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Abstract
This paper investigates unsupervised multi-001
modal domain adaptation for multimodal emo-002
tion recognition, which is a solution for data003
scarcity yet remains under studied. Due to the004
varying distribution discrepancies of different005
modalities between source and target domains,006
the primary challenge lies in how to balance the007
domain alignment across modalities to guaran-008
tee they are all well aligned. To achieve this,009
we first develop our model based on the in-010
formation bottleneck theory to learn optimal011
representation for each modality independently.012
Then, we align the domains via matching the013
label distributions and the representations. In014
order to balance the representation alignment,015
we propose to minimize a surrogate of the016
alignment losses, which is equivalent to adap-017
tively adjusting the weights of the modalities018
throughout training, thus achieving balanced019
domain alignment across modalities. Over-020
all, the proposed approach features Adaptively021
modality-balanced domain adaptation, dubbed022
as Amanda, for multimodal emotion recog-023
nition. Extensive empirical results on com-024
monly used benchmark datasets demonstrate025
that Amanda significantly outperforms compet-026
ing approaches. The code is submitted as sup-027
plementary material, and the extracted features028
of the datasets will be made publicly available029
upon the publication of the paper.030

1 Introduction031

Emotion recognition has gained increasing atten-032

tion in recent years in a wide spectrum of applica-033

tions, including emotional support (Tu et al., 2022),034

conversation system (Shi and Huang, 2023) and035

healthcare (Zanwar et al., 2023). Multimodal emo-036

tion recognition which takes advantage of heteroge-037

neous and complementary signals, such as acous-038

tic, visual, lexical information, has demonstrated039

superior performance to its unimodal counterpart040

(Zhu et al., 2022; Zhang and Li, 2023). Neverthe-041

less, one of the notable drawbacks of multimodal042

learning is that collecting and annotating data of 043

multiple modalities is much more expensive than 044

one single modality (Lian et al., 2023). Thus, the 045

importance of the ability of a model to transfer 046

knowledge from annotated datasets to unannotated 047

but related ones is manifested in the context of 048

multimodal emotion recognition. 049

In this regard, unsupervised domain adaptation 050

techniques are popular for promoting the general- 051

ization capability of a model from a labeled source 052

domain to an unlabeled target domain. Domain 053

adaptation typically fills the model’s performance 054

gap between the target and source domains via 055

matching the data distributions of the two domains 056

with sample-based, feature-based and inference- 057

based approaches (Kouw and Loog, 2021). Ac- 058

cordingly, numerous schemes have been developed 059

for various tasks in the fields of computer vision (Li 060

et al., 2021; Liu et al., 2023) and natural language 061

processing (Calderon et al., 2022; Dua et al., 2023). 062

In contrast, domain adaptation in multmodal learn- 063

ing settings remains relatively less researched, not 064

to mention in multimodal emotion recognition. 065

The previous literature on multimodal domain 066

adaptation broadly falls into two categories, multi- 067

ple visual modalities and general multiple modali- 068

ties. The former tackles multimodal computer vi- 069

sion tasks, where different modalities correspond to 070

RGB and optical flows (Munro and Damen, 2020), 071

CT and MRI images (Kruse et al., 2021), or 2D im- 072

age and 3D point cloud (Xing et al., 2023). In these 073

scenarios, the modalities are similar and share the 074

same environment, suggesting a close distribution 075

gap between source and target domains of different 076

modalities. Therefore, no specific effort is required 077

to address modality differences when aligning the 078

domains. The latter category focuses on more gen- 079

eral multimodal domain adaptation approaches, ap- 080

plicable to text/image and video/audio applications. 081

However, in these studies, the source and target do- 082

mains of different modalities are aligned uniformly 083
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without recognizing modality disparity (Qi et al.,084

2018), or they are not considered jointly, leading085

to the situation where some modalities are well086

aligned while others not (Yuan et al., 2022).087

In multimodal emotion recognition tasks, the088

commonly utilized modalities—linguistic, visual089

and acoustic, exhibit high heterogeneity. Moreover,090

these modalities live in decoupled spaces, as op-091

posed to the visual modalities mentioned above.092

Consequently, from the source to target domains,093

different modalities experience varying degree of094

distribution shift. For example, consider a shift in095

the working scene of a multimodal emotion recog-096

nition system from the day (source domain) to the097

night (target domain). In this scenario, the distribu-098

tion of visual features noticeably shifts due to the099

variation of illumination conditions, while that of100

acoustic features remains relatively unchanged.101

Henceforth, directly applying existing domain102

adaptation approaches to multimodal emotion103

recognition might result in an imbalanced align-104

ment of different modalities. The model may then105

rely heavily on the well aligned modalities in the106

target domain and under-utilize others; in other107

words, well aligned modalities dominate others,108

causing the latter to be under-trained.109

With the above analysis, in this paper, we ad-110

vocate modality independence (Sun et al., 2023a;111

Qu et al., 2021) and align the source and target do-112

mains of different modalities, taking their varying113

distribution gaps into consideration. To be specific,114

we design our model based on the information bot-115

tleneck (IB) theory (Saxe et al., 2019; Kawaguchi116

et al., 2023), which enforces each modality to per-117

form label prediction, thereby encouraging each to118

obtain its optimal representation independently. As119

for the domain alignment, we first introduce label120

distribution alignment under the practical assump-121

tion that the label distributions remain consistent122

across the source and target domains. We then em-123

ploy correlation alignment (Sun et al., 2016; Sun124

and Saenko, 2016) to match the optimal represen-125

tations in the two domains for each modality.126

To balance the representation alignment, we min-127

imize a surrogate of the alignment losses rather128

than minimizing a weighted sum of the losses with129

fixed weights. Via judiciously devising the surro-130

gate function, minimizing it is tantamount to min-131

imizing the weighted sum of the losses with the132

weights being adaptively tuned throughout the train-133

ing progress. Concretely, the modalities with larger134

(resp. smaller) losses receive proportionally larger135

(resp. smaller) weights, which achieves dynami- 136

cally balanced domain alignment across modalities. 137

In summary, our work features Adaptively 138

modality-balanced domain adaptation (abbrevi- 139

ated as Amanda) for multimodal emotion recogni- 140

tion. The contributions are primarily threefold. 141

• We develop a mulitmodal emotion recogni- 142

tion model which learns the representations 143

of modalities independently and aligns the 144

source and target domain via matching the 145

representations and the labels. 146

• We propose a paradigm for alignment loss 147

surrogate function design, which adaptively 148

balances all modalities during training. 149

• Empirical results verify the effectiveness of 150

the proposed method, and demonstrate that 151

Amanda outperforms the compared schemes. 152

2 Related Works 153

2.1 Domain adaptation 154

There are an enormous number of prior works on 155

domain adaptation, for which interested readers 156

can refer to survey papers (Wang and Deng, 2018; 157

Kouw and Loog, 2021; Yu et al., 2023) and ref- 158

erences therein. We only cover the most relevant 159

works, which can be classified into two branches, 160

i.e., the adversarial learning methods and moment 161

matching methods. Starting from the pioneering 162

work DANN (Ganin et al., 2016), a vast amount 163

of adversarial learning methods emerge. MDAN 164

(Zhao et al., 2018) investigates domain adaptation 165

with multiple source domains and devises two ver- 166

sions of optimization strategies. CDAN (Long 167

et al., 2018), MADA (Pei et al., 2018) and CAN 168

(Wu et al., 2021) introduce label prediction in- 169

formation as conditioning for domain alignment. 170

DADA (Tang and Jia, 2020) integrates domain and 171

category classifiers as a shared classifier to encour- 172

age a mutually inhibitory relation between domain 173

and category predictions. CDA (Yadav et al., 2023) 174

incorporates contrastive learning into domain adap- 175

tation to achieve class-level alignment. 176

As for the moment matching branch, maximum 177

mean discrepancies (MMD) (Tzeng et al., 2014) 178

and its variants, such as MK-MMD (Long et al., 179

2015), RTN (Long et al., 2016) are typical first 180

order moment approaches which match the mean 181

of the representations. Coral (Sun et al., 2016; Sun 182

and Saenko, 2016) and JDDA (Chen et al., 2019) 183

represent second moment approaches, matching 184

the covariance of the representations. 185
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2.2 Balanced multimodal learning186

Another line of relevant studies that inspire this187

work are devoted to balancing the convergence of188

different modalities to prevent some modalities be-189

ing overfitting while others being underfitting. The190

learning rates of different modalities are dynam-191

ically regulated via tracking the label prediction192

losses of all modalities in studies (Sun et al., 2021;193

Peng et al., 2022). Work (Wu et al., 2022) proposes194

a scheme to estimate the model’s dependence on195

each modality, based on which an algorithm to196

balance the learning speeds of all modalities is197

introduced. In study (Wang et al., 2020), the over-198

fitting behaviors of the modalities are evaluated,199

and accordingly, an optimal blending of gradients200

is computed for model updates. The relative advan-201

tage of each modality is defined during model train-202

ing, with which a bi-level optimization problem is203

formulated to re-weight the loss terms of all modal-204

ities in work (Sun et al., 2023b). These approaches205

are effective yet involve a delicate heuristic design206

in the light of some observations during training.207

In our work, we adopt the second moment match-208

ing method for representation alignment, thus fo-209

cusing on balancing modalities and circumventing210

the difficulty in balancing the competing genera-211

tive and discriminative components in adversarial-212

based methods. We propose a paradigm for align-213

ment loss surrogate function design, enabling adap-214

tive balancing of alignment losses across modalities215

without extra effort to tune the learning rates.216

3 Method: Amanda217

Prior to delving into our method, Amanda, we in-218

troduce the notations and assumptions below.219

Notations: Suppose the multimodal training220

dataset contains N samples, each with M modal-221

ities. For ease of expression, let us define an aux-222

iliary modality as a union of all modalities, and223

thus the total number of modalities is M + 1.224

Let [P ] for any positive integer P denote the225

set {1, 2, · · · , P}. The training samples are de-226

noted by ({xn,m}m∈[M ], {yn,m}m∈[M+1]), where227

n ∈ [N ] indexes the samples, xn,m ∈ Rdm rep-228

resents the dm-dimensional feature vector (the229

feature can also be vector sequence) of modality230

m,∀m ∈ [M ], and yn,m represents the label cor-231

responding to modality m,∀m ∈ [M + 1] (for232

datasets where all modalities share a common la-233

bel, yn,1 = yn,2 = · · · = yn,M+1 holds). Sup-234

pose the number of emotion categories is C; then235

the label yn,m can be a one-hot vector or a scalar 236

in [C], and we adopt either of these two forms 237

when necessary in the rest of the paper. For the 238

consistency of expression, we use xn,M+1 := 239

[xn,1;xn,2; · · · ;xn,M ] to collect all features of 240

sample n. 241

Let Xm and Ym represent general feature and 242

label random variables for all m ∈ [M + 1], with 243

xn,m and yn,m as their realizations. Let vector 244

Zm ∈ Rd, a map of Xm , denote the representa- 245

tion of modalitym, and zn,m is a realization ofZm 246

(for brevity, we assume the representations of all 247

modalities are d-dimensional vectors). We use su- 248

perscript s and t to distinguish variables of source 249

and target domains. For instance, Xs
m and Xt

m 250

denote the features of modality m from source and 251

target domains, respectively. 252

Assumptions: In this paper we consider unsuper- 253

vised domain adaptation problem for multimodal 254

learning, for which the following assumptions are 255

satisfied: 1) the label target domain data is in- 256

accessible; 2) the feature distributions shift with 257

the domains, yet the label distributions remain 258

unchanged, meaning that p(Xt
m) ̸= p(Xs

m) and 259

p(Y t
m) = p(Y s

m) hold for anym ∈ [M+1], where 260

p(·) represents the distribution of a random variable. 261

The second assumption holds true when the domain 262

changes the feature but is not a causal factor of the 263

considered event. For example, although the illu- 264

mination (the feature) of the vision system varies 265

between the day and the night (different domains), 266

one’s emotion (the label) distribution remains rela- 267

tively stable with the day and the night. 268

3.1 Model design 269

A. Overview of model design 270

Figure 1(a) visualizes the architecture of our model, 271

Amanda, in an example with two modalities. As 272

illustrated, to map the featureXm to the represen- 273

tation Zm, we employ a deterministic feature en- 274

coder fm(·;θfm) : Rdm → Rd with model parame- 275

ter θfm, which means Zm = fm(Xm;θfm),∀m ∈ 276

[M ]. For different modalities, fm(·) can take dif- 277

ferent forms; for instance, in our model framework, 278

we utilize TextCNN for the acoustic and lexical 279

modalities, and LSTM for the visual modality. Let 280

ZM+1 := [Z1;Z2; · · · ;ZM ] concatenate the rep- 281

resentation of all modalities. For each modality 282

m ∈ [M + 1], an MLP gm(·;θgm) is adopted to 283

predict the label using the corresponding repre- 284

sentation, that is, Ŷm = gm(Zm;θgm). The mul- 285

timodal prediction ŶM+1 is admitted as the final 286
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Modality 1

Modality 2

Source domain

Target domain

Source domain

Target domain

Feature encoderFeature sequence Representation Classifier Label

(a)

Target domain
label distribution

Target domain
label distribution 
estimation

(b)
Figure 1: (a) Model architecture with 2 modalities as an example (multimodal representation Z3 is a concatenation
of Z1 and Z2; solid and dashed regular arrows represent the flows of source and target domains, respectively;
double-headed arrows represent alignment or supervision signals, corresponding to the information bottleneck loss
LIB(θ), label alignment loss LLA(θ) and correlation alignment loss LCA(θ)). (b) Information flow of modality m.

predicted label. For ease of expression, we use287

θ = {θgM+1}∪{θ
f
m,θ

g
m}m∈[M ] to collect all model288

parameters.289

B. IB based representation learning290

With the above model framework, the information291

chain followsXm → Zm → Ym,∀m ∈ [M + 1],292

as is shown in Figure 1(b). A model with good293

generalization performance should be able to gen-294

erate representation Zm which maintains task rele-295

vant information and discards the rest in Xm. To296

achieve this, the labeled source domain data is uti-297

lized to minimize the following information bottle-298

neck (IB) loss:299

LIB(θ) :=
∑

m∈[M+1]

γI(Xs
m,Z

s
m)−I(Zs

m,Y
s
m), (1)300

where I(·, ·) represents the mutual information of301

two random variables, and γ is a coefficient balanc-302

ing the two terms.303

From the perspective of information theory, it304

is evident that minimizing LIB(θ) leads to a rep-305

resentation Zs
m that retains minimal information306

from the original featureXs
m while capturing the307

maximal information of the label Y s
m. Henceforth,308

Zs
m is an optimal representation in the sense of309

information bottleneck theory (Saxe et al., 2019;310

Kawaguchi et al., 2023). Moreover, not only is311

the joint modality M + 1 enforced to learn the312

task relevant information I(Zs
M+1,Y

s
M+1), but313

each individual modality m, for all m ∈ [M ],314

is also required to maximize their corresponding315

I(Zs
m,Y

s
m) even if all modalities share a common316

label. This promotes modality independence and317

prevents some weak modalities from being ’lazy’318

and being dominated by strong modalities. 319

Next, we elaborate on how the two information 320

terms in Eq. (1) are calculated. 321

I(Xs
m,Z

s
m)= H(Zs

m)−H(Zs
m|Xs

m)

=H(Zs
m)=EZs

m
[− log p(Zs

m)],
(2) 322

where H(·) denotes entropy, and H(Zs
m|Xs

m) = 0 323

since Zm = fm(Xm;θfm) is a deterministic func- 324

tion. Upon assuming that p(Zs
m) follows Gaussian 325

distribution N (µs
m,Σ

s
m) (µs

m ∈ Rd, and Σs
m ∈ 326

Rd×d is a diagonal matrix), we can estimate µs
m 327

and Σs
m with the representations zsn,m, n ∈ [N s]. 328

The the entropy of H(Zs
m) is 329

H(Zs
m) =

1

2
log |Σs

m|+ d

2
(1 + log(2π)), (3) 330

where |Σs
m| represents the determinant of Σs

m. 331

Similarly, I(Zs
m,Y

s
m) can written as: 332

I(Zs
m,Y

s
m) = H(Y s

m)−H(Y s
m|Zs

m)

= Hs
Y,m −H(Y s

m|Zs
m)

= Hs
Y,m+

1

N s

Ns∑
n=1

log p(ysn,m|zsn,m), (4) 333

where we use the fact that H(Y s
m) = Hs

Y,m is a 334

constant independent from parameter θ. 335

Combining Eqs. (1), (2), (3) and (4), we obtain 336

the information bottleneck loss as follows (with 337

constant terms omitted). 338

LIB(θ)=

M+1∑
m=1

[γ
2
log |Σs

m|

− 1

N s

∑
n∈[Ns]

log p(ysn,m|zsn,m)
]
.

(5) 339
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C. Label alignment340

As assumption 2) states, the label distributions of341

the target and source domains remain the same.342

We capitalize on this assumption to exploit the343

unlabeled target data. For the target domain344

sample Xt
m, we can obtain its label Ŷ t

M+1 =345

p(Y t
M+1|Xt

M+1;θ). Although no label can be346

used as supervision signal for each individual target347

domain sample, the label distributions of the tar-348

get and source domains can be aligned. The label349

distribution of source domain can be immediately350

computed from the labels as following:351

p(Y s
M+1) = ȳ

s
M+1 =

1

N s

∑
n∈[Ns]

ysn,M+1 (6)352

The predicted label distribution of target domain is353

ˆ̄ytM+1 =
1

N t

∑
n∈[Nt]

ŷtn,M+1 (7)354

Label alignment (LA) is achieved by minimizing355

the following cross entropy loss between the target356

and source label distributions:357

LLA(θ) = −Eȳs
M+1∼p(Y s

M+1)
[logˆ̄ytM+1]

=
∑
c∈[C]

−(ȳsM+1)clog(ˆ̄ytM+1)c,
(8)358

where (·)c is the c-th element of the vector.359

D. Modality-wise representation alignment360

We align the optimal representations of different361

modalities across the target and source domains,362

following the idea of matching the distributions363

by aligning the second order statistics. In specific,364

we first calculate the variance of Zs
m and Zt

m, and365

denote them asCs
m andCt

m, ∀m ∈ [M+1], respec-366

tively. Then, the representation is aligned by min-367

imizing the following correlation alignment (CA)368

loss (Sun et al., 2016):369

LCA
m (θ) = ||Ct

m −Cs
m||2F , (9)370

where || · ||F represents the Frobenius norm.371

However, as mentioned above, directly applying372

correlation alignment to multimodal domain adap-373

tation faces the difficulty in balancing the modal-374

ities, since the gaps between target and source375

distributions of different modalities vary. To this376

end, we propose to minimize a surrogate function377

of LCA(θ) := [LCA
1 (θ),LCA

2 (θ), · · · ,LCA
M+1(θ)],378

h(·) : RM+1 → R. The goal of minimizing379

h(LCA(θ)) is to dynamically balancing different380

modalities during the optimization procedure. The381

details of how to determine h(·) is postponed to the382

next subsection.383

With the above model and loss functions, the 384

overall model training loss follows: 385

L(θ)=LIB(θ)+α1LLA(θ)+α2h(LCA(θ)), (10) 386

where α1 and α2 are the constant coefficients 387

weighting the three loss terms which are also shown 388

in Figure 1. In the sequel, we present our approach 389

for the design of the surrogate function h(·). 390

3.2 Adaptive modality balancing 391

In this subsection, we develop a surrogate 392

function — modality balanced alignment 393

loss (MBAL) function h(a(θ)),∀a(θ) = 394

[a1(θ), a2(θ), · · · , aM+1(θ)], am(θ) ≥ 0, ∀m ∈ 395

[M+1], such that minimizing h(a(θ)) can adap- 396

tively balance the minimization of all elements of 397

a(θ). Note that here we use a(θ) for brevity and 398

generality, and substituting a(θ) with LCA(θ) in 399

h(a(θ)) directly gives the alignment loss term in 400

Eq. (10). 401

A. A general design of the MBAL function 402

We first propose that h(a(θ)) in general takes the 403

following form: 404

h(a(θ)) = ϕ−1
( ∑
m∈[M+1]

ϕ(am(θ))
)
, (11) 405

where ϕ(·) is a convex and monotonically increas- 406

ing function, and ϕ−1(·) denotes the inverse func- 407

tion of ϕ(·). 408

Applying the chain rule of derivative, the gradi- 409

ent of h(a(θ)) is derived: 410

∇θh(a(θ))=

∑M+1
m=1 ϕ

′(am(θ)) · ∇θam(θ)

ϕ′
(
ϕ−1(

∑M+1
m=1 ϕ(am(θ)))

)
=

M+1∑
m=1

ψm(θ) · ∇θam(θ), (12) 411

where ϕ′(·) is the derivative of function ϕ(·), and 412

ψm(θ) is defined as: 413

ψm(θ) =
ϕ′(am(θ))

ϕ′
(
ϕ−1(

∑M+1
m=1 ϕ(am(θ)))

) . (13) 414

From Eq. (12), it is obvious that the gradient 415

∇θh(a(θ)) corresponds to the weighted sum of 416

∇θam(θ),m ∈ [M +1] with weight coefficient 417

ψm(θ). For the brevity of expression, we drop the 418

variable θ when no ambiguity occurs. 419

Next, we analyze the properties of ψm with ϕ(·) 420

elaborated as broadly used convex functions. 421

B. Two families of MBAL functions 422

We will show that when ϕ(·) takes the form of 423

power and exponential functions, the correspond- 424

ing surrogate function h(a) is consolidated as norm 425
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and log-exp functions, respectively. The weights426

ψm,m ∈ [M+1] are then properly bounded and427

positively correlated to am, ∀am ≥ 0. This implies428

that with properly chosen learning rate, the con-429

vergence of the learning can be guaranteed, and430

meanwhile larger losses enjoy larger weights.431

Norm functions For any p ≥ 1, choosing ϕ(a) =432

ap immediately gives that h(a) = ||a||p :=433

(
∑M+1

m=1 a
p
m)1/p, which means h(a) is the p-norm434

of a. Then, ψm can be attained as:435

ψm =
ap−1
m(∑M+1

m=1 a
p
m

) p−1
p

, ∀m ∈ [M+1]. (14)436

Three cases come in order based on the value of p.437

1) p = 1: h(a) is a direct summation of am, and438

ψm = 1,m ∈ [M+1] hold. This case corresponds439

to the imbalanced version of Amanda.440

2) 1 < p < +∞: Eqs. (14) and (12) indicate that441

the gradient ∇θam(θ) associated with larger am is442

highlighted with larger weight ψm. This implies443

that during training, the equivalent alignment loss444

weights of different modalities is adaptively regu-445

lated according to the corresponding losses, which446

pays more attention to larger losses.447

3) p = +∞: Eq. (14) reduces to ψm = 1, if m =448

argmaxm∈[M+1]am; otherwise, ψm = 0. Conse-449

quently, only the largest alignment loss among all450

modalities counts during training in terms of the451

gradient in Eq. (12).452

Log-exp functions For any t > 0, choosing453

ϕ(a) = exp(ta) leads to log-exp function: h(a) =454
1
t ln(

∑M+1
m=1 exp(tam)). The weight ψm writes as:455

ψm =
exp(tam)∑M

m=1 exp(tam)
, ∀m ∈ [M+1]. (15)456

Similarly, two cases follows:457

1) 0 < t < +∞: Similar to the analysis of case458

2) in the above norm function part, conclusion can459

be drawn by combining Eq. (12) and Eq. (14) that460

gradient-based training algorithms will "take more461

care of" the larger alignment losses.462

2) t = +∞: This case is exactly the same as case463

3 in the above norm function part.464

C. Theoretical properties and insights465

Now we present theoretical properties of the weight466

ψ:= [ψ1,ψ2, · · · ,ψM+1] and MBAL function h(a).467

Lemma 1. The norm of the weightψ satisfies (p ≥468

1, and 1/p+ 1/q = 1):469

||ψ||q = 1, if h(a) = ||a||p; (16a)470

||ψ||1 = 1, if h(a)=
1

t
ln(

M+1∑
m=1

exp(tam). (16b)471

Eqs. (16a) and (16b) can be verified via calcu- 472

lating the q-norm and 1-norm of ψ using ψm in 473

Eqs. (14) and (15), respectively. 474

Theorem 1. The MBAL function h(a) is an upper 475

bound of the weighted sum of am with weights 476

ψm,m ∈ [M+1], which translates to the following 477

inequalities: 478

M+1∑
m=1

ψmam≤ ||a||p = h(a); (17a) 479

M+1∑
m=1

ψmam≤ 1

t
ln(

M+1∑
m=1

exp(tam))=h(a). (17b) 480

Proof. For any p ≥ 1, and 1/p + 1/q = 1, the 481

inequality (i.e., Eq. (17a)) below follows from 482

Hölder’s inequality and Eq. (16a). 483

M+1∑
m=1

ψmam=ψTa≤||ψ||q · ||a||p = ||a||p. 484

Since ln(·) is a concave function, the following 485

inequality (i.e., Eq. (17b)) is a result of Jensen’s 486

inequality and Eq. (16b). 487

1

t
ln(

M+1∑
m=1

ψmexp(tam)) ≥ 1

t

M+1∑
m=1

ψmln(exp(tam))

=
M+1∑
m=1

ψmam, 488

which finishes the proof. 489

To sum up, we propose a paradigm for the align- 490

ment loss surrogate function design, under which 491

two families of surrogate functions, norm functions 492

and log-exp functions are analyzed. Theoretical 493

results show that with the developed approach, the 494

representation alignment losses of different modal- 495

ities are adaptively balanced during training using 496

gradient-based algorithms. Furthermore, minimiz- 497

ing the surrogate function boils down to minimiz- 498

ing the upper bound of the weighted sum of the 499

alignment losses, where the bounded weights al- 500

ways correlate positively to the losses in the train- 501

ing progress. 502

4 Numerical Results 503

Benchmark datasets: We assess our method on 504

four widely used benchmark multimodal emo- 505

tion recognition datasets, IEMOCAP (Busso et al., 506

2008), MELD (Poria et al., 2019), CMU-MOSEI 507

(Zadeh et al., 2018), and MSP-IMPROV (Busso 508

et al., 2016), which all contain acoustic, visual and 509

lexical modalities. IEMOCAP and MSP-IMPROV 510
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Method IE.→MS. IE.→MO. ME.→IE. ME.→MS. MO.→IE. MO.→MS. MS.→IE.
D.T. 57.62 33.39 51.28 47.23 46.29 48.64 59.95

DANN 58.83 36.70 52.43 49.36 50.62 45.73 61.46
CDAN 60.57 37.50 55.84 49.28 51.01 46.86 63.56

CDAN+E 61.26 37.31 55.04 49.94 51.01 49.33 63.56
MADA 62.83 36.76 54.62 49.91 50.98 46.88 63.73

A-N(p = 1) 64.35 38.31 58.09 53.44 57.75 52.31 62.67
A-N(p = 2) 64.43 39.10 58.27 57.46 60.25 53.99 63.61

A-N(p = ∞) 64.82 38.38 58.77 54.46 58.98 54.39 64.30
A-L(t = 1) 64.33 38.68 57.52 54.44 60.00 55.24 64.05

Table 1: F1 scores of the compared approaches. Abbreviations: D.T.: Direct transfer, A-N: Amanda with norm
surrogate function, A-L: Amanda with log-exp surrogate function, IE.: IEMOCAP, MS.: MSP-IMPROV, ME.:
MELD, MO.: CMU-MOSEI; the arrow "→" means from source to target domains.
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(c) MELD → IEMOCAP
Figure 2: F1 scores v.s. varying weight (α2) of the surrogate functions. Weights {0.0005, 0.001, 0.002, 0.005, 0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1, 2} are tested, and the x-axis is with log scale.

are composed of dyadic conversations collected in511

the laboratory setting, and the latter is of higher512

recording quality. CMU-MOSEI gathers mono-513

logue videos from more than 1000 speakers on514

YouTube over various topics. MELD consists of515

fragments from the TV series "Friends", which con-516

tains multi-party conversations with over two par-517

ticipants. These datasets are collected from differ-518

ent scenarios and exhibit different characteristics,519

and hence represent different domains. Following520

work (Zhao et al., 2021), we select samples in the521

four classes— neutral, happy, sad and angry, to522

construct datasets for our experiments.523

Feature extraction: For the visual modality, we524

first sample each video uniformly to obtain 64525

frames. Then, the frames are processed with526

S3FD(Zhang et al., 2017) to attain the speaker’s527

faces which are then fed into vision model APViT528

(Xue et al., 2022) pretrained with dataset RAF-529

DB(Li et al., 2017), resulting in 64× 768 sequen-530

tial feature. BERT-base(Devlin et al., 2018) and531

Wav2Vec2(Baevski et al., 2020) are employed to532

extract lexical and acoustic features, respectively.533

To retain the feature of different levels, the outputs534

from the 1st, 7th, and 12th transformer blocks are535

concatenated as the final feature. The generated 536

feature sequences are of dimension 2304, and their 537

lengths are determined by the lengths of the text 538

and audio, respectively. 539

Baseline models: We compare our model, 540

Amanda, with DANN, CDAN, MADA and CDAN- 541

E, of which the first three are introduced in the re- 542

lated works section, and CDAN+E is an extension 543

of CDAN with the incorporation of entropy-aware 544

reweighting for the domain discrimination loss. 545

Implementation details: The multimodal emo- 546

tion recognition model involves three modalities, 547

in which we employ one-layer LSTM for visual 548

modality, and TextCNN for acoustic and lexical 549

modalities as study (Zhao et al., 2021). The dimen- 550

sion of the representations is chosen as 128. We 551

adopt optimizer Adam with learning rate 5× 10−4, 552

momentum coefficient (0.9, 0.999) and batch size 553

128 for model training. The parameter settings 554

are γ = 5 × 10−4, α1 = 0.08; and α2 = 0.1 is 555

selected for the comparison studies, and we will 556

investigate how α2 impacts the model performance 557

in the ablation studies. More details of the imple- 558

mentation can be found from the code in the supple- 559

mentary material. Throughout this section, we use 560
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(c) p = +∞
Figure 3: Normalized alignment losses of different modalities during training with A-N (IEMOCAP → MSP).

weighted F1 score as model performance metric.561

The reported F1 scores are obtained by averaging562

results from 3 repeated experiments, conducted on563

2 Nvidia A100 GPUs with 40GB memory.564

4.1 Comparison studies565

We denote Amanda with 1-norm, 2-norm and ∞-566

norm, log-exp(t = 1) surrogate functions by A-567

N(p = 1), A-N(p = 2), A-N(p = ∞) and A-568

L(t = 1), respectively. Table 1 reports the F1569

scores of the baseline models and different versions570

of Amanda. In this table, direct transfer means the571

target domain data is not used for training, and572

directly be tested with the model trained on source573

domain. The results indicate that Amanda with p-574

norm (p > 1) log-exp (t > 0) surrogate functions575

performs on par with the baseline models on dataset576

MSP → IEMOCAP; and for all other datasets, it577

achieves substantial improvement. Due to the space578

limitation, more results (A-N(p = 3) and A-L(t =579

0.5)) are included in the appendix.580

4.2 Ablation studies581

In this part, we conduct ablative studies on the582

two critical designs in Amanda, the label align-583

ment and balanced representation alignment. Fig-584

ure 2 illustrates the model performance with vary-585

ing weight (α2) of the surrogate functions. Com-586

paring Amanda without correlation alignment (A.587

w/o CA) to direct transfer (D.T.), it is clear that la-588

bel alignment enhances the knowledge transferring589

capability of the model significantly. For weight590

α2 ≤ 0.2, Amanda with p-norm (p > 1) and591

log-exp surrogate functions can further improve592

the model performance over Amanda without CA593

(A. w/o CA). Particularly, when weight α2 grows594

larger than 0.2, the balanced versions of Amanda,595

A-N(p = 2), A-N(p = ∞) and A-L(t = 1), ex-596

perience less performance drop compared to its597

imbalanced counterpart, A-N(p = 1). The above598

results corroborate that both the label alignment599

and the adaptive domain alignment contribute to 600

the success of Amanda. 601

In order to demonstrate that the proposed p-norm 602

surrogate functions (p > 1) are able to balance 603

the domain alignment of different modalities, we 604

show the normalized alignment losses (L̃CA
m (θ) := 605

LCA
m (θ)/

∑M
m=1 LCA

m (θ)) in Figure 3, where the 606

target and source datasets are IEMOCAP and MSP, 607

respectively. Consistent with our analysis in sec- 608

tion 3.2, the losses are not balanced with p = 1, and 609

hence the losses exhibit large discrepancy among 610

modalities throughout the training, as illustrated 611

in Figure 3(a). In contrast, with p = 2 as shown 612

in Figure 3(b), the losses are adaptively balanced, 613

leading to closer gaps among modalities (when 614

the three normalized losses are all 1/3, perfect bal- 615

ance is achieved). Figure 3(c) displays the case 616

of p = +∞, where the losses are also more bal- 617

anced than that of the case p = 1. Due to the space 618

limitation, we show the unweighted losses and the 619

losses corresponding to log-exp surrogate functions 620

in the appendix. These results validate that the pro- 621

posed surrogate functions succeed in balancing the 622

domain alignment of different modalities. 623

5 Conclusions 624

In this work, we devise a multimodal domain adap- 625

tation approach for multimodal emotion recogni- 626

tion. In order to close the gap between the target 627

and source domains, we propose to match the label 628

distributions of the two domains and to align the 629

optimal representations for different modalities. To- 630

wards the objective of balancing the representation 631

alignment, a general alignment loss surrogate func- 632

tion design paradigm is developed. Furthermore, 633

we present the theoretical analysis of two families 634

of surrogate functions which achieve adaptively 635

modality-balanced domain adaptation. The effec- 636

tiveness of the proposed approach is corroborated 637

by extensive comparison and ablation studies. 638
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6 Limitations639

In light of the future work, the limitations of the640

present work are mainly twofold. 1) Although our641

method is applicable to more general multimodal642

supervised learning problems, we only validate it643

on emotion recognition tasks. 2) We have not es-644

tablished the theoretical upper bound of the target645

domain risk for the proposed approach.646
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Appendix
The numbers of the tables and figures in the902

appendix follow those in the paper.903

A Supervised learning baselines of the904

four datasets905

Table 2 shows the baselines of the four datasets,906

which is obtained with standard supervised learning907

on each dataset itself.908

B Alignment losses of different modalities909

Figures 4 and 5 illustrate the alignment losses on910

dataset IEMOCAP → MSP, with norm and log-911

exp surrogate functions, respectively. Figure 6912

Datasets F1 score Accuracy
IEMOCAP 79.72 79.95

MSP 79.68 79.87
MELD 55.84 56.39
MOSEI 54.89 55.58

Table 2: Supervised learning baselines of the four
datasets.

shows the losses on dataset MOSEI → IEMOCAP. 913

It can be concluded from these results that the de- 914

signed surrogate functions indeed balance the do- 915

main alignment losses of different modalities. 916

C More results of the comparison studies 917

Table 3 is an extended version of Table 1, addition- 918

ally including the results of Amanda with 3-norm 919

and log-exp(t=0.5) surrogate functions. 920

D Model performance with varying 921

weights of the surrogate function 922

Tables 4, 5 and 6 report the model performance 923

with varying weights of the surrogate function, 924

which provided the details of Figure 2. 925

E Statistics of the datasets & the labels of 926

the CMU-MOSEI dataset 927

Table 7 reports the detailed numbers of sam- 928

ples in each emotion category for the used four 929

datasets, CMU-MOSEI, MELD, IEMOCAP and 930

MSP-IMPROV. 931

The original CMU-MOSEI dataset is annotated 932

with a sentiment score and six emotion scores for 933

emotion categories {happy, sad, angry, fear, dis- 934

gusted, surprised}, which indicate the intensity of 935

the sentiment and emotions, respectively. We cat- 936

egorize samples with sentiment score 0 and all 937

emotion scores 0, to be neutral. For samples with 938

a unique highest emotion score, the corresponding 939

emotion label is assigned. We discard samples with 940

multiple highest emotion scores to guarantee all se- 941

lected ones are with a distinguishable emotion. 942
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Figure 4: Alignment losses of different modalities during training by Amanda with norm surrogate functions (IEMO-
CAP → MSP). The upper and lower panels correspond to the normalized and unnormalized losses, respectively.
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Figure 5: Alignment losses of different modalities during training by Amanda with log-exp surrogate functions
(IEMOCAP → MSP). The upper and lower panels correspond to the normalized and unnormalized losses, respec-
tively.
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Figure 6: Alignment losses of different modalities during training by Amanda with norm surrogate functions
(MOSEI → IEMOCAP). The upper and lower panels correspond to the normalized and unnormalized losses,
respectively.

Method IE.→MS. IE.→MO. ME.→IE. ME.→MS. MO.→IE. MO.→MS. MS.→IE.
D.T. 57.62 33.39 51.28 47.23 46.29 48.64 59.95

DANN 58.83 36.70 52.43 49.36 50.62 45.73 61.46
CDAN 60.57 37.50 55.84 49.28 51.01 46.86 63.56

CDAN+E 61.26 37.31 55.04 49.94 51.01 49.33 63.56
MADA 62.83 36.76 54.62 49.91 50.98 46.88 63.73

A-N(p = 1) 64.35 38.31 58.09 53.44 57.75 52.31 62.67
A-N(p = 2) 64.43 39.10 58.27 57.46 60.25 53.99 63.61
A-N(p = 3) 64.98 39.10 58.82 54.82 59.23 56.28 63.80
A-N(p = ∞) 64.82 38.38 58.77 54.46 58.98 54.39 64.30
A-L(t = 0.5) 65.11 37.21 57.90 54.26 58.56 54.90 63.89
A-L(t = 1) 64.33 38.68 57.52 54.44 60.00 55.24 64.05

Table 3: F1 scores of the compared approaches. Abbreviations: D.T.: Direct transfer, A-N: Amanda with norm
surrogate function, A-L: Amanda with log-exp surrogate function, IE.: IEMOCAP, MS.: MSP-IMPROV, ME.:
MELD, MO.: CMU-MOSEI.
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Weight (α2) 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0
D.T. 57.62 57.62 57.62 57.62 57.62 57.62 57.62 57.62 57.62 57.62 57.62 57.62

A. w/o CA 64.49 64.49 64.49 64.49 64.49 64.49 64.49 64.49 64.49 64.49 64.49 64.49
A-N(p = 1) 63.77 63.07 64.19 65.47 63.80 63.55 62.91 64.35 64.68 61.30 57.60 47.24
A-N(p = 2) 66.77 65.71 66.54 66.5 65.32 65.35 63.69 64.43 65.64 64.38 62.06 58.71
A-N(p = 3) 65.71 66.62 67.42 66.09 65.98 65.10 64.61 64.98 64.72 65.37 62.87 59.43

A-N(p = ∞) 65.34 66.14 67.29 65.22 66.32 66.23 64.48 64.82 65.14 66.93 65.38 64.91
A-L(t = 0.5) 65.67 66.75 66.51 66.45 66.65 66.12 66.56 65.11 64.47 64.99 64.21 64.24
A-L(t = 1) 66.21 65.73 66.46 65.63 65.60 64.70 64.74 64.33 64.12 66.06 64.36 61.15

Table 4: F1 scores with varying weight (α2) of the surrogate functions (IEMOCAP→ MSP).

Weight (α2) 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0
D.T. 46.29 46.29 46.29 46.29 46.29 46.29 46.29 46.29 46.29 46.29 46.29 46.29

A. w/o CA 51.61 51.61 51.61 51.61 51.61 51.61 51.61 51.61 51.61 51.61 51.61 51.61
A-N(p = 1) 53.71 54.49 54.96 55.52 58.44 57.87 58.76 57.75 55.55 41.36 26.03 14.23
A-N(p = 2) 52.75 55.48 53.70 56.78 57.45 58.86 58.57 60.25 59.14 51.38 49.72 40.06
A-N(p = 3) 53.37 54.71 55.74 57.88 56.30 58.14 58.27 59.23 57.57 52.19 49.10 44.74

A-N(p = ∞) 53.62 54.27 55.57 56.98 56.17 58.25 59.23 58.98 57.97 56.06 54.86 54.88
A-L(t = 0.5) 53.57 53.67 54.81 54.70 54.92 55.81 57.11 58.56 58.55 57.10 56.27 54.72
A-L(t = 1) 54.01 53.88 55.59 55.49 57.38 57.44 56.35 60.00 58.43 56.81 57.02 41.10

Table 5: F1 scores with varying weight (α2) of the surrogate functions (MOSEI→ IEMOCAP).

Weight (α2) 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0
D.T. 51.28 51.28 51.28 51.28 51.28 51.28 51.28 51.28 51.28 51.28 51.28 51.28

A. w/o CA 52.79 52.79 52.79 52.79 52.79 52.79 52.79 52.79 52.79 52.79 52.79 52.79
A-N(p = 1) 55.24 54.64 55.53 57.62 58.54 57.36 57.59 58.09 53.61 50.91 39.75 14.52
A-N(p = 2) 54.21 55.00 53.77 56.41 57.06 58.45 58.67 58.27 57.90 55.37 53.91 47.44
A-N(p = 3) 54.01 55.40 55.64 58.11 58.49 57.92 59.50 58.82 56.44 56.93 55.09 49.40

A-N(p = ∞) 54.90 55.05 56.04 57.80 56.80 57.94 58.87 58.77 58.47 55.73 55.98 54.23
A-L(t = 0.5) 53.43 54.69 54.97 54.70 55.81 57.19 57.74 57.90 59.39 57.95 58.23 53.55
A-L(t = 1) 54.24 53.83 55.50 55.89 58.02 58.12 58.58 57.52 57.67 57.38 53.29 52.61

Table 6: F1 scores with varying weight (α2) of the surrogate functions (MELD→ IEMOCAP).

Emotion CMU-MOSEI MELD IEMOCAP MSP-IMPROV
train val test sum train val test sum train val test sum train val test sum

Neutral 1128 136 338 1602 1021 109 270 1400 1221 145 333 1699 830 114 256 1200
Happy 1119 137 346 1602 956 119 325 1400 1119 115 351 1585 846 88 266 1200

Sad 780 74 216 1070 650 93 189 932 751 86 238 1075 587 62 151 800
Angry 758 98 214 1070 676 67 189 932 777 109 216 1102 564 68 160 792

Table 7: Statistics of the datasets.
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