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Abstract

Existing adversarial learning methods assume the availability of a large amount of
data from which we can generate adversarial examples. However, in an adversarial
meta-learning setting, the model need to learn transferable robust representations
for unseen domains with only a few adversarial examples, which is a very difficult
goal to achieve even with a large amount of data. To tackle such a challenge, we
propose a novel adversarial self-supervised meta-learning framework with bilevel
attacks which aims to learn robust representations that can generalize across tasks
and domains. Specifically, in the inner loop, we update the parameters of the given
encoder by taking inner gradient steps using two different sets of augmented sam-
ples, and generate adversarial examples for each view by maximizing the instance
classification loss. Then, in the outer loop, we meta-learn the encoder parameter
to maximize the agreement between the two adversarial examples, which enables
it to learn robust representations. We experimentally validate the effectiveness of
our approach on unseen domain adaptation tasks, on which it achieves impressive
performance. Specifically, our method significantly outperforms the state-of-the-art
meta-adversarial learning methods on few-shot learning tasks, as well as self-
supervised learning baselines in standard learning settings with large-scale datasets.

1 Introduction
Deep neural networks (DNNs) are known to be vulnerable to imperceptible small perturbations
in the input data instances [34]. To overcome such adversarial vulnerability of DNNs, the vast of
previous studies [40, 2, 23, 37, 29] have been proposed to enhance the robustness of the trained
deep network models by defending against the adversarial attacks. Despite of the recent progress in
adversarial supervised learning, training on a large number of samples is essential to achieve better
robustness [3, 29, 11]. Recently, Carmon et al. [3] employs larger dataset (i.e., TinyImageNet [20])
with pseudo labels, Gowal et al. [11] utilizes generative model to generate additional samples from
the dataset, and Rebuffi et al. [29] leverages augmentation functions to obtain more data samples.

On the other hand, since meta-learning framework [17, 33, 32, 7, 24] employs scarce data and
has to adapt quickly to new tasks, it is difficult to obtain robustness with conventional adversarial
training methods which require a large amount of data [8]. Adversarial Querying (AQ) [8] proposed
an adversarially robust meta-learning scheme that meta-learns with adversarial perturbed query
examples. Similarly, Wang et al. [36] studies how to enhance the robustness of a meta-learning
framework with the adversarial regularizer in the inner adaption or outer optimization. However,
since existing adversarial meta-learning approaches [38, 8, 36] mostly focus on the rapid adaptation
to new tasks, while mostly reusing the features with little modification at the task adaptation step [25],
the representations themselves may not be effectively meta-learned to be robust across tasks, thus
they show poor robustness on unseen domains (see Table 1).

∗Equal contribution. Author ordering determined by coin flip.
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(c) Meta optimization
Figure 1: Overview of TROBA. (a) TROBA adapts the encoder to differently augmented sets of the support
sets (blue, purple line). Then, it meta learns (black line) with both adversarial loss (red) and self-supervised loss
(yellow). (b) During the inner adaptation, TROBA adapts encoders with the differently augmented support sets.
(c) To generate adversarial examples for meta-learning, we propose a bilevel attack with the instance-wise attack
that maximizes the difference between differently augmented query images, for the task-shared encoder f . Then,
we train the framework to have an adversarially consistent prediction across multiple views with self-supervised
loss while learning the encoder to generalize across tasks, which enables it to learn robust representations that
are transferable to unseen tasks and domains.

To tackle such challenges, we propose a novel and effective adversarial meta-learning framework
which can generalize to unseen domains, Transferable RObust meta-learning via Bilevel Attack
(TROBA). TROBA utilizes a bilevel attack scheme to meta-learn robust representations that can
generalize across tasks and domains, motivated by self-supervised learning (Figure 1). Specifically,
we redesign the instance-wise attack proposed in Kim et al. [16], Jiang et al. [15] which maximizes
the instance classification loss, by adapting the shared encoder to two sets of differently augmented
samples of the same instance with inner gradient update steps and then attacking them (dynamic
instance-wise attack). Then, our framework learns to maximize the similarity between the feature
embeddings of those two attacked samples, while meta-learning the shared encoder by BOIL [25],
which allows it to learn robust representations for any given set of augmented samples. Since the
robustness is achieved at the representation level, our framework can generalize to unseen tasks and
domains. The experimental results from multiple benchmark datasets show that our model is robust
on few-shot learning tasks from unseen domains (Table 1) thanks to its ability to learn generalizable
robust representations. Moreover, our model even obtains comparable robust transferability to the
self-supervised pre-trained models while using fewer data instances (Table 2).

2 Related Work
Adversarial Training. Many existing works aim to enhance the robustness of a model trained with
supervised learning with labeled data, by utilizing adversarial examples [9, 2, 27]. The most popular
approach is Adversarial Training from Madry et al. [22], which utilizes project gradient descent
(PGD) to maximize the loss in the inner-maximization loops while minimizing the overall loss on
adversarial samples generated by the PGD attack. Zhang et al. [40] introduces regularized Kullback-
Leibler divergence (KLD) loss that helps to enhance the robustness by enforcing the consistency in
the predictive distribution between the clean and adversarial examples.

Adversarial Meta-Learning. The most popular work in meta-learning is Model Agnostic Meta-
Learning (MAML) [7] which uses a bilevel optimization scheme. Further, Oh et al. [25] propose
BOIL, which meta-learns the feature extractor while keeping the final classifier fixed, and show
that it has better generalization over cross-domain adaption tasks compared to MAML. Although
meta-learning contributes to learning useful generalizable knowledge with scarce data, existing
meta-learning approaches are prone to adversarial perturbations. To tackle this problem, Yin et al.
[38] attempt to combine adversarial training (AT) [22] with MAML [7] by using both clean and
adversarial examples. However, Goldblum et al. [8] later point out that ADML [38] may not obtain
good robustness to strong attack since it uses relatively weak attacks during training. Then, they
propose an Adversarial Querying (AQ), which trains with adversarial examples only from the query
set. Similarly, Wang et al. [36] suggest Robust-regularized meta-learner on top of the MAML
(RMAML), where adversarial attacks are conducted only in the meta-optimization phase. However,
previous works [8, 36] are still vulnerable to adversarial attacks on unseen domains since they reuse
the representations with little updates during inner optimization, which is demonstrated as inefficient
to achieve generalization across domains [25]. To tackle such a limitation, we propose a robust
self-supervised meta-learning framework via bilevel attacks which meta-learns the representation
layers to generalize across any adversarial learning tasks that are generated from randomly sampled
instances.
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3 Transferable Robust Meta-learning via Bilevel Attacks
Bi-level parameter augmentation in adversarial meta-learning. Motivated by the self-supervised
learning [4, 13, 12] which learn good quality of the visual representations from image augmentation,
we propose a bilevel parameter augmentation to have transferable robustness in meta-learning. Bilevel
parameter augmentation enables the model to adapt the view-specific projected latent space to set
of augmented samples of the given instance. Specifically, to generate augmented parameters of the
encoder, we first generate multiple views of images for both support set and query set of each task
with a stochastic data augmentation function t that is randomly selected from the augmentation set
T [39]. Then, we generate multiple views of the shared parameters (θτ1 and θτ2 ) which are adapted
parameters of encoder with differently transformed support sets (Sτ = {t1(xs), t2(x

s), ys}) as
shown in Figure 1. Overall, we introduce parameter-level augmentation along with image-level
augmentation to form a different view of single instances in the meta-learning framework, which we
refer to as bilevel parameter augmentation.
Bilevel attack with dynamic instance-wise attack. On top of bilevel parameter augmentation,
we propose a bilevel attack with a dynamic instance-wise attack to obtain generalized robustness in
few-shot tasks. Specifically, we apply an instance-wise attack [16] on our meta-learning framework,
by generating adversaries that maximize the difference between the representations of the augmented
samples of the same instance obtained by the encoder whose parameters are adapted to each view, as
follows:

δt+1
1 = ΠB(xq,xq+ϵ)

(
δt1 + αsign

(
∇δt1
Lsimilarity

(
fθτ

1
(t1(x

q) + δt1), fθτ
1
(t2(x

q))
)))
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,
(1)

where δ1, δ2 are generated perturbations to maximize the difference between features from each
bilevel augmented encoder f(θτ1 ) and f(θτ2 ) respectively. The maximized loss Lsimilarity is the
instance-wise classification loss used in adversarial self-supervised learning [16]. We use the differ-
ently transformed query counterpart sets as a target for dynamic instance-wise attack and calculate
perturbations with the parameter of the augmented encoder.
Adversarial meta-learning with bilevel attack. We now present a framework to learn transferable
robust representations via bilevel attack for unseen domains. The gradient (g) is calculated to
minimize our proposed objective as follows:

g = ∇θτ
1 ,θ

τ
2 ,µ
LOur(hµ, fθτ

1
, fθτ

2
, t1(x

q), t1(x
q)adv, t2(x

q), t2(x
q)adv, yq), (2)

where LOur is the meta-objective loss to obtain generalized robustness, hµ is a meta-initialized
classifier, and fθ1 and fθ2 are bilevel augmented encoder for each view. Further, the LOur consists of
adversarial loss, i.e., TRADES [40] loss, and self-supervised loss as follow,

LOur =
2∑

n=1

[
LCE(ln, yq) + LKL(ladvn , ln)

]
+ Lself-sup(zadv1 , zadv2 ), (3)

where zn = fθτ
n
(tn(x

q)) and ln = hµ(zn) are a feature and a logit of each multi-view instance ,
LCE is a cross-entropy loss, LKL is a KL-divergence loss, and Lself-sup is a cosine similarity loss
between two differently augmented features. The crucial component here is the self-supervised loss
which regularizes our model to have robust consistency between the features from the two different
views, which helps it learn robust representations across any instances or augmentations, allowing it
to achieve transferable robustness.

4 Experiment
We meta-train our approach on ResNet12 with 5-way 5-shot images in CIFAR-FS based on BOIL [25]
and [21]. We take a single step in both meta-training and meta-testing. We adversarially train our
model with ℓ∞ PGD attacks with the epsilon of 8/255, alpha of 2/255 in 7 steps. We evaluate the
robustness against ℓ∞ PGD attacks with the epsilon of 8/255 and 20 iterations.

4.1 Results of Adversarial Robustness in Unseen Domain Few-shot Tasks

Since our main goal is to achieve transferable robustness in unseen domains, we mainly validate
our methods on unseen domain few-shot tasks. We meta-train our model on CIFAR-FS and meta-
test on the benchmark datasets with different domains such as Mini-ImageNet, Tiered-ImageNet,
CUB, Flowers, and Cars. As shown in Table 1, previous adversarial meta-learning methods
have difficulty in achieving robustness on unseen domains. However, TROBA is able to show
impressive transferable robustness in this cross-domain task. It also obtains significantly better

3



Table 1: Results of transferable robustness in 5-shot unseen domain tasks that are trained on CIFAR-FS. Rob.
stands for accuracy(%) that is calculated with PGD-20 attack (ϵ = 8./255., step size=ϵ/10). Clean stands for
test accuracy(%) of clean images. All models are trained with PGD-7 attacks on ResNet12.

CIFAR-FS→ Mini-ImageNet Tiered-ImageNet CUB Flowers Cars

Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob.

MAML [7] 44.85 6.21 61.19 2.48 48.41 3.46 67.76 5.73 43.94 5.31
ADML [38] 28.66 6.53 40.06 11.36 31.18 5.21 39.36 11.26 27.43 3.18
AQ [8] 33.09 3.32 37.41 5.05 38.37 4.10 60.14 11.03 36.83 4.47
RMAML [36] 28.05 6.65 29.54 9.30 30.24 5.67 42.91 10.79 31.72 5.56
Ours 45.82 24.12 51.46 30.06 48.56 25.23 66.49 42.16 38.29 19.43

Table 2: Experiments results in robust full-finetuning of TROBA and the state-of-the-art adversarial self-
supervised learning (SSL) models. While TROBA is trained on CIFAR-FS, other models are trained on the
CIFAR-100. TROBA is pre-trained with bilevel attacks with 3 steps due to computational overhead, others are
pre-traiend with PGD-7 attacks. All models are trained on ResNet18. AA stands for robust accuracy against
AutoAttack [6].

CIFAR-10 STL-10 CIFAR-100

Method Clean PGD-20 AA Clean PGD-20 AA Clean PGD-20 AA

SS
L

RoCL [16] 76.76 50.72 45.52 60.44 31.90 27.38 51.91 27.77 22.79
ACL [15] 75.99 50.35 45.50 63.46 30.24 25.73 51.91 27.77 22.79
BYORL [10] 76.39 50.51 45.37 62.85 28.15 24.23 52.37 28.09 23.11
Ours (3 steps) 74.26 49.38 44.31 53.46 32.65 28.96 50.23 27.05 21.96

(a) AQ (b) Ours
Figure 2: Loss surface of un-
seen domain (Mini-ImageNet)

clean accuracy over the adversarial meta-learning baselines, while ob-
taining competitive clean accuracy to MAML. In particular, TROBA
shows better robustness compared to baselines even though the dis-
tribution of the unseen domain is highly different from the distribu-
tions of the meta-trained dataset (i.e., CUB, Flowers, Cars). Further,
TROBA has smoother loss surface to adversarial examples compared
to the baseline, which is why TROBA could demonstrate better ro-
bustness in unseen domain (Figure 2).

4.2 Transferable Robustness in Different Domains
To demonstrate the power of our adversarially transferable meta-trained model, we further evaluate
our model on a standard transfer learning scenario that employs full data to fully train the encoder
with the linear layer on top of it. Specifically, we want to evaluate the generalizable robustness of
the representations learned by our encoder against a self-supervised learning model trained with a
large amount of data. We evaluate our model on the seen domain, CIFAR-100, as well as on two
unseen domains, which are CIFAR-10 and STL-10 respectively. As shown in Table 2, our model
shows comparable clean accuracy and robustness in the unseen domains despite the difference in
the amount of data used to train the model. Our model is pre-trained with scarce data, and we have
even reduced the number of the steps for the bilevel attack to 3 steps to reduce the computational
cost, but obtains competitive performance to the model trained with larger data. The experimental
results suggest that we may use our method as a means of pretraining the representations to ensure
robustness for a variety of applications, when the training data is scarce.

5 Conclusion
We proposed a novel adversarial self-supervised meta-learning framework that can learn transferable
robust representations using only a few data via bilevel attack, which introduces a novel bilevel
parameter augmentation along with dynamic instance-wise attack. Specifically, the bilevel attack
leverages self-supervised learning to effectively generate robust representation of multi-views with
differently augmented encoder, which allows learning non-linear transformation task-adaption that
brings good robust generalization power. While previous adversarial meta-learning methods are
extremely vulnerable to unseen domains, our model learned generalized robust representations
which can demonstrate impressive transferable robustness on few-shot tasks in unseen domains.
Moreover, we validate our models on larger data in unseen domains which shows comparable robust
representations with self-supervised learning (SSL) model with much fewer data. We hope that our
work inspires adversarial meta-learning to obtain a good robust representations only using a few data.
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Supplementary Material
Few-Shot Transferable Robust Representation Learning via

Bilevel Attacks

A Related works

A.1 Adversarial learning

The vulnerability of deep neural network (DNN) to imperceptible small perturbation on the input
is a well-known problem as observed in previous works [1, 14, 34]. To overcome the adversarial
vulnerability, many attack-based approaches for constructing perturbed examples [9, 2, 27] have
appeared. On the other hand, Madry et al. [22] proposes a defense-based approach against adversarial
examples. Madry et al. [22] utilizes a project gradient descent (PGD) in the perspective of robust
optimization, which maximizes the loss in the inner-maximization loops while minimizing the overall
loss on tasks in outer-minimization loops, the so-called min-max formulation. Zhang et al. [40]
theoretically shows the trade-off between clean accuracy and robustness in adversarial training.
To improve both clean and robust accuracy, TRADES [40] introduces regularized surrogate loss.
Especially, the Kullback-Leibler divergence (KLD) in TRADES [40] helps to enhance the robustness
by enforcing consistency between representations of clean and adversarial examples. Afterward,
significant advances in adversarial robustness have emerged. Kim et al. [16], Jiang et al. [15] proposes
a self-supervised adversarial learning mechanism coined with contrastive learning to obtain a robust
representation without explicit labels. Since a larger dataset is essential to have better adversarial
robustness, Shafahi et al. [31] leverages transfer learning to transfer learned robust representations
into new target domains with only a few data. Goldblum et al. [8] proposes robust supervised
meta-learners with adversarial query images in few-shot classification tasks. However, previous
works still have difficulty in obtaining generalized robustness on multiple datasets.

A.2 Self-supervised learning

Conventional adversarial learning mechanisms in a supervised manner require the label information
which needs expensive human labeling annotations. Self-supervised learning makes the neural
networks possible to learn comparable representations to supervised representations, even it does not
leverage labels [12]. Many previous works focus on learning consistent representations to different
distortions in the input [17, 4, 13, 35]. To learn the distortion-invariant representations, they enforce
consistency between representations of two differently augmented inputs with the same instance-
level identity. Especially, Chen et al. [4] employs contrastive learning to maximize agreement only
between positive pairs in mini-batch while negative pairs are handled as the opposite. In advance,
other works introduce asymmetry into network architecture or parameter update [5, 12] to improve
performance. However, the existence of trivial solutions derived from asymmetry leaves room to
improve. Zbontar et al. [39] achieves comparable performance by introducing redundancy reduction
terms in the training objectives, even it does not require additional asymmetric networks or large
batches.

A.3 Self-supervised adversarial learning

Utilizing the advantages of self-supervised learning, adversarial training mechanisms in a self-
supervised manner have emerged to learn robust representations without relying on label information.
Recent works leverage contrastive learning to obtain robust representation in a self-supervised
manner [16, 15]. Kim et al. [16] first devises the instance-wise adversarial perturbation, which does
not require explicit labels during the attack, and utilizes those perturbed examples in maximizing
contrastive loss. Jiang et al. [15] introduces a dual stream with optimizing two contrastive losses
against four augmented views, which are computed between clean views and adversarial images,
respectively. However, these approaches highly rely on large batch sizes to effectively create positive
and negative samples for the contrastive learning framework. Gowal et al. [10] injects adversarial
examples on top of the BYOL framework [12] to achieve robustness to avoid the restrictions on large
batch sizes. Although existing restrictions on large batch sizes or image augmentation have been
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relieved during extensive development in self-supervised adversarial training, obtaining robustness
with scarce data is still difficult, even in a supervised manner.

B Preliminaries

Model-Agnostic Meta-Learning. Let us denote the encoder as fθ and classifier as hµ. Since
meta-learning aims to learn to learn the new tasks, it needs to train on a large number of tasks τ
sampled from a task distribution p(τ), where a given task consists of the support set Sτ and the
query set Qτ ∈ D. Each set contains a n-way k-shot classification task, that classify n classes with
k images, i.e., n× k instances. The most popular framework for meta-learning is model-agnostic
meta-learning (MAML) [7], which meta-learns the model with a bilevel optimization scheme, with
inner optimization and outer meta-level optimization steps. During the inner optimization, we adapt
the shared initial parameter to each new task τ to obtain task-adaptive parameters θτ and µτ , by
taking a few gradient steps, as follows:

θτ , µτ = θ, µ− α∇θ,µLSτ
(hµ(fθ)), (4)

where Sτ is a support set of task τ , α is the step size and L is a task-specific loss to conduct
gradient step for inner updates (e.g. cross-entropy loss). There also exist different variants of the
MAML framework with respect to which parameters to update. ANIL [28] only meta-learns the final
linear layer while fixing the encoder (i.e., θτ = θ), for rapid adaptation to a new task while reusing
the features. On the other hand, BOIL [25] only meta-learns the encoder, thus the representation
layers, while keeping the final classifier fixed (i.e., µτ = µ). We employ BOIL [25] which only
updates the encoder because our focus is on learning generalizable robust representations. In the
meta-optimization phase, model parameters are updated with meta-objective via stochastic gradient
descent (SGD) as follows:

θ, µ← θ, µ− β∇θ,µ

∑
LQτ (hµτ (fθτ )), (5)

where Qτ is a query set of task τ , β is a meta step size and L is meta-objective. The meta-objective
is a summation of losses from the query set of all given tasks, where the losses depend on what aims
to be meta-learned. To reduce the computation overhead in MAML, we use Meta-SGD [21] which
learns the learning rate of parameters that enables to initialize and adapt any differentiable learner in
a single step.

Attacking a meta-learner. To obtain robustness on few-shot tasks, Adversarial Querying (AQ) [8]
proposes to generate attacks with only the query examples. The AQ employs the project gradient
descent attack (PGD [22]), which is a class-wise attack that maximizes the cross-entropy on a given
query image as follows,

δt+1 = ΠB(xq,xq+ϵ)

(
δt + γsign

(
∇δtLCE

(
hµτ (fθτ (x

q + δt)), yq))), (6)

where xq and yq is a query image and its label of task τ , respectively, B(xq, xq + ϵ) is the l∞
norm-ball around xq with radius ϵ, γ is step size of the attack, δ is perturbation and the cross entropy
loss (LCE) is calculated on the inner updated parameters (θτ , µτ ).

Robust training loss. Various adversarial training methods have been proposed to enhance the
model’s robustness to adversarial attacks (Appendix A.1). Among them, we adapt the TRADES [40]
loss to improve robustness. TRADES proposes to regularize the model’s outputs on the clean and
adversarial examples with Kullback-Leibler divergence (KLD) as follows:

LTRADES = LCE
(
hµτ (fθτ (xq)), yq

)
+ β max

δ∈B(xq,xq+ϵ)
LKL

(
hµτ (fθτ (xq))||hµτ (fθτ (xq + δ))

)
,

(7)
where LCE is cross-entropy loss on clean examples, LKL is KLD loss between clean and adversarial
logit to obtain robustness, and β is a regularizer to control the trade-off between clean accuracy
and robustness which normally set as 6.0. In our framework, we calculate the adversarial loss on
query sets (xq, yq), which are different instances used in inner adaptation, to meta-learn robust
representations in the meta-optimization phase.
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C Experimental details

C.1 Dataset

For meta-training, we use CIFAR-FS [19] and Mini-ImageNet [30]. CIFAR-FS and Mini-ImageNet
consist of 100 classes which are 64, 16, and 20 for meta-training, meta-validation, and meta-testing,
respectively. We validate our model on 6 benchmark few-shot datasets: CIFAR-FS [19], Mini-
ImageNet [30], Tiered-ImageNet [30], Cars, CUB and VGG-Flower, for few-shot classification and 3
additional benchmark standard image classification datasets: CIFAR-10, CIFAR-100, and STL-10,
for robust transferability. CIFAR-10 and CIFAR-100 consist of 50,000 training images and 10,000
test images with 10 and 100 classes, respectively. All images are used with 32×32×3 resolution
(width, height, and channel) for meta-training. Especially, we apply TorchMeta2 library to load the
few-shot datasets into our frameworks.

C.2 Meta-train

We meta-train ResNet12 and ResNet18 as the base encoder network on CIRAR-FS and Mini-
ImageNet. All models are meta-trained with tasks consist of 5-way 5-shot support set images and
5-way 15shot query set images, and meta-validated with only clean tasks consist of 5-way 1-shot
support set images and 5-way 15-shot query set images. Especially, we train the model with randomly
selected 200 tasks and validate the model with randomly selected 100 tasks. For optimization, we
meta-train our models with 300 epochs under SGD optimizer with weight decay 1e-4. For data
augmentation, we use random crop with 0.08 to 1.0 size, color jitter with probability 0.8, horizontal
flip with probability 0.5, grayscale with 0.2, gaussian blur with 0.0, and solarization probability with
0.0 to 0.2. We exclude normalization for adversarial training.

In the case of adversarial learning, we use our proposed bilevel attack with 3 steps and 7 steps. To
generate adversaries with query set images, we take the gradient step within l∞ norm ball with ϵ
= 8.0/255.0 and α = 2.0/255.0 to maximize the similarity with target instance. To obtain robust
representation, we utilize an adversarial loss and self-supervised loss which are TRADES [40] with a
regularization hyperparameter of 6.0 and cosine similarity loss, respectively.

Three different meta-learning frameworks are leveraged to train our model, which are MAML [7],
FOMAML [7] and Meta-SGD [21]. Specifically, we only update the encoder parameters in inner
optimization for all three meta-learning strategies. Detailed hyperparameters for meta-train and
meta-test will be described in Appendix C.3.

C.3 Hyperparameter details of each meta-learning frameworks

MAML. We take a single step for both inner optimization and outer optimization to meta-train
ResNet12 on CIFAR-FS and Mini-ImageNet. We use the same learning rate for both datasets, which
are 0.3 and 0.08 for outer optimization and inner optimization, respectively. For both dataset, we use
batch size 4.

FOMAML. To reduce the computational cost, we try to adapt FOMAML [7], which is the first-
order approximation of MAML [7]. For ResNet18, we use a single step in both inner optimization and
outer optimization, and use the learning rates 0.3 and 0.4 in outer optimization and inner optimization,
respectively. For ResNet12, we use 3 steps for inner optimization, and 1 step for outer optimization.
We use learning rate 0.3 and 0.2 for outer optimization and inner optimization, respectively. For both
dataset, we use batch size 4.

Meta-SGD. To learn quickly, we use the Meta-SGD [21] with the single step. We use a single
step in inner optimization and use the 0.005 inner learning rate. For outer loop, we use 0.005 outer
learning rate for CIFAR-FS. For Mini-ImageNet, we use a same step size as CIFAR-FS but with
different inner learning rate, 0.001, and outer optimization learning rate 0.001. For both dataset, we
use batch size 4.

2https://github.com/tristandeleu/pytorch-meta
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C.4 Meta-test

The trained models are evaluated with 400 randomly selected tasks from test set, where each task
consists of 5-way 5-shot support set images and 5-way 15-shot query set images. We use a single
step in both inner optimization and outer optimization. We especially use same learning rate and
meta step size as the model is meta-trained.

C.5 Adversarial evaluation

Few-shot robustness. We validate the robustness of our trained models against two types of attack,
which are PGD [22] and AutoAttack [6]. All l∞ PGD attacks are conducted with the norm ball
size ϵ = 8./255., step size α = 8./2550., and with 20 steps of inner maximization. AutoAttack3 is a
combination of 4 different types of attacks (i.e., APGD-CE, APGD-T, FAB-T, and Square). We use
the standard version of AutoAttack in the test time.

Self-supervised robust linear evaluation. To compare TROBA with self-supervised pre-trained
models, we apply robust full-finetuning. In robust full-finetuning, the parameters of the entire
network, including the feature extractor and the fc layer, are trained with adversarial examples. We
generate perturbed examples with l∞ PGD-10 attack with ϵ = 8./255. and step size α = 2./255.
in training. All adversarially full-finetuned models are evaluated against l∞ PGD-20 attack (ϵ =
8./255., α = 8./2550.) and AutoAttack [6]. Especially, in comparisons with self-supervised models,
we pre-train ResNet18 based on FOMAML [7], which is the first-order approximation of MAML [7],
and apply bilevel attacks with 3 steps to reduce the computational cost. Other self-supervised models
are pre-trained with PGD-7 attacks. For optimization, we fine-tune the pre-trained models for 110
epochs with batch size 128 under SGD optimizer with weight decay 5e-4, where Pang et al. [26]
demonstrated as optimal for robust full-finetuning on CIFAR datasets.

C.6 Comparison with self-supervised pre-trained models

We select baseline models with ACL [15]4, BYORL [10] and RoCL [16]5 for self-supervised pre-
trained baselines. We implement BYORL on top of the BYOL [12]6 framework, following description
in the paper.

D Implementation details of ablation studies

D.1 Ablation study of bilevel parameter augmentation

To demonstrate how bilevel parameter augmentation is more effective than image augmentation
in adversarial self-supervised meta-learning, we experiment in the same environment except for
parameter augmentation in inner adaptation. Specifically, we generate augmented parameters of
the encoder adapted with two differently transformed support set images simultaneously, while
TROBA augments parameters independently for each augmented view. A detailed algorithm for
applying bilevel parameter augmentation and image-only augmentation in adversarial self-supervised
meta-learning is described in Algorithm 1 and Algorithm 2, respectively. Experiment results are
reported in Appendix E.

D.2 Ablation study of bilevel attack

The bilevel attack is based on the instance-wise attack [16] which does not require label information
to generate adversaries, while the class-wise attack utilizes label to maximize the cross-entropy loss
in the inner maximization of Equation 6. The bilevel class-wise attack is applied with the bilevel
augmented parameters as done in the bilevel attack. We use l∞ PGD attack with strength 8./255.,
step size 2./255., and the same number of iterations with bilevel attacks in all comparisons in the
main paper.

3https://github.com/fra31/auto-attack
4https://github.com/VITA-Group/Adversarial-Contrastive-Learning
5https://github.com/Kim-Minseon/RoCLforself-supervisedlearning
6https://github.com/lucidrains/byol-pytorch
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Algorithm 1 Transferable robust meta learning via bilevel attack (TROBA)

Require: Dataset D, transformation function t ∼ T
Require: Encoder f , parameter of encoder θ, classifier h, parameter of classifier µ
Require: Adversary A(base, target, parameter)

while not done do
Sample tasks {τ}, Support set S(xs, ys), Query set Q(xq, yq)

for τ = 1, · · · , do
Transform input t1(xs), t2(x

s)
Fine-tune model with t1(x

s), ys and updates parameter θτ1
Fine-tune model with t2(x

s), ys and updates parameter θτ2
Generate adversarial examples
t1(x

q)adv = A(t1(xq), t2(x
q), θτ1 ), t2(x

q)adv = A(t2(xq), t1(x
q), θτ2 )

Compute gradient gτ =∇θτ
1 ,θ

τ
2
LOur(hµ, fθτ

1
, fθτ

2
, t1(x

q), t1(x
q)adv, t2(x

q), t2(x
q)adv, yq)

end for
Update model parameters
θ, µ← θ, µ− α

τ

∑
gτ

end while

Algorithm 2 Transferable robust meta learning via image-only augmentation

Require: Dataset D, transformation function t ∼ T
Require: Encoder f , parameter of encoder θ, classifier h, parameter of classifier µ
Require: Adversary A(base, target, parameter)

while not done do
Sample tasks {τ}, Support set S(xs, ys), Query set Q(xq, yq)

for τ = 1, · · · , do
Transform input t1(xs), t2(x

s)
Fine-tune model with t1(x

s), t2(x
s), ys and updates parameter θτ

Generate adversarial examples
t1(x

q)adv = A(t1(xq), t2(x
q), θτ ), t2(xq)adv = A(t2(xq), t1(x

q), θτ )
Compute gradient gτ = ∇θτLOur(hµ, fθτ , t1(x

q), t1(x
q)adv, t2(x

q), t2(x
q)adv, yq)

end for
Update model parameters
θ, µ← θ, µ− α

τ

∑
gτ

end while

E Results of ablation Studies

To examine each component of our proposed methods, we conduct the ablation study on augmentation,
loss, and attack. Through our ablation study, we verify the effectiveness of each component by their
robustness on unseen domains.

Bilevel parameter augmentation contributes to learn generalized features. As shown in Ta-
ble 3, image-only augmentation alone meaningfully contributes to learning generalized features
for unseen domains. However, when we apply parameter augmentation on top of the image aug-
mentation, the model achieves significantly better clean and robust accuracy than the model trained
with image-only augmentation, especially in the seen domain. This suggests that the bilevel pa-
rameter augmentation is effective in learning consistent representations across tasks and views.

clean
adv

C
K

A

0

0.05

0.10

0.15

0.20

Image Aug. Bi-level Aug.
Figure 3: Effect of augmentation

To support our claim, we calculate the Centered Kernel Alignment
(CKA) [18] value, which measures the similarity between representa-
tions (When representations are identical, the CKA is 1). As shown
in Figure 3, when bilevel parameter augmentation is applied, features
from the augmented parameters are more dissimilar than features
with image augmentation only. These results show that our bilevel
parameter augmentation may generate more different multi-views
of the same instances which helps learn invariant representations
across views, that help it to achieve generalizable robustness.
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Table 3: Ablation study of our proposed bilevel augmentation. Test accuracy(%) on seen domain (CIFAR-FS)
and unseen domains (Mini-ImageNet, Flower, Cars) of 5-way 5-shot task. Robustness is calculated with PGD-20
attack(ϵ = 8./255., step size=ϵ/10), clean stands for accuracy of clean images. All models are adversarially
meta-trained on CIFAR-FS with attack step 3 due to computation costs.

Augmentation level CIFAR-FS Mini-ImageNet Flower Cars

Image Aug. Parameter Aug. Clean PGD ℓ∞ Clean PGD ℓ∞ Clean PGD ℓ∞ Clean PGD ℓ∞

✓ - 63.10 36.98 39.54 15.08 51.57 25.05 38.99 14.36
✓ ✓ 65.82 41.39 44.64 15.75 53.25 28.05 40.08 16.88
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Figure 4: Ablation on meta-objectives in TROBA. Test accuracy(%) on the seen domain (CIFAR-FS) and
unseen domains (Mini: Mini-ImageNet, Tiered: Tiered-ImageNet, Flower, CUB, Cars) of 5-way 5-shot task.
Legends denote the meta-objectives loss that is used to train the model. All models are adversarially meta-trained
on CIFAR-FS with attack step 3 due to computation overhead. (a) Clean accuracy stands for the accuracy of
clean images. (b) Robustness is calculated with PGD-20 attack(ϵ = 8./255., step size=ϵ/10).

Self-supervised loss regularized to learn generalized features. TROBA leverages both adversarial
loss and self-supervised loss in meta-objective; specifically, it uses TRADES loss (Equation 7) and
cosine similarity loss between representations of differently bilevel augmented views, as shown in
Equation 3. The adversarial loss is calculated independently in each bilevel augmented network
to enhance the robustness on each training sample. On the other hand, the self-supervised loss is
computed between the representations of each bilevel augmented encoder to enforce the consistency
across features for samples attacked with our bilevel attack, which helps it to obtain a consistent
representation space across perturbations and instances, which helps with its generalization (Figure 4).
Notably, the self-supervised loss has a larger contribution when we conduct transfer learning to
unseen domains with larger data (Appendix F.3).

Further, we replace the adversarial loss term with AT [22], which is widely used to obtain robustness
in adversarial learning, while utilizing the same self-supervised loss. As shown in Table 4, utilizing
a TRADES [40] loss as an adversarial loss is more effective to obtain transferable robustness in
adversarial meta-learning than a AT [22] loss.

Class-wise Instance-wise
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0.80
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view1 view2
Figure 5: Effect of type of attack

Bilevel attack makes the model to be robust on unseen domain
attacks. We further analyze the effect of our bilevel instance-wise
attack compared to class-wise attack in Table 5. We observe that
adversarial examples that are attacked with instance-wise attack
make the model more robust in unseen domains compared to class-
wise attack. Specifically, instance-wise attack generates adversaries
that have larger difference to clean examples in the representation
level, and thus can be thought as a stronger attack. To demonstrate
the effectiveness of instance-wise attack, we calculate CKA [18]
between clean and adversarial features from each bilevel augmented
parameters. As shown in Figure 5, instance-wise attack produces more difficult adversarial examples
that are highly dissimilar from clean instances. However, when the parameter is augmented with
bilevel parameter augmentation, the class-wise attack also can show transferable robustness since
self-supervised loss supports it to obtain generalized robustness.

F Additional experimental results of robustness

F.1 Robustness on seen domains
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Table 4: Ablation study on adversarial loss in meta-objectives of TROBA. Test accuracy(%) on benchmark data
sets for 5-shots. Robustness is calculated with PGD-20 attack (ϵ = 8./255., step size=ϵ/10), clean is for clean
images. All models are adversarially meta-trained on CIFAR-FS, with ResNet18 as the base encoder.

Mini-ImageNet Tiered-ImageNet CUB Flower Cars

Adversarail Loss Clean PGD ℓ∞ Clean PGD ℓ∞ Clean PGD ℓ∞ Clean PGD ℓ∞ Clean PGD ℓ∞

AT [22] 33.78 7.99 38.35 12.95 37.00 10.08 42.28 22.19 30.93 9.59
TRADES [22] 33.57 16.26 39.26 21.82 39.90 18.62 48.70 36.92 34.69 17.67

Table 5: Ablation study of our proposed bilevel attack. Test accuracy(%) on seen domain (CIFAR-FS) and
unseen domains (Mini-ImageNet, Tiered-ImageNet, Flower, Cars) of 5-way 5-shot task. Clean stands for
accuracy of clean images. Rob. stands for robust accuracy that is calculated with PGD-20 attack(ϵ = 8./255.).
All models are adversarially meta-trained on CIFAR-FS with attack step 3 due to computation costs.

CIFAR-FS Mini-ImageNet Tiered-ImageNet Flowers CUB

Attack type Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob.

Bi-level class-wise 66.69 40.48 42.15 17.13 53.91 27.41 69.66 38.83 50.01 21.2
Bi-level instance-wise 65.82 41.39 44.64 15.75 53.25 28.05 70.08 41.52 50.78 22.44

(a) AQ (b) Ours

Figure 6: Loss surface of seen do-
main (CIFAR-FS)

Even though TROBA is designed to have transferable robustness
in the unseen domain, our methods also show better robustness in
seen domain few shot tasks compare to baselines, even with better
clean accuracy (Table 7). In addition, TROBA shows smoother loss
surface to adversarial examples which is also directly associated
with better robustness and generalization (Figure 6). Our method is
agnostic to the meta-learning approach, as shown in Table 8, which
suggests that the type of meta-learning strategy is not the main
factor in achieving the transferable robustness. We only update the encoder in the inner optimization
for all meta-learning algorithms.

F.2 Robustness on unseen domains with different meta-learning framework and different
iterations of bilevel attack

We additionally validate our models on Mini-ImageNet (Table 6). Further, to prove that TROBA is
an effective method to obtain transferable robust representations, we experiment with three different
types of meta-learning frameworks and different strengths of bilevel attacks. Specifically, we train
TROBA on top of the MAML [7], FOMAML [7] and MetaSGD [21] and apply bilevel attacks with 3
steps and 7 steps, respectively. Here, we only update the encoder parameters in inner adaption, since
we propose task adaptive attacks that maximize the difference between the features, further to learn
generalized representations as BOIL [25] demonstrated.

As shown in Table 9, TROBA outperforms the previous adversarial meta-learning model [8] by
more than 10% robustness regardless of meta-learning strategies. Furthermore, we show outstanding
robustness with only 3 steps of bilevel attacks (i.e., dynamic instance-wise attack) compared to
AQ [8], which is trained with PGD-7 attacks (i.e., class-wise attack). To demonstrate that a bilevel
attack is a more effective attack than a class-wise attack in the representation level, we calculate
CKA [18] between clean and adversarial features to measure the similarity in the feature level.
Notably, the CKA value of features attacked with the bilevel attack is smaller than the CKA values of
features attacked with the class-wise attack (Figure 5), which means that the bilevel attack constructs
more confusing perturbed images that are more dissimilar from their clean examples. Through these
remarkable results, we demonstrate that our proposed bilevel attack served as a stronger attack that
makes the model to have robust transferability to unseen domains, even with fewer gradient steps of
attacks and little data.

F.3 Robustness on unseen domains with larger datasets

In the main paper, we validate our models on unseen domains with larger benchmark datasets for
standard image classification, which are CIFAR-10 and STL-10. Furthermore, we also demon-
strate the robust transferability of our models in benchmark few-shot image classification tasks,
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Table 6: Results of transferable robustness in 5-way 5-shot unseen domain tasks that are trained on 5-way
5-shot Mini-ImageNet. Rob. stands for accuracy(%) that is calculated with PGD-20 attack (ϵ = 8./255.). Clean
stands for test accuracy(%) of clean images. All models are trained with PGD-7 attacks on ResNet12.

Mini-ImageNet→
CIFAR-FS Tiered-ImageNet CUB Flowers Cars

Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob.

MAML [7] 66.75 12.97 65.33 13.10 52.82 4.46 71.01 4.86 43.66 2.77
ADML [38] 41.14 13.36 41.05 13.26 32.82 4.59 43.07 9.65 24.85 5.48
AQ [8] 61.97 30.73 47.61 14.21 45.64 13.19 65.40 25.01 37.29 8.85
RMAML [36] 37.94 10.59 30.49 8.24 27.30 6.26 42.52 13.08 37.76 5.43
Ours 65.45 36.51 59.64 29.73 53.70 20.64 69.84 36.49 42.25 14.42

Table 7: Comparison in the 5-shots seen domain
tasks. All models are trained on CIFAR-FS and
Mini-ImageNet, respectively, with PGD-7 attack in
ResNet12. ∗ stands for reported results in Wang et al.
[36].

CIFAR-FS Mini-ImageNet
Clean Rob. Clean Rob.

ADML [7] 53.06 22.45 26.72 6.81
AQ [8] 73.49 28.49 39.47 13.52
RMAML [36]∗ 57.95 35.30 43.98 21.47
Ours [21] 64.90 43.34 47.56 18.18

Table 8: Results of TROBA with a different meta-
learning frameworks in 5-shot tasks. All models are
trained on CIFAR-FS and Mini-ImageNet, respec-
tively, with PGD-7 attacks in ResNet12.

CIFAR-FS Mini-ImageNet
Clean Rob. Clean Rob.

TROBA
+MAML [7] 52.79 32.50 37.58 14.23
+FOMAML [7] 53.42 35.95 33.87 15.60
+Meta-SGD [21] 64.90 43.34 47.56 18.18

which are Cars, CUB, and Aircraft that have 196, 200, and 100 classes, respectively. Especially,
we train our models on ResNet18 with bilevel attacks with 3 steps while other self-supervised
models are trained with PGD-7 attacks due to computation costs. We use the same hyperparam-
eters to validate with robust full-finetuning for all datasets, as we explained in Appendix C.5.

Table 11: Test accuracy(%) of TROBA and
self-supervised pre-traiend models on common
corruption tasks of CIFAR-10.

Model Accuracy

ACL [15] 68.6
BYORL [10] 69.01

AQ [8] 66.16
TROBA 67.9

Although our models utilize only scarce data to train,
and even apply bilevel attacks with fewer gradient steps,
we show even better robust representations compared
to self-supervised pre-trained models while preserving
clean accuracy (Table 10). Especially, our methods
show a larger gap in fine-grained datasets, which have
highly different distribution from meta-trained domains
(i.e., CIFAR-FS). Further, we hope that our models to
be robust in real-world adversarial perturbation such
as common corruption [14], we evaluate our fully fine-
tuned models with adversarial examples on CIFAR-10,
with common corruption datasets on CIFAR-10. TROBA shows comparable accuracy with self-
supervised pre-trained models on common corruption tasks, even trained with little data and bilevel
attacks with fewer inner maximization iterations (Table 11). From these results, we prove that TROBA
learns good generalized representations with little data effectively.

G Obfuscated gradient

All of the robust accuracies in our paper are calculated with the strength ϵ = 8./255., step size α
= 8./2550. and 20 steps. To check whether our model is under obfuscated gradient issues or not,
we experiment with two different settings of l∞ PGD attacks. First, we apply PGD attacks with
extremely large strength, where robust accuracy should be almost zero. Second, we use the same
strength but different step sizes and steps, which are 4./2550. and 40, respectively, where robust
accuracy should be the same as robust accuracy from our original evaluation setting. Specifically, we
demonstrate TROBA trained on CIFAR-FS with ResNet12 as the base encoder, and further on top of
the FOMAML reported in Table 9. As shown in Table 12, we verify that our models do not have any
obfuscated gradient issues.
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Table 9: Results of transferable robustness with different meta-learning framework and attack iteration in 5-shot
tasks. All models are trained with 5-way 5-shot images on CIFAR-FS and Mini-ImageNet. Clean stands for test
accuracy(%) of clean images. Rob. stands for accuracy(%) that is calculated with PGD-20 attack (ϵ = 8./255.).
All models are trained on ResNet12. The number of attack iteration during training is marked in parentheses
next to the meta-train dataset. Further, we denote (θ) next to the meta-learning strategies to notice that we update
only the encoder parameters during inner optimization.

CIFAR-FS (3 steps)→ Mini-ImageNet tiered-ImageNet CUB Flowers Cars

Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob.

T
R

O
B

A +MAML (θ) [7] 34.35 15.76 39.06 20.08 42.32 17.46 57.74 32.70 35.78 15.79
+FOMAML (θ) [7] 32.06 16.69 37.97 22.15 37.65 17.50 56.68 34.08 36.33 18.45
+MetaSGD (θ) [21] 44.64 15.75 53.25 28.05 50.78 22.44 70.08 41.52 40.08 16.88

AQ [8] 33.79 1.59 36.41 2.27 39.35 2.88 58.69 6.59 37.39 2.30

CIFAR-FS (7 steps)→ Mini-ImageNet tiered-ImageNet CUB Flowers Cars

Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob.

T
R

O
B

A +MAML (θ) [7] 32.57 16.12 38.90 22.51 39.44 16.52 56.79 32.83 36.58 16.56
+FOMAML (θ) [7] 31.71 17.40 37.33 23.28 38.63 18.79 59.57 36.79 37.94 21.34
+MetaSGD (θ) [21] 45.82 24.12 51.46 30.06 48.56 25.23 66.49 42.16 38.29 19.43

AQ [8] 33.09 3.32 37.41 5.05 38.37 4.10 60.14 11.03 36.83 4.47

Mini-ImageNet (3 steps)→ CIFAR-FS tiered-ImageNet CUB Flowers Cars

Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob.

T
R

O
B

A +MAML (θ) [7] 57.11 30.76 43.15 20.44 46.00 17.03 62.23 32.60 39.70 16.83
+FOMAML (θ) [7] 51.48 29.05 39.22 20.92 37.76 14.66 49.80 25.04 38.02 16.07
+MetaSGD (θ) [21] 66.48 37.36 59.73 29.35 53.33 20.20 68.93 33.39 42.09 13.73

AQ [8] 66.52 23.01 48.33 5.70 47.12 7.37 66.80 13.65 37.32 4.34

Mini-ImageNet (7 steps)→ CIFAR-FS tiered-ImageNet CUB Flowers Cars

Clean Rob. Clean Rob. Clean Rob. Clean Rob. Clean Rob.

T
R

O
B

A +MAML (θ) [7] 56.61 35.18 41.96 24.11 44.97 19.64 62.34 34.73 39.85 19.26
+FOMAML (θ) [7] 53.42 35.95 37.91 22.15 39.88 17.40 59.66 33.64 39.93 17.94
+MetaSGD (θ) [21] 65.45 36.51 59.64 29.73 53.70 20.64 69.84 36.49 42.25 14.42

AQ [8] 61.97 30.73 47.61 14.21 45.64 13.19 65.40 25.01 37.29 8.85

Table 10: Experiments results for self-supervised robust full-finetuning of TROBA and the state-of-the-art
adversarial self-supervised models on unseen domains. While TROBA is trained on CIFAR-FS with bilevel
attacks , adversarial self-supervised models are trained on full-dataset of CIFAR-100. All models are trained on
ResNet18, and evaluated against PGD-20 attacks (ϵ = 8./255.) and AutoAttack (AA) [6]

CARS CUB AirCraft

Method Clean PGD ℓ∞ AA Clean PGD ℓ∞ AA Clean PGD ℓ∞ AA

Self-supervised learning
RoCL [16] 35.00 8.11 5.67 17.21 2.55 1.71 33.63 8.76 5.61
ACL [15] 30.95 5.86 3.80 17.00 2.33 1.54 31.19 7.26 4.68
BYORL [10] 32.13 6.15 4.39 16.78 2.28 1.48 31.16 6.63 4.17
Meta learning
Ours (3 steps) 31.47 9.58 6.19 18.07 4.49 2.73 32.12 9.93 6.19

Table 12: Test accuracy(%) on benchmark data sets for 5-shots. Robustness is calculated with PGD-20
attack (ϵ = 8./255., step size=ϵ/10), clean is for clean images. All models are adversarially meta-trained on
CIFAR-FS.

CIFAR-FS Mini-ImageNet Tiered-ImageNet CUB Cars

Strength (ϵ) Step size (α) Steps Clean PGD ℓ∞ Clean PGD ℓ∞ Clean PGD ℓ∞ Clean PGD ℓ∞ Clean PGD ℓ∞

3
st

ep
s 8.0/255.0 8.0/2550.0 20 53.42 35.95 32.06 16.69 37.97 22.15 37.65 17.50 36.33 18.45
8.0/255.0 4.0/2550.0 40 53.04 35.35 31.70 16.01 38.06 21.98 37.77 18.12 36.10 18.02
300.0 8.0/2550.0 20 52.72 0.47 31.83 0.92 37.73 0.85 38.14 0.55 36.21 0.44

7
st

ep
s 8.0/255.0 8.0/2550.0 20 51.90 36.01 31.71 17.40 37.33 23.28 38.63 18.79 37.94 21.34

8.0/255.0 4.0/2550.0 40 52.50 36.39 31.95 17.49 38.44 24.22 38.18 18.87 37.41 20.92
300.0 8.0/2550.0 20 52.20 0.50 31.97 0.59 37.53 0.65 38.78 0.45 37.64 0.48
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H Visualization of loss surface

We visualize the loss surface of our model and baseline AQ [8] model. As shown in the Figure our
model has a smoother loss surface both in the seen domain and unseen domain while the baseline has
a relatively less smooth surface.

(a) AQ (b) Ours

Figure 7: Seen domain (CIFAR-FS)

(a) AQ (b) Ours

Figure 8: Unseen domain (Mini-ImageNet)

(a) AQ (b) Ours

Figure 9: Unseen domain (Tiered-ImageNet)

(a) AQ (b) Ours

Figure 10: Unseen domain (CUB)

(a) AQ (b) Ours

Figure 11: Unseen domain (Cars)

(a) AQ (b) Ours

Figure 12: Unseen domain (Flowers)

17


	Introduction
	Related Work
	Transferable Robust Meta-learning via Bilevel Attacks
	Experiment
	Results of Adversarial Robustness in Unseen Domain Few-shot Tasks
	Transferable Robustness in Different Domains

	Conclusion
	Related works
	Adversarial learning
	Self-supervised learning
	Self-supervised adversarial learning

	Preliminaries
	Experimental details
	Dataset
	Meta-train
	Hyperparameter details of each meta-learning frameworks
	Meta-test
	Adversarial evaluation
	Comparison with self-supervised pre-trained models

	Implementation details of ablation studies
	Ablation study of bilevel parameter augmentation
	Ablation study of bilevel attack

	Results of ablation Studies
	Additional experimental results of robustness
	Robustness on seen domains
	Robustness on unseen domains with different meta-learning framework and different iterations of bilevel attack
	Robustness on unseen domains with larger datasets

	Obfuscated gradient
	Visualization of loss surface

