottom) on our four open-ended algorithmic tasks. Fig 2a is for finetuning a pretrained
Gemma v1 (2B). Fig 2b is a diffusion model compared against a similarly-size GPT-2 (86M).

We also hope that our work provides a foundation to think about open-ended tasks which are extremely
hard to quantify in the wild. This may spur algorithmic explorations on improving diversity (such as
our approach of hash-conditioning) and on curbing verbatim memorization in language models.

Our contributions:

1. We create minimal, controlled and easy-to-quantify open-ended algorithmic tasks. These tasks
isolate, and loosely capture two fundamental modes of creativity.

2. We find that multi-token prediction through teacherless training or diffusion results in significantly
increased creativity and reduced memorization in all our tasks compared to next-token prediction.

3. We show a new gap between multi- and next-token prediction owing to shortcuts learned in
NTP. The gap is in tasks that require creativity (not correctness), require much simpler 2-token
lookahead, and are permutation-invariant.

4. We find that hash-conditioning i.e., training with random hash prefixes, greatly improves diversity
of its outputs in our tasks, compared to temperature scaling.

2 OPEN-ENDED ALGORITHMIC TASKS & TWO TYPES OF CREATIVITY

We are interested in designing simple algorithmic tasks that are loosely inspired by real-world
endeavors such as generating scientific ideas, humor, narration, or problem-set design, where one
needs to generate strings that are both “interesting” and never seen before. A key characteristic of
such tasks is that they require ideation or a flash of insight before beginning to generate the output.
This ideation step is a leap of thought that (a) is implicit (is not spelled out in token space), (b)
involves discrete random choices (c) and together, those choices must be coherent in that they are
carefully planned to satisfy various non-trivial, discrete constraints. These constraints fundamentally
define the task and make it interesting e.g., a word problem should be solvable by arithmetic rules, or
a twist in a story must lead to a resolution by logical rules. The goal in such open-ended tasks is not
just coherence though, but also diversity and novelty — generations must be as varied as possible and
must not be regurgitated training data.

Open-ended tasks that do not require planning. To design tasks that capture the aforementioned
“leap” or a creative planning step, we first clarify what tasks do not require such a step. One simple
open-ended task that may come to mind is something akin to generating uniformly-random celebrity
names (Zhang et al., 2024b). However, there is no opportunity to create a novel string here. A more
interesting example may be generating grammatically coherent PCFG strings following a subject
verb object format (e.g., the cat chased a rat) like in Hopkins et al. (2023). While novel
strings become possible here, no sophisticated mental leaps are involved; each token can be generated
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on the fly, satisfying a local next-token constraint to be coherent. Thus, we aim to create tasks that
involve a more global constraint — we design these tasks inspired by two fundamentally different
types of creative endeavors discussed in cognitive science literature (Boden, 2003).

Combinational creativity. Consider rudimentary word-play of the form “What genre do
balloons enjoy? Pop music.” or “What kind of shoes do spies wear? Sneakers.”
The novelty here lies in planning a sentence that begins with two unrelated entities (genre &
balloons) but eventually reveals a punchline (pop) that is a mutual neighbor on a semantic graph.
More broadly, Boden (2003) argues that many tasks, like the above, involve “making unfamiliar
combinations of familiar ideas” or the “unexpected juxtaposition of [known] ideas”. Other tasks
include drawing analogies, or finding connections between disparate ideas in science.

Exploratory creativity. Consider on the other hand, the act of developing a mystery or designing
logical puzzles. These endeavors require constructing patterns that are altogether new but satisfy
a non-trivial global constraint: they should be resolvable as per some rules (e.g., logic). Such
endeavors appear to fall into a second class of exploratory creativity in Boden (2003). This includes
much grander forms of exploration e.g., exploring various forms of artistic output within a stylistic
constraint, or exploring various corollaries within a theoretical paradigm in physics or chemistry.

In the upcoming sections, we will attempt to capture some computational aspects of basic instances
within the two classes of creative skills above. We emphasize that by no means does our minimal
algorithmic setup intend to capture the human values or context that go into these endeavors; nor do
they capture the rich array of creative acts that Boden (2003) discusses within these categories.

The basic setting and notations. In all our tasks, we assume the standard generative model setting
where the model must learn an underlying distribution D through a training set S of m independent
samples si ∼ D. In our case, the distribution is over a space VL of L-length strings. Our tasks are
open-ended in that there is no one correct answer to produce at test-time: the goal is to produce a
random string fromD, much like responding to the query Design a high-school word problem.
Each task is defined by a boolean coherence function coh : VL 7→ {true, false}which corresponds
to the support i.e., supp(D) = {s ∈ VL| coh(s)}. Upon witnessing a finite set of coherent examples
S, the model must learn to generate only strings that are (a) coherent, (b) original (not memorized) and
(c) diverse (covers the whole support). An exact quantification of this is computationally expensive.
Instead, we approximate it by sampling a set T of many independent generations from the model and
computing the fraction of T that is original, coherent and unique. Let the boolean memS(s) denote
whether an example s is from the training set S and let the integer function uniq(X) denote the
number of unique examples in a set X . Then, we define our (empirical, computational) creativity
metric:

ĉrN (T ) =
uniq({s ∈ T |¬memS(s) ∧ coh(s)})

|T |
. (1)

2.1 ALGORITHMIC TASKS INSPIRED BY COMBINATIONAL CREATIVITY

Sibling discovery. We simplify the word-play example through a task with an implicit “knowledge
graph” G made of parent vertices V = {A,B,C, . . .} each neighboring a corresponding set of
children nbr(A) = {a1, a2, . . . , }, nbr(B) = {b1, b2, . . .} and so on. We then define coh(s) to hold
true on “sibling-parent” triplets of the form s = (γ, γ′,Γ) such that γ, γ′ ∈ nbr(Γ). Here, one can
think of the parent Γ as the “punchline” that delivers a connection to the first two vertices, in the same
way sneaker connects spies and shoes in the wordplay example. In the learning task, the model
witnesses a training set from a uniform distribution D over all coherent strings for a fixed graph G.
The hope is that the model (a) stores the pairwise adjacencies of G in its weights and (b) learns to
generate novel sibling-parent triplets based on its in-weights knowledge of G.

Reversed Sibling Discovery. Observe that the most natural order of generation is to plan the parent
vertex (i.e., punchline) first, and pick the siblings after. Thus, the above task construction is adversarial
towards NTP (more on this in §2.3). In contrast, if one were to reverse this task (i.e., generate parents
followed by the siblings as s = (Γ, γ, γ′), we hypothesize that the task becomes NTP-friendly. We
test the reversed dataset in our experiments too.

Triangle discovery. Next, we design a minimal dataset which we hope is not only adversarial towards
left-to-right NTP, but should also be resistant to applying NTP on any permutation. In other words,
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no refactorizing of the string must reveal a natural order of the string; one must learn to generate all
tokens simultaneously, to infer the underlying process. Our idea is to make a simple change to the
previous task: instead of demanding that the model discover siblings, we demand that it discover
triangles from an appropriately-constructed knowledge graph G = (V,E) (which contains many
triangles; see §D). Thus, in this task coh((v1, v2, v3)) = true iff all three edges between {v1, v2, v3}
belong in G. Furthermore, we define uniq(·) and mem(·) such that various permutations of the same
triangle are counted as one.

2.2 ALGORITHMIC TASKS INSPIRED BY EXPLORATORY CREATIVITY

Circle construction. In this task, the generated strings must be randomized adjacency lists that can
be rearranged to recover circle graphs of N vertices — no knowledge graph is involved. Specifically,
let the generated list be s = (vi1 , vi2), (vi3 , vi4), . . .. We define coh(s) = true iff there exists a
resolving permutation π such that π(s) = (vj1 , vj2), (vj2 , vj3), . . . (vjn , vj1) for distinct j1, j2, . . . jn.
i.e., each edge leads to the next, and eventually circles back to the first vertex. Loosely, we can think
of the resolving permutation π as how a conflict in a story or a word problem or a puzzle is solved;
the vertices as characters or mathematical objects; the rules of rearranging an adjacency list as rules
of logic, math or story-building. The goal of creativity in this task is to create novel dynamics in the
conflict, or equivalently, how it is resolved i.e., create strings with novel resolving permutations π.
Thus we define uniq and mem such that different examples with the same resolving π are counted as
the same, even if they have differing vertices (i.e., if only the entities differ, but the plot dynamics
remain unaltered, we count them as duplicates).

Line construction. A simple variant of the above task is one where the edge set corresponds to a
line graph. The resolving permutation π is such that π(s) = (vj1 , vj2), (vj2 , vj3) . . . , (vjn−1

, vjn)
for distinct j1, j2, . . . jn. i.e., each edge leads to the next until a dead-end.

2.3 HOW NEXT-TOKEN PREDICTION MAY SUFFER FROM SHORT-CUT LEARNING IN OUR TASKS

Consider learning the Sibling Discovery dataset where we must generate sibling-parent triplets.
Even if the parent must be emitted last, the most natural generative rule is to first learn to plan the
parent p(parent), and then figure out p(siblings|parent) next, and then emit them in the reverse
order. This is optimal as it requires learning only as many edges as there are in the graph i.e., O(m ·n)
many points, if there are m parents with n children.

With NTP however, we argue the model never plans the parent ahead of time. Observe that an NPT
model learns the parent using a next-token conditional of the form p(parent|siblings). The parent
here can be simply fit as the mutual neighbor of the two siblings revealed in the prefix. This is a
shortcut which B&N’24 term such as Clever Hans cheats: the model witnesses and exploits part
of the ground-truth it must generate (the siblings). Such cheats are simpler than even the true
generative rule (where the parent has to be planned ahead of time) and are thus quickly picked up
during learning.

Once the Clever Hans cheat is picked up, the model loses any supervision from the parent.
In this backdrop, the model must learn the sibling only through the next-token-conditional,
p(sibling_2|sibling_1), without any supervision from the parent. This however would require
witnessing every sibling-sibling pair totalling O(m · n2) many training data — larger by a factor of n
than the data requirements of the more natural rule.

More abstractly, much like in sophisticated creative tasks, in our tasks, the most natural way to
generate the string is by planning various random latent choices (say z, here z := parent) and then
learning a distribution p(s|z) over coherent strings s. However, NTP myopically factorizes this into
pieces of the form p(si|s<i, z). Consequently, the model learns uninformative latents from the later
tokens (as it is lured by shortcuts called Clever Hans cheats). Conversely, the model is forced to learn
complex data-hungry rules for the earlier tokens (as it lacks a natural plan).

3 EXPERIMENTS

Training objectives. For our next-token-trained (NTP) Transformers, we use the standard teacher-
forcing objective used in supervised finetuning. Given prompt p and ground truth sequence s, the
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model is trained to predict the i’th token si, given as input the prompt and all ground truth tokens
uptil that point, (p, s<i). We write the objective more explicitly in §B Eq 2. For the multi-token
Transformer models, we use teacherless training (Monea et al., 2023; Bachmann & Nagarajan, 2024;
Tschannen et al., 2023), where the model is trained to predict si simultaneously for all i, only given
the prompt p (and some dummy tokens in place of the s that was once given as input). Since the
exact details of this is irrelevant to our discussion, we describe this in Eq 2. To train our teacherless
models, we use a hybrid of this objective and the next-token objective. We also use score entropy
discrete diffusion model (SEDD, Lou et al., 2023) as a second multi-token model.

Inference. In all the above techniques, we extract each sample independently from the model (as
against say, extracting them in continuous succession in the same context). For Transformers, during
inference, we perform standard autoregression in both the next- and multi-token trained settings.

Hash-conditioning for Transformers Since our tasks are prompt-free, to produce diverse outputs
from a Transformer, we must use temperature sampling (not greedy decoding). As an alternative to
this we also consider prepending either a prompt of pause tokens (Goyal et al., 2024) or a unique
hash string to each datapoint — both during training and during inference — in order to allow extra
computation to the model before it emits its outputs. Perhaps, one could view these hash strings as a
simpler alternative to varying the wordings of a prompt Li et al. (2023); Lau et al. (2024); Naik et al.
(2024) or tuning a soft-prompt Wang et al. (2024b), both of which are known to induce diversity.

Please see §E for more experimental details, and §D for precise dataset details, and §F for ablations.

3.1 OBSERVATIONS

Multi-token prediction improves creativity score while reducing memorization significantly. In
all our datasets, we observe that creativity score increases significantly — as much as a 5x factor
— under the multi-token teacherless training for the Gemma v1 (2B) model, and under diffusion
for a 90M model (as against next-token prediction on a similar-sized GPT-2 (86M) Transformer
model). The gains are much smaller or absent with teacherless training of the smaller GPT-2 (86M)
Transformer which echoes prior findings that multi-token objectives are hard to optimize (B&N’24)
or even hurt smaller models (Gloeckle et al., 2024). Finally, in nearly all the above settings we find a
strong reduction in memorization.
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Figure 3: Hash-conditioning significantly improves creativity for both next- and multi-token
prediction Fig 3a is for Gemma v1 (2B); the labels in the X-axis denote the prefix (used during
training and inference) and the temperature (used during inference). Fig 3b is for the GPT-2 (86M)
model; X-axis denotes the training and decoding procedure, while the legend indicates the prefix.

Hash-conditioning boosts Transformer creativity. For both the multi-token vs. next-token ob-
jectives, hash-conditioning crucially provides the best creativity in both our Transformer mod-
els (Fig 3a, 3b). It has no effect for diffusion models however. In fact, surprisingly, with hash-
conditioning, there is no need for temperature; greedy coding suffices. Finally, increasing hash length
correlates with increased creativity. Thus, for Transformers, we propose viewing hash-conditioning
as a distinct knob for diversity more powerful than temperature-scaling.

4 CONCLUSIONS

This work provides a new argument in favor of multi-token learning, challenging the predominant
next-token paradigm. To frame the argument, we design a suite of algorithmic tasks that are loosely
inspired by two modes of creativity. Overall, we hope our work inspires discussion in the various
directions of multi-token prediction, creativity and planning.
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A LIMITATIONS

First, we discuss limitations regarding our study of multi-token prediction

1. Our examples show that multi-token prediction outperforms next-token prediction in simple
tasks; but this does not preclude the existence of tasks where next-token prediction will
supercede in performance (i.e., the no free lunch theorem). Multi-token prediction is simply
a more general-purpose objective suitable to lookahead tasks.

2. In our proposed algorithmic tasks, there may be many ways to easily improve upon next-
token prediction — success here does not guarantee success on more complex tasks. (These
simple benchmarks are more interesting as a failure case of next-token prediction — failure
here guarantees failure in more complex tasks)

3. The teacherless multi-token prediction technique we advocate as an alternative is generally
harder to optimize than next-token prediction, especially for smaller models.

4. Even if teacherless training outperforms next-token prediction relatively, it is also far from
being a sufficiently diverse model even in some of our simple tasks.

Some limitations on the discussion on creativity:

1. The type of algorithmic tasks we study capture only a specific computational component of
a tiny subset of creative tasks that fall under the taxonomy in Boden (2003). There is yet
another class called transformative creativity that we do not look at, and also other important
taxonomies such as the Big-C/little-c creativity Csikszentmihalyi (1996). Big-C Creativity
corresponds breakthroughs and world-changing ideas; what we focus on is adjacent to
a class of little-c creativity tasks. Furthermore, there are many social and human values
encoded in creative human endeavors that we do not capture in our discussion.

2. Many real-world creative tasks are “out-of-distribution” in nature. Although our in-
distribution formulation provides a first step to thinking about the challenges of next-token
prediction and creative planning, we do not formulate what it means to “think out of the
box”.

3. Real-world creative tasks also apply over much larger context length and require drawing
connections from a significantly larger memory (literally, the set of all things a human may
know about). Our algorithmic tasks are tiny in comparison (although deliberately so).

4. Our measure of empirical creativity for algorithmic tasks is only a computationally-efficient
proxy. Achieving an absolute high creativity score does not imply a perfect coverage of the
space.

B TRANSFORMER TRAINING OBJECTIVES

Let LMθ be our language model, parameterized by θ, for which LMθ(ŝi = si; s<i) is the probability it
assigns to the ith output ŝi being si, given as input a sequence s<i. Let (p, r) be a prefix-response
pair. In standard next-token finetuning, we maximize the objective:

Jnext-token(θ) = ED
[ Lresp∑
i=1

log LMθ (r̂i = ri;p, r<i)
]

(2)

In teacherless (multi-token) training (Monea et al., 2023; Bachmann & Nagarajan, 2024; Tschannen
et al., 2023), we make use of an uninformative input string $ that simply corresponds to a series of
dummy tokens $.

Jmulti-token(θ) = ED
[ Lresp∑
i=1

log LMθ (r̂i = ri;p,$<i)
]

(3)
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C REMARKS AND DISCUSSION

Remark 1. We note that our approach of injecting noise into the model is somewhat different from
how noise is processed in traditional VAEs (Kingma & Welling, 2014) or GANs (Goodfellow et al.,
2020). In traditional approaches, although the model learns a noise-output mapping, this mapping is
enforced only at a distribution level i.e., the distribution of noise vectors must map to a distribution of
real vectors. However, in our approach we arbitrarily enforce what noise vector goes to what real
datapoint, at a pointwise level. This raises the open questions of why hash-conditioning works in the
first place — surprisingly, without breaking optimization or generalization — and whether there is a
way to enforce it at distribution-level, and whether that can provide even greater improvements.

C.1 FURTHER EVIDENCE OF OUR ARGUMENT IN §2.3

Below we provide two more pieces of evidence affirming the failure mechanism of next-token
prediction outlined in §2.3.

Improved creativity is not due to some form of capacity control. While §2.3 argues that multi-
token prediction should help creativity by providing critical lookahead capabilities, it is also possible
that it simply acts as a form of capacity control that prevents memorization. We rule this out in
Fig 4: even as memorization computed on unseen hash strings is controlled, the multi-token model
perfectly reproduces the training data on seen hash strings. We term this hash-memorization. An
exact equivalence of this phenomenon was noticed in GANs in Nagarajan et al. (2018), where the
generator can be trained on specific latent vectors and memorize the mapping on those, and yet
produce fresh samples outside of those latent vectors.
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Figure 4: Even if multi-token prediction reduces memorization (on unseen hash strings), it
has enough capacity to memorize training data on the seen hash-strings (denoted by hash-
memorization). Note that the best creativity score for NTP and MTP are achieved at step 10k and
40k, respectively, which are the checkpoints we used to report metrics in Fig ??.

Effect of token reordering. The implictation of our argument in §2.3 is that next-token learning
would benefit from reversing the token ordering of the Sibling Discovery task (i.e., parent appears
before siblings). Indeed, we find this to be the case in Appendix Fig 6. Interestingly, we find that the
reverse-trained model is still far from the original multi-token teacherless model. More surprisingly, a
teacherless model trained on the reversed data, achieves even higher creativity of all training methods
here. Note that in all other datasets, no reordering of the tokens should make any change to the
training.

D DESCRIPTION OF DATASETS

D.1 DATASETS INSPIRED BY COMBINATIONAL CREATIVITY

DATASET 1: Sibling Discovery. This task is based off a bipartite graph G made of parent ver-
tices V = {A,B,C, . . .} each neighboring a corresponding set of children nbr(A) = {a1, a2, . . . , }.
We set the number of parent vertices |V| to be small and the number of children for each parent
vertex |nbr(A)| to be large. For example, |V| = 5 and |nbr(A)| = 500. We define coh(s) to hold
on “sibling-parent” triplets of the form s = (γ, γ′,Γ) such that γ, γ′ ∈ nbr(Γ).
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Next, we ensure that the training set is large enough for the model to infer all the edges in the graph.
Let m = |V| and n = |nbr(Γ)| (for all Γ ∈ V). This means S = Ω(m ·n). At the same time, to keep
the task non-trivial, the training set must be small enough to not cover all the coherent sibling-parent
triplets. Thus, we ensure S = O(m · n2).

For the default version of this dataset, we set |V| = 5 and |nbr(Γ)| = 500 for all Γ ∈ V.

DATASET 2: Triangle Discovery This task is based off an undirected graph G = (V,E) which
contains many triangles. Since a triangle is a symmetric structure, the problem remains the same even
upon reordering the vertices. Thus, in this task coh((v1, v2, v3)) = true iff all three edges between
{v1, v2, v3} belong in G. To make this task interesting (neither too trivial nor too non-trivial) for our
models to learn, we enforce several constraints on the graph. First, we try to keep the degree deg
of each vertex to be sufficiently small. On the one hand, this is so that no vertex requires too much
computation to find a triangle it is part of; on the other, we also do not want a very dense graph where
most random triplets are a triangle. The above requirement alone may create vertices that participate
in no triangles; so we ensure that each vertex has a minimum number of triangles.

Thus to create a graph that is neither too trivial nor too non-trivial, we define a two-step graph
generation procedure. In the first step, we iterate over the vertices, and add deg many edges from that
vertex to other vertices in the set (where deg is small, such as 3 or 10). To avoid creating high-degree
vertices inadvertently, we only select neighbors with degree ≤ 1.2 · deg. Since this may not ensure a
sufficient number triangles in each vertex, we then iterate over the vertices, and create tri random
triangles on each vertex (where tri is small, such as 6 or 10). We do this by selecting pairs of a
vertex’s neighbors and drawing an edge between them.

Next, we want a training dataset such that (a) the model can infer all the edges from the graph and
yet (b) not all triangles appear in the dataset. This necessitates training on a dataset that consists not
only of a subset of the triangles, but also of edges from the graph. Our training data consists of two
parts: (1) 1/3 are random triangles from the graph, (2) 2/3 are random edges from the graph. In the
training set, the triangle and edge samples are distinguished by a prefix “triangle:” or “edge:”.
During test-time, we ensure that the model is prompted with “triangle:”. A triangle (u, v, w) is
tokenized as “tri: (u, v), (v, w), (w, u)” and an edge (u, v) as “edge: (u, v), (v, u)”. We provide
both the directions of edge to potentially avoid any issues with the reversal curse (Berglund et al.,
2024; Allen-Zhu & Li, 2023a).

For the default setting of the dataset, we set |V | = 999, deg = 3, tri = 6.

D.2 DATASETS INSPIRED BY EXPLORATORY CREATIVITY

DATASET 3: Circle Construction. In this task, the generated strings must be random-
ized adjacency lists that can be rearranged to recover circle graphs of N vertices. The ver-
tices come from a fixed vocabulary of M tokens. Specifically, let the generated list be s =
(vi1 , vi2), (vi3 , vi4), . . .. We define coh(s) = true iff there exists a resolving permutation π such
that π(s) = (vj1 , vj2), (vj2 , vj3), . . . (vjn , vj1) for distinct j1, j2, . . . jn. i.e., each edge leads to the
next, and eventually circles back to the first vertex. In our experiments, we set M to be larger than N .

Our default experiments are reported for N = 9,M = 15.

DATASET 4: Line Construction This task is a simple variant of the above. We also consider a
task where the edge set E corresponds to a line graph. The details are same here except for coherence
to hold, we need a resolving permutation π such that π(s) = (vj1 , vj2), (vj2 , vj3) . . . , (vjn−1

, vjn)
for distinct j1, j2, . . . jn. i.e., each edge leads to the next, stopping at a dead-end. We use the same
set of hyperparamters as Circle Construction.

Our default experiments are reported for N = 9,M = 15.

E FURTHER EXPERIMENTAL DETAILS

Details for Gemma v1 (2B)model.
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Table 1: Hyperparameter details for Gemma v1 (2B) model.

Hyperparameter Sibling
Discovery

Triangle
Discovery

Circle
Construction

Line
Construction

Max. Learning Rate 5× 10−4 5× 10−4 5× 10−4 5× 10−5

Model Seq. Len. 32 32 2048 2048

Training steps 7500 10k 15k 15k

Training size 50k 15k 10k 10k

Weight given to
multi-token obj. 0.5 0.5 0.75 0.75

In Table 1, we provide the hyperparameter details for each of our datasets. We note some common
details here. First, the batch size is 4, but each sequence is packed with multiple examples; thus the
model sequence length (divided by the input length) can be treated as a multiplicative factor that
determines the effective batch size. The learning rates are chosen favorable to next-token prediction
(not multi-token prediction). The training steps were chosen roughly based on a point after which the
model had saturated in creativity score (and exhibited decreasing creativity). We use a learning rate
with linear warm up for 100 steps, followed by cosine annealing upto a factor 0.01× of the maximum
learning rate. To measure creativity, we sample a test dataset T of 1024 datapoints.

We represent the main tokens in our tasks with integers (ranging upwards of 0 to as many distinct
integers are required). In the hash-conditioning setting, we use hash strings of default length 10, using
randomly sampled uppercase characters from the English alphabet. In all datasets, we space-separate
the vertices in a string, and comma-separate the edges.

Details for GPT-2 (86M)model.

We use GPT-2 (small) with 86M non-embedding parameters when we are comparing Transformers
with diffusion models. We train these models with a learning rate of 10−4 and a batch size of 64, to
convergence in terms of the creativity score.

Details for SEDD (90M)model.

We use SEDD’s “absorb” variant, which begins denoising with a fully masked sequence and iteratively
refines tokens over 128 denoising steps. This variant achieves the best language modeling performance
in the original paper. Same as GPT-2 (86M), we train these models with a learning rate of 10−4 and
a batch size of 64, to convergence in terms of the creativity score. 1

1We use the codebase of (Lou et al., 2023) at https://github.com/louaaron/
Score-Entropy-Discrete-Diffusion.
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F SENSITIVITY ANALYSES FOR Gemma v1 (2B)

In this section, we report that our observations are robust to the choice of various hyper-parameters.
First, we present a series of plots for the Gemma v1 (2B) model; each group of plots reports varying
one hyperparameter for all the datasets. Fig 5 for train set size, Fig 6 for task complexity, Fig 7 for
the weight given to the multi-token objective (and Fig 8 correspondingly for memorization), Fig 9
for learning rates, Fig 10 for number of training steps and Fig 11 for batch size. In § F.1, we report
analyses for varying sampling conditions.

Note on task-complexity. In Fig 6, we report robustness of our results to variations in the task
complexity (e.g., degree, path length etc.,). Note that the variations we have explored are within
reasonable factors. If we vastly increase certain factors (e.g., increase the degree of the vertices), we
expect learning to become either highly trivial or non-trivial (see §D for some reasoning). Besides, as
discussed in the main paper, teacherless training is a hard objective to optimize especially for smaller
models; thus, we expect increasing the task complexity beyond a point to hurt for a fixed model size
(for optimization reasons, not generalization reasons).
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Figure 5: Training size and creativity score for Gemma v1 (2B): Creativity score increases under
multi-token prediction across various training set sizes. Note though that, in our examples, we except
the gap to diminish eventually with sufficiently many training datapoints (this is unlike the failure of
next-token prediction in (Bachmann & Nagarajan, 2024)).
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Figure 6: Task complexity and creativity score for Gemma v1 (2B): Creativity score increases
under multi-token prediction across (reasonable) variations in the dataset parameters (as described in
§D).
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Figure 7: Weight given to multi-token objective and creativity score for Gemma v1 (2B): Cre-
ativity score increases under multi-token prediction across various weights given to the multi-token
component of the objective.
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Figure 8: Weight given to multi-token objective and memorization score for Gemma v1 (2B):
Memorization reduces under multi-token prediction across various weights given to the multi-token
component of the objective.

5e-3 1e-3 5e-4 1e-4 5e-5 1e-5
Learning Rate

0.0

0.2

0.4

0.6

Cr
ea

ti
vi

ty

SiblingDiscovery

5e-3 1e-3 5e-4 1e-4 5e-5 1e-5
Learning Rate

0.00

0.25

0.50

0.75

1.00

Cr
ea

ti
vi

ty

TriangleDiscovery

5e-3 1e-3 5e-4 1e-4 5e-5 1e-5
Learning Rate

0.0

0.2

0.4

0.6

Cr
ea

ti
vi

ty

CircleConstruction

5e-3 1e-3 5e-4 1e-4 5e-5 1e-5
Learning Rate

0.0

0.2

0.4

0.6

0.8

Cr
ea

ti
vi

ty

LineConstruction

Figure 9: Learning Rate and creativity score for Gemma v1 (2B): Creativity score increases
under multi-token prediction across various learning rates.
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Figure 10: Training steps and creativity score for Gemma v1 (2B): Creativity score under multi-
token prediction across lengths of training.
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Figure 11: Batch size and creativity score for Gemma v1 (2B): Creativity increases under multi-
token prediction across various batch sizes. Note that here batch size is effectively proportional to the
model sequence length, since we pack multiple finetuning examples into the sequence.
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F.1 VARYING SAMPLING METHODS

The next three sets of plots report creativity, memorization and coherence (i.e., fraction of generated
strings that are coherent) for various sampling methods (greedy decoding and nucleus sampling) with
various prefix conditionings (namely, null, pause and hash).
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Figure 12: Creativity under various sampling conditions for Gemma v1 (2B): Across all condi-
tions, and in almost all datasets (except Line Construction), multi-token prediction improves
creativity. Furthermore, hash-conditioning achieves best creativity scores, with a longer hash helping
more.
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Figure 13: Memorization under various sampling conditions for Gemma v1 (2B): Barring a few
conditions, the most prominent trend is that memorization reduces under multi-token prediction for
various sampling conditions. Observe that the null and pause-conditioned models do produce some
memorized output while their creativity was non-existent.
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Figure 14: Coherence under various sampling conditions for Gemma v1 (2B): Coherence of all
models is high or at least noticeable, across various sampling conditions.
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G ADDITIONAL EXPERIMENTS IN SEDD (90M)VS. GPT-2 (86M)

In this section, we first provide additional experiments on the sensitivity analysis for SEDD (90M)vs
GPT-2 (86M)with different dataset settings. We then provide an ablation study on the hash string
length for NTP vs MTP.
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Figure 15: Sensitivity analysis for the SEDD (90M)model vs. GPT-2 (86M)model: We report the
creativity score for various changes: training set size (top-left) and number of nodes (others).
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Figure 16: GPT-2 (86M) Transformer achieves higher creativity with longer hash strings. We
report the creativity scores with hash strings of length 4 and 10, with both NTP and teacherless MTP.
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Figure 17: Multi-token training improves diversity scores for XSUM summarization for large
GPT-2 models: Here, we plot diversity and quality as measured over multiple checkpoints during
finetuning, and observe differences in diversity for a fixed quality.

H AN INITIAL EXPLORATION OF REAL-WORLD SUMMARIZATION

For a more realistic examination of our findings, we conduct preliminary investigation of GPT models
finetuned with next/multi-token objectives on summarization tasks (XSUM, CNN/DailyMail). We
then measure the diversity of a model for any given prompt by generating 5 different completions
and computing a Self-Bleu metric.

Admittedly though, a summarization task is not as open-ended as we would like: a higher quality
model (i.e., higher Rouge) necessarily means lower diversity. To account for this, we plot how
diversity evolves over time as a function of the quality of the model; we then find in Fig 17 that
for a given model quality, the larger multi-token models achieve higher diversity (albeit only by
a slight amount). This increase does not hold for smaller models and is not always noticeable for
CNN/DailyMail. Interestingly, teacherless training consistently shows an increase in summarization
quality, measured by Rouge.

Experimental Details . In Table 2, we provide the hyperparameter details for the GPT models
finetuned on both XSUM (Narayan et al., 2018) and CNN/DailyMail (Nallapati et al., 2016) for one
epoch. We use a learning rate with linear warm up for 0.05 of the total steps, followed by linear decay
to 0. To measure Rouge and Self-Bleu, we generate and average across 5 summarizations per
document, on a test dataset T of 250 datapoints. We finetune our models with either the next-token
prediction objective (Eq 2) or a hybrid of that with the multi-token teacherless objective (Eq 2), with
equal weight to both.

Table 2: Hyperparameter details for summarization experiments.

Hyperparameter XSUM CNN/DailyMail

Batch Size 32 32

Max. Learning Rate 5× 10−5 3× 10−6

Warmup Steps 338 124

Training Steps 7778 2486

Training Size 248906 79552

To measure quality, we compute the average of Rouge-1, Rouge-2, Rouge-L as Rouge. For
measuring diversity, we generate five different summaries per test example, and compute Self-Bleu.
This computes average pairwise sentence Bleu-2 scores with weights (0.5, 0.5, 0, 0) on 1- and
2-tuples.

H.1 ADDITIONAL GRAPHS FOR EFFECT OF MULTI-TOKEN TRAINING

Fig 18 shows the diversity and quality graphs on the smaller-sized GPT-2 models on XSUM, and Fig 19
for CNN/DailyMail. While we consistently see improved quality from the multi-token model across
the board, we don’t see an increased diversity for fixed Rouge scores anymore.
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Figure 18: Multi-Token Objective has no effect on diversity for smaller GPT models on XSUM.
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Figure 19: Multi-Token Objective increases diversity for GPT-L and GPT-M but not for GPT-XL
or GPT-S on CNN/DailyMail

H.2 EFFECT OF HASH-CONDITIONING

We also conducted hash-conditioning experiments as described in §3. The hash strings we use are 10
randomly sampled uppercase characters from the English alphabet. We report the quality-diversity
plots in Fig 20 (for next-token prediction on XSUM) and Fig 21 (for multi-token prediction on XSUM).
As such, we do not find any changes in diversity, perhaps because this is not a sufficiently open-ended
task.
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Figure 20: Hash-conditioning has no effect on diversity for GPT models on XSUM summarization
with next-token prediction.
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Figure 21: Hash-conditioning has no effect on diversity for GPT models on XSUM summarization
with multi-token prediction.

I RELATED WORK

OPEN-ENDED ALGORITHMIC TASKS. Khona et al. (2024); Allen-Zhu & Li (2023b) are most
directly related to us as they both study diversity of next-token-trained models on an open-ended
algorithmic task. Khona et al. (2024) consider path-connectivity on a knowledge graph. They
observe that under temperature-scaling, diversity is at odds with accuracy. Our work shows that
this tradeoff can be greatly improved when we consider alternative training methods (multi-token,
or hash-conditioning). Allen-Zhu & Li (2023b) empirically demonstrate that next-token predictors
are able to learn a synthetic, challenging CFG, in the “infinite” data regime (≈ 100m tokens). Our
datasets are not CFGs, with the exception of Sibling Discovery, which can be thought of as a
simple PCFG. Our negative result does not contradict theirs since what we show is a sub-optimality of
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NTP in a much smaller data regime. Our work also extends the above works by studying limitations
in much more minimal tasks that require as little as 2-hop lookahead.

CRITICISMS OF NEXT-TOKEN PREDICTION (NTP). There has been a recent emerging discussion
surrounding the role of NTP as foundational piece in developing intelligent models. On the critical
side, arguments have been made about the inference-time issues with auto-regression (Dziri et al.,
2024; LeCun, 2024; Kääriäinen, 2006; Ross & Bagnell, 2010). Others have reported the planning and
arithmetic limitations of next-token trained models (McCoy et al., 2023; Momennejad et al., 2023;
Valmeekam et al., 2023a;b;c; Bachmann & Nagarajan, 2024) where the goal is accuracy, not diversity.
Other Transformer failures such as the reversal curse (Allen-Zhu & Li, 2023a) or shortcut-learning in
arithmetic or algorithmic tasks (Dziri et al., 2024; Zhang et al., 2023; Liu et al., 2023; Young & You,
2022; Lai et al., 2021; Ranaldi & Zanzotto, 2023), however these are out-of-distribution failures; the
sub-optimality we show is in-distribution, like in (Bachmann & Nagarajan, 2024).

MULTI-TOKEN PREDICTION Recently, there has been growing interest in training language models
beyond NTP. Of relevance to us are elegant ideas such as (Pannatier et al., 2024; Kitouni et al., 2024;
Nolte et al., 2024) which propose applying the next-token objective subject to various permutations of
the token ordering. This should however not resolve the sub-optimality of NTP on our permutation-
invariant tasks. As for diffusion, our findings parallel that of Ye et al. (2024) who show that their
variant of diffusion is able to solve the challenging path-star task of (Bachmann & Nagarajan, 2024).
We also note that Bachmann & Nagarajan (2024) conceptually motivate alternatives to next-token
learning using story-writing, and (Hu et al., 2024) empirically test this; however, their end goal is of
narrative quality rather than creativity across various independent story generations.

There are also other multi-token training approaches like those using independent output heads or
modules (Gloeckle et al., 2024; DeepSeek-AI et al., 2024) or inserting a lookahead attention (Du
et al., 2023). Another line of research is discrete diffusion models (Hoogeboom et al., 2021; Austin
et al., 2021; Gong et al., 2023; Lou et al., 2023), which avoid strict left-to-right factorization by
iteratively refining an entire sequence at multiple positions. There are other models as well, such as
energy-based models Dawid & LeCun (2023) and non-autoregressive models or (Gu et al., 2018).

INJECTING NOISE INTO A TRANSFORMER. Most related to hash-conditioning is DeSalvo et al.
(2024) who induce diversity by varying a soft-prompt learned using a reconstruction loss. Our
approach requires no modification to the architecture or the loss; however, we train the whole model,
and not just a soft-prompt generator. The benefits of hash-conditioning may be related to the fact that
varying the wording in a prompt is known to induce diverse outputs (Li et al., 2023; Lau et al., 2024;
Naik et al., 2024). Various works inject noise into a Transformer, in a different form from ours (e.g.,
inducing Gaussian noise), and for a different function such as quality, robustness (Hua et al., 2022;
Jain et al., 2024) or efficiency Wang et al. (2024b).

Our finding that hash-conditioning is superior to temperature sampling echoes Peeperkorn et al.
(2024); Chen & Ding (2023) who find that, in realistic tasks, temperature only has a weak correlation
with creativity, often inadvertently introducing incoherence.

DIVERSITY IN GENERATIVE MODELS. Generative diversity has long been a major goal, at least
until the revolution in reasoning of language models, when accuracy took prominence over diversity.
Much work has gone into concerns such as mode collapse (Che et al., 2017) or posterior collapse
(Bowman et al., 2016) and memorization. In LLMs, regurgitation of training data has been a serious
concern (Carlini et al., 2020; 2023; Nasr et al., 2023).

One line of work relevant to us in the history of generative models is RNN-based VAE for text data
(Bowman et al., 2016). The motivation, like in our work, was to learn high-level semantic features
rather than next-token features with the hope of producing more novel sentence. However, this
suffered from posterior collapse, where the model ignores the latent variable altogether inspiring
various solutions (Yang et al., 2017; Goyal et al., 2017).

EMPIRICAL STUDIES OF CREATIVITY IN LLMS. There is a long line of recent works that measure
novelty and creativity of LLMs and LLM-assisted users. (Chakrabarty et al., 2024; Lu et al., 2024)
quantitatively evaluate and report that models vastly underperform under expert human evaluation
against human writers. Zhang et al. (2024a) argue that finetuning methods such as RLHF and DPO,
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are limited when applied to creative humor-generation tasks. Likewise models like GPT4 and Claude
currently underperform top human contestants in generating humorous captions. In poetry, Walsh et al.
argue that there are certain characterstic styles that ChatGPT restricts itself to. Even assisted-writing
can reduce diversity (Padmakumar & He, 2024) or produce bland writing (Mirowski et al., 2024).
On the positive side, Si et al. (2024) report that LLMs surprisingly generate novel research ideas,
although these are less feasible. (Anderson et al., 2024) find that users tend to produce more divergent
ideas when assisted by ChatGPT (although at a group level, ideas tend to homogenize). Finally,
we refer the reader to Franceschelli & Musolesi (2023) for a rigorous treatment of philosophical
questions surrounding creativity in LLMs. Another line of work (Wang et al., 2024a; Talmor et al.,
2020; Zhong et al., 2024) have proposed algorithmic improvements involve creative leaps-of-thought
for real-world tasks.

LEARNING-THEORETIC STUDIES OF DIVERSITY IN LLMS. Various theoretical works provide
rigorous arguments for how preventing hallucination and maximizing the model’s coverage are at
odds with each other in abstract settings (Kalai & Vempala, 2024; Kalavasis et al., 2024; Kleinberg &
Mullainathan, 2024). We clarify that this tension does not apply in our concrete settings. In those
abstract settings, the strings in the support can be arbitrary and adversarially chosen whereas, our
strings are generated by a simple rule (which can be learned).

Another theoretical question underlying generative models is that the optimum of their objectives are
attained at perfect memorization; yet they tend to produce novel examples e.g., this question has been
posed for GANs in (Nagarajan et al., 2018) and for diffusion in (Nakkiran et al., 2024) (see “remarks
on generalization”) or Kamb & Ganguli (2024). Of relevance to us is, Kamb & Ganguli (2024) who
provide a theoretical and empirical argument for how image diffusion models are able to generate
combinatorially many creative outputs; theirs however do not require the type of planning our tasks
do.

THE NEXT-TOKEN PREDICTION DEBATE. In support of next-token prediction, there are arguments
(Shannon, 1948; 1951; Alabdulmohsin et al., 2024) that claim that language is captured by NTP
with models even superceding humans (Shlegeris et al., 2022) at NTP. There are also and theoretical
results emphasizing the immensive expressivity (Merrill & Sabharwal, 2024; Feng et al., 2023) and
learnability (Malach, 2023; Wies et al., 2023). of autoregressive Transformers as long as there is a
sufficiently long chain of thought.

TRANSFORMERS AND GRAPH ALGORITHMIC TASKS. Graph tasks have been used to understand
various limitations of Transformers in orthogonal settings. Bachmann & Nagarajan (2024); Saparov
et al. (2024) report that Transformers are limited in terms of learning to search tasks on graphs,
while Sanford et al. (2024) provide positive expressivity results for a range of algorithmic tasks that
process an graph. These works differ from our study of combinational creativity since their graphs
are provided in-context and the tasks have a unique answer. Other works (Schnitzler et al.; Yang
et al., 2024a;b) study multi-hop question answering on a knowledge graph; however, this does not
require planning.
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