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Abstract

Perturbation-based explanations are widely utilized to enhance the transparency of
machine-learning models in practice. However, their reliability is often compro-
mised by the unknown model behavior under the specific perturbations used. This
paper investigates the relationship between uncertainty calibration - the alignment
of model confidence with actual accuracy - and perturbation-based explanations.
We show that models systematically produce unreliable probability estimates when
subjected to explainability-specific perturbations and theoretically prove that this
directly undermines global and local explanation quality. To address this, we intro-
duce ReCalX, a novel approach to recalibrate models for improved explanations
while preserving their original predictions. Empirical evaluations across diverse
models and datasets demonstrate that ReCalX consistently reduces perturbation-
specific miscalibration most effectively while enhancing explanation robustness
and the identification of globally important input features.

1 Introduction

The ability to explain model decisions and ensure accurate confidence estimates are fundamental
requirements for deploying machine learning systems responsibly [34]. Perturbation-based techniques
[54] have been established as a popular way to enhance model transparency in practice [6, 14].
Such methods systematically modify input features to quantify their importance by evaluating and
aggregating subsequent changes in model outputs [11]. This intuitive principle and the flexibility
to explain any prediction in a model-agnostic way has led to widespread adoption across various
domains [31].

Nevertheless, the application of perturbation-based techniques faces a fundamental challenge: These
methods operate by generating inputs that differ substantially from the training distribution [26, 20],
and models often produce invalid outputs for such perturbed samples [18, 8, 32]. Consequently,
forming explanations by aggregating misleading predictions under perturbations can significantly
distort the outcome and compromise its fidelity. On top of that, this can also contribute to fre-
quently observed instabilities of perturbation-based explanations [1, 4, 38, 13], which reduces their
effectiveness and could even be exploited for malicious manipulations [58, 3].

These issues naturally raise the question of how to attain reliable model outputs under the specific
perturbations used when deriving explanations. A classical approach for this purpose is uncertainty
calibration [46, 45, 25]. It aims to ensure that a model’s confidence aligns with its actual accuracy,
which is crucial to obtaining meaningful probabilistic predictions. Consider, for instance, the situation
in Figure 1 where a classifier detects a bee in the image with 99% confidence. Then this value is only
reliably interpretable if for all predictions with corresponding confidence, precisely 99% are indeed
correct. While calibration has been extensively studied in the machine learning literature [63], its
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Figure 1: Perturbation-based explanation methods typically query the model on modified inputs
and aggregate the resulting prediction changes to identify relevant features. However, we show
that models typically produce significantly miscalibrated output probabilities under commonly used
perturbations. This means that the underlying predictions used to derive explanations do not reflect
actual changes in class likelihoods, obscuring true feature importance. To mitigate this, we propose
ReCalX as a simple recalibration technique that enables reliable outputs under explainability-specific
perturbations, leading to more informative explanation results.

role in explanation methods remains largely unexplored. First empirical evidence suggests that basic
calibration might indeed benefit explainability [55, 39, 40], but a rigorous theoretical understanding
is still missing. In this work, we provide the first comprehensive analysis of the relationship between
uncertainty calibration and perturbation-based explanations. Our findings establish calibration as
a fundamental prerequisite for reliable model explanations and propose a practical solution for
enhancing the quality of perturbation-based explanation methods (see Figure 1).

More precisely, we make the following contributions:

• We provide a rigorous theoretical analysis revealing how poor calibration can bias the results
of common perturbation-based explainability techniques.

• We show that common neural classifiers for tabular and image data exhibit high levels of
miscalibration under explainability-related perturbations.

• We propose ReCalX, a novel approach that increases the reliability of model outputs under
the particular perturbations used to derive explanations and validate its effectiveness.

• We demonstrate that after applying ReCalX, explanation results are significantly more robust
and better identify input features that are relevant for high performance.

2 Background and Related Work

Basic Notation Consider a probability space (Ω,F , P ), where Ω is the sample space, F is a σ-
algebra of events, and P is a probability measure. Let X : Ω → X be a random variable representing
the feature space X , and let Y : Ω → Y be a random variable representing the target space Y . The
joint data distribution of (X,Y ) is denoted by PX,Y , the conditional distribution of Y given X by
PY |X , and the marginal distributions by PX , PY . During our theoretical analysis, we will also make
use of the following quantities. The mutual information between two random variables X and Y ,
measures the reduction in uncertainty of one variable given the other and is defined as:

I(X,Y ) := E(X,Y )

[
log

PX,Y (X,Y )

PX(X)PY (Y )

]
.
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A related measure is the Kullback-Leibler (KL) divergence, which expresses the difference between
two probability distributions P and Q over the same sample space:

DKL(P∥Q) := EX

[
log

P (X)

Q(X)

]
.

Perturbation-based Explanations Perturbation-based explanations quantify the importance of
individual input features by evaluating how a model output changes under specific input corruptions.
Let f : X → [0, 1]K be a classification model over K classes, where X ⊆ Rd is the d-dimensional
input space. Given a sample x ∈ X , a perturbation-based explanation produces an importance vector
ϕ(x) ∈ Rd, where ϕi(x) quantifies the importance of feature xi. To derive ϕ(x), we first introduce a
perturbation function π : X × 2{1,...,d} → X that, given an instance x and a subset of feature indices
S ⊆ {1, . . . , d}, returns a perturbed instance π(x, S) where features in S remain unchanged while
the complementary features are modified. Various perturbation strategies have been investigated
[60, 9, 11], with common approaches being the replacement of features with fixed baseline values
[32] or blurring [19, 33] for images. The model prediction under such perturbation is given by:

fπ
S (x) := f

(
π(x, S)

)
.

To compute the final explanation ϕ, the outcomes of fS for different subsets S are systematically
examined and aggregated. While numerous strategies exist for this purpose [11, 49, 17, 47, 66, 53, 42],
we focus on methods that employ a linear summary strategy [38]. In this case, there exists a summary
matrix A ∈ Rd×2d such that ϕ(x) = Aϑ(x), where ϑ ∈ R2d contains the predictions fS(x) for all
possible subset perturbations S. Two prominent methods in this category are Shapley Values [42]
and LIME [53].

Uncertainty Calibration In general, a model is said to be calibrated if its predicted confidence
levels correspond to empirical accuracies for all confidence levels. Formally, this calibration property
requires that PY |f(X) = f(X) [7, 59, 24]. In classification, this intuitively implies, that for any
confidence level p ∈ [0, 1] it holds:

P (Y = k | f(X)k = p) = p ∀k ∈ {1, . . . ,K},

where f(X)k denotes the predicted probability for class k and Y is the true label. This means that
among all instances for which the model predicts a class with probability p, approximately a p fraction
should be correctly classified. In practice, modern neural classifiers often exhibit miscalibration
[25, 44], in particular when facing out-of-distribution samples [48, 61, 65]. This can be formalized
using a calibration error (CE), which quantifies the mismatch between f(X) and PY |f(X). In this
work, we will consider the KL-Divergence-based calibration error [51], as this is the proper calibration
error directly induced by the cross-entropy loss which is typically optimized for in classification:

CEKL(f) = E
[
DKL

(
PY |f(X)∥f(X)

)]
Our work investigates how violations of this calibration property affect the quality of the derived
explanations ϕ(x) and develops methods to improve calibration specifically for perturbation-based
techniques, which has not been analyzed before.

3 Understanding the Effect of Uncertainty Calibration on Explanations

In this section, we provide a thorough mathematical analysis of how poor calibration under
explainability-specific perturbation can degrade global and local explanation results. All under-
lying proofs and further mathematical details are provided in Appendix A.

Effect on Global Explanations Calibration is inherently a global property of a model related to the
entire data distribution and in general, it is impossible to evaluate it for individual samples [69, 43].
Hence, we first analyze its effect on global explanations about the model behavior [41] such as the
importance of individual features for overall model performance [12, 15]. Following [12], we define
the global predictive power of a feature subset S for a model f , as follows:
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Definition 3.1. Let S ⊂ {1, . . . , d} be a feature subset and let fπ
S be the model that only observes

features in S while the other are perturbed using a predefined strategy π, then the predictive power
vπf (S) for a model f and a loss function L : Y × Y → R+ is defined as:

vπf (S) = E[L(fπ
∅ (X), Y )]− E[L(fπ

S (X), Y )]

Note, that the predictive power captures the performance increase resulting from observing features
in S compared to a baseline prediction where all features are perturbed using π. In classification,
models are typically optimized for the cross-entropy loss LCE(f(x), y) = − log(f(x)y). We show
that in this case the predictive power can be decomposed as follows:
Theorem 3.2. Let LCE be the cross-entropy loss, DKL(·, ·) be the KL-Divergence between two
distributions, and let I(·, ·) denote the mutual information between random variables. Then we have:

vπf (S) = DKL(PY ∥fπ
∅ (X))︸ ︷︷ ︸

Perturbation Baseline Bias

+ I(fπ
S (X), Y )︸ ︷︷ ︸

Information in fπ
S about Y

− CEKL(f
π
S )︸ ︷︷ ︸

Calibration Error of fπ
S

This theorem is in line with existing decomposition results [7, 36, 24] that hold for a general class of
performance measures related to proper scoring rules [21], including LCE. It further allows for an
intuitive interpretation of what drives the predictive power when evaluated with a specific perturbation
and reveals a fundamental relationship with calibration. The first term can be interpreted as bias
due to the perturbation strategy, implying that an optimal uninformative baseline prediction should
yield PY . The second term is the mutual information between the target Y and the model that only
observes features in S. This corresponds to the reduction in uncertainty about the target Y that
knowledge about fπ

S provides. The third term is the KL-Divergence-based calibration error of the
restricted model fπ

S when facing the perturbation π. The theorem implies that if the model to be
explained produces unreliable predictions under the perturbation used, then the resulting calibration
error directly undermines the predictive power. Moreover, Theorem 3.2 has the following immediate
consequence:
Corollary 3.3. If a model f is perfectly calibrated under all subset perturbations faced during the
explanation process, then we have:

vπf (S) = I(fπ
S (X), Y )

This implies that I(fπ
S (X), Y ) can be considered as an idealized predictive power that can only be

attained when the model always gives perfectly calibrated prediction under every perturbation faced.
Note this also directly extends a corresponding result in [12] showing that this relationship holds for
the naive Bayes classifier PY |X . It rather holds for any model that is perfectly calibrated under the
perturbations faced, which is also the case for PY |X . Moreover, explaining by directly approximating
similar mutual information objectives has also been proposed as a distinct way to enhance model
transparency [10, 56].

Effect on Local Explanations Local explanations enable the understanding of which features are
important for an individual prediction. As emphasized above, calibration is a group-level property so
evaluating it for a single sample is impossible. Nevertheless, we can still estimate how an overall
calibration error under the perturbations might propagate to an individual explanation result:
Theorem 3.4. Let ϕ(x) be a local explanation for input x with respect to model prediction f(x)
and perturbation π. Let ϕ∗(x) denote the explanation that would be obtained if the model f were
perfectly calibrated under all subset perturbations. Define the maximum calibration error across all
perturbation subsets as: CEmaxS

KL := maxS⊂[d] CEKL(f
π
S ) Then, with probability at least (1− δ),

the mean squared difference between the actual and ideal explanations is bounded by:
1

d
∥ϕ(x)− ϕ∗(x)∥22 ≤ 2CEmaxS

KL +
√

8 log(1/δ)

The theorem above shows that poor calibration under perturbations can at worst also directly distort
the outcomes of a local explanation result ϕ(x) 1. Importantly, it demonstrates that in order to improve

1Note that the particular bound presented in Theorem 3.4 holds specifically for perturbation-based methods
with a bounded linear summary strategy which is satisfies by many popular choices such as Shapley Values and
LIME. In Appendix A we provide a more general version of this theorem that equivalently holds for non-linear
aggregation approaches.
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explanation quality through uncertainty calibration, it is insufficient to only reduce the calibration
error on unperturbed samples, as proposed by [55]. Instead, reliable explanations explicitly require
models to be well-calibrated under all subset perturbations π(·, S) used during the explanation
process. In the next section, we propose an actionable technique, called ReCalX, to achieve this goal.

4 Improving Explanations with Perturbation-specific Recalibration

Recalibration techniques aim to improve the reliability of the probability estimates for an already
trained model in a post-hoc manner. While a variety of different algorithmic approaches exist for
this purpose [57], none of them is explicitly designed to enhance explanations. In this section, we
introduce ReCalX as a novel and practical approach to recalibrate models to achieve both more
reliable confidences and better perturbation-based explanations simultaneously.

Information-preserving Calibration Recalibration methods typically transform the model’s origi-
nal outputs to better align predicted probabilities with empirical frequencies [57]. However, arbitrarily
postprocessing predictions might distort the underlying model behavior, which we originally sought
to explain. Hence, we first introduce the concept of information-preserving recalibration:

Definition 4.1. Let f : X → [0, 1]K be a classifier and T : [0, 1]K × 2{1,...,d} → [0, 1]K be a
recalibration function that post-processes raw probabilities depending on the unperturbed feature
subset S. Then T is information-preserving if for all feature subsets S ⊆ {1, . . . , d}:

I(T (fπ
S (X), S), Y ) = I(fπ

S (X), Y )

Remember Corollary 3.3. implies that I(fπ
S (X), Y ) can be considered as idealized predictive power

of a subset S under perfect calibration. Thus, we want any calibration method to preserve this quantity
in order to attain explanations that are consistent with the original model we intended to explain. This
can, for instance, be achieved using calibration maps T of the following kind:

Proposition 4.2. Let T : [0, 1]K ×2{1,...,d} → [0, 1]K be a deterministic and componentwise strictly
monotonic function for every fixed S. Then T is information-preserving.

The proof of this proposition is provided in Appendix A along with further mathematical details. Note
that [68] has shown that such calibrators are also accuracy-preserving, meaning that they will not
affect the original model predictions as the ranking of outcomes remains unchanged. Moreover, many
existing techniques for post-hoc calibration satisfy this property [25, 37, 68, 52] and are therefore
also suitable to enhance perturbation-based explanation.

Recalibration for Explanations (ReCalX) Based on our theoretical analysis, an ideal recalibration
method for explanations should satisfy two key requirements: (1) it should be information-preserving
as defined in Definition 4.1, and (2) it should effectively reduce calibration error under all perturbations
faced during the explanation process. For the first requirement, we focus on calibration methods
that are componentwise strictly monotonic, and among these, temperature scaling has emerged as
the most widely adopted method due to its simplicity and empirical effectiveness [25, 44]. Given a
model f : X → [0, 1]K that outputs logits z(x) ∈ RK before the final softmax layer, temperature
scaling introduces a single scalar parameter T > 0 that additionally rescales the logits:

f(x;T )k :=
exp(zk(x)/T )∑K
j=1 exp(zj(x)/T )

The temperature parameter T is optimized on a held-out validation set, typically by minimizing the
cross-entropy loss LCE in the case of classification. To address the second requirement, we propose
to go beyond classical temperature scaling and introduce ReCalX as a generalized version. It aims to
reduce the calibration error under all perturbations faced during the explanation process by scaling
logits using an adaptive temperature that depends on the perturbation level implied by S. Formally,
for a subset S ⊆ {1, . . . , d}, we define the perturbation level λ(S) as the fraction of perturbed
features: λ(S) = (d− |S|)/d ∈ [0, 1]. To account for different perturbation intensities, we partition
[0, 1] into B equal-width bins and learn a specific temperature for each bin. Given a validation set
Dval = (xi, yi)

N
i=1, we optimize a temperature Tb for each bin by minimizing the cross-entropy loss

LCE on perturbed samples with corresponding perturbation levels. Note that in this way, we directly
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optimize the KL-Divergence-based calibration error, while the discriminative power and ranking of
predictions remain unaffected. This results in a set of temperature parameters that adapt to different
perturbation intensities, enabling better calibration across all explanation-relevant perturbations. A
more detailed description of the algorithm is presented in Appendix B.
During the explanation process, ReCalX infers the perturbation-level and applies the corresponding
temperature T (S) when making predictions:

fπ
ReCalX(x, S; {Tb}Bb=1)k =

exp(zk(π(x, S))/T (S))∑K
j=1 exp(zj(π(x, S))/T (S))

∀k = 1, . . . ,K

where T (S) selects the temperature from {Tb}Bb=1 based on the bin index b containing the pertur-
bation level of S. This adaptive temperature scaling ensures appropriate confidence calibration for
different perturbation intensities, ultimately aiming towards more reliable explanations by reducing
the maximum calibration error across all perturbation subsets CEmaxS

KL .

Applying ReCalX beyond Classification The algorithmic implementation of ReCalX presented
above relies on temperature scaling, which is specific to classification problems. However, both
our theoretical framework and the underlying principle of perturbation-specific recalibration extend
naturally to other predictive modeling tasks as well. For a regression setup, consider a model
f : X → P (Y ) that outputs a probability distribution over a continuous target space Y ⊆ R. Note
that all theoretical results developed in Section 3 hold equivalently when explaining probabilistic
regression outputs with perturbation-based methods. Also the notion of information-preserving
calibration (Definition 4.1) and the requirement for strictly monotonic transformations to preserve
the model’s learned information content extend directly to this setting. While temperature scaling
can be used for classification, alternative techniques such as affine transformations [50] or injective
variants of isotonic regression [68] satisfy the monotonicity property more generally. Therefore such
techniques are also applicable to perform appropriate calibration for regression models. In Appendix
C, we conducted corresponding experiments on two tabular regression datasets, which demonstrate
that ReCalX effectively reduces the quantile-based calibration error [35] under explainability-specific
perturbations for regression tasks as well.

5 Experiments

We conducted a comprehensive empirical evaluation of ReCalX considering neural classifiers on
different tabular datasets [23, 22] and various computer vision models on the ImageNet ILSVRC2012
dataset. Detailed descriptions of all experiments and further computational details are provided
in Appendix B, while additional results supporting each finding are presented in Appendix C.
Accompanying source code is available at https://github.com/thomdeck/recalx.

Analyzing Calibration under explainability-specific Perturbations We first investigate how the
calibration properties of neural classifiers are affected by common perturbations used in explanation
methods. To implement ReCalX, we selected 200 random validation samples from each considered
dataset and used 10 perturbed instances per considered perturbation level. This results in a calibration
set of 2000 samples per bin. We explicitly evaluated the KL-Divergence-based calibration error
using the consistent and asymptotically unbiased estimator proposed by [51] to be fully aligned
with our theoretical analysis above. Each error is derived based on at least 5000 unseen samples
from each dataset. Tables 1 and 2 present corresponding calibration errors for tabular and image
models under different perturbation strategies. For tabular data (Table 1), we evaluate a standard
Multi-Layer-Perception (MLP) as well as a tabular ResNet model [22] across four datasets using
mean value replacement as perturbation. For image data (Table 2), we assess diverse architectures
represented by a ResNet50 [27], a DenseNet121 [30], a ViT [16] and SigLIP [67] zero-shot model
using both zero baseline and blur as perturbations. The results reveal substantial miscalibration
across all models when subjected to explanation-specific perturbations. For tabular data, uncalibrated
models exhibit maximum KL-divergence calibration errors (CEMAXS

KL ) ranging from 0.012 to 0.863,
while image models show errors between 0.037 and 0.418. Standard temperature scaling, which only
calibrates using a static temperature on unperturbed samples, often fails to address this issue and can
even worsen calibration under perturbations (e.g., increasing the maximum error from 0.262 to 0.306
for ViT). On the other hand our adaptive ReCalX approach consistently improves calibration with
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substantial reductions in the average and maximum encountered error. In Appendix C, we present
complementary results on other datasets confirming the efficacy of ReCalX.

Uncalibrated Temperature Scaling ReCalX

Dataset CEAVGS
KL CEMAXS

KL CEAVGS
KL CEMAXS

KL CEAVGS
KL CEMAXS

KL ↓MAX (%)

MLP Model
Electricity 0.0423 0.1534 0.0452 0.1664 0.0097 0.0163 89.4%
Covertype 0.0412 0.0797 0.0564 0.1115 0.0047 0.0061 92.3%
Credit 0.2127 0.4763 0.2638 0.5961 0.0355 0.0533 88.8%
Pol 0.1740 0.6735 0.1689 0.6521 0.0570 0.1679 75.1%

ResNet Model
Electricity 0.0032 0.0118 0.0090 0.0355 0.0017 0.0049 58.5%
Covertype 0.0439 0.0963 0.0614 0.1413 0.0058 0.0080 91.7%
Credit 0.0721 0.0830 0.0778 0.0847 0.0366 0.0773 6.9%
Pol 0.2853 0.8633 0.3187 1.0173 0.0727 0.0910 89.5%

Table 1: Calibration error comparison across datasets for MLP and ResNet models using mean value
replacement perturbation. CEAVGS

KL and CEMAXS
KL represent average and maximum KL divergence-

based calibration errors, across perturbation levels. Lower values indicate better calibration. The
improvement column (↓MAX) shows the relative reduction in maximum calibration error achieved
by ReCalX compared to uncalibrated models. ReCalX consistently outperforms both uncalibrated
models and Temperature Scaling across all settings, with improvements ranging from 6.9% to 92.3%.

Uncalibrated Temperature Scaling ReCalX

Model CEAVGS
KL CEMAXS

KL CEAVGS
KL CEMAXS

KL CEAVGS
KL CEMAXS

KL ↓MAX (%)

Zero Baseline Perturbation
ResNet50 0.2240 0.4177 0.0595 0.1810 0.0092 0.0128 96.9%
DenseNet121 0.1626 0.3769 0.0965 0.2640 0.0060 0.0098 97.4%
ViT 0.0936 0.2618 0.1172 0.3057 0.0045 0.0078 97.0%
SigLIP 0.0721 0.2013 0.0449 0.1476 0.0130 0.0300 85.1%

Blur Perturbation
ResNet50 0.2467 0.4158 0.0618 0.1659 0.0127 0.0139 96.7%
DenseNet121 0.0351 0.0714 0.0113 0.0259 0.0057 0.0092 87.1%
ViT 0.0137 0.0365 0.0224 0.0559 0.0041 0.0072 80.3%
SigLIP 0.0256 0.0547 0.0104 0.0246 0.0055 0.0098 82.1%

Table 2: Calibration error comparison across models and perturbation types. CEAVGS
KL and CEMAXS

KL
represent average and maximum KL divergence-based calibration errors, across perturbation levels.
Lower values indicate better calibration. The improvement column (↓MAX) shows the relative reduction
in maximum calibration error achieved by ReCalX compared to uncalibrated models. ReCalX
consistently outperforms both uncalibrated scores and basic Temperature Scaling across all settings,
yielding substantial improvements with relative maximum calibration error reductions of > 80%.

To further validate the robustness and generality of ReCalX, we conducted several additional sensitiv-
ity and ablation experiments detailed in Appendix C. In summary, the results confirm that ReCalX
remains highly effective even for advanced domain-specific perturbation methods and show that
miscalibration patterns can exhibit strong correlations across different perturbation types. Further-
more, ReCalX achieves most of the potential calibration improvements with only a few hundred
validation samples, and using a higher number of perturbation level bins B typically yields monotonic
improvements with diminishing returns beyond 10 bins.

To better understand the relationship between miscalibration and the number of perturbed features
during the explanation process, we present calibration errors as a function of the perturbation level.
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Figure 2 visualizes the normalized calibration error across 10 different tabular datasets. For both
models, miscalibration tends to increase uniformly with higher perturbation levels. Figure 3 confirms
the high variability of calibration properties across perturbation strengths, while also indicating
that errors do not always grow. The ResNet50, for instance, exhibits worse miscalibration at lower
perturbation levels, and we provide additional examples in Appendix C. These diverse miscalibration
patterns across models and perturbation strengths highlight the need for adaptive recalibration
strategies like ReCalX, which consistently reduces maximum calibration errors across all settings,
significantly outperforming standard temperature scaling. Next, we want to validate whether these
improvements also translate to better perturbation-based explanation results.

Figure 2: Normalized calibration errors aggregated across 10 tabular datasets for an MLP (left) and a
ResNet model (right), including 95% confidence intervals. For both models, the miscalibration under
the mean replacement perturbation tends to increase uniformly with higher perturbation levels.

Figure 3: Calibration error results for popular image classifiers on ImageNet under fixed baseline
perturbation with zeros. Across all methods, miscalibration varies significantly across the perturbation
severity. While also for most image models the error tends to grow with perturbation level, for a
ResNet50, miscalibration is worst for lower levels. This flexible behavior highlights the importance
of calibration strategies that are adaptive to the perturbation strength.

Global Remove and Retrain Fidelity As a first experiment, we evaluated whether ReCalX
improves the ability to identify truly important features that a model relies on. This global fidelity can
be assessed through remove-and-retrain experiments [29, 12], where features are sequentially removed
according to their importance ranking, and the model is retrained to measure the actual performance
degradation caused. Higher performance drops indicate more accurate identification of genuinely
important features. Figure 4 shows corresponding results across several tabular datasets for a Multi-
Layer Perceptron (MLP) and a tabular ResNet architecture [22]. For both models, we used Shapley
Values [42] with feature mean replacement as a perturbation and derived global importances as an
average over 1000 samples. As suggested by [29], we performed retraining over 3 different random
seeds and report the average loss increases across all runs per dataset. ReCalX consistently leads
to importance rankings that, when used to drop features, cause a steeper loss surge compared to the
original model’s explanations. This aligns with our theoretical analysis in Section 3, which established
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Figure 4: Retraining results on four tabular datasets for an MLP (top row) and a ResNet (bottom
row) when the features are removed based on their global importance estimated via Shapley Values.
Whenever calibrated explanations imply a different importance ranking (green area), the resulting
performance loss is consistently higher compared to the uncalibrated importance indications. Hence,
ReCalX enables better identification of truly relevant features that are crucial for good performance.

that calibration errors directly undermine the predictive power assessment of feature subsets. By
reducing perturbation-specific calibration errors, ReCalX enables more accurate estimation of mutual
information between feature subsets and the target variable, resulting in importance rankings that
better reflect the true contribution of features to model performance. For instance, on the electricity
dataset, removing the top three features ranked by ReCalX-enhanced explanations increased the
original loss by 33%, compared to only 24% when using the original model’s explanations. In
Appendix C, we provide similar results on six additional datasets as well as for global importances
obtained via LIME [53], all confirming the effectiveness of ReCalX in this regard.

Explanation Robustness Perturbation-based techniques can lack stability when subjected to minor
input variations, resulting in unreasonably different explanation results for seemingly equivalent
predictions [1, 38, 3]. Sensitivity metrics [64, 5, 28] are a popular way to quantify explanation
robustness by measuring how explanations change under tiny input modifications. In Table 3 we
present Average and Max Sensitivity results across multiple image classifiers and explanation methods,
each evaluated using 200 random samples from the ImageNet validation set. ReCalX substantially
improves both metrics for all analyzed models, explanation methods, and both considered perturbation
types. This indicates that proper recalibration also promotes explanation robustness, tracing one
potential source of instabilities back to miscalibration effects.

Visualizing the Effect of ReCalX on Explanations Finally, we show how ReCalX can impact
explantion results on a qualitative level. In Figure 5 we display four representative examples where
the calibrated explanation deviated substantially from the original one for an image classifier. All
explanations have been computed based on Shapley Values with zero replacement on a DenseNet121
model (top row) and a SigLIP zero-shot model (bottom row) respectively. The examples demonstrate
that after calibration with RecalX, the indicated feature importances are more concentrated around
the actual object of interest, which typically contains the discriminative information with respect to
its target label. Moreover, the calibrated ones also appear less noisy in general, which may contribute
to higher explanation robustness in line with the experimental results reported above.
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Zero Baseline Perturbation Blur Perturbation
LIME Kernel SHAP Feature Ablation LIME Kernel SHAP Feature Ablation

Model Uncal. ReCalX Uncal. ReCalX Uncal. ReCalX Uncal. ReCalX Uncal. ReCalX Uncal. ReCalX

Average Sensitivity (SAVG ↓)
ResNet50 1.349 1.190 1.434 1.364 0.965 0.825 1.321 1.202 1.403 1.335 0.965 0.845
DenseNet121 1.174 0.952 1.465 1.125 0.716 0.602 1.224 1.118 1.500 1.425 0.602 0.556
ViT 1.498 1.155 1.399 1.279 1.041 0.880 1.399 1.224 1.631 1.571 0.905 0.785
SigLIP 1.215 0.963 1.434 1.222 1.140 0.922 1.518 1.349 1.714 1.659 1.140 1.015
Maximum Sensitivity (SMAX ↓)
ResNet50 1.914 1.595 2.873 2.143 1.247 1.025 2.010 1.658 2.507 2.035 1.247 1.061
DenseNet121 1.649 1.101 2.649 1.535 0.777 0.776 1.760 1.525 2.779 2.404 0.777 0.701
ViT 2.339 1.571 2.309 2.028 1.467 1.126 2.076 1.746 2.998 2.796 1.246 1.032
SigLIP 1.737 1.093 2.729 1.787 1.606 1.033 2.327 1.921 3.493 2.897 1.606 1.379

Table 3: Average (SAVG) and Maximum (SMAX) sensitivity results for different perturbation-based
explanation methods across diverse image classifiers on ImageNet. Results are shown for both
zero baseline and blur perturbation techniques. Lower values indicate better robustness. ReCalX
consistently improves robustness compared to uncalibrated (Uncal.) explanations in all cases.

Figure 5: Qualitative comparison of Shapley Value explanations before and after ReCalX calibration
for a DenseNet121 (top row) and a SigLIP zero-shot model (bottom row). The calibrated explanations
exhibit stronger focus on discriminative object regions and reduced noise, demonstrating how
miscalibration correction leads to more informative and robust feature attributions.

6 Discussion and Conclusion

In this work, we established a fundamental connection between uncertainty calibration and the relia-
bility of perturbation-based explanations. Our theoretical analysis reveals that poor calibration under
feature perturbations directly impacts explanation quality, leading to potentially misleading interpreta-
tions. To address this, we introduced ReCalX, a novel recalibration approach that specifically targets
explanation-relevant miscalibration. Our empirical results demonstrate that ReCalX substantially
reduces calibration error across different perturbation levels and consistently improves explanation
quality, as measured by robustness and retraining fidelity. Although our approach is tailored particu-
larly for perturbation-based methods, the underlying principles may also have implications for other
explanation families, such as gradient-based [2] or counterfactual [62] methods, pointing towards
potential directions for future work. While ReCalX requires additional computational efforts to be
properly set up, including access to validation samples, it only introduces a minor extra load during
inference arising from adaptive temperature selection when deriving explanations. However, this
overhead is typically in the order of milliseconds (see Appendix D for corresponding experiments),
and we believe that this is well justified to not only obtain more reliable predictions but also better
explanations via uncertainty calibration.
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to make their results reproducible or verifiable.
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes] .

Justification: Code will be openly released after potential acceptance, and we provide
detailed experimental descriptions in Appendix B.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: We documented experimental details in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: We provide confidence intervals when appropriate.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
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Answer: [Yes] .
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• The answer NA means that the paper does not include experiments.
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or cloud provider, including relevant memory and storage.
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experimental runs as well as estimate the total compute.
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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• The answer NA means that there is no societal impact of the work performed.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: Our work does not poses any risks that need safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: We provide a detailed biography citing every utilized source properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: No new assets are releasd.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: No human subjects are involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: No human subjects are involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: No core methods utilize LLMs
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background and Related Work
	Understanding the Effect of Uncertainty Calibration on Explanations
	Improving Explanations with Perturbation-specific Recalibration
	Experiments
	Discussion and Conclusion

